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II\DERST-\NDINC THE RELATIONSHIP BETWEEN
Ll ,lcmL.cr. ,,i a grr,up is often clifficult. The obiects in Dali's
::r::r'1\ :h.ire ccrtirin cllaracteristics in their horizontal and
-,:,-.r, qr,,upir-rgs. Animal, mineral, or vegetable; standing,

:-,,--r: , r. '.rrLrne-ho\\' else are these items intcrrclatccli Do
.--. -,-- .l-r.rrr ir colrlmon characteristici Perhaps Dali's color

palette ties them together. Or, the common light source may
be the tie that binds. Searching {or connections between
members of a group of elements can be a very stimulating
exercise. When dealing with a group of functions, composing
your thoughts can be very valuable. See how $oup d),namics
are exposed when functions are tabled by turning to page 14.
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FRONT MATTER

Fal'aday,s leuacy: Theioys 0l melhodolouy
Around the magnet Faraday
Was sure that Volta's lightnings play:

But how to draw them from the wire?
He drew a lesson from the heart:

'Tis when we meet, 'tis when we part,
Breaks forth the electric fire.

-by Herbert Mayol

ICHAEL FARADAY'S PRES,
ence once graced the ha1ls of
England's Royal Institution
and the world atlarge. His ap-

proach to nature displayed simplic-
ity and curiosity, and was driven by
a passion to understand. A discov-
erer of great laws, such as magneto-
electric induction, Faraday suc-
ceeded (despite his scant use of
mathematics) because of his keen
analytical mind coupled with a re-
markable imagination for creating
picturesque models to formulate
concept-rich inquiries.

His public lectures were almost
entirely qualitative. They conveyed
how the search for causal connec-
tions is used both as a matter of
course essential to the scientific
method and as a source of delight for
his audience. As one means of propa-
gating the scientific method beyond
the lectue theater, Faraday would, on
occasion, give out samples of mate-
rials like the ones used in his dem-
onstrations or tell his audience how
such materiais could be easily ob-
tained and invite those in atten-
dance to try some of the experi-
ments on their own.

Faraday's popular lectures were
aimed at children and at the "child"
in the attending adults. His series of
enthusiastic talks "The Forces o{
Matter" and "The Chemical History
of a Candle" are models of scientific
clarity bolstered by a range of capti-

vating demonstrations. He would
demonstrate that combustion re-
leases water through the combina-
tion of hydrogen from the candle's
paraffin with oxygen from the air,
and dramatize this by exploding a

mixture of hydrogen and oxygen to
obtain water. He would show (the
counterintuitive) spontaneous burn-
ing of finely powdered lead broken
out of its vacuum container to unite
with the air's oxygen. His dramatic
demonstrations were offered not as

a succession of incomprehensible
miracles, but as theater through
which intelligible causal laws play
themselves out to delight the under-
standing of inquiring minds.

Following Faraday, we can sub-
ject even our simplest experiences to
scientific inquiry: Why does some-
one hold a pan of water above the
cup when pouring? Although one is
tempted to answer "experience,"
that is not a sufficient explanation of
the event. For the scientist it is not
an explanation to claim that because
water poured has fallen into the cup
in the past then it wiil fall into the
cup in the future. It is, of course/
" gravity" that causes the water to
fall. But why believe in gravity? Is it
because every time you see an object
fall you simply tag the experience
" gtavity" ? No, not according to our
knowledge of physics. It is because
we have reasoned our way through
to the belief that there are underly-

ing principlcs in nature, rei.r'l':d to
as Newton's law of gralit.r:r,,r and
his second law of rnotion. It r. :hcse
that enable us to understanrl ,:-,-the
water fa11s. Moreover, irt,rr -: htt1e
knowJedge t'f the watsl - r" c-c1lt
state/ we can also use thosc tr :.:i-tctples

to predict howrtwill fall. -\-rli-,r-e can
cxtend those principle s out tt-t -}1ace

t() undel'stand thc motrorl ul -.r i.1n-
munication satellites, of p1.11.,t, oi
binary stars/ and of Ha1ler . c(rlrret
(predicting when it should be re turn-
ing to our Solar System and rr here rt
will be when it returns).

Why does a candle flame con-
tinue to burn? What is combustioni
Directing a bcam of light through
the flame, one sees a darker shadow
frorn the inner region of the flame,
and a lighter shadow from its outer
region. Faraday demonstrates how
to conclude that thc rnner region
contains candle wax vapor produc-
ing particles of carbon that arc
heated to incandescence in the outer
region. What is the substancc? How
do you know? Those are issttcs Fara-
clay wants us to appreciate.

"What is the cause?" This ques-
tion has been integral to scientific
activity. Even today we have seen
how such incpriry has led to our be-
lief in the existence of molecules
ancl atoms-from Einstein's cxpla-

lAs communicated through Sir
Charles Wheatstone to |. H. Gladstone.
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nation of Browniart motion to its
verifications by Perrin, to the obser-
vation of atomic dislocations in
crystals by that quantum device
called the scanning tunneling elec-
tron microscope.

Faraday conveyed his delight in
science to members of the audience
because of his joyfully active curios-
ity, his obvious love of scientific iR-
vestigation, and his flair for drama.
And he did this through his implicit
belief that the world is intelligible.
He knew that, in large measure, the
way to understanding lies in the joy
of the pursuit. Not the discovery but
the inquiry. Not the goal but the
journey.

The scientific mind conquers na-
ture/ not people. And it does so
through unders tanding-through
the testing of hypotheses, however
passionately formed, and through
the lucidity of logic, however coolly
applied. This may seem to be a
rather romantic view of science. It
is. It is also, I believe, a realistic view
of science. Science without passion
is sterile. And passion without logic
is not science.

As we head toward the last year o[
the twentieth century we are witness
to the fruits of Faraday'slegacy-a
century of scienti{ic achievement
without precedent in its number of
discoveries and based, in large part, on
pillars of this century's science-the
theories of relativiry quantum theory,
and molecular biology. The experi-
mental results and technological ap-
plications of those theories have been
amply demonstrated-in our &scov-
eries of the nature of matter (such as
the quark structure of the proton), in
our discoveries of quasars (exotic as-
tronomical objects near the edge of
the observable Universe), in our use
of laser " tweezers" to manipulate mi-
croscopic 1i{e forms, and in our revela-
tion of some of the major secrets of
life itself through the discovery of
DNA. Now, how can we convey
Faraday's legacy to our students?

Laurence I. Gould is Professor of Phys-
ics, and has also taught interdiscipli-
nary courses lor non-science maiots, aL

the University of Hartford, West Han-
ford, Connecticut.
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lallicg$ and Brillouin zolto$

Can you master these domains?

by A B. Goncharov

HE CEOMETRY OF LATTICES
can be quite picturesque. In-
deed, the most enjoyable part of
this article will be the pictures.

If you understand them well
enough, then all the basic ideas and
constructions will be quite clear to
you.

Before proceeding we should note
that the problems discussed here are
not mere abstractions. On the con-
trary, they arise directly from the
physics of crystals. Toward the end
of the article we will treat the physi-
cal point of view in greater detail.

Let's start by marking a1l the
points with integer coordinates on
the plane. They will be the nodes of
a square lattice. Let's choose an ori-
gin O from among them. Now, for
any other node P of the lattice, we
can draw the line I such that the
nodes O and P are symmetric with
respect to this line. In other words,
line 7 will be the perpendicular bi-
sector of segment OP. These lines
will divide the plane into a set of
small cells (triangles and convex
polygons). Let's assign an integer,
called its rank, to each cell, accord-
ing to the following rule: The cell
containing point O (it is a square)
will be given a rank of 1; cells adja-
cent to this one will get a rank of 2i

cel1s adjoining to them and different
from those, we've already consid-
ered, will get a rank of 3, and so on.

Let's paint the cells near the ori-
gin in different colors, so that the
colors of cel1s with equal ranks co-
incide (fig. 1). It turns out that the

areas of the domains painted in dif-
ferent colors are equal.

We can take a lattice consisting of
regular triangles or alattice made of
regular hexagons and perform the
same operations with them (figs. 2
and 3). We will find that the same

lll0lltllJIBtR/[tctllllBtR I ss8
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Figure 2

regularity holds: zones painted in
different colors have eclual areas.

Let's denote the union of all cells
of rank r (r = 1,2,3, ...)by D,lO),
where O is the " cefltral" node of the
lattice. We will show that for all
possible lattices the area of D,(O)
does not depend on r.

Having scrutinized figures 2 and
3 for some time, we can make two
important observations that suggest
two different ways to prove this
statement. So, 1et's start with these
observations.

Observation 1. Consider the sim-
plest lattice, with square cells. The
blue domain in fig. 4 is Du(O). The
thick lines in the figure break the
plane into equal scluares, so that any
node Q of our lattice is in the cen-
ter of one of these squares. CaIl this
square D(Q). Then each D(Q) is the
image of the central square
D(O) = Dr(Ol under a parallel trans-
lation by the vector OQ. If we cut
the plane along the thick lines and
move all the scluares so they coin-
cide with the central square lDlO)),
then the blue pieces of D oQ)will {i11

the whole square, without overlap-
ping. (The same thing happens for
all r = 2, 3, . . . .We suggest that you
check it for as many difierent z as nec-
essary to conyince you that this state-

ment is true). This means, of course,
that the arca ol DulO)-and of D,(Ol
for all r-is equal to that of D, (O).

Observation 2. We will illustrate
this observation, partly for the sake
of variety, using a lattice consisting
of the vertices of a regular hexagonal
tiling of the plane. Figure 2 repre-
sents the domains D,lOl fior r = l, 2,
... ,6.

The construction of observation 1

starts with a choice of one lattice
point for the origin. But in fact we
can choose any lattice point for the
origin and perform the same con-
struction. For example, if we choose
an arbitrary lattice point Q as the
origin, we can construct DuQ, which
is a figure congruent to the six blue
triangles of figure 2,but centered at
the point Q. Figure 5 shows this con-
struction for several choices of Q.
Each Q has a different color, and
the corresponding DoQ is shown
in the same co1or. We now see that
the set of domains D4,Ql for differ-
ent Q covers the plane without
overlapping. (In fact, the same is
true for all D r(Ql, r : l, 2,....) Thus,
the area of Da(Q) (and, more gen-
era\ly, of D,(Q ) for all z) is eclual to
the "mean" atea that falls on one
node. This will be explained fur-
ther in what follows. Now, let's
formulate a lemma that explains
both observations.

The main lemma. The domain
D,(O) consists of all the points A of
the plane such that the distance
from A to the node O is in the rth
place in the sequence of distances
from A to the nodes of the lattice.

Let's start with the case I = 1.

Let P be any lattice point. Note

Figure 3
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Figure 4
that the perpendicular bisector of
segment PO divides the plane into
two half-planes such that the
points A lying in the half -plane
that contains O are nearer to O
than to P, and vice-versa. The do-
main D(O) = Dtpl is the intersec-
tion of all such half-planes for all
the nodes P different from O.
Therefore D(O) consists of the
points A for which O is the near-
est node of the lattice. (D(O) is
called the Dirichlet domain of the
node O.)

Now let Bbe apoint of rank r > I
(that is, let it belong to D,(O)). Ac-
cording to the definition of the rank
given above, there must exist a path
from B to O that intersects exactly
r - 1 perpendicular bisectors drawn to
a set of segments C)P, OPz,.., OP, _t.
We can construct this path as fol-
lows: At first we travel along a seg-
ment of a line from point B to any
point on the border of domains
D,(O) andD,_t(O). Then, along an-
other line, we come to a point on the
border of D,-,(O) and D,_r(Ol, and
so on. And when we come to the
domain D LlOl : DIO),we go straight
to point O. This means that there
arer- l nodes P1,P2,...,Pr_, of the
lattice that lie nearer to point B than
to O (because we have crossed r - I
perpendicular bisectors in moving
from B to O). On the other hand, if
there were more than z - 1 nodes
with this property, we would inevi-
tably have to cross more than z - 1

perpendicular bisectors, and thus
the lemma is proved.

Now we use this lemma to ana-
lyze our observations.

1. Suppose that the lattice maps
into itself when translated by the
vector OQ, where O and Q are two
arbitrary nodes. (This condition
holds for the scluare lattice, the "tri-
angular" lattice in figure 1, and gen-
erally speaking, any lattice whose
nodes are the endpoints of the vec-
tors m .OA + n.OB, where OAB is
a fixed triangle and m and n are ar
brtrary integers.) Below we call
"translations" only the translations
by the vectors OQ. Let's prove that for
every internal point M in the
Dirichlet domain D(O) there exists a
translation Tsuch thatT(Ml e D,lOl.
Moreover, we will show that ilTlMl
lies inside domain D,(Ol, then there
exists only one such translation. In
other words, the domain D(O)
breaks up into a set of pieces, which,
when translated, assemble into do-
main D,(O).

To prove this, let Cbe apoint in-
side D(O) such that Q is the rth node
of the lattice if we order them in ac-
cordance with the distances from
them to C. According to our main
lemma, Ce D(O)aD,lQ), andthus,
translating it by the vector OQ, we
see that TIC) e D,(Ol.The transla-
tion 7is determined in a unique way
unless there exists a node X in the

lattice such that lCQl : lCXl. It's
clear from this that the translation
is unique for all the points in D(O)
except for those lying on a finite set
of segments. These segments are
just the lines alon'g which we must
cut the domain D(O) to put the
pieces into D,(O).

2. Suppose that for any two nodes
P and Q of the lattice we can find a
way to move the lattice onto itself
in such a way that P maps onto Q.
In the previous case/ we spoke about
translations that mapped the lattice
onto itself. Flere, we allow any sort
of transformation.

According to our main lemma, for
each point C in the plane there is only
one node Q such that C e D,(Q). It is
the rth node in the list where the
nodes are ordered according to their
distances to C. Now it's clear that
the domains D,(Q)with different Q
intersect only at their edges. Our
initial assumption about the lattice
guarantees that all the domains
DrlQ) are congruent: The motion of
the lattice that sends Q into O maps
D,(Q)in D,(Ol.

Now we can explain why the ar-
eas of D,IO) are equal for a1lr. For
any lattice we will call its "density"
the following limit:

Figure 5
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where K(N) is the number of nodes in
the N x N square whose center is O.
We'lI prove that for each r, o = 1/S,
(here S, is the area of D,(O)). Let L,
be the greatest distance from point
O to a point in domain D r{Ol, and let
N, Ir. Then the union of the do-
mains D,(Q) taken for ali K(l/)nodes
Q that lie inside the N x N square
covers the (N- f,) x (N- f,) square and
ends in the (N + L,) x (N * I,) square.
Therefore,

(, _1,'1' _ (ru-r.)' < 
s, K(N)

l'- ^J 
=--lu,-= N'

.(ru+1,)2 =1,r*L)'.- N2 [- N/
When N-) *, the right and left parts
of this inequality tend to 1. Thus, we
have

,,_ s. r((N) _,lllll . = l,

^,r2
and therefore, cx : 1/Sr. So, 1/cr is the
"mean areapet node," in particular
S, the area of domain D(O), is also
eclual to 1/u.

Figure B

Note. These same ideas appear in
a famous lemma of Minkowski
about a convex body, which has nu-
merous applications in number
theory.

Minkowski's lemma. Let C be a
convex centrally-symmetric figure
such that the node O of the lattice
coincides with its center. Then, i{ the
ratio of the areas of C and Dr(O) is
greater than 4, then there must exist
a node inside C di{ferent from O.

Hint for the proof. First, we show
that there exist two different nodes
P and Q of the lattice such that the
images of the domanYz C under the
translations at vectors OP and OQ
overlap. lHereYz C denotes the figure
consisting of the ends of the vectors
YzONl, where M e C.l This part of
the reasoning is similar to what we
have done above, and it is based on
the fact that the area of %C is equal

to t/+5", So,o). Take a point X in the
aforementioned intersection. Let y
arl Z denote the points where X
falls when translated by the vectors
PO and QO, respectively. These
points lie in the domain 1/{.Fur-
thermore, OY - OZ: OP - OQ, and
thus point A, the endpoint of the
vector OY - OZ, is a node of the lat-
tice (A + O, since P + Q).Now we
note that the endpoint of the vector

oY -oZ= YL(OY +21-ozll

lies inside figure C, since the figure
is convex and O is its center of sym-
metry.

We can apply the reasoning for
Observations 1 and 2 to lattices in
three- (and more) fimensional space.

In this context we must speak of the
"middle (hyper-)planes" of the pairs
of the nodes (O, P) and of the volumes
of the corresponding "cells" Dr(O)
and Dr(o).Figures 5a, 7a, and Ba

show the four most common ex-
amples of solid lattices: a simple cu-
bical lattice, a volume-centered cubi-
cal lattice, and a facets-centered
cubical iattice. The corresponding
domains D(O) and Dr(O) are shown
in figures 6b-Bb and 6c-Bc, respec-
tively. The polyhedrons in fig. 6c and
7l't bear the name of rhombo-dodeca-
hedrons, and the polyhedron in fig.
8b is called a ftuncated octahedron.

Cl,yshlline con$Furtiolt$
The geometric constructions that

we have focused on play an impor-
tant role in the physics of solids. The
domains Dr(Ol that we've consid-
ered appear naturally in the study of
crystal structure. There they bear
the name Bfillouin zones, after the
famous French scientist L6on
Brillouin, who in the early 1930s
thoroughly investigatEd electron
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flow in crystals from the quantum
point of view.

A crystal's properties of electric
conductivity depend primarily on
the existerice of "energy gaps,"
which are intervdls in the scale of
energy that comprise values that the
electrons cannot take on. Figure 9a
shows how the energy of a free elec.-
tron (that is, of an electron that does
not interact with the crystal) de-
pends on its impulse. Its graph is a
parahola (the kinetic energy is pro-
portional to the square of the veloc-
ity). If the electron interacts with
the ions of the crystal lattice, then
breaks can appear in this graph for
some values of impulse.

The corresponding graph for a

"one-dimensional" crystal is shown
in figure 9b. For "two-dimensional"
and real, three-dimensional crystals,
the impulse p is a vector. If we agree
to measure all these vectors from
the same point O, we'll obtain a

space (two- and three-dimensional,
respectively) whose points corre-
spond to all possible values of the
impulse, the so-called impulse
space. To each lattice A consisting
of atoms in the usual space/ one can
find a corresponding " dtJal" lattice P
in the impulse space (physicists usu-
ally call it the invetse lattice). For a
properly chosen scale in the impulse
space, this lattice is defined by the
following rule: Vector p from the im-
pulse space belongs to P If and only
if the scalar product a . p is an inte-
ger for all vectors p connecting two
nodes of lattice A.

It turns out that the breaks in the
energy (here we consider it as a func-
tion of the impulse space) appear
right on the planes, which are per-
pendicular bisectors drawn to the
segments OP, where P is a node of
the dual lattice. The parallel trans-
lation of the cells that constitute the
Brillouin zone D,(O) of rank r to the
main zone DlP) also has a physical
interpretation.

Exercises
i. Why do the ends of such vec-

tors p : OP form alattice?
2. Draw the dual lattices P for

the lattices A shown in figures 1,

), alJ 3. o
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I Can See Clearly lUuuu

by David Arns

A frr.trrr,ing concept has been shaped in recent years:
An excellent idea that, no doubt, elicits cheers
From optical astronomers who, down here on this Earth,
Greet the news with celebrations, merriment, and mirth.

The problem first was seen more than three centuries ago,
When Christiaan Huygens saw that every heav'nly body's glow,
When looked at through a telescope, was always seen to quiver,
Like seeing a reflection in the ripples of a river.

And later, Isaac Newton noticed similar effects-
"A problem with the optics?" No, this thought he soon rejects;
The probiem was the atmosphere: The light's distorting there.
"The remedy," he quipped, "is most serene and quiet air."

And so, for years-no, centuries-the best that we could do
Was this infernal "twinLling" of the air we must look through.
And photographic plates containing images of stars
Hadfuzzy, blobby, blurs that looked five times the size of Mars.

Then came a proiect: SDI (or "Star Wars," as it's called),
The ground-based super heat-ray had our laser boys enthralled:
"Why, we could shoot down missiles, both the main one and the spare,
If light did not diverge and scatter, going through the air."

They saw that this distortion could be compensated for
By analyzing twinkle (quite a computational chore)
And mirrors that could change their shapes to counteract the blur:
"We'11whip the beam back into shape, and that we know for surel"

Wel1, SDI was cancelled, but the knowledge that they'd learned
Was what the doctor ordered, the astronomers discerned:
The ability to counteract the twinkle caused by air-l
The potential of what might be seen was more than they could bear.

So, several of the larger'scopes-ten or twelve or more-
Will get adaptive optics, which will open up the door
To sharper, clearer images of obiects out in space/
From galaxies to quasars to the nebulas'fine lace.

And what will clearer vision do for people, in the main?
Will our thoughts extrapolate like links within a chain?
It would be nice, when looking at a galaxy or star/
To see the cosmos'vastness, and how miniscule we are.

David Arns is a graphics software documentation engineer for
Hewlett-Packard in Fort Collins, Colorado, and also operates a
small business designing and creating web sites. In his spare
time he dabbles in poetry on scientific themes.
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Does the engine limit the maximum speed of a car?

by L. Grodko

NE OF THE MANY INTRiCU-
ing facets of automobile engi-
neering is the problem of the
critical rolling speed of the tire.

What is critical speed? What factors
affect its value? How can this impor-
tant parameter be improved? Let's
start with a problem that at first
glance is not directly related to these
questions.

A waue rmltiltu olt a lsll
Consider an endless heavy belt

running on two rotating drums with
speed V. The segment AB oI this belt
is threaded through a firmly fixed
curved tube (fig. 1). The axis of this
tube is a certain curve lying in the
page's plane. Find the forces that the
tube exerts on the belt. Gravity can
be neglected. Assume that there is
no friction between the belt and the
tube. The tension along the belt is
constant with magnitude 7. The
mass of the belt per unit length is p.

Consider a small element of the

: -*-F {* * Ngfi.. t
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Figure 2

belt CD with length 7, which at the
given moment is located inside the
tube. The segment of the tube that
contains this small element can be
closely approximated by a circular
arc of radius R (fig. 2). The element
CD moves with constant speed 7
along the circle of radius R. There-
fore, its centripetal acceleration is
VzlR directed toward point O,
which is the center of curvature of
the arc CD.t

Let's see which forces impart this
acceleration to element CD. This
element is affected by the tension ?
due to the neighboring elements of
the be1t, which are applied to points
C andD tangential to arc CD lf11.2).
In addition, this belt is affected by
the normal pressure due to the wall
of the tube. Let the normal pressure
per unit length of the belt be p.
Then the force affecting element
CD is pl. Herc we took into ac-
count that I << R, so the curved
element CD is replaced by a
straight line segment. According
to Newton's second law, the net
force F is directed toward the center
of curvature O, and it imparts the
following centripetal acceleration to
element CD:

,v2pl O=F, (l)

where pJ is the mass of element CD.
Figure 2 shows that F: T' - pl, where
?'is the equivalent force of two ten-
sion forces applied to element CD
from adjacent parts of the belt. Since

rThe center of curvature is the
center of the circle whose arc is the
curved element CD larc CD). The
inverse radius of curvature is called
the curvature.

angle Q is small, sin Q = Q, T' = 2TO,
andT:2RQ.Thus,

F=zTq-ZpRQ.

Plugging the formulas for F and l into
(i) yields

ll2
2pRd _ =276-Z2RQ,'R

from which we get

1,
o = |(r - pv') et

We have thus obtained the normal
pressure acting on the belt. More
specifically, we have found only the
fraction of this force that acts on a
unit length of the belt in the section
where the radius of curvature is R.
However, this value is sufficient to
make further progress in solving this
problem.

Let's analyze formula (2). The ex-
pression in parentheses doesn't vary
along the tube, so for the given pa-
rameters T, p, and 7, its value is de-
termined by the inverse radius of cur-
vature (P * llRl. When V: 0 (that is,
if the belt doesn't move), p : TlR,
which means that the pressure is
determined by the belt's tension and
the tube's curvature at a given point.
If the speed Vincreases, p decreases,
and when the speed reaches the
critical value

tr
v = .l-, {3)!p

the force cancels along the entire
length of the tube. This speed is
called the critical speed V"..

What does the ecluation p : 0
mean? At Y = V", the belt doesn't
interact with the tube! At this speed
we can take the tube away-the belt
will not "notice" and will retain the
bend at segment AB.

Relative to an observer who
moves to the right at the speed V",
(so the observer doesn't move rela-
tive to the upper part of the belt),
this bend moves along the belt to
the left at the speed V",. This is a
traveling wave.

Now imagine that V < V.. and we

take the tube away but apply pres-
sure to the belt on the segment AB
such that the pressure is distributed
in the same way as it was with the
tube. We can see that the bend will
be the same as if the tube was in its
place. At every point the belt's cur-
vature l/R will relate to the applied
forces according to formula (2). If the
pressures p are kept constant when
the speed is increased, formula (2)

predicts that the degree of the belt's
bending (characterized by its curva-
ture 1/R) will also increase. In this
process the distribution of 1/R aiong
segment AB wll\ be determined by
the distribution of pressure along
this segment.

When the pressure distribution
on segment AB does not vary but the
speed increases to the critical value,
large bending (curuature) of the belt
in segment AB can occur. This infer-
ence can be formulated another way.
If a steady load (that is, pressure dis-
tributed in some way along segment
AB) "rtns" aiong the belt with in-
creasing speed (relative to the belt),
the curvature of the belt in fragment
AB wlll also increase, and the defor-
mation of the belt caused by the load
increases accordingly. When the
speed approaches V.r, the curvature
of the belt increases infinitely.
Therefore, the belt doesn't resist a
load at a speed near the critical
value.

This conclusion doesn't depend
on the character of the load distribu-
tion in segment AB just as the for-
mula for V", doesn't depend on the
shape of the curved tube.

Delol'mation on fie roads
The concept of the critical speed

of the traveling load can be extended
with more qualified reasoning to de-
scribe such phenomend as, say, the
load of a train car running along the
rails. The rail is also bending under
the pressure, but the considerations
are more complicated, because un-
like a belt, a rail has a rigidity, and
in addition, lies on an elastic base
(the ground). However, the critical
speed does exist in this case as well.
Calculations show that its value is
very high (about 1000 km/h), and it
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should be taken into account onlY
in designing trains capable of at-
taining speeds that PresentlY are
far from rcality.

However, the limitations im-
posed by the existence of a crttical
speed have great ptactical impor-
tance for modern cars. The critrcal
speed dictates the maximum speed
a ear cafl develop. Curiously, this
limitation is imposed not by the
engines, but by the tires.

A tire touches the road at what is
called the contact site. The forces
affecting the tire are applied to this
contact site, and they constitute the
load circulating along the tire. An
automobile pneumatic tire is a shell
inflated and stretched by the pres-
sure of internal air. The shape of a
tire is almost a torus. Let's consider
a small element A of the tire's shel1
(fig. 3). It is affected by neighboring
elements with tension directed tan-
gentially along the meridians and
parallels. Let the value of these
{orces per unit length (along the par-
allels) and unit width (along the
meridians) of element A be equal to
7, and 7,, respectively. Analysis of
the depehdence of these forces on
the tire's speed yields the formula
for the critical speed of the tire. It
looks similar to formula (3) that we
obtained earlier for a heavy belt:

a vcry strong net of corcls. Some-
times the tircs of big trucks are pro-
ducccl with steel wire rcinforcc-
mcnt/ and these tircs can withst:rnrl
very large 1oacl pressures. Without
this wirc net a tire woulcl collapse ett

an cxtra prcssure 20-30 times less

than that at which rnoclern reinforced
tires would collapse. For passcnger
cars this pressure is 1.5-2 atm, and for
trucks it is ,1-6 atm.

The dircction of the corcls is char-
acterized by the angle u, u.hich af-
fects the valuc of the critic:r1 speetl:

lv"l= rcoto'

Here K is a coefficient detertt-tiue ,-'1

by the air pressure p ir-rsrde a tlre ot
radius r in its cross-section aucl br-

lnilss lu unit arer p':

A tire's crittcalspeed is a very im-
portant parameter, so all tires are
subjected to special tests to measure
it. In such tests the axis of the wheel
is stationary, while the tire rolls on
a rotating drum. In the region where
the tire emerges from the contact
site, one can see waves. The defor-
mation of the tire is very large in
such regions. A further increase in
speed results in increased deforma-
tion (the amplitude of the waves be-
comes larger). The speed cannot be

made precisely ec1ual to the critical
value V.,, since the tire collapses
before this value is achieved.

The problem of critical rolling
speed of tires is the bottleneck in
the theory and practice of car de-
sign. It is no wonder that it at-
tracts many researchers. This
problem has been considered in
several hundred theoretical and
experimental papers. Still it is far
from being solved, and much work
is left to be done by Quantum.Q

Quantum articles about deforma-
tions and strength:

"Holding up under pressure," A.
Borovoy, lanuary, 1990, pp.30-32.

"Al1bent out of shape," Kaleido-
scope, September/October, 1995, pp.
JZ_JJ.

tPr

trP'

v-_ = i!! rnto.
\l p'

Note that in this formula p'is the
mass per unit area of the shell.
Formula (4) shows that the larger
the critical speed, the more the
tire is stretched in the direction of
the parallels.

To enhance the strength of tires,
manufacturers reinforce them with

Thus,

This is called Tamer's formula. You
can deduce it on your own, based on
what you've learned in high school
physics.2

The value of critical speed calcu-
lated according to formula (5) is
rather close to the experimental
data. For passenger car tires this
value is V",: l5O-220 km/h. this
figure is surely too small fior race
cars. Tarner's formula shows how to
enhance the critical speed for a tire.
One should produce the lightest
tires (that is, with smallest value of
p'), make them thicker (to increase
r), pressurize them more, and rein-
force them with fibers set at the
smallest possible angle o to each
other.

2Assume that equilibrium
conditions of element A suppose zero
curvature in the direction of the
parallels: In this way you obtain the
formula 7,,: pr. The condition for no
relative motion of the cords
(invariance of angle cr) results in a

relationship between T, and T,'.
Tr: Trcot2 u, = pr cotL a.

Vr, = -+\p (4)
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BRAINTEASERS

JusIlorlhelun ol it!

8246
Twelve days of rest Each of three successive months has exactly four Sun-
days. Prove that one of these months is February.

B24B
Minimal polygon. Construct a polygon with the minimum possible num-
ber of sides, whose sides intersect the l2 segments shown in the figure.

8250
Look before you leap. Once upon a time the great Baron Munchausen told
the following story. He ran and leapt, intending to jump over a swamp.
While in the airherealized that he couldn't reach the opposite bank. Then,
still in {light, he decided to turn around so he could safely return to the bank
from which he jumped. Is this a true story?

ANSWERS, H//VIS & SOLUTIOIVS O/V PAGE 48

13

8247
Symbolic gesture.Insert mathematical symbols among the three numbers
4 4 4 so that the resulting expression equals 16.

8249
Reconsftuctiv e geomefty. A student drew a parallelepiped AB CD A F rC tD t
on the blackboard and iabeled the centers of the faces ArBrC,D, and
CDDtCT as the points P and Q. Then he erased the drawing, leaving only
four points: A, B, P, arrd Q. Restore the parallelepiped if you know that
segments AA, BBt, CCr, and DD, are the edges.
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tunctiunal equations and Urotlp$

A formal introduction

by Y. S. Brodsky and A. K. Slipenko

OU ARE PROBABLY FAMILIAR WITH FUNC-
tional equations, although you may not have heard
the term. Functional equations are used to define
such properties of functions as evenness, oddness,

or periodicrty.
In general, a functional equation is an equation de-

scribing an unspecified funtion. Often it can be "solved"
for the unknown function. Some examples are

f(x+tl+f(x)=x,
2f(r-xl+r:xflxl,

xt(x)+t(*)="

Mathematicians began to study functional equations
over 200 years ago/ when they appeared in some me-
chanics problems. Augustin-Louis Cauchy (17 89-1857 )

contributed significantly to the study of such equations.
Indeed, there is even an equation named after Cauchy:
fl* * y): f(xl * fV).In this paper we focus on a method
for solving functional ecluations that uses one of the
most important concepts of modern mathematic.s-the
concept of group.

Comrusition olfunclions
The number of basic functions studied in school

is rather small. Among them are linear and power
functions, exponential functions, and trigonometric
functions. Other functions are obtained from these
basic ones through composition and algebraic opera-
tions.

For example, the functio" fl"l : sin (2x + 1 ) is the com-
position of the linear function g(xl :2x + I and the trigo-
nometric function h(x) = sin lxli thatis, f(x) = (h . S)(x).

The functionf(x) = log,o arcsin (x) is the composition
of the functions g(x) : arcsin (x) and ft(x) = 1og,o x. Note
that the domain of the composition h . g includes all
values x from D(g) for which g(x) e D(h).In the last ex-
ample, D(S) = [-1; 1], D(hl : l0; -[. Since arcsin (r) , 0
for x e l0; 11, we have D(fl = l0; 11.

The composition of the same functions taken in a

different order-l(x) = arcsin(1ogro x)-has another do-
main: Dlfl:llll0,10l. The composition of the fractional
linear functions

s(")= -?x +=1

,4x +')
and

h(r)==
-x+4

yields the function

,-Zx+I _,
f(x\=h(s(x;)= 

",'?x+2 - 
_ -I2x-t, r* -?..\ / \u\ ,/ _(Zx+Il , n l4x+7 ,--, 3.

3r*2 -*

Here

D(r)=or{-?,-ll'13',21
As a rule, f " I + g. f. Atthe same time,

lf"g)"h=f"(g"hl,

which immediateiy follows from the definition of the
composition.

cd

oJ
C

_o
c)

-CY
(U

C)

_o
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tunfiional sqttaliolt$
Let us solve the following problem.
Problem 1. Find all functions y : flxl such that

2/(1-r) +1:x/(x). (1)

Solution. Suppose that a function that satisfies this
equation does exist. Substituting I - x for x, we obtain This yields

zf(x)+ 1: (1- xlf(r-x). l2l

Equation (1) yields

Solution. We proceed in the same way as

vious case. Making the substitution

t-'-1
r+1

yiclcls

4f(=l.rrf-l1=, (4)x-l Ir+l/ \ t/

Along wrth thc cxpLcssions f(rl and

./x-1\
'[r.t ,J'

wc havc the new "unknowlf"

./ r\-,1-; 
J

here. So rvc rnakc anothcr substitution in cquation (3):

1
x --) --.x

-!i(-l)*rrll-'')=,x \ x) ll-ri

Erercises
1. Find thc compositions fr" frandf." Irol the fo1-

iorring {unctions:

, x-) , 2r+.1
'l -.lr+4"-.x-l'

2. Find the domain of the compositior-r of the func-
tions 1 -lr2 and .,,E.

3. Let

in the pre-

Find

tl --\ x/\^/- .r1 x'

f " f .1"..."f .

--+
1l

(s)

t1t- xr= ]{r,rr}-l).

Substituting this value of /( 1 rl into ecluation (2), we
obtain

2l(x)+ 1= (1- x) (xl(r)- r),

from which we get

r1"1= -{-} .x- -x+4

Direct verification shows that the function obtained
satisfies equation ( 1 ).

In this equation the functiorls /r = x and f 2: | - ,
serve as arguments of the unknown function. The
substitution of I - x for x transforms the functions
f , alad f2into each other. The substitution x -+ 1 - x
gave one more equation that involves l(x) and f(l - x).
Thus, we reduced the solution of the functional equa-
tion to the solution of a system of two linear equa-
tions in two unknowns.

Now, consider a more difficult problem.
Problem 2. Solve the following equation:

xt(x)+rr(l)=r. {3)\ / \x+l/

l{0UI1'lBtR/[tCt]t{BtR I 8S0

Now, in addition to

i
2

./ l),[-;,J,

wc havc one firore unclesirable expression

./x+1\
'l=,]'

in our ecluation. Try another substitution:

, - '*1.x-1
Finally, we obtain zrn ccluation that cloes not involve
new unknowns:

"+tdI1ll+ur(r)=r. (6)l-r'l'1-r,J -L t t-t'

Thus, we have constructed a systcm of four llnear equa-
tions (3)-(6) in four unknowns

./x+l\ / tt /v+l)
'' I,/l - l,end/l 

-'1x','Iy_l/ \ xi rr_iJ,

Successively elirninating thc unknowns

,1x+l).( l) ..lr-l'l
'[,-r.j','[,J''"'r'[,-r,J
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we find that

4x2 - x+I
/Irzl--' sx(x - 1)

(where x + -I I x + O, x *1 ). As in the solution of equation
(1), we assumed that a solution to equation (3) exists. It
can easily be verified that I does satisfy equation (3).

]low tfie grouN elnel,us
Let's try to understand how we managed to solve the

equations in the preceding section. Consider one more
ecluation

f(x+t)+f(x)=x.

It does not look more difficult than equation (3).
However, all attempts to solve it by the same method
are in vain. If we make the substitution x -+ x + 1, the
new variablef(x + 2) occurs, and so on. The chain does
not close, and we never obtain a linear system.

Recal1 that when we were solving the first equation,
we made the substitution x -+ 1 - x. With this substi-
tution, 1 - x --> x. That is, the two functions g1(x) = x and
szk) : 1 -xbehave like g, " gz: gzo g1 : g2, gz" gz= gz,
and g, o Sr = gr with respect to composition.

Consider the "multiplication" table in Table 1 (in
which & . & ir at the intersection of row i and column i ).

Table 1

Each row and column of this table include both g,
and gr.

Suppose that we must solve the equation

a(x)flxl + b(x)f(L - x) = c(x), (.)

where a, b, and c are some functions. We can see that
the substitution x -+ 1 - x yields

alt - xlf(I -x) + blr -x)flx) : c(r *xl, (.*)

which, together with equation (- ), gives a linear system
in unknowns l(x) and f(l - "l.Then, 

the solution con-
tinues as for equation (1).

In problem 2, we made the following substitutions:

x-l 1 x+l
X+- \-+-- \'-J-' r-1"' x l-x'

That is, we dealt with the functions

Let's sec horv the functions .g1, 32, .g3, ancl .gr behavc urith
respect to cornpositlon. We fonn Table 2 sirrllar to
Table 1 (by writing.qr o.9i irt thc intersection of row r uritl-r
c, rlr-unn A J.

Table 2

This table is synlmctric about its cliagonal. That is,

8i ' .gL : 87, 'g, for auy k ancl 7. In addition, all functior-rs
8i occur cxactly once in cvely row ancl cvery column. Fi-
nirlly, it is easy to sce that.(3 :,{,1, .(1 : S1r, ancl g, :.g,+.
(Hcre

gi =.g2 ".q" 'S:')

Thus, the system 
"r 

rrr.;";r, G - 1gr, .92, s.3, .9aI has
the following propertics: (a) It is closcd with respect to
corlposition; (b) thcre is the idcntity m:rpping gr{x) : r
among thcsc functictr-Ls; (c) each g, has an invelse
S, ', .g, 1 = 31, S2 

I :.ga, S.3 
I :.g.3, ancl .gr 

I = 8r.
The same propertics zirc characteristic of the systenl

of functions G - {gr, .g,} fron-r problern 1.

Now, if we needccl to solve any function:rl cclurLtion
of the form

,i(r )/1x)+ 1,(x )/[Il]' 'Ir+1/
/ t\ ./x-l\ '-"i

- r.( v )rl -r l- r71r 1rl -:-' | = 11'1, I

\ xl \l-r/

we cor-rlcl do it by making the substitutions r -+ g.,(r), r
+ g;(r), ancl x -> ga(r), which wor-r1d give us a hneai sys-
tcrn of eciuations. For example, we write the result
oi thc sr,ibstitution x r gr(xl. With this substitntlor-r,
S:(x) -+ S.(r), .B.,tr) + S+(x), ancl gr(rJ ) gr(r), which gives
the equation

lv-1\.(r-l\ ./x-l \./ I \
(rl _lil _ l+/;l l/l __l
\v+l/lr-ll [x+li I x)

lx-l\./r-t\ ./x-1\. ./r l\-'[ ,-,J'[ r-^ i-'l,;*L.,l'(')="[ ,-,.,J

We make the following dcfinitron.
Definition. An aubitrary sct tri tunctrons G deiinecl on a

set M is cal1cd a group with rcspect to the opcrarion , rt rr
possesses the samc properties as the system {g1,.{1,.{: -i_ :

1. For any two functions I e G ancl g e G, their cont-
position 1 . g also belongs to G.

g1 d2 od3 d4

Jl 6l o
6)

od,l

(t
d2 d2 o.l 6t

d3 6.1 9,1
o
d1 gz

o
.\ rl

q.\] ob2 83

81 62

odl <51
od2

o51
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2. The function e(x\: xbelongs to G.

3. For any function f e G, an inverse function f-r e*-
ists, which also belongs to G.

This definition is a particular case of the general defi-
nition of the ioncept of group, which is one of the most
important concepts of modern mathematics.

We have aheady considered two examples of groups.
Let us give some more examples.

(a) The set G of linear functions flx) : ax + b, where
a+0,b e R;

{b) G = l*,1,4-} r. n t{o,t};
I r-x x )

(c) The set G of functions f(xl = x + a.

For example, let's prove that the set of linear func-
tions forms a group. These functions are defined on the
set of real numbers R. Let f y: arx + brandf2: a2x + br.
Then

f ," fr: arlarx + brl + b1: ararx + arbr+ b,

is a linear function. The function elxl = x is also linear.
If flxl : ax + b, then the linear function

f-\
xb

is inverse to f.
Exercises
4. Prove that the sets of functions (b) and (d) form

groups.
5. Does the set of functions

I I x-I , .. 1 x 
1s= l^r - t-rr-nt-t .l"'1-"' ,' 'x'x-I.J

where x e R \ {0, 1} form a group with respect to com-
position?

Summing u[
Now we can present a general method for solving

certain functional equations. This method is based on
the concept o{ a group of functions.

In the functional equation

arfls)* ajkz)*... + anflg,,l:b 17)

let the arguments of the unknown function l(x) be ele-
ments of a group G consisting of n functions gr(x) : x,

Er(xl, ...,Sr(x) and let the coefficients all a2r ...t an, andb
in (7) also be some functions of x. Assume that equation
(7) has a solution. Make the substitution x -+ gr(x). As
a result, the secluence of functions Ey, 52,...r 8, turns into
the sequence 8r o Sz, B2o 82, ...,Bno S2. It turns out that
such a sequence contains exactly one copy of each group
element. (This result is important, but easy to prove.
The proof is left to the reader.) So the new sequence
consists of all the elements of the group, but in a difler
ent order.

Therefore, the "unknowns" f(gr), fkz), ..., fk,l ^rereordered and we obtain a new linear equation of the

same form as (7). Then, we make thc substitutions
x - g.rtx), x --. gr(r), ...., X ) 8,,(r) in {7J to obtain a sys-
tem of ri linear ecluations. If it has any solutions, we
must check that they satlsfy ecluation (7).

Consicler, by way of erarnple, the following cLlu:tti()n:

/t\
2xf(r\* fl --' l- zx (8)' \1-"i

The set of functions

L\l _ rr,

1
(t 

--d)--l l-x
^ r-1,.,-;

forms a group r'vith Table 3.

Table 3

Substituting x for

i
1-"

and for

x-1
;,

in (B) we obtain the following system of ecluations:

)-| +f^ -)v
22!+

- l)f/.1- ,/l-x x-I
2(r-l) . . 2(x-1)

-llT,l 

-XX
where

f t: fB),

fr=f(sr(r))=r(*),

/r=/(s.(r))=r(-)

Solving this system, we obtain

t,=f(*)=T
for x * O, x + _1. Verification shows that
satisfies (8).

d1 6Z 63

6t odl gr 6.1

67 ob2 g3 o
15l

63 or.l d1
(t
J,

l8 tuotlEltBTR/[rcElrtBtR rssB
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In conclusion, we list several examples of groups of
functions that can be used for solving functional equa-
tions:

Gr:tx,a-xl,
Gr:lx, a/xl (here and in what follows a * 01,

G 
' 
=[*'! '--'-"1'l'-'x' 

--' x]'
I t I x-I I-x x+l x+l I

"o = 1*,;,-*,-;, x + t,;ll, x _1, I _ xl,

I o' ax ar-a) a2 |

-r - I nt.....- ru- nr- t- r- (r

I x x-a x a-xl

.- [_."16-r x-V3 t x+J3 xJ3+tl
"u - l"' x+ '/3' xvr3 +1'-;'I-rJ3'-E- I

Exercises
6. Solve the following functional equations:

ta) xf(x). rr(-])= r,

n rr[fr) .,r(l)=,,

(c) r(x).(.)=1-x
7. Find /(x) if

af(x"l + f(-x"): bx,

where a + L and n is an odd number.
B. Find a function that is defined for x * 0 and satis-

fies the equation

\x-z)f(x). f(-?)- xt(z)= s., 
\ X)

9. Find at least one function that satisfies the equa-
tion f(f(flx))l : -llr, but does not satisfy the equation
f(f\)l: -".

10. Prove that if C = {Cr : x, g2,..., g,} is a finite group
of functions with the composition operation, and q : q(x)

is an arbitrary invertible function, then the set

[.-r ) r 'l

GO =t0 oBr od,d-' og2 o0,...0- .gr.d]

is also a group with the composition operation {the
usual note on the domain of definition of each element
holds).

This article discussed only one of the many methods
that have been developed for solving functional equa-
tions. Many such ecluations will not fall to this method,
and will require such concepts as limits and continuity.
Flowever, it does show how a simple "trick" that works
with certain functional equations generalizes to a pow-
erful method. o

,ii:ri:",:,::,,*',,;i:;.itit*+*lXt l;{,itil:!e*t;lf'*ei;:$ f-}*HpLitg.*.,l *;Si.t.',$.:
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Troughs and crests from head to toe

by L A Ostrovsky

VAST NUMBER OF BEAUTI-
ful poems and songs are de-
voted to the oceans with their
eternally moving surfaces. The

sea is a symbol of formidable e1e-

ments/ of inconsistency, danger, and
inconceivable variety. From ancient
times ocean waves have induced
human beings to ponder and invent
new scientific theories. Wave phys-
ics itself was born in the ocean, and
it seems that most of our knowledge
of oscillatory behavior and of all

types of waves originated in the first
attempts to understand the nature of
ocean waves.

The l'mninu sinusoid
Many people can readily explain

the motion of solid bodies, which is
studied in elementary physics
courses. However, to understand
wave motion is cluite another mat-
ter. Waves begin with some distur-
bance such as a moving ship, a

pebble dropped in water, or a gust of

wind. The motion of the water par-
ticles induced in one place is im-
parted to neighboring particles, and
in due time the initial disturbance
spreads over a large distance.

While a wave travels a long dis-
tance/ the displacement of the water
particles is relatively small. The
energy is transferred from one par-
ticle to another, and so on, like a

baton in a relay race.
To understand the properties of

wave motion, it is convenient to

-:'I ,., i' i;1., fl::
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Figure 1 . rhe sinusoidal surface of
water looks like a moving coruttgated
metal sheet.

simplify it. In most cases this is
done by depicting the motion as si-
nusoidal. Imagine on the water sur-
{ace a sinusoidal corrugation that
moves along the x-axis at a constant
speed (fig. 1). lf this corrugation is
cut by a vertical plane that is paral-
lel to the x-axis, the resulting cross-
section will be a sinusoid.

The distance between two neigh-
boring crests or troughs (or between
any two neighboring points that
have the same phase) is the same: It
is the wavelength ).. As the wave
moves along the x-axis at a constant
speed, any point of the medium re-
peats its displacement after a certain
time 7, which is called the period of
oscillation. During this period, the
wave travels the distance )" along the
x-axis. The speed of this process
c : XIT is called the phase speed.

There are no infinite sinusoids in
nature. Any wave motion is initi-
ated at some place and dies away at
another. Often a waYe remains a1-

most sinusoidal for a long time, but
this "almost" is essential.

To grasp the point, let's consider
two sine waves with different, but
very similar periods T, and Trland,
therefore, with almost identical
wavelengths )", and Lr). If the crests
(and troughs) of these waves arrive
simultaneously at the same point,
the resulting trough-to-crest height
of the oscillations (twice the ampli-
tude) increases markedly. However,
as the waves move away from this
point, their wavelength difference
results in the accumulation of phase
difference, so the crest of one wave
will eventually coincide with the
trough of another. In this case the
waves cancel each other. At still
larger distances the cancellation is
replaced by an increase in the ampli-
tude. These increasing and decreas-
ing effects are periodically repeated
along the x-axis. You can see it for
yourself by superimposing two sinu-
soids with equal amplitudes but just
siightly different periods (ftg. 2a).
Figure 2b shows the sum of these
sinusoids, which looks like a sinu-
soid with a period close to both 7,
and Trbut with a regularly varying
amplitude. This process is known as

"beating," and the resulting wave is
called "modulated."

The change in amplitude of the
beats is described bv a wave that

,l

a

Figure 2. rhe sum of two almost
identical sinusoids rcsults in on
unexp ectedly complicated " b eating"
effect.

"envelopes" the basic (or carrier)
waves. We can easily find the wave-
length ),. of this envelope and its pe-
riod 7.. The crest o{ one wave coin-
cides with the trough of another if
the number of cycles of the constitu-
ent sinusoids between, say, two ad-
jacent maximums of the envelope,
differs by one. For the first wave, the
number of such cycles is I"/1,,, and
for the second it is I"/1.2. Therefore,

1"-1r=r,
l'1 x2

from which we get

in phase

I

in phase
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Figure 3. rhis wave "packet" is
limited in space, but it is the sum of an
infinite number of elementary
sinusoids, which extend to inflnity.

ever, this motion cannot go on for-
ever. If the phase speeds of various
sinusoids are different, then accord-
ing to equation (2), the group speed
corresponding to different pairs of
sinusoids are not the same. For this
reason/ at Large distances the wave
packet will change its shape and fi-
nally will be deformed, flattened,
and "smeared" in space. This phe-
nomenon is known as dispersion or
scattering. Thus, to describe wave
propagation in a medium with dis-
persion we need not one/ but at least
two different velocitiesl

Waues olt tnlater

Let's return to waves on water.
To describe them precisely, we need
the ecluations of motion for the wa-
ter particles. To solve these equa-
tions is another problem. However,
many features of water waves can be
understood without equations if we
use dimensional analysis.l

What physical values can affect
the speed of propagation of sinusoi-
dal surface waves on water? Ne-
giecting wind and assuming the
body of water to be infinitely deep,
we have only the water density p,

the acceleration due to gravity g, and
some parameter of the wave itself
(wavelength )" or period 7) at our dis-
posal.2

The dimensions of these values
are

[p]: kg/m3, [g] = m/s2, [7]: s.

Which combination of these param-
eters yields the dimensions of speed?

Since [c] = m/s and the dimension of
mass appears only in density [p], the
density cannot enter the formula
that we are constructing. Therefore,
only two values are at our disposal,
and there is just one combination
that yields the dimensions of speed:

[c] : [Sf]. This approximate formula
describes both the phase and group
velocities.

Now we can say that c and v are
proportional to g7. The coefficient
of proportionality cannot be {ound
using dimensional analysis. The rig-
orous theory says that for the phase
speed this coe{ficient isYzn'.

o'l
c = *:. (3)

2n

By definition c:)"f T, so equation (3)

yields the relationship between the
wavelength and the period:

^ gT2
/L=-.

2n

This formula is known as the disper-
sion equation.

There is another way to write the
formula for c:

t^
19/'"

.- l-

\2n

And what about the group speed?
According to equation (2), we need
the ratio LTILX, which can be ob-
tained from the dispersion ecluation

nx=&r.AT+ LT = n

n L)" gT

Inserting this into equation (2) and
taking into account equation (3), we

Here A), is the'difference 1,, - l.r. We
replaced the square of the geometri-
cal mean of ),, and )", by the product
i\tX),

^1 / t^ ^ \2A-=({,\rAz),
which is an approximation of both
tr, and )., and of the carrier wave-
length. (The precise calculation
yields the carrier wavelength

. z)",L"
)--= ''.1' )", + 1",

In a similar way, we can obtain the
formula for the period of the beats:

-zl
l^ €-'a7

Now we can find the speed of the
envelope, which can also be de-
scribed as the speed at which the
beating propagates:

I^ )r) nT , AT
1za----!=._-=C--. i!l

T" TL L)\ A), t'l

Here c is the phase speed of the car-
rier wave. If the speeds of both sine
waves that compose the carrier
wave are exactly equal (),, = cTt and
?,,r: cT2), then A)"/47: c, so v = c.Ir7
this case the entire wave travels
with the speed c. When cr + c2t the
speed v will differ from c, which
means that the carrier wave propa-
gates at one (phase) speed while the
envelope wave travels at another
speed v. The latter speed has a spe-
cial name: the group speed. Energy
is transferred via this group speed.

Like a sinusoid, the envelope is
infinite both in time and space.
However, if we take not two/ but
many sine waves (strictly speaking,
in{initely many) that have similar
wavelengths and periods, we can
obtain a so-called "waYepacket," or
oscillations that occupy only a lim-
ited space (fig. 3). As in the previous
case, such a packet travels at the
group speed while the carrier wave
propagates at the phase speed. How-

x

I Quantum considered dimensional
analysis in "The Power of Dimen-
sional Thinking," Y. Brook and A.
Stasenko, May/|une 1992, pp. 34-39.

2There is still another factor that
can a{Iect the wave velocity-the
surface tension o. However, calcula-
tions show that it is essential only for
very short waves (about 1 cm in
length), which are beyond the scope of
this article.

get

,AT eT 1\'= r'- 
- 

= 
jl- 

= -('. l+lA), 4n 2

Thus, for waves in deep water, the
group speed is half of the phase
speed, and both values depend on
the wave period. That is, the wave is
characterized by a dispersion.

Let's consider the formulas relat-
ing the wavelength of a deep water

22 ilottrltErR/DrcrntBER tsog



7(s) 0.5 I 5 15 20 50

)'(m) 0.39 r.56 39 1s6 620 3900

v(rn/s) 0.39 0.78 3.9 7.8 15.1 39

Table 1

wave and its group speed with the
period:

x: t.s6T2,
v:Vzc=0.787.

(Here 7 is measured in seconds, ), in
meters/ and the velocities in meters
per second). Table 1 shows the ac-
tual wave parameters.

It is interesting that compara-
tively short waves propagate at a
pedestrian's speed, yet long waves
can outrun a car.If we take alarge
period-say, T = L h, which corre-
sponds to )" = 20,000 km-we get the
fantastic speed v = 10,000 km/h.
However, the oceans are not deep
enough to provide aplace for such
formidable waves-they would
reach the ocean floor even in its
deepest locations, so our formulas
would not be true any more.

The formulas also cannot be used
for very short waves with a wave-
length of less than a few centime-
ters, because the leading factor in
this range is surface tension. Sti1l,
these formulas correctly describe
waves in a very broad range of wave-
lengths-from dozens of centime-
ters to dozens (if not hundreds) of ki-
lometers.

Paradoxically, awave is formed
by the motion of water particles, but
these very particles are never clrcied
far by the wave! Look at a float, {or
example. It is not moved horizon-
tally by the waves; it moves up and
down in small-amplitude oscillation

Waves on the wLtter's
sttr{oce

in the same spot.
To see how water particles move

in the wave process/ it is convenient
to substitute the standard frame of
reference for one that travels at the
phase speed of the wave. In this
frame of reference, the corrugated
water surface will appear stiI1, but
the entire water mass will flow in
the opposite direction at speed c.
The water particles slide on the
wavy surface just as any ball ro1ls on
a rigid corrugated surface. At the top
of the wavy profile, such a ball (or
water particle) wiil have a some-
what smaller speed than the average
value c, but having rolled to the bot-
tom o{ a trough, it compensates for
the loss.

In this frame of reference/ we
have not only the uniform motion
of the entire water mass but also
the periodic movement of the wa-
ter particles in the horizontal and
vertical directions. Thus, if we re-
turn to the initial "ground-based"
system/ the uniform motion of the
water mass will be stopped, but the
horizontal and vertical oscillation
will continue, because the acceler-
ated (and decelerated) part of the
motion is the same in all inertial
systems. The sum of the vertical
and horizontal oscillation of water
particles results in circular motion
with a radius equal to the wave
amplitude (frg. a).

The particles that lie under the
surface of the water also describe

Dfuection of wtrve
propLtg0tioll

circles, but circles of smaller radii.3
The amplitude of this oscillation

decreases exponentially with depth.
That is, it varies in proportion to

"-znzl)", 
where z is the depth. This

means that when the depth equals
the wavelength, the wave amplitude
decreases by ,'n = 535 times in com-
parison with the surface oscillation.
Therefore, even strong storms have
virtually no effect in oceans at
depths of more than 100 m or so. In
a pond, when the value of ), is le"ss

then}nd (where dis the depth of the
pond), the pond can be considered
infinitely deep, and the wave will
not disturb its bottom.

Surely, in the real conditions of
the ocean, waves are not sinusoidal,
but are composed of many different
elementary sinusoids. Therefore,
the motion of the water particles is
also much more complicated: It con-
sists of revolutions with various ve-
locities along circles of different ra-
dii. When waYes are weak, such a
motion is limited and approxi-
mately symmetrical in the vertical
direction. However, a stronger wave/
even a strictly periodical wave, will

Figure 5

not be sinusoidal: Its crests are
sharper than its troughs (fig. 5). With
a further increase of the wave ampli-
tude, a sharp bending appears on the
wave's crest with an angle of about
120', and this top disintegrates and
falls down. This is how whitecaps,
or white horses, form on the crests
of waves. When wind is strong,
lakes, rivers, seas, and oceans are
covered with whitecaps.

Wind waues
At the end of the nineteenth cen-

tury the farnous English physicist
Sir iohn William Rayleigh notecl
that "the basic law of sea uncluiatron
is the absence of any 1au,." \lnch
water has florvec'l nnclcr rhc L.r.i.1:.

3Quantum wrote about the
damping of waves with depth irr "The
Bounding Main," I. Voroblov, Ma17'

ltne !994, pp. 20-25.Figure 4
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since Sir fohn's times, and now a

descriptive classification of wind
and the sea surface is available for
seamen. The wind force is character-
izedby the 12-point Beau{ort scale,
and the wave height by a 9-point
scale of surface waviness.

These scales are mostly based on
verbal descriptions of the effects of
the wind, such as "sea like amitrot"
and "fairlry frecluent white horses."
This classification reminds us of the
famous Pushkin fairy tale "The
Fisher and the Little Golden Fish." At
the beginning, the old fisher saw that
the sea was "just troubled." Then the
Blue Sea became turbid and black.
And finally a "black storm// broke
out-"the angry wave ran, howled,
and wailed t eruIbly ." It seems that we
could assign Beau{ort numbers to the
waviness with which the Golden Fish
replied to each subsecluent request of
the poor old man!

Recently, the methods of measur-
ing sea waYes have radically im-
proved. In addition to wave recorders
that register the oscillation of the sea

surface r,ear a ship, devices that
record waves from a distance become
more and more important. Even a

simple photo of the sea surface made
from a ship or a plane provides a large
amount of data. Marine radiolocation
is also efficient. To crown these
methods, "space oceanography" is
rapidly developing, drawing on the
measurements made by satellites.

As a result of many years of
study, a vast amount of information
has accumulated on sea waves.
Flowever, even nowadays it is not an
easy matter to get answers about
how wind generates waves in water.
Though the basic mechanisms have
been deciphered, there is still much
to be discerned.

Imagine a smooth water surface.
The wind begins to blow, and waves
appear. Why? The wind is not a

regular uniform flow of air along the
water surface. It always contains
random fluctuations in pressure,
which disturb the water and make
its surface curved. When these fluc-
tuations act haphazardly, they will
probably raise no waYes. However,
the case is quite different when the

wind's speed is close to the phase
speed of a wave that it causes. In this
case a resonance takes place. The
water/s surface begins to oscillate in
time with the air pulsation, so the
moving wave increases continu-
ously. As the wave amplitude in-
creases/ the wave begins to affect the
fluctuations in the air flow, ampli-
fying them and increasing the water
wave in return. This positive feed-
back occurs more rapidly as a wave
gets bigger.

Such an increase in amplitude
can go on for a long time, after
which a wave can be rather ta11.

F{owever, this process will necessar-
ily stop, even when the wind keeps
blowing. First, the crests of the
waves wi1l be sharpened (as in fig. 5),

and finally they will collapse into
whitecaps. Second, waves do not
live independently. Rather, they in-
tetact with each other, transferring
energy, which is thereby redistrib-
uted among the waves in a very
complicated way.

As a result, a realistic and cluite
complicated physical picture of
waves caused by wind is formed,
which includes waves of various am-
plitudes, wavelengths, and even di-
rections of propagation. Nevertheless,
there are waves that prevail in this
picture. The phase speed of them is
close to the wind's speed u, so the
respective wavelength is about
2xu2f g. Thus, the sffonger the wind,
the larger the wavelength-and the
wave's height. In general, the height
of smooth waves is no larger than I 17
of their wavelengths, since larger
crests fall down and produce white-
caps. A weak wind can cause only
small waves-though a very weak
wind produces no waves at all.

As we mentioned, when short
waves are considered, surface tension
should be taken into account. It's ef-
fect results in a particular dependence
of the phase speed on wavelength.
This speed doesn't tend to zero,butit
reaches some minimal value at the
wavelength of 1.73 cm, and then it in-
creases with further decreases of )".

For pure water without surface films,
the minimum phase speed is
23 cm/s. This value is the threshold

speed for wind to raise water waves.
The corresponding waves are rather
short, and their wavelengths are no
more than a few centimeters. We can
easily observe such waves in any pool
as the ripples that appear during a
short gust of wind.

It should be noted that some-
times rather large sine waves do ap-
pear on the sea's surface even in
mild weather. These swells are the
far cry of a distant storm. In the cen-
ter of a storm there is avery compli-
cated wave pattern/ but only the
long waves have a chance to reach
distant lands, because they have the
largest group speed and, more criti-
cally, they fade very slowly. These
swells sometimes travel thousands
of kiiometers, and they cause ships
to rock and pitch unpleasantly.

A sea oluuattes
The physics of ocean waves poses

more questions than it provides an-
swers. In this article we did not
plunge into the depths of the water
wave machinery. We "sruam" on the
surface, because the waves caused by
winds disturb only a thin upper layer
of the ocean, with thickness of doz-
ens of meters. These waves are very
short compared to the depth of the
ocean. However, there is another
type of wave/ the tsunami, whose
length is larger than the depth of
most deep places in the oceans.
These waves embrace the entire
depths of the ocean's waters and
propagate with the largest speed cor-
responding to the ocean's depth d:
c : v : rEd era this is not the end
of the story. In deep waters/ there are
the low-speed, so-called "internal
waves" with velocities of no more
than l-2 m/s, but which have huge
amplitudes of tens and sometimes
hundreds of meters. Well, the speed
of one meter per second is not the
shortest value for the ocean waves.
Indeed, Rossby waves travel at a

speed of l-2 cmf s and have periods of
a number of monthsl Such waves de-
pend upon the rotation of Earth.
These waves are of great importance
for physicists/ oceanographers, and
meteorologists, but they are the mak-
ings of a separate article. O
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Divisor champ, Find the three-
digit number that has the greatest
number of dif{erent divisors.

M247
Irrational values. Does a nonlin-

ear function exist that is defined and
differentiable for all real numbers
and takes rational values at rational
points and irrational values at irua-
tional points?

M24B
Py amidal angTes. A triangular pyra-

mid ABCD has the equilateral triangle
ABC as its base, and AD: BC. If the
three plane angles at vertex D are
equal, what values can these angles
take on?

M249
I ntegr ation co git ation. Calculate

2

J(fr .,,. 
",t' 

. z")a"
0

M250
Diametric proportion The pe-

rimeter of AA BC is k times greater
than side BC , and AB < AC. A diam-
eter of the inscribed circle is drawn
perpendicular to BC.In what propor-
tion does the median to BC divide
this diameter?

Physius
P246

Sliding wedges. A wedge of mass
M with a 45' base angle is placed on
aflathorizontal table. A wedge of the

HOW DO YOU
FIGURE?

Challsltues

Figure 1

same mass and base angle is set on
the first such that its upper face is
horizontal (fig. 1). A brick o{ mass
m is placed on this wedge, and the
system is held motionless. What
velocity will the brick acquire in
the tjrne t after the system is set
free? Neglect friction and assume
the character of the motion
doesn't vary. (A. Zilberrnan)

P247
Heat in a ftee. Thermal conduc-

tivity is two times greater along the
fibers of a tree than across them.
Two long, thin cylinders o[ the same
size are made of this tree. The axis
of the first goes along the {ibers, and
the axis of the second makes a 30'
angle with them. The sides of the
cylinders are thermally insulated.
Equal temperature differences are
applied between the bases of the
cylinders. How much does the flow
of thermal energy differ in these cyl-
inders? (S. Varlamov)

P24B
Dual coils. A capacitor C and two

inductors l, and Lrare connected in
parallel (fi1. 2).Initially, C is not
charged and there is no current in L2,

but the curent 1o flows in 1,. Find the
max. charge on the capacitor and the
max. cuffent at point A. (A. Zilber:rnan)

P249
Magnetic fall. An initial horizon-

tal velocity is imparted to a square

Figure 2

Figure 3

wire frame with perimeter 4a and
mass m. The lrame moves in a verti-
cal plane under the influence of a
magnetic field directed perpendicular
to this plane (fig.3). The field's mag-
netic induction varies according to
the formula B(z) : B(0) + kz, where k
= const. The resistance of the frame
is R. The frame's velocity eventually
assumes a constant value v. Find the
frame's initial velocity. The accelera-
tion due to gravity is g. (V. Mozhayev)

P250
Sunlit grains. Each square meter of

a body's surface heated to the tem-
perature Tradiates L = 5.67 . 10-8 74
W per unit time. At what distance R
from the Sun wiil iron filings melt if
the density of solar radiation (energy
incident on unit area per unit.time) at
Earth's orbit is Io : 1400 W/m2? the
melting point of iron is 7o : 1535 K,
and Rn : 1.5 . 1011 m is the distance
between the Sun and Earth. (A.
Stasenko)

ANSWERS, HINTS & SOLUTIONS
ON PAGE 45

OF
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AT THE
BLACKBOARD I

The Sleiner-lehmus lheoreln

by I F. Sharygin

ERY EARLY IN OUR STUDY
of geometry, we get to know
three important line segments
related to any triangle: its me-

dian, its altitude, and its angle bisec-
tors. Of these, angle bisectors are the
most troublesome/ and thus we will
take a closer look at them here. In
what follows, we will re{er to them

prove or do not hold when applied to
bisectors. The Steiner-Lehmus
theorem is an impressive and well-
known example. Though this theo-
rem has been known for a long time,
it stilI attracts attention.

Steiner-Lehmus theorem: If two
bisectors oi a triangle are equa1, then
the triangle is isosceles.

Many proofs of this theorem are
known. Competitions have even
been held among geometry buffs for
the most interesting and fresh proof.
Here we give a proof that is not very
elegant, but reveals the geometric
essence of this theorem and makes
it possible to obtain more general
facts. This proof is based on the fol-

lowing criterion for
congruence of tri-
angles: Two tri-
angles are congru-
ent if the following
pairs of correspond-
ing parts are equal: a
side, the angle oppo-
site this side, and
the bisector of this
angle.

Let's prove this.
Arrange the two tri-
angles under consid-
eration such that
their equal sides co-
incide (this com-
mon side is denoted
by BCI and the op-
posite vertices 1ie on
the same side of BC
and on the same
side of the perpen-
dicular bisector of
BC. Suppose that
these vertices do
not coincide and
call them A, and A,
(fis. 1).

Then we draw
the circumcircle of
triangle ArBC. Be-

simply as bisectors.
Even the {ormula for
the length of a bisector
is rather difficult to de-
rive-much more diffi-
cult than the corre-
sponding formulas for
the median and alti-
tude.

The problem of con-
structing a triangle
from its medians is not
very difficult. It is a

little more difficult to
construct a triangle
from its altitudes.
However, it turns out
to be impossible to
construct a triangle
from its three bisectors
(using only a compass
and straightedge), even
though this triangle is
unicluely determined

= {a proof of this fact in-
P volves deep properties
i of polynomial equa-
d tions). Many facts
f similar to those that
! can easily be proved
I for medians and alti-
& tudes are difficult to
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Figure 1

catse ZBA.C = IBA2C, it follows
that point A, is also on this circum-
circle. (In fact, it is generally true
that two triangles that agree in a side
and the angle opposite this side will
have ec1ua1 circumcircles.

Next, draw bisectors A,E, and
ArE, rn triangles APC and ArBC.
By assumption, ArEr: ArEr. Extend
these bisectors to the point M at
which they rneet the common cir-
cumscribed circle of the triangles
(both bisectors meet the circle at the
same point M, the midpoint of arc
BC). Draw the diameter of the circle
through point M-it is perpendicu-
lar to BC.In the situation shown in
figure 1, we have MAr. MAr, be-
cause MArrs farther from the cen-
ter o{ the circle than MAr. At the
same time, MEz s ME1, because
the projection of ME, onto BC is
greater than the projection of MEr.
Subtracting the second inequality
from the first, we discover that
ArEr. A,E,, which contradicts the
assumption. Thus, the congruency
test is proved.

Now we can prove the Steiner-
Lehmus theorem. Let bisectors AA,
andBB, of a triangle ABCbe congru-
ent (fig. 2). Call the point of their in-
tersection 1. Triangles ACA, and

C

BCB, arc congruent by the test iust
proved (they have the common bi-
sector Cl of the angle C). Therefore,
AC = BC. The theorem is proved.

The proved congruency test im-
plies a more general statement: If in
a triangle ABC points B, and A, lie
on sides AC and BC, respectively,
and segments AA, and BB, are con-
gruent and meet on the bisector of
angle C, then AC = BC (fig. 3).

C

AB
Figure 3

As we know, a triangle has bisec-
tors of its exterior angles as well. ff
the triangle is not isosceles, we can
consider the three segments that are
its exterior angle bisectors. (The bi-
sector of the exterior angle opposite
to the base of the isosceles triangle
is parallel to the base and does not
meet it).

Suppose two exterior angle bisec-
tors of a triangle are congruent.
Must this triangle be isosceles?

It turns out that if the bisectors in
question are drawn from the end-
points of the shortest or longest side
of the rriangle, the statement is true
(figs. 4a, b). However, this is not so

d.

Figure 4

in the general case. The well-known
Bottema triangle is an example: This
is the triangle with the angles 12o,

132o, and 36". In this triangle the
exterior bisectors of the angles at the

Figure 5

enclpoints of the niclclle-sizc siclc are

eclural to cach other ancl ec1ua1 to this
r-nrclclle-size srdc 1fig. 5).

Here :lre several problems thirt irre
vari:rtions on thc topic consrclcrccl.
We will not solvc ther-n here, but r,vcr

will givu tlte rllrstvtrs.
Problem l. Bisectors AA , and BR 

,

of a trianglc ABC n-reet at a point 1.

It is given that 14, - 1R,. l)oes this
inrply the equirlity CA - CBl.

No, it clocs not. But it clocs follorv
tl-iat eithcr CA : CB or :rng1e C is
600.

Problem 2. E:rch anglc brscctor of
:r tflarnglc nrcets the oppositc siclc at
a poir-rt eqr-Lrclistirnt fror-r-r twrl other
srclcs. Does thrs in-rpl-v thirt the tri-
anglc rs eqr,rilateraii

It turns out th:lt besicles cclr.rilat-
er:rl trrzrnglcs, tl-rc triangle r.r,ith thc
sitles l, 1, :ucl ',2 1 lancl all sint-
lar tri:rngles) posscss this property.

The complete ,]nswcr to tl-re io1-

Irrtvin* rlr.lc:tion is .lttitL' Ltlt(\-
pe ctecl.

Problem 3. Sr,rppose th:rt :r tri-
angle r,vith vcrtices art the fect of
lrtr rtltt'r rrirtrrgl c': hi :ect(ll's i s isusec-
les. Is the othcr tri.lng1e isoscclcs iis

well?
L-r the generarl c:rsc, the answer is

ncgative. Careful analysis yielcls the
followrng resnlt. Lct AA,, BR,, ancl

CC, be thc biscctors of ir trianglc
ABC. Siclcs AB ancl AC carnnot bc
eqr-ra1 if irnglc A is obtr-Lse irncl its
cosine is in the intctval

( t r--.)
' 

-tt

| -t' t )'

which corresponcls to :rngles 1n the
rangc from etbottt 102'110'to 10-1'l.S'.

In other casesi the triangle is rsos-
celes.

OUA[ITUllll/AT TIII BI.ICI(BIABD
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LOOKING BACK

The qualtlum nalul'e ol lighl

by D Sviridov and R Sviridova

HE QUANTUM THEORY DE-
veloped in the 1920s needed ex-
perimental verification. If light
is radiated in the form of

quanta/ we can try to see them. At
first glance, this thought is just an
idle fancy. What experiment could
prove or disprove the concept of the
quantum discreteness of light using
such an imperfect device as the hu-
man eye? The problem seems in-
soluble. To believe that the human
eye is able to distinguish quanta, one
should be a specialist both in optics
and the physiology of vision.

The most important step in for-
mulating new scientific problems is
to exceed the limits of the current
views on certain relationships in
nature. Once Werner Heisenberg
said, "A naturalist is interested pri-
marily in posing questions and only
secondarily in answering them. To
formulate a problem seems to him
to be much more valuable if it helps
to develop the human mind. In most
cases the answers have only tran-
sient and evanescent value: In the
course of time they can be made
obsolete by the enlargement of
knowledge in physics."

Ihe man tnlho $auu ruatttil
Such a uniclue problem was put

forward by the President of the Rus-
sian Academy of Sciences, Sergei
Ivanovich Vavilov (1891-1951). In
1920, when Vavilov was Head of the
Optical Department at the Biologi-
cal Physics Research Institute of the
Ministry of Health, he addressed the
problem of the quantum structure of

1ight. In his monograph "The Micro-
structure of Light," which general-
ized all his work on the nature of
light, Vavilov wrote/ "The proper-
ties of light can best be revealed
under the limiting conditions: in
studying the weak luminous {luxes
formed by a small number of light
quanta/ in investigating the pro-
cesses that go on during a billionth
of a second, and in analyzing mo-
lecular interaction at extremely
small distances." And so he carried
out an experiment of this kind with
the hope of observing individual
quanta of light.

In 1729 the French scientist
Pierre Bouguer ( 1 698-1 758) experi-
mentally f ound the attenuation
law for light traversing a medium.
Attenuation occurs because all
substances absorb light that passes
through them. Let /o be the inten-
sity of light with wavelength )"

that hits aLayer of substance with
thickness d, and let /be the inten-
slty of the light emerging after
traveling through the layer. Using
these notations, Bouguer's law
says

Many experiments showed that
the absorption coefficient doesn't
depend on the intensity of the inci-
dent radiation. The quantum theory
of light prompted attempts to {ind
such a dependence. The absorption
coefficient was found to be constant
within a huge range of light intensi-
ties, which varied in the experi-
ments by a{actor of 1020. However,
if light rea1ly existed in discrete
units, reasoned researchers, then
there should be fluctuations in the
intensity of the emerging beam
when it becomes extremely attenu-
ated. Furthermore, the number of
cluanta absorbed during short spans of
time should not be constant, and
Bouguer's law will be violated. Thus,
researchers needed to detect these
stochastic quantum oscillations.

For many years the "Quantum
Hunters," as Vavilov's colleagues
were nicknamed, tried to carry out
such an experiment. It was not un-
til 194l that they'succeeded.

Can the human eye detect such a

microscopic event? After many
years o{ work it was found that the
eye can sense several quanta of light
that reach it simultaneously (the
threshoid value is eight quanta per
second). How could Vavilov's team

A
U

I

I

ll

I

tnl = -kct,

where k is the absorption coeffi-
cient. This law laid the foundation
for al1 subsequent measurements of
light absorption in a medium. "In
his field o{ research, Pierre Bouguer
is as famous a scientist as Kepler or
Newton in mechanics," wrote
Vavilov. Figure
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demonstrate this?
In Vavilov's experiment a small

taintly luminous spot A, whose
brightness could be continuously
attenuated, is observed by the eye
(fig. 1). When the light is very
weak, only a few cluanta hit the
eye per second. Under these condi-
tions oscillation in the brightness
of the source should appear.
Therefore, an observer should see
that a steady source of light begins
to twinkle. The experiment seems
simple, but a number of factors
make it rather difficult.

First of all, one should use a

source of very 1ow intensity, because
under normal conditions most of the
particles of radiation produce a con-
tinuous stream of 1ight. Second,
there are both "c1assica1" and quan-
tum fluctuations of light. The "clas-
sical" fluctuations, caused by the
motion and interaction of atoms and
molecules, are related to processes
inside the light source. One can
make a source in which these clas-
sical fluctuations are virtually ab-
sent. For example, fluorescent mol-
ecules dissolved in a very viscous
substance, which are not subjected
to the damping action of the viscous
medium, will radiate light continu-
ously at a constant level. By con-
trast, quantum fluctuations are al-
ways observed when the medium is
sufficiently rarefied. Third, these
fluctuations should be reliably and
signi{icantly detected by the eye in
the designed experiment. However,
some properties of the eye do not
allow the experiment to be carried
out in such a simple mode.

The point is that our eye is con-
stantly moving, so variations in
brightness can be observed not only
at small but also at Iarge intensities
of light. To overcome this obstacle,
in the experiment the observer
stares at some brighter point O (usu-

ally red in color) located beside the
weakly luminous point A. The im-
age of point O is created at the
retina/s center/ while the image of
the source at point A is shifted a

constant distance from the center.
In addition, the eye has the prop-

erty of retaining images. This may

lead to a merging o{ the rapid inten-
sity oscillations of the light source/
which would be hidden in the aver-
aged luminous background. To pre-
vent this effect, a disk with an ori-
fice is placed between the source
and the ol'rserver. The disk makes
one turn per second, and the eye
observes the source only through
the orifice ifor example, during 1/10
second).

This very simple setup makes it
possible to detect a very intricate
phenomenon. When the number of
cluanta is larger than some visual
thresho[d, the observer perceives a

burst of light each time the orifice
opens. If the number of quanta is
decreased to the threshold value, not
every opening of the orifice will
cause a visible burst. By gradually
decreasing the brightness of the
source at point A, Vavilov's team
was able to detect such variations in
intensity. The lower the intensity of
the source, the larger the number of
omissions. The numbers of omis-
sions and bursts determine the
mean number of quanta in the burst.
Thus it was real1y possible to see the
quantum nature o{ light with the
human eye. Now we have very sen-
sitive devices, such as photomulti-
pliers and quantum counters, but it
was the human eye that first saw the
quantum of light.

Along with V. Levshin, Vavilov
found that Bouguer's law was vio-
lated at very large intensities of
Iight as wei1. They observed the
luminescence of crystalline phos-
phorescent materials excited by
high-intensity light. However, it
was possible to explain this phe-
nomenon only after the advent of
new powerful sources of light: la-
sers. Vavilov's experiments pro-
vided the basis for a new branch of
physics, quantum electronics,
which deals with the interaction
of light with matter.

Liuhlilt cry$tal$
Wonderful and at first giance

even fantastic phenomena accom-
pany light propagation in crystals. In
7669 large pieces of transparent crys-
tals of calcite (CaCO3), later known

as Iceland spar/ were delivered irom
Iceland to Denmark. By studying the
optical properties of these crystals,
Erasmus Bartholin, a professor at the
University of Copenhagen, stumbled
upon the wonderful phenomenon of
birefringence, or double refraction.

Also in 1669,Bartholin's compa-
triot Nicolaus Steno (1638-1685)
found one of the most important
laws of crystallography, which ex-
emplifies the highest harmony in
nature-the principle of angular in-
variance. In his 1669 treatise "Con-
cerning Solids Naturally Contained
within Solids," Steno wrote, "In the
face of a crystal, the number of sides
and their lengths rl;,ay vary without
changing its angles."

Bartholin tested this law by
studying the Iceland spar crystals.
Outlining the faces of crystals, he
compared various drawings. Once
he put a crystal on a sketch and saw
that the sketch appeared twice.
When he took the crystal off, there
was only one drawing. His notes and
virtually everything he looked at
through the strange crystal also ap-
peared in tandem.

If a crystal of Iceland spar is laid
on a piece o{ cardboard that has a

small orifice illuminated from be-
1ow, we find that the ray of light that
passes through this orifice is divided
into two rays. One of them travels
normal to the surface of the crystal
without refraction, and it is called
the or dinary r ay. The extr aor dinary
ray ts deflected within the crystal
but after passing through it, this ray
travels in the same direction as the
first. Properties of the extraordinary
ray depend on the direction of light
propagation in the crystal. In phys-
ics this dependence on the direction
of propagation is called "anisot-
ropy." Investigation o{ thorays that
passed through Iceland spar crystal
with the help of apolarizer showed
that both tays ate completely polar-
ized it mutually perpendicular
planes.

Bartholin determined the refrac-
tive index for the ordinary ray,but
he could not find any laws regulat-
ing the behavior of the extraordinary
ray. He published the results of his
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studies in Leipzig, Copenhagen, and
London. However, Bartholin's dis-
covery was not accepted by the sci-
entiiic community. The Royal Soci-
ety of London set up a committee to
check Bartholin's work. Although
the committee included such celeb-
rities as Newton, Hooke, and Boyle,
it labeled the discovery misleading
and the corresponding laws false.

The works of Bartholin were
forgotten, and it wasn't until 20
years later, in 1691, that the ia-
mous Dutch physicist and math-
ematician Christiaan Huygens
11629*1695) coniirmed the cor-
rectness of Bartholin's discoveries
and observed double refraction in
quafiz crystals. In his "Treatise on
Light," he explained the phenom-
enon of double refraction in Ice-
land spar on the basis of his wave
theory of light.

In 1801 the French crystaiiogra-
pher and mineralogist Ren6 fust
Hauey 11743-1822) supplied in his
"Course of Mineralogy" a list of bi-
refringent crystals. He determined
the property of double refraction by
looking at a thin needle through the
faces of crystals. When birefringence
was pronounced, the needle was
doubled. Hauey was the first to
group crystals according to whether
they were single or double rcfract-
ing. He pointed out that single-re-
fractrng crystals were substances
whose " molecules are char acterized
by a high degree of symmetry, "
which means crystals in the form of
a cube, octahedron, and so on.

Newton tried to attribute the
wonderful property of double refrac-
tion in Iceland spar to the particular
affangement of particles in this crys-
tal. He wrote/ "The corpuscles of
Iceland crystal act on the rays all in
the same direction, thereby produc-
ing paradoxicaL refraction. There-
fore, can it not be supposed that dur-
ing formation of this crystal, its
constituting corpuscles not only ar-
ranged themselves in lines and rows
but also turned their identical sides
in the same direction due to some
polar ability?"

Huygens also related birefrin-
gence to the regular structure of the

crystals: "It seems that the regularity
found in these natural masterpieces,
the crystals, resulted from the ar-
rangement of the smallest invisible
and identical constituent corpuscles.
Iceland spar consists of small round
bodies that are spheroid but not
spherical due to some flatness."

The theory of ljgh t propagation in
crystals was elaborated by the
French physicist Augustin-|ean
Fresnel j788-1827). He showed that
in general two waves traverse the
crystals, which are polanzed in the
mutually perpendicular planes. He
proposed crystal classification based
on the type of optical surfaces and
considered the problems of elliptic
and circular polarization and rota-
tion of the polarization plane. He
also pointed out the possibility of
the existence of conical refraction
and found the quantitative laws of
refraction and reflection of light,
which make it possible to determine
the intensity and polarization of
light a{ter reflection and refraction.

What is the modern view on the
nature of double refraction? Electro-
magnetic waves (light) shift the elec-
tron shelis relative to the atomic
nuclei in the crystal. In addition, the
ions are displaced relative to each
other in the ionic lattices. Flowever,
this shift occurs only at low frequen-
cies (in the infrared region of the
spectrum), because the ions are
rather heavy and cannot follow the
high-frequency fields. This displace-
ment of charged particles in crystals
is called electric polarization. In
turn, electric polarization gene.rates

an electromagnetic field that inter-
feres with the field of the original
wave. If the polarization of a crystal
depends on the direction of the elec-
tric field of the wave, it leads to
anisotropy of the dielectric permit-
tivity and of refractive index. This
anisotropy of the refractive index
causes double refraction.

Let's consider double re{raction
in crystals composed of elongated
nonspherical molecules that are
longer than they are wide. Suppose
these molecules are arranged such
that their major axes are paralle1. If
an electromagnetic wave travels

through such a crystal, its molecu-
lar structure favors the oscillation of
electrons along the molecular axis
and not in the transverse direction.
The electric field directed along the
axis of the molecules will produce
one effect, and the electric field di-
rected normally to the molecular
axis would produce quite another
effect. Thus, these two waves travel
with different velocities and have
different refractive indexes. There-
fore, the phenomenon of double re-
fraction arises. O

Quantum articles about the dis-
creteness of light and double re-
fraction:

"The nature of llght," A.
Eisenkraft and L. D. Kirkpatrick,
November/December, 199 6, pp. 30-
31.

" A polarizer in the shadows, " A.
Andreev, I anuary f F ebruary, 199 4,
pp.44-48.
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PHYSICS
CONTEST

Warpsrced

Because we think, we think the universe is about us.
But does it think, the universe?
Then what about?
About us?

-May Swanson

by Larry D Kirkpatrick and Arthur Eisenkraft

AKE US TO MAXIMUM
warp/" C:rptilin Je:rn-Luc
Picitrcl orclers, ancl thc
\till5ltip / it1,'i7,7'i r.'lrcuitt. tt,

travcl fastcr th:u-r tl-ie speetl of ligl-rt
to irvoicl trotiblc. Warp 9.6 is the
highest normirl ratcci spcccl tor tl-re

Enterltri,se ancl corresponcls to a

speed 1909 tilnes the speecl oi irght.
Atter reaching safc havcn, Cirptair-r
Picarr1 Llscs 11 subspacc signal to set
up a viclcoconfcrcnce with Eirrth,
even tlror-rgh the Entcrpnse is thou-
sands of llght-years from E:rrth.

Althougir such f:rster-than-1ight
trave I is e ottt nr()rtIlilcc itt scicttce
fiction snch ils Stttr Trek, orclinary
matter in our orclinary worlcl must
obey the laws of physrcs. Thc spccd
of light is thc speecl limit in the
IJr-riverse. Only massless particles
snch as photor-rs can travel at the
speecl oi light; massive p:lrticlcs-
snch as those rnaking up thc
starship Enterprise must shrg-
gishly travel at slourer speecls.

This makcs any obscrvation of
something appearing to trervel f:rstcr
than the speecl oi light rirther aston-
rshir-rg. Sr-rch observations have been
mircle in astrollomy and r,vrll be the
irrcr-rs of our contest problem.

But irrst r'r,e make a cligrcssion to
talk arbor:t hrgh-spccd photography.

Lct',s assurle that we havc a c.lllrcra
u'it1-r a very i:rst shuttcl spcccl, srry,

.t \ t l\ \ntilll lt-JLl.ltrll ul ll rlilrl()\ua-
onc1. iSr-rch calneras irrc only avzril-
able in phy5lct stores akrng r.vith
massless pullcys ancl trictionk:ss
sr-rrf:rces.l We want to takc a photo-
graph of ir thin rocl as it pilsscs by ;rt
a rclativjstic speecl.

Let's irssLrrnc that thc car-nerir is
locirtecl at thc origin and is pointing
irkrng the +1'-clrrcction. Thc thin rotl
ls 3 m long rvith its cnrls at 1: : 3 ,-t

iln(l \ - (r |lr :l: :lt,rrrll irt lig,trt'e l.

Figure 1

The rod is traveling in the +x-direc-
tion at a speed of 0.lc. When the rod
passes the x-axis, we consider light
reflected from each end. The light
reflected {rom the close end takes
10 ns to reach the camera and expose
the film. Flowever, the light refiected
from the far end takes 20 ns to reach
the camera and bumps into the closed

shutter. The light from the {ar end
that enters the camera must have
been reflected earlier to allow for the
extra distance it has to travel. That is,

the light from the far end that arrives
at the camera simultaneously with
the light reflected from the near end
must have been emitted a little more
thanlO ns earlier.

This means that the camera
records the near end as being at x = 0,
but the far end as being located at
x : -0.3 m. The calrrrera does not
"see" the rod lying along the x-axis,
but rotated through an angle of 5.7" .

Who says cameras don't lie?
Our contest problem is based on

one of the three theoretical prob-
lems used in the International Phys-
ics Olympiad held in Reykjavik, Ice-
land, on 2-lOluly 1998. One of us
(LDK) had the pnvilege of working
with the Icelandic exam committee
and found the problems to be very
interesting and challenging.

A.In7994, GRS1915+105 was ob-
served to emit ejecta in opposite di-
rections. As reported by L F. Mirabel
and L. F. Rodriguez rn I'{ature (vol
371, p. 46), the ejecta were probably
produced by a neutron star or a black
hole similar to the process occurring
in quasars, but on a smaller scale.
They call the oblect a microquasar.
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Fits to the observatibns over a pe-
riod of 34 days showed that the ejecta
left the microquasar with angular
speeds of rrt, : 17.6 milliarcseconds/
day and ot, = 90 milliarcseconds/day.
If the microquasar is located at a dis-
tance R = 3.86 . 1020 m from Earth,
what are the components of the ve-
locities of the two ejecta perpendicu-
lar to the line of sight (the transverse'
velocities)?

B. You are probably surprised to
discover that one of these velocities
has a component larger than the
speed of light. To see how this

B
t*

Eath tB A

Figure 2

arises, let's do the following calcu-
lation. Assume that an object is trav-
eling at a speed v = Fc at an angle
0 . 90" relative to the line of sight as
shown in figure 2. Denote its origi-
nal position by ro and its final posi-
tion by rr. In a time interval At the
object travels a distance Ar. What is
the time interval Ato between the ar-
rival of the signal from position A to
the arrival of the signal from posi-
tion B as observed on Earth?

C. What is the transverse velocity
observed for this motion in terms of
B, R, and q?

D. What is the minimum value of
B for which we can observe a trans-
verse velocity greater than the speed
of iight for some angle Q? What angle
corresponds to this minimum B?

E. Draw a graph of B versus Q

showing the region where we can
observe apparent superluminal
transverse velocities.

Please send your solutions to
Quantum, 1840 Wilson Boulevard,
Arlington, YA222OL-3000 within a
month of receipt of this issue. The
best solutions will be noted in this
space.

Dq[t 0l ftnuwledge

What a wonderful showing for
our Depth of Knowledge contest
problem in the May/|une 1998 issue.

Correct solutions were submitted by
ZachFrazier, a senior at Ferris High
School in Spokane, Wash.; professor
F. Y. Wu of Northeastern University,
Mass.; |ohn Parmon of Narbeth,
Penn.; and Scott Wiley, a physics
teacher from Westcaco, Tex. The
first part of the problem required
readers to calculate the depth of a
weli if a dropped stone is heard hit-
ting the bottom after 3 s.

The total time to hear the sound
is the sum of the time for the stone
to fall plus the time for the sound to
rise.

T:t1+t2r

where

and

h+-L2--.
v

Knowing the total time 7 = 3 s,
the acceleration due to gravity
g : 9.8 rr,ls2, and the speed of
sound v : 340 m/s, we can solve
for the height of the well h by us-
ing the solver or the poly function
on a TI-85 calculator or the qua-
dratic equation. The depth of the
well that satisfies these equations
is 40.65 m.

The second part o{ the problem
assumes that there is air resistance
where the resistive force is propor-
tional to the velocity of the stone:

mg-kv = -*,
tdL c dv
J;= ) **w

Let u : mg - kv. We have

r-k r dut_dr = t_J m-'- J u'
1. ..

-n.u

-r 
= IfI-,muo

-kt
ot11 _ mg- kv

To determine the depth o{ the
well, with air resistance, we must
derive an equation for the distance
traveled by the stone:

and

-t*\ - ffi81 - m28 .# - 
*'r

xlLl=-"\'/ k kz" k,

Using the given information that
k :0.01 kgf s, m:0.05 kg, and that
the total time 7 to hear the splash is
still 3.0 s, we can now determine the
depth of the wel1.

The total time is the time for the
stone to fall t, and the time or the
sound to rise:

x(1,\

Readers solved Ih" 
"qrr,iortgraphically, numerically, with

Mathematica, and with a spread-
sheet. The depth of the well is now
.34.2(r rn.

t., ....( I \

'-'.i=^tr-' '.J'

/ ,\
ia, - i4{l t-.'= l,t,J r k[ 

)

,=T -f,;-c
Srucex:0u..her-rI=0,

rttr-<
-=' k'

CI

"=T['-"+J
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GRADUS AD
PARNASSUM

Comllelinu IhB sqtlare

by Mark Saul and Titu Andreescu

ET'S TALK FIRST ABOUT SOLVING QUA-
dratic equations. Here is a pedagogical trap that of-
ten catches beginning teachers. We can learn some-
thing from the error.

Problem: Find two numbers whose sum is 13 andwhose
product is 30. Only an algebraic solution will be accepted.

Many people can see right away that the answer is 10

and 3. But our hapless beginner will insist on an algebraic
solution and start like this: Let x and y be the required
numbers. Thenx + y: 13 andxy:30. From the first equa-
tion, y = i3 - x, and substituting this value into the sec-
ond equation, we find that x(13 - x):30, which simpli-
fies to x2 - 13x + 30 : 0. We must now solve this quadratic
equation.

We choose (says our unlucky novice) the technique of
factoring. How do we factor such a trinomial? We need
to represent it as (x - cr)(x - 0); that is, we need to find two
numbers u and B whose sum is 13 and whose product is
30. That is, we have come back to our original probleml

We first learn to solve quadratic equations by factor-
ing, and we often deiight in our mastery of the factor-
rzation of trinomials. But factoring is just guessing, and
it is of no use if the roots are irrational, complex, or even
very large integers. This is why two more standard tech-
niclues have been developed for solving quadratic equa-
tions: completing the scluare and using the formula.

Completing the square is a powerful technique,
which can be used to solve any quadratic equation with
real coefficients. It is algorithmic: We always know
what to do next, and the method always works after a
finite number of steps. Indeed, it can even [-le encapsu-
lated in a formula (the famous "quadratic formula") that
even a computer can understand.

The algorithm also generalizes in several directions.
The following problems are typical.

Problem 1. If x is a real number, find the smallest
possible value of x2 - 8x + 21.

Solution. Let's ignore the constant term and com-
plete the square. We must add16 to x2 - Bx. So we write

* - 8x + 2l : * - Bx + 16 +5 = (x- 412 + 5.

Since the square of a real number cannot be negative,

the minimal value of the expression is 5, and it is
achieved when x: 4.

Problem 2.If x andy arereal numbers, find the small-
est possible value of

**f-Bx+6y+17.
Note that a solution using calculus is beyond the usual
first-year course in this subject.

Problem 3. Find the center of the ellipse whose equa-
tion is

a* + 65fl -24x + lZY = 20.

Problem 4. (This problem is a bit ahead of its time!)
Find the smallest real number r such that

x2*t'+L9x+99y+r>0
for all real numbers x, y.

Problem 5. Are there one-to-one functions /: R --> R
such that f(*) - t'2(") >- | I 4 for all (real) x? (Here we write
f2lx) for lfl4l'.)

Problem 6.Let a, b, c be three real numbers. Prove
that at least one of the numb ers a - b2, b - c2, c - a2 does
not exceed 1/4.

Sometimes we find that the squares in our problem are
aheady complete, and we just have to recognize them.

Problem 7. Find a1l triples (r, y, ,) of real numbers
such that 

xz : 4(y - r)
yz:+(z*tl
z2=+(x-tl

Solution. Adding and simplifying, we find that

* - 4x + 4 + 1P - 4y * 4 + z2 - 4z + 4 = 0.

If we try to complete the square, we cluickly {ind that
they are akeady complete(l), and we have

lx - 2)z * ly - 2lr2 + (z - 2)2 : 0.

Thus the only possible solution is (2, 2,2).
Sometimes we can "complete the square" by adding

and subtracting a middle term/ rather than the constant
term, of an expression.

Problem 8. Factor * + 4 over the integers.
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Solution. At first glance this may seem impossible:
The given polynomial is the sum of two squares/ which
usually cannot be factored. But the presence of a fourth
power in the first term lets us "complete the square" thus:

* + 4 = * + 4xz + 4 - 4xz - l* * 2lz - l2x)2.

Now the expression factors as the difference of two
squares. Answer:

(* + 2x + 2l(* -2x + 2).

The reader is invited to check that these factors multr-
ply to the given expression.

Problem 9.Factor 4aa + ba (over the integers).
Problem 10. Show that the number 4tt * n4 is com-

posite for all integers n > 1.

Problem 11. For any two real numbers a andb, show that

a2 + b2 > lI lzl(a + b)2.

Problem 12. Show that

a2+b2+c2>ab+ac+bc.

Solution. It wouid be nice if our inequality involved
az + b2 + cz and also Zab + Zbc + Zac. Then we could
proceed as in problem 1 1. So 1et's try multiplying the
whole inequality by 2. We get

2a2 + 2b2 + 2c2 - Lab - Zac - Zbc > O,

which groups as

lo - b)2 + lb - cl2 + lc - a)2 > O,

which is certainly true.
Problem 13. Show that

a2 + b2 + c2 - ab - bc - ca > (31{fu - b)2.

Problem 14. Show that

a2 + b2 + c2 > (tlz)la + b + c)2.

Problem 15. For any n real numbers a 1, a2r ... r dn, show that

al + al + ... + a?,. !(^ + az + ... * o,,)' .

Problem 16. Find the minimum value of

**f+24-4xyz,
where x, y, Z arerealnumbers. Where is this minirnum
achieved?

Solution I. The arithmetic-geometric mean inequal-
ity for four variables tells us that

a+b+c+d>a\7abcd.

Letting a : *, b : )/, c = 24, d : 1, we have

**f+24+l>4xyz,
or

* *f + za -4xyz>-I,
with equality when I = / = /: I and xyz> O, which im-
plies (4 y, z) = ll, l, ll,ll, -1, -l), (-1, l, -l), or (-1, -1, 1).

Solution II. Can you get the same result by complet-
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ing the square?
Problem 17,Let a1, a2r ...r anberealnumbers. Prove that

1,
1\t\ + nt +

ANSWERS, HINTS & SOLUTIOIVS O/V PAGE 49

Factoring
Compliments of Richard Askey of the University of

Wisconsin-Madison, here are alternative solutions to
problems 15 and 16 in "Symmetry in Algebra, PartIII,,,
page 42 in the |uly/August 1998 issue.

Problem 15. Let m andn be two odd integers. Show that

Lr"' +L)"' + c"'

111
a,,, bm c|ll

if and only if this equality hoids when m is replaced by n.
Proof. Clearing off fractions, this becomes

62ml6m + b*) + c*la* + bm)2 + a-b*(a* + b*) = O

OI

(c- + a*)lc- + b*l(a- + b*l : O.

Thus, it holds if and only if two of the numbers a, b, c
are negatives of each other.

Problem 16. Factor

#*t'+23-Zxyz.
If

f(x, y, r) = * * t' + z3 - 3xyz,

then flx, x, x) = 0. This suggests "perturbing" the value
x by considering

f(r,,+r,x+s) =,3 +x3 +3x2t+3xr2 +13

+ x3 +3x2s + 3xs2 +st - 3x(x2 +rx+sx + rs)

= 3x(r2+r' - rr)+13 +sr = (3x +r+s)(r2 +s) - rs)

= (x + v + r\(* + v' + / - *v - xr - rr\.\ 7 t\ , ,-l-

This can be factored into linear factors by using the
quadratic formula. The result is

f(x, y, rl = B * y + zllx + wy + v?zl(x * vfly + wz),

where y'F : t andw + 1. A general cubic equation can
be written as

t3+3bt2+ct+d:0.
If x: t + b, then x satisfies

#+px+q:0
for constants p and q. If

p : *3v2,
q:t'*23,

then y can be obtained by solving a quadratic equation
in f, so the factorization of f(x, y, z) into linear factors
gives the solution of a general cubic equation. O



AT THE
BLACKBOARD II

ll'l'or$ in Ueolnell'ical Uools

ANY STUDENTS COME
across a "proot" that 1 : -1.
Here is an example of such a
proof.

Let a + b : c and a : b : 1. Mr-rltiply
both sides of the equaLity a + b : cby a

+ b to obtain a2 + Zab + b2 : cla + b).
We can rearrange this equation to
obtain

a2+ab-ac=-ab-b2+bc
OI

a(a+b-c):-bla+b-c).
Dividing both sides by a + b - c, we
obtain the absurd equality a = -b, or
I : -1.

After a moment of embarrass-
ment, we see the error in this deri-
vation at once: We cannot divide
by a + b - c because this expression
ecluals zero. Many other similar
proofs employ the same idea of
disguised division by zero, and it is
easy to find the error in these
proofs.

Erroneous proofs of false proposi-
tions in geometry are less well
known. The search for errors in geo-

metrical proofs is often a difficult
yet instructive task. The eminent
book by Y. S. Dubnov Errors in Geo-
metrical Proofs (Moscow: Nauka,
19691 is dedicated to such prob-
lems.l This book, which has been
out of print for many years, contains

iYakov Semenovich Dubnov (1887-
19571 was a well-known geometer and
teacher who taught at Moscow
University for many years. He also
gave lectures for high school students
that provided the basis for this book.

by S. L. Tabachnikov

15 geometrical "proofs" with com-
plete analysis. In this article, we dis-
cuss one of them. We invite you to
fo11ow the reasoning carefully and
try to find the error.

"Theorem": All triangles are isos-
celes.

Proof. Consider a trrangle ABC

B

N
Figure 1

(fig. 1). Draw the bisector of angle B
and the perpendicular bisector to the
base AC.In what follows, these seg-
ments are simply called the bisector
and p erp endicular bis ector. Call the
point of their intersection N. Drop
the perpendiculars l.IP and NQ onto
the lines AB and BC.

Since N lies on the bisector, it is
equidistant from the lines AB and
BC. Therefore, lPNl= lQNl. SinceN
lies on the perpendicular bisector, it
is equidistant from points A and C.
Thus, lANl : lCNl.

The right triangles ANP and CNQ
are congruent by hypotenuse-leg.
Thts, INAP : lNCQ.In addition,
triangle ANC is isosceles. Therefore,
INAM : ZI{CM. Adding equal
angles, we conclude that Z.PAM
: ZQCM.Thus, IBAM = Z.BCM, and

triangle ABC is isosceles.
The proof is finished. However,

you may have some objections. The
following are some likely objections
and attempts to answer them.

Obfection 1. How can we be sure
that the bisector and perpendicular bi-
sector meet? They might be parallel.

Answer. If the bisector is parallel
to the perpendicular bisector, it
must be perpendicular to the base of
the triangle. Therefore, it is also the
altitude of triangle ABC. Thus, this
triangle is isosceles. As we can see/

the conclusion that the triangle is
isosceles retains its validity!

Objection 2. The bisector can coin-
cide with the perpendicular bisector.

Answer. I have two answers to
this objection. First, in this case, the
bisector also coincides with the al-
titude, and the triangle is, again,
isosceles. Second, if the bisector co-
incides with the perpendicular bi-
sector/ the point lrl can be chosen
arbitrarlly on the bisector. Then the
proof can proceed as before.

Obiection 3. What if the bisector
meets the perpendicular bisector on
the base AC-that is, if N: M?

Answer. In this case, the bisector
coincides with the riedran BM.

B

Figure 2
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This, again, implies'that triangle
ABC is isosceles.

Obiection 4. We have not consid-
ered the case when the bisector
meets the perpendicular bisector
inside triangle ABC.

Answer. This case is iliustrated
in figure 2. Reasoning as in the
basic proof (fig. 1), we conclude
that lAl/l : lNCl and lNPl : lNQl.'
Therefore, AAPN = ACQl,l. Thus,
Z.NAP : ZNCQ. In addition, tri-
angle ANC is isosceles, and there-
Iorc INAM = INCM. Summing
up the equal angles, we find that
ZBAC : ZBCA. Thus, triangle
ABC is isosceles.

However, I can present another
counterargument: The case shown
in figure 2 is impossible because an
angle bisector in any triangle always
lies between the corresponding me-
dian and altitude.

Thus, these four objections are
invalid. I invite the reader to stop
here and try to find a decisive objec-
tion against the "proof" given. If you
need help, see Answers, Hints &
Solutions orrpage 49.

S[emhy prools?

Now you will doubtless consider
drawings with more suspicion.
Some readers might even want to go
further and write rigorous math-
ematical proofs that eliminate the
need for drawings, thus excluding
the possibility of making an error.
Professional rnathematicians usu-
ally satisfy themselves with the po-
tential possibility of making their
proofs formal. However, they often
use various graphical illustrations.
This can be explained by the fact
that formal derivations are much
longer than common proofs, and
they are much more difficult to un-
derstand and devise.2 Thus, it is un-
reasonable to discard graphical i1lus-
trations when proving geometric

ADC
Figure 3

theorems. We must, however, know
how to use them correctly.

We invite the reader to find errors
in the following "proofs" from
Dubnov's book.

Problem 1. As is well known, the
sum of the angles of any triangle
equals 180". The proof of this fact is
based on the parallel axiom. The fol-
lowing proof does not use this
axiom.

Decompose an arbitrary triangle
ABC into two triangles (fig. 3). Let x
be the yet unknown sum of the
angles of the triangle. Then, ll + 22
+ 16 : x and 2.3 + Z4 + /.5 : x. Com-
bine these two equations to obtain
ll + Z2 + Z3 + 24 + 15 + 16 : 2x.
Since Z5 + 16 = 180'and Zl + ZZ
+ ZB + 24 is the sum of the angles
of ABC (that is, x), we obtain the
equation x + 180o : 2x. Therefore,
x: 180'.

Problem 2. Let us prove the
"theorem" that states that a rect-
angle inscribed in a square is also a
square.

Consider a square ABCD, and let
KLMNbe an inscribed rectangle (fig.
4). Drop the perpendiculars KP LAD
and NQ L CD. These perpendiculars
are equal to the sides of the square,
and thus are equal to each other.
Segments KM andNl, are also eclual
since they are the diagonals of rect-
angle KLMN. Therefore, the right
triangles KPM andl/Ql are congru-
ent by hypotenuse-leg. Conse-
quently, IKMP : Z.NLQ. Consider

B K-c

the quadrilateral OLDM. Since
IOMP : ZOLQ, the sum of the
angles OLD and OMD equals 180".
Thus, the sum of the other two op-
posite angles of the cluadrilateral
OLDM also equals l8Oo-that is,
ZMOL + Z-MDL: 180". However,
IMDL: 90o, and thus, ZMOL is a
right angle. This implies that KIMN
is a rectangle with perpendicular di-
agonals, which must be a square.

Problem 3. Let us prove the
"theorem" that states that a perpen-

Figure 5

dicular and a slanting line to the
same line do not meet.

Consider a slanting line AP and a
perpendicular BQ to the segment
AB (fig.5). Let C be the center of AB.
Lay oLf the segments AA, arrd BB,
equal to AC = BC. We claim that the
rays AP and BQ do not meet at a
point interior to segments ,4-4, and
BB,. Indeed, if such an intersection
point existed, the {ollowing inequali-
ties would be satisfied for triangle
AKB: lAKl < lAAtl and lBKl < IBB\1,
which implies

lAKl + lKBl < lAArl + lBBll : lABl.

However, the last inequality contra-
dicts the triangle inequality.

Now, connect points Arand B,
and repeat the preceding construction
to obtain the points Arand Br. Herc
lAtA2l = lASll = lClBll = lB'Brl. As
before, the rays AP and BQ do not
meet at an interior point of seg-
ments A rA, and B rB r. In particular,
points Arand Brare different, and

(l
Br

B)

2For example, it is rather difficult to
write the number 1 i.n one of the
formal languages-the language of the
set theory by N. Bourbaki. "The full
notation ... would have contained
several tens of thousands of symbols-
rather a lot for the number 1," said Y.
I. Manin on the Soviet radio program
"Provable and Unprovable" in 1979.

N

A

Figure 4
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the construction process can be con-
tinued infinitely. There{ore, the rays
AP and BQ do not meet.

Problem 4. Let us prove that all
circles have equal circumferences.

The larger circle in figure 6 makes
a full revolution moving from point
A to point B. Thus, the distance AB
ecluals the circumference of the
larger circle. The small circle inside
the larger one also makes a full revo-
lution moving from point C to point
D. Therefore, lCDl equals the cir-
cumference of the smaller circle.
Since the lengths of the segments
AB and CD are clearly equal, both
circles have equal circumferences.

Problem 5. It is well known that
the circumference of the circle of
radius R equals 2nR. However/ we
will "prove " that the circumference
of a circle is twice its radius.

Figure B

Draw a semicircle with diameter
AB lhg.7). Divide the segment AB in
half by the point C and construct
semicircles on segments AC and
CB, placing them on different sides
of the line AB. Each of these semi-
circles has a diameter equal to half
the diameter of the initial semi-
circle. Thus, their circumference,is
half that of the initial semicircle.
Therefore, the length of the wave-
like curve labeled "1" in figure 7 is
equal to the circumference of the
initial semicircle.

Now, divide each of the segments
AC and CB in half and construct the
wavelike curue labeled "2." Again,
its length equals the length of the
initial semicircle. Continuing this
process/ we obtain a wavelike curve
of the same length at each step. The
distance of the points of this curve

from line AB does not exceed the
radius of the semicircles that consti-
tute the curve. Therefore, it tends to
zero. Consequently/ the sequence of
wavelike curves tends to the seg-
rnent AB. Since the lengths of these
curYes are equal to the circumfer-
ence of the initial semicircle, all
these lengths must be equal to the
length of AB. Thus, the circumfer-
ence of the circle is twice its radius.

Problem 6.Let us prove that the
arca of a sphere of radius R is t2R2.

Consider the hemisphere with
the pole O and divide its ecluator
into n equal parts. The area of the
hemisphere is n times larger than
the area of each of the small spheri-
cal triangles shown in figure B. Con-
sider one such triangle. Its base
ecluals ZnRf n, and its altitude tends
to xRl} as fl -+ -. Therefore, its area
tends to nzRzlzn. Thus, the area of
the hemisphere is equal to

x'R2 nzRZ
l1---2n2'

and the area of the sphere is t2R2.0

ANSWERS, H//VIS & SOLUTIONS
ON PAGE 49
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IN THE LAB

UUhy is a hurnl malch henl?

by V. Mil'man

LAYINC WITH MATCHES
can be dangerous. Nevertheless,
let's do some simple and in-
structive experiments with

burning matches, taking every pre-
caution. In these tests we'll observe
how a wooden match changes shape
as it burns.

First we must take sa{ety mea-
sures in addition to the standard
ones such as tying back iong hair, se-
curing loose clothing, and so on:
Hold the matches with tweezers
over a basin of water set on a metal
sheet. Once everything is prepared,
we are ready for the experiments.

Test 1. Hold a burning match
horizontally. The flame moves
along the match, and as it does the
charred portion of the match bends
upward. Different matches display
different degrees of bending. Some of
them become twisted after burning.
It is noteworthy that it is the cooied
(charred) part of a match that bends.

Test 2. Hold a burning match in
the flame of a burner (for instance,
a gas stove). The charred part barely
bends at all.

Test 3. Let's observe the burning
of matches of different thickness.
Thick matches become more
twisted than thin ones, and the
splinters of a match twist the least.

Look attentively once more at a
burning match held horizontally.
The flame slowly travels along it.
The wood in the flame doesn't bend.
This part of the match is black,
which means that its temperature is
not Yery high-no more than 500-
600"C. Immediately behind the

flame area there is a narrow (= 2 mm)
red be1t. This is azorre of maximum
temperature (= 700-750oC) where
burning is just finished. If we look at
this region in profile, we see that its
upper part is red-hot, but the lower
part is black. Therefore, the upper
part begrns to cool from a higher
temperature, so it is red for a longer
period. The cause of this uneyen
burning is the convective flow in the
surrounding air.

Could it be that the temperature
difference between the upper and
lower parts of a match is the reason
for the bending? Note that a match
bends such that its convexity is a1-

ways directed toward the lower tem-
perature in the burning process.
This hypothesis is corroborated by
the following experiments.

Blow carefully on a burning
match from above but do not extin-
guish the flame. Inspect the charred
piece-it is almost straight. When
we blow the flame downward, the
temperatures of the upper and lower
parts of the match are made equal,
and the match doesn't bend. By con-
trast, if the burning match touches
a cool metal object (say, anail) from
below {do not extinguish the flame
with itl) the match bends more than
it normally would.

Thus, our hypothesis about the
cause of the bending of the burning
match seems to be qualitatively sup-
ported by experiments. Now let's
make a quantitative estimation us-
ing the following model.

We divide a match theoretically
into two horizontal parts. During

burning, the temperature of the up-
per part is higher than that of the
lower part, but the lengths of the
parts are equal. As it coo1s, the up-
per (and more heated) part contracts
more than the lower part, because
the temperature difference between
the air and the upper part of the
match is larger. Thus, the length of
the upper part of the cooled match
will be less than that of the lower
part, and the match will bend such
that the convexity is directed down-
ward, or to the side that is colder
during burning.

This model is similar to a bime-
ta1lic plate, which is composed of
two metals with different coeffi-
cients of thermal expansion. Based
on this mode1, let's evaluate the
temperature difference between the
upper and lower parts in the region
of the red-hot belt.

Let 1o be the match's length and
d be its thickness. As an approxima-
tion we assume that these values re-
main nearly constant during burn-
ing. However, the lengths of the
upper and lower parts of the burnt
and bent match are not equal. The
difference between the lengths of
the parts is

l, - l, = loc'LT, (1)

where cr is the coefficient of thermal
expansion of the wood and ATis the
difference in the maximum tem-
peratures of the upper and lower
parts of the match. Since
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Comparing equations (1) and
yields a formula for R:

R=

It is not easy to measure R, but we
can express it via the easily measur-
able parameter ft {fig. 1):

( 
,-.nr]n).h=R(l-cos0)=\ 

R)

To a close approximation we can
consider

1-cosP= E1'
2

(Note: The error in this approxima-
tion is no more than 1% for B < 38'
and 10% for B < 60'.) Therefore,

Figure 
.1

Plugging thcse values into eclu:rtion
(.3) yiclds

h- lnrnAT

d'
from which we obtain

Thus, to evaluate the value AT,
we should experimentally find the
ratio hf1o2. The results of measure-
ments show that to a close approxi-
mation we can consider

4 = const = 10-2 mm-l.
t3

Assuming u = (5-10) . 10-s K 1 and
d: I rrtl:;,, we {ind according to equa-
tion (4) that AT = (100-200)'C.

Measurements of AT made using
a thermocoupie yielded the follow-
ing data:

Tror",: (730tlo)c,
T,;;",: (65ot1o)C,

and
AT: (80t20)C.

We see that our theoretical esti-
mate agrees with these data tather
welI. Therefore, we can consider that
although this model doesn't take into
account the chemical nature of the
buming process, it is still correct.

It is cluite possible that by observ-
ing a burning match you will ad-
vance the understanding of why it
twists. In this case try to substanti-
ate your hypothesis with experi-
mental data. But remember-while
cartying out your experiments, be
careful and take the appropriate

= u("-' f),
1)

_pd _
2

d

2rLT

104
R2

(2)

l2J

(3)
h= ]i

2R

r?=li / 4ll'u' \
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NCE UPON A TIME, HA\TNG
donned his heavy arlr,ott a

knight set out to perform his
regular duty of liberating a kid-

napped princess. Suddenly, a narrow
pathway ended at an abyss, and the
only thing that was left of the bridge
was a platform suspended on un-
stretchable cables over the middle of
the abyss (fig. 1). The platform was
far enough from the edge that our er-

Figure 1

rant hero could neither reach it nor
jump to it. In addition, jumping
would be risky since the platform
was covered with ice.

In utter desperation the knight
took a stone of mass m and hurled it
directly at the bridge. The sound of an
absolutely eiastic collision echoed
many times, and the stone plunged
into the abyss. The knight glared at
the bridge, and then his jaw dropped
in astonishment: The bridge had be-
gun to osciliatel The warrior recalled
the principles of applied mechanics
he learned at military college and
cluickly guessed what had happened.

llul'liltu al lhe ahyss

by A Stasenko

The elastic impact of the stone
with the edge of the heavy platform
and the following rebound resulted
in a change in the stone's momen-
tum of Ap : -2mv*(fig. 2). Therefore,
the same size impulse was imparted
to the platform:

Lp :Zmv,.

The canny knight was pressed for
time (the princess awaited himl), so
he simplified his reasoning and as-
sumed that the mass of the stone
was far less than that of the bridge.
Those who are not in a hurry may
repeat these calculations, taking
into account the fact that the stone
bounces off a moving platform.
Thus, after the first collision, the
platform's speed increased by

AT THE
BLACKBOARD III

AV=

and the platform began to oscillate
with a small swing and almost no
damping.

Our resourceful hero used the
dusty pathway to piot this process.
In rectangular coordinates he drew
the dependence of the velocity V on
the displacement x. Before the first
collision, the platform was at the

origin 0 (fig. 3). At the moment of
collision its speed increased by LV
(note the upward arrow drawn to
point A in fig. 3a). In other words,
some kinetic energy was imparted
to the platform, and it began to
move in the positive x-direction.

Since the cables do not stretch,
the platform's center of mass moves
along an arc. Thus, the platform is
Iifted in the gravitational field. Dur-
ing this motion the kinetic energy is
converted into potential energy, and
when the speed becomes zero (point
B), the displacement from the equi-
librium position is a maximum.
Having reached this point, the plat-
form changes direction and begins to
move toward the knight, gaining
maximum speed at point C and
stopping for an instant at point Dr.
If damping is absent, this process re-
peats itself infinitely.

Scrutinizing his graph, the knight
understood that it was worthwhile
to throw another stone at point D,.
After the next swing the platform
should come to point D, (figure 3b),
and so on, until point D, coincides
withx:lL-d)12.

Thus, hesitations behind, the
brave knight decided to estimate
how many stones he would need to

Ap

M,

a

Figure 3

1<night

Figure 2
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hurl to draw the edge of the slippery
platform fust to the edge of the preci-
pice so that he could safely step onto
the platform.

He laid do'wn his shield and on it
wrote the law of conservation of
energy:

lt)
M:T\ = Msl(r- coscxm,x),

2

where V,.r, ir the maximum speed
of the platform (we can see that it is
achieved at the lowest point of the
oscillation trajectory), and o,,o., is
the maximum angle of deflection,
which can be easily found from the
right triangle (fig. 1):

cos (y, rr.x

At this angle, the plat{orm's ve-
Iocity is zero: Al1its kinetic energy
has turned into potential energy.
Assuming that every stone hurled at
the moment when the platform as-

sumes the position nearest the
knight increases the platform's mo-
mentum by the same value, the nec-
essary number of stones can be
found from the formula:

L-0

gave him the number of stones to be
hurled:

^/= 
1.4. 103.

How long would the chivalrous
knight need to hurl stones? The
number of oscillations is known, so
we need only one thing more-the
value of the period of osciliation. Of
course, it depends on the length of
the pendulum 7 (m) and the accelera-
tion due to gravity S (mis2). To ob-
tain the necessary dimension (s)

from these two values, we can com-
bine them only in the following
wayl

l(-)

At this fleeting moment of revela-
tion the knight recalled what his
grandpa used to say in the fifteenth
century: "Remember, child, when
oscillations are considered, the
number 2n always jumps into the
formulas by some miracle."

Therefore, the period of the

platform's oscillation is

Since T is also the period between
successive collisions, we can see
that our gallant hero should work no
less than

t : 14 - 1.4. 103 s =2. 10as=5.5 h.

(It was lucky that the knight could
disregard dampingl ) Confronting
this daunting task was not easy, but
the princess desperately needed the
knight's help, so he dutifuily began
his c1ccc1.

Quantum articles about conserva-
tion laws and parametric resonance:

A. Chernoutsan, "Swinging
Techniques," Mayff:une 1993, pp.
64-6s.

A. Eisenkraft and L. Kirkpatrick,
"C1ick, click, click ...," September/
October 1990, pp. 4l-42.

A. Eisenkraft and L. Kirkpatrick,
"Moving Matter," November/De-
cember 1996, pp.32-33.

e

21

%.."" =NAV=l/AP
M

^, 
2rlv.

M

By plugging this formula into the
conservation of energy formula, the
knight obtained

!(N zmr^)'=n/r_r-d).
2( M J "-(- ztl

from which he got

M
) ntrt s?t-L+d)

Now the smart and brave knight
could obtain the numerical esti-
mates assuming the platform's mass
to be M: 103 kg, that of a stone
m : I kg, the horizontal projection
of a stone's velocity at the moment
of collision v, = 10 m/s, the width of
the abyss I : 50 m, the platform's
iength d : 30 m, and the length of
each cable I = 50 m. Calculations
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If a number has the form

Pi' 'Pf' '...'Pi', where P1,,P2, "',Pt,
ar-e prime integbrs, the number of its
different divisors (including 1 and
the number itself) is (u, + 1)(u, + 1)

... (crr + 1). This formula is well
known and can be easily proved. (For
a proof of this formula, see any book
on elementary number theory.)

We see that the number of differ-
ent primes involved in the prime
factor decomposition of our number
cannot be greater than four, be-
cause 2. 3 . 5 . 7 . ll > 1000. Wewill
look for the smallest of the desired
numbers (if more than one such
number exists). Therefore, in the
prime decomposition of this num-
ber, only the primes 2, 3, 5, andT carr
occur, and only to certain powers.

Now we face a simple search
problem: 2e has 10 divisors, 28 . 3 has
18 divisors, and so on. We also
should consider the following num-
bers:27 .3,26.32,26 .3.5,2s .33,
24 . Z2 . 5,23 . 33,23 . Z2 . 5,23 . 3. S. 7,

and22 .32 .52. We immediately see

that the number 23 . 3 - 5. 7 : 840 has
the maximum number (32) of divi-
sors. There are no other three-digit
numbers with this many divisors.

Answer:840.

M247
For example, the function

possesses the properties clescribed

tfis. 11.

ll ,>i
/{x)= i x

lz -,,, < t

ANSWERS,
HINTS &

SOLUTIONS

Figure 1

M248
If triangles ABD, BCD, and

CAD are congruent/ then they are
all ecluilateral and the angles at
vertex D ate 60". Now suppose
that the three triangles are not all
congruent. It follows from the
problem statement that the radii
of the circles circumscribed about
the three triangles are ec1uaI. In-
deed, they each have a side of the
same length, and the angles oppo-
site these sides are eclual, and
these elements determine the
circumradius. Now, triangles ABD
and CAD are isosceles (with bases
BD and CD, respectively). There-
fore, sides BD and CD of triangle
BCD are equal. Consider this tri-
angle and circumscribe a circle
about it. Construct two triangles
A\BD and CArD inscribed in this
circle and equal to triangles ABD
and CAD, respectively (fig. 2). It
follows from our considerations
that the pentagon DATBCA, is
regular. Thus the angles we seek
are 36" in this case.

Answer: 60" or 35'.

^+.^0'

Figure 3

M249
Considcr a rectangle with the verti-

ces O(0, 0), A2,0), B\2,3J, eu-rcl C(0,3J on
the coordinatc plane. The graph of
thc luncrion ) = rl-xt Jril>.es
through tl-re points (0, 1J and (2, 3)
and parrtitiolls our rectangle into two
parts liig. 31. Thc arca uncler the
graph is

),

i . t- r'Jr.
I

0

We corlpute thc arca of the part
of thc rcctanglc that is alove the
graph. Thc function Ju : 111+ ,3 is
monotonic on the segment 10, 2].
Thus wc can cxprcss r in terms of 1,:

t: i'l't 1'

Thcrcfore, the areir we seek rs

l. l

J i ' I tlr '

I

Make the follown-rg change of v:rri-
able under the rntegral sign: 1,: I + 1.

This yieltls thc followinF, r: xnt'e ssi(,n
for tl-rc area:

l

il r 
' 

r- zr ctr.
J
0

Now, wc scc that thc givcn integral
is cclu:rl to thc area of the rectangleFigure 2

OUAlllIUttil/AlllSllllIRS, 1lI[ITS & SOIUIIOluS 45



OABC, which is 6.
Answer: 6.

M250
We use the traditional notation

for the sides of the triangle: BC : a,
CA : b, and AB: c (where b , cl.
Let P, M, and K be the midpoint o{
BC, the point at which BC is tan-
gent to the inscribed circle, and
the foot of the altitude.dropped to
BC, respectively lfig. a). Let F be

Figure 4

the point of intersectron of AP
with the diameter of the inscribed
circle that passes through M, let r
be the radius of the inscribed
circle, and let AK : ho. We have:
CP : af 2, CM: s - c (where s is the
half-perimeter of the inscribed
circlel) and

) ,, ,a'+D'-c'

(This last equality is from the law of
cosines. )

TLrese ecpralities yielcl

PM=CM-CP=b-C
2

and

I)t,/ - /-,,, -n - 1" c'//\-\./\-(,,- 
)u

Frorn the srmilar trianglcs PMF and
P1(A, we fincl

lThis iormula can be obtilinecl :rs

tol1or,r,,s. Let N and I be the points of
tangency oi the rnscribcd circle r,vit1-r

t1-re sides AC and AB, re spectively, ancl
C\i=C\ x.Thcn, 4l = 4V= /,-v,
Bl'1 =BL=c- ib-x) :c b+r.Norv
the equation CM + BM = BC, or x + {c - b
' \ =.//lrcltlsr-r,l /, t12=r-,.

In addition, the well-known formu-
las for the area of a triangle yie1d2

a+b+c l< lz)

Now, ecluations {1) and iZ) yield

2r-MF )r , )r h. 
I

MF MF h,, MF

_2(,(_l)_,_/, l
A 

_,= 
A

k-lAnswer: , .

K

Physics

P246
Let's denote the acceleration of

the lower wedge by a, noting that it
is horizontal (fig. 5). Relative to this

Figure 5

wedge, the acceleration of the upper
wedge is directed along the plane of
their contact-that is, downward at
an angle of 45" to the horizontal.

The total acceleration of the up-
per wedge can be conveniently de-
composed into the sum of two vec-
tors: the horizontal one equal to a,
and the second vectorwith the value
b, which is directed downward at
the angle of 45". Thus, the horizon-
tal projection of the upper wedge's
acceleration is directed opposite the
acceleration of the lower wedge and

rII K clenotes the area. then r'r,e havc
K: )L h,,a and K = rs,

is equal to (b cos 45" - al, and the
vertical acceleration is b sin 45o.
Because no horizontal force acts on
the brick, its acceleration is directed
vertically and equals the vertical
proiection of the acceleration of the
upper wedge: b sin 45'.

Let's find the relationship be-
tween a and lr. Recall that in the
absence of external horizontal
forces, the horizontal acceleration of
the center of mass must be zero.
Since the brick moves only in the
vertical direction,

M(bcos45'-a)= Ma,

b= -),)n
cos 45o

Therefore, the horizontal compo-
nent of the total acceleration of the
upper wedge relative to the table is
a, andthe vertical component of this
acceleration (and of the brick itself)
is 2a. The value of the total accelera-
tion of this wedge is J5a.

To determine the accelerations
of the bodies, let's use conserva-
tion of energy. In a time t the loss
in potential energy will be equal to
the gain in the total kinetic energy
of the system. The speed and dis-
placement gained to the time t can
be obtained with the formulas of
uniformly accelerated motion. A
decrease in the potential energy
results from the vertical displace-
ment of the upper wedge and the
brick:

nu =(M*-)sT

The total kinetic energy of the bod-
ies is

u(ar\ wr(u 5at)' m(2ad2
l, _ \ t L r / 

'. 
\ ,

222
By equating AU and K, we obtain

the acceleration a:

M+m
" o 

3M +zm'

Therefore, in a time t after the start
of the motion, the speed of the brick
will be

MF PM

l1u PK b+c
0

b+c+tt-tt

(1)

k-1

)n2ra
hus

2o

tr

In .r,.' *r'
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M+m
v =Zat = )st-" 3M+2m

P247
The thermal fiow Q is propor-

tional to the temperature difference

lT2- Tt) per unit length I along the
direction of thermal flow and to the
cross-sectional area S. Denoting the
coefficient of proportionality by K
(known as the coefficient of thermal
conductivity) we obtain the thermal
fiow in the first case:

The second case is far more di{-
ficult. Let's assume that the total
thermal flow is composed of the
component flows that are directed
along the fibers (at ar angle u to
the cylinder's axis) and perpen-
dicular to them. Of course, we
could take other directions to de-
compose the vector, but the cho-
sen ones are most suitable, be-
cause we know the coefficients of
thermal conductivity along them.
In the "longitudinal" direction
(along the fibers) the temperature
drop per unit length is smaller
than in the first case: It is equal to
l(Tz- Trl cos ul/I. The cross-sec-
tional area in this direction is also
smaller: S cos u. Similar formulas
are valid for the thermal flow
across the fibers, but in that case
angle cx must be replaced by
(90' - u) and the thermal conduc-
tivity coefficient must be halved.
Thus, in the second case the total
thermal flow is

I(Scosr" (L-I)

duced emfs are equal and their
changes in magnetic flux are identi-
cal. The same conclusion can be in-
ferred by considering the supercon-
ducting contour formed by both
inductors.

Labeling currents in the coils 1,

andI2, we have (taking into account
the signs corresponding to the cho-
sen directions of positive current):

LJo: LJt + LrIr.

The maximum charge on the ca-

pacitor occurs when the cuffent to
the capacitot is zero, or rather, when
Ir: Ir. This charge can be found us-
ing conservation of energy:

Q., = Io

The maximum current in the sec-

ond coil is reached when the charge
on the capacitor is zero. At this mo-
ment/ conservation of energy can be
written without the term for the en-
ergy stored in the capacitor:

LrIl +LrI2r=7r1fi.

Combining this equation with
the equation for the magnetic
fluxes, we obtain

/ , , \)
L,rA = r,l t^ - 

tzl t | + L,tl.u t" Lt)

This ecluation has two roots for 1r.

One of them is zero andcorresponds
to the minimum value of this cur-
rent. Note that the conditions for
the minimum and maximum are
cluite similar: In both cases the self-
induced emf is zero. The second root
is the answer to the problem:

l. = Zln 'tLr+L,

P249
If there were no magnetic field,

the frame would move under the
action o{ gravity with constant ve-
locity (vo) in a horizontal direction
(x-axis) and with a constant accel-
eration g along the z-axis. A homo-

geneous magnetic field B could not
change the motion of the frame.
However, in this problem the
field varies along the z-axrs: B(zl
= Bo + kz. This means that the
field grows iinearly wrth z, so the
magnetic flux (D threading the
frame will change during the fall.
Accordingly, an emf will be gener-
ated in the frame, and the induced
current will flow around this
closed contour. The frame will ex-
perience a force from the magnetic
field. Let's find the value and direc-
tion of this force.

At some moment t the frame's
center of mass is located at the point
(x, zr). The projections of its veloc-
ity on thex- andz-axes are vrandvr.
At this moment the magnetic fiux (D

threading the frame is

KS(T, - 7, )
\<1 - L

Ir,.,.(, ;))'(r,,-'^[., 'i)),,.

Qz=

+

L

0.5KSsinr 0" (7. - 7,)

o-
2

= (Bo + kz,)a2 .

Here B, + k{zr- alZl and Bo + k(zr+ alZ)

are the values of the magnetic field
at the upper and lower sides of the
frame. Since B(z) is a linear function,
we use the mean value of B to cal-
culate the magnetic flux @.

At this moment, the emf in the
frame is

laol ^ ltl
lel= E-I = ki t-1= kilv -1,rr n/ al

and the induced current is

lol t )

t _lal _ Ra-t=_=-lrrl.RR
According to Lenz's law, the in-

duced current flows counterclock-
wise. According to Ampere's 1aw,

the upper side of the frame experi-
ences the force

and thc lower one the iorce

L

The ratlos of thennal flows will be

Qz 0.75 + 0.5 0.25

P248
The coils are connected in paral-

1e1, so at afly moment their self-in-

nl= [r. 
* {' -;))"

=l ,^*t( , ''lllL,
[ " t 2/] R

= ! = 1.rrr.
7

Qr

cLrL)
Lr+L,
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We can see that the forces F, and Fo

acting on the lateral sides of the
frame are equal by value and have
opposite signs:

t. -3
= (ro + kz,\rLlv,l,

and

Fr+Fo=0.

Thus, vr: Corlstr so the frame will
move along the horizontal axis with
a constant velocity equal to the ini-
tial velocity vo.

Therefore, the vertical motion
of the frame is determined by the
forces F 1,82, and the force of grav-
ity mg. Since the velocity v of the
frame is constant, the velocity pro-
jection on the z-axis is also con-
stant, and the vertical acceleration
a, is zero:

-l^.1= mlgl + lr,l - lrrl
k)aa,m8--lv,l=0.

From here we ger the proiection vr,.,
of the steady-state frame's velocity
on the z-axis:

.. _ mgR
. sL.z 

k2 aa .

Thus, the steady-state speed of
the frame is v = Vyol + vl , where vo
is the x-projection of the velocity vl
which is ec1ua1 (as we have shown) to
the initial veiocity imparted to the
frame. Therefore,

There is another way to find
vrr.,, which is based on conserva-
tion of energy. In the steady-state
motion, the change in the poten-
tial energy of the frame moving
under the action of Earth's gravity
during the period Af is ec1ua1 to the
heat dissipated by the frame in the
same period:

2

rrl.Rar

Thus,

,, _ m9R
'str 

k)aa.

P250
A grain of iron is heated to the

temperature 7 at which the energy
radiated by this grain equals the
energy received from the Sun. The
energy radiated per unit time is
proportional to the square of the
surface area o{ the grain. To esti-
mate this areat we assume the
grains to be spherical and have a
mean radius z. The power (energy
per unit time) radiated by a grain
heated to the temperature 7o
equals

Pr^o: 4ttt2L

The incident solar power is pro-
portional to the area of the largest
cross-section of the particle (nrz):

Prn : nfLo.

Here Io is density of solar rudia-
tion at the distance R from the
Sun where the grains are located.
Since a constant amount of energy
is radiated by the Sun into a unit
solid angle (fig. 6), then IS, : IoS,
and

Thus,

Finally,

Note: Mercury, the nearest planet
to the Sun, is 5 . 106 km from it. Why
doesn't it melt?

Brainlea$Er$

8246
I{ none of these months is Febru-

ary, then the totai number of days in
them cannot be less than 91 = 7 . 13.
Thus, the total number of Sundays
would not be less than 13.

8247
One solution is

4-"{4 .J4 : 16.

B24B
See figure 7 . The desired polygon

cannot have fewer than four sides,
because each of its sides cannot in-

E,l=(r, *u(,,.;)),,

=(r. * *(,, *tr))*v,t

L=1.+=.,[+)'

^ ,* /Ro'l'
Pin, = Ttt'Est ?l

Equating P.ru and Pir", we obtain

4xr2P=rrr'rr[?)

H-& !" =;.r0,.r<rn,\i/r

rr.sy.t,ar = 1i.R,lr = t*)
{))
)))

1r. = r.,i

Ir,, 
*o(,, (r. ' o(,, -';))+

, I

--- E-, Ju0-Vu -Yst.z -;-1/" -(#)'
Figure 7
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B

Figure B

tersect rnore than nr.o oi the eight
exterior scgments.

8249
See figure 8. Drirrr, hne segntcnt-.

through points P ancl Q para11e1 to -{B
such that the seguents on both sidcs
of the points are ecpral to half oi AB.
The endpornts of these segments are
the rnidpoints of the edges 8,C,,
DtAt, CCt, ancl DD,. Labcl the mid-
points of B,C, and CC, as K and M.
The diagonal BC, of the parallelo-
gram BCC,B, passes through the
midpoint of the segment KM and is
partitioncd l',r rhu intersecrion point
in the proportton 3:1 lfrom vertex BJ.

Nolr. it is easr, to construct point C,.
For this pu+rose, u,e must connect -B

with the midpoi-rt oi KM and extend
this segment by' 1,3 oi its lcngth. The
rest of the construction is easv tr)
complete.

8250
Memory again played a trick on

the old baron. It is impossibie to
change the direction of motion with-
out interaction u,ith other bodies.

[rl'ors in

uEollloll'ical prools
If your objection is that the bisec-

tor and pcrpenclicr-r1ar biscctor rneet
outside trianglc ABC u-hrie t1-rc

points P and Q lie on its sides 1fig. 9),

yolr are wrong. As bcfore, ANI - INC
and ll/Pl - lA/Q . Thereforc, triirngles
ANP ancl CNQ :rre congrucnt, zrncl

ll'[AP = INCQ. Besicles, triangle
ANC is isosceles, ancl thus, Zl'lAM
- 1l'lCM. Sr-rbtracting eclual angles
irorn equal angles, we fincl that
IRAC = ZBCA thirt 1s, triangle
ABC is isosceles.

What actually happens in the gen-
erirl case is that the perpcr-rclicular
lri5ccl.ol cnd hr5cct()r'ntcct at it f()int
N outsicle the triangle, zrnd the per-
penclculars clroppecl iror-n N onto
thc sr.1.-s Bl ancl BC are sitllzltecl
:nch that onc oi therl ial1s on the
srcle rrsclt anrl ihe c,ther talls on the
erte nsior-r of the irther. :rdc ,irg, 91. In
this casc, ag:rin, -,11']\ = C\ Q altr1
lllAP = INCQ. Bc,si.'1es' \ - rl
= Zl{CM. Howcver, in thr-. cas.'
IBAC = ll{AP - tl'{AL4 and tBC -t

= 180" - llllcQ + ZI'ICM\. We car.r

see that this cloes not imply that
angles BAC and BCA are cc1ua1.

However, you should not llc sat-
isfied by this explanatron. We must
prove that the elements of the tri-
angle are really sitr"iatcd irs shown in
figure 10 (or vice vcrsa, Q e [BC] and
P e IAIJ)).

Circr-rmscribc a circle about tri-
angle ABC ancl assume that ABI
> BCl. By a propcrty of inscribecl
angles, the bisector of anglc B meets
arc AC at its rnidcllc point. The per-
pendicr-rlar btscctor oI AC passcs
through thc same point. Thus, N is
the midpoint oi arc AC. Since IAB
> BC ,IE , 6e Adcling thc cqual
,,r.t Ii and frE to boih sic'le.s of
this ineclualin-, wc obtirin the in-
eclualitl. EIN , 6aN. Thcrcfore,
6af it i:rrger thern the scmicrrcle,
and EZI is smaller. Thus, ZNCB is
obtlrse, ancl ZI'IAB is acltte . Thcrc-
iore, l.roint (l lics on the extension of
the siclc BC, ancl I lies on the sicle
,48,

Problem 1. We }rave groundlessly
:rssurled that thc sutr. of the anglcs
oi the triangle is a constant ancl cloes
not depend on thr: triangle. In fact,
rn Lohacire vsl<irtn rc,rrne tr), irr
r,r,hich thc parallel axiom clrcs not
ho1d, the surn of the angles of any
triangle ls lcss than 180", and thc
difference bctween 180' ancl thc

igure r r

surr-i of thc angles oi the tr:iangic is
proportional to its irreir. Thus, the
ckrser thc surl of tire an,qles of tl-re
tri:rngle is to 180', the smalier the
triangle's zrrea.

Problem 2. Conduct tl-rc proof
nsing thc clrawrng in figurc 11.

Problem 3. We provecl quitc cor-
rectly that segments A,A, , ancl
B,B,*, clo not intersect. Hor,rrever, irtr
'= i. A A , ,trtd H,/l crtn intcr.seet.

Problem 4. If thc brgger circle
toi1,. irrthout slipping, the smirller
clr.clc iner rtabl,v s1rps. Therefore,
si.inl.lrr CD rs not ecllr:rl to thc cir-
cLirlier.cncr lt the sr-nallcr circle.

Problem r. Tl:. .g,111q'11sg ,,i
wavelike cLrr\-i ! il.rL1a11\ appr oaches
the segrncnt,{8. HL,\\-.r-cr thrs firct
does not rmplv that the se.ir-re nce of
thcir lengths irpproachcs the lengt1-r

oi AB.
Problem 6. Wc tacrtll- dsslrlllr-t1

that the srnall spherical triangle car-r

be dcveloped (unrollecll onto thc
plane and usecl the formr-ila ior thc
area of the plane triangle. Actliallr ,

no sphcrical triangle can be devel-
oped onto the p1ane. In our c.lsc, this
follows {rom the fact that our spheri-
ca1 trianglc has twrt right angles,
which is impossible in the case of a
plane triangle.

0radus
2. We corrpletc two scllrares at

the s:rrle tir-r-rc, proceecling as in
problem l:

rl+1,1 -8r+ 6,v+17
:xl 8r+16+1'l+(1'+9-8
: (r - 4)r + il'+ 3)r - 8.

As before, thc rlinimal valr-rc is -8,
:lchieved whcn x : ,1 and 1, - -3.

3. We know that the ellipse

a(r-7r)r+b\.v-k)r:c
has its center at the point (h, k). WcFigure'10
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can put the given equation in this
form by completing the square:

a* + 6f -24x + l2y
= 4(* - 6x) + 615? + 2yl :20,

SO

4(*-6x+91+6(5?+2y+Ll
= 4(x - 3lz + 6(y + Il2 : 62,

and the center of the ellipse is ai
(3, -1). In more advanced work in-
volving linear aLgebra, this tech-
niclue is generalized quite far.

4. Completing the squares/ we
obtain

+-- +n
4

A+n'

then, in the result of problem 9, we
let

n-l
a= 2T

andb: n, and we will have our fac-
torization. We need only check that
the smaller of these two factors (the
second) is not 1. Indeed, this factor
is just

and ior n > 3, this is certainly more
than 1

11. Mr-rltiplying out, rve have

2az +2b)> 5| a)111_t +b),

which reduces to

trz -2trb + br > 0,

OI

\a-bP>0,
which is certainly truc. As rn prob-
lem 7, the scluare is alre ac'l), com-
plete.

13. This result is a brt strange.
The left-hand side depe ncls on c, but
the right-hand side does not. Let's
start with the left sic1c. Proceecling:rs
in problem 12, we havc

a)+b)+J-nb bc-c'tt
:11/2)11,i 1r1r 11r-.'l-, -.rtl

But how clo we climinate c irom thrs
expression? Noting that

(b-c) +(c-a) =\b-aJ,
we can use the result of problem 11

to sce th:rt

i1r - r')r - 1r' - n)r > 1l/2)11, -,i11,

ancl the conclusion follows:

a2+b)+d-ttb-bc-cu
: lllz\lla bP + lb c)r + (c - a)rl
> [(a - b)2 + lb 6)r + (c - a)r]
: \3la)\a - bP.

14. Multiplying out the right-
hand side quickly leads us to the

statement of problem 12.

15. The reader may have sus-
pected this general result aheady.
The algebra is the same as in prob-
lem i0, and it is straightforward.

16. (Solution II.) We have the ex-
pression

S:/+y'*ro-4xyz.
We can make a square out of the
first two terms by subtracting 2*J?,
and out o{ za by subtracting 222 - l'.

s = 1* 2*5P + f * ro -222 + |
- 4xyz + 2*5P + 222 - l.

Now we have all the squares we
need, since

S = 1- 2*1P + f * ro -222 + |
:2{1f-4xyz+z2l-l
: (* -f)' * (r' - 1)2 * z(ry -.)2 - l,

so again the minimum is -1,
achieved for the same values of x, y,
and z as before.

17. Our strategy will follow the
pattern of problem 12 (and some
others in this set): We transform
the problem into one where we
want to show that the sum of a

bunch of terms is nonnegative,
then express the sum as a sum of
squares. Indeed, the given ineclual-
ity is equivalent to

=-[,=)

[,+_,1'*u,,-,,
(,.?)' ( sei sosr+l\,+ I+r-->O.\.' 2) 2

So the smallest r with the desired
property is 5081/2.

5. There are no such functions.
Since the function involves the
squares of real numbers (and all the
problems in this column involve
squares!), we might want to look at
the numbers 0 and 1, which behave
atypic ally when s quared.

Indeed if there were such a func-
tion, we would have /(0) - f2(0) > ll4
and fll) - f2lll >- rl4. Completing
the square, we find that (/(0) - | l2l2
S 0 and lfll) - ll2)2 < 0. But then
fl}) - f(1) : 0, so that / is not one-
to-one after all.

6. Suppose a -b2, b - c', c - a2 all
exceeded Il4.Then

(o-b'l+(b-czl+(c-azl
> rl4 + rl4 + rl4:314,

OI

a2*a+b2-b+c2-c<-2f4.
Completing the square, we find that
this is equivalent to

la-Il2)2 +lb-tl2)2 +(c-rl2l2 <0,

which is absurd.
9. As in problem 8, we have

4aa + ba
:4aa+4azb2+b4_4a2b2
: (2a2 + b2)2 - lzablz
: l2a2 + Zab + b2ll2a2 -zab + b2).

10. For even n/ the given number
is itself even (and greater than 2), so
it is composite. If n is odd, we can
write

l

\ a1t - 11'

) ) , rl -- 
-l ) . -l-'

(/ -_:\r/l-r 
-Lt_\-z L\Lt\-L

r r,r ),1ltil
(11

>0.

A typical pair of terms on the left
side is aL -zkr;= Let's try to
make this into a perfect square. If
this per{ect square ts A2 - 2AB + 82,
an inspection of the radical term
leads us to conjecture that we
should try A: \ES,andwecan
write

a1, -2k
,r -kl-zk,,,-C*k-

={,,r -kt-k)\\ ' )

This is true for each k, so the expres-
sion on thc lcft in equirtion 11) is a
sum of sqllares/ and cannot be less
than 0.

1)ar-R'
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xH'0s$sclgllcE
q,
4t

IIEC5

_ of mass (Brit.

sp.)

Central Americar-r

orl tree

Eight bits
Corlfortable
Srr'iss rrver
Abscisic acid: abbr.
Tl r-l /-rll -lr : l+/L /L7ty1lil

\\ridth tin-res ler.rgth

-\lurninunt or

cOFfreI, L-.s.

\\'ir.rgli kc
Focusing cler ice

Boot:rccessorl-
Chro-_ bike
f rarne

0ouun

I It is chie{ly quartz
2 European river
3 Llke the morning

Srass
4 Not science

5 Moisten while
roasting

6 "Cell Heredity"
author, with 30D

7 Olive family tree

Acnoss

1 Sodl-rm carlrLrn:rrc

5 Unrulr- chilc1

9 Parasite's pror-icler

13 _ r'vax lozoceriter
14 Magnetic flux

density unit
15 Turkish title
16 F]. = -F.L
19 Typc of ce1l or ice

20 Ancient Cerman
21 A sand desert

22 Fourth dimension
23 _sapicns
25 Not inert
28 Seventh planet
31 Czry _
32 Noru,. playrvright

Hcnrik (1828-
1906)

34 Catch
36 Certain :rsteroicl

37 Copper ancl zinc
3B Enclosure
39 Quil1
40 Darling
41 Sulked
42 Type of heat

11

45

-16

11

-i9

50

r3
17

i8

:9
60

61

62

B

t)

10

11

12

l4
l7
18

)2
2.1

l+

Ap1.rrox. 1.5;1444 107

pascals

Strong particlei
Stare flirtatiously
Floor covering
Fancy marble
Midget
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COWCULATIONS

Conlacl

by Dr Mu

ELCOME BACK TO COWCULATIONS, THE
column devoted to problems best solved with
a computer algorithm. Around farm animals
there are various methods to communicate,

make contact/ or otherwise get understood. Farmer
Paul knows all of his registered Holsteins personally
and can te1l instantly when one of us is having a bad-
hair day. Yes, an occasional cow will step out of line
and throw her weight around, but all cows ultimately
know their place. When 50 cows walk into the barn
in the morning for milking/ everyone goes immedi-
ately to her own stall. And when milking is over, the

senior citizens have the privilege of leaving t\e barn
first.

Making contact with other farm animals is an-
other story. As a rule, very little communication
exists between us. Recently, I took up the challenge
of trying to understand my fellow ostrich, who
babbles on constantly. I decided to do some research
on bit patterns associated with numbers in hopes of
applying my results to deciphering ostrichspeak. My
goal was to examine the bit patterns of their speech
and record the frequency of the most common pat-
terns. I began my study by examining the bit patterns

-c
-
(1)

C
a
c-)

m
s(
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for some rather large numbers such as the millionth
prime number raised to the 10th power.

x = Prime [10s1 ro

'/9314'7BaBo93Bl Aizaozse+gtel ea2625333106460539996365938103436 846'733'124849

Next, I transformed this number into its binary rep-
resentation. The algorithm to transform numbers to
other bases is short, sweet/ and fast.

Suppose that x is to be expressed in base b. That is,
x: ao+ arb + arbz + ... + anb'. To find the coe{ficients
(the base b representation of x), we do the following.

ao = Mod' [x, b] ,
[*lx= Floorlal=ar +arb1 +...+arbt-1,lul

ar = Mod. [x, b] ,

[ *-l . n-2x = Floorl - l= az + a.b +...+ a.b" ',
Lul

az = Mod.[x,b].

We repeat this process of computing Mod[x, bl and
reducing x to Floo{x/bl until x = 0. The base b represen-
tation of x: lar, ar_tt ...t a1, as) is the coefficients in
reverse order as they were generated from the algorithm
above. Here is the simple and fast (O(1og, (x)) algorithm
for converting x to base b.

baseE:<parsionlx_, b_] := Module[{q = x,
ans = {}},

I,vttil-elq * 0, Alrpend.Tolans,
Modlq, bl]; S = FloorlS/bll;

Reverse [ans] l
Now we can find the binary representation of our number.

baseE><pansion Ix, 27

r, 0, 7, 0, 0, a, 0, c, 0, ,, -, _, _ ), 0,
L,1_,0, L,0,0, L,1_, A, L,7,4, -, ),7,
L, 1_, L, L, 7, A, 0, 0, A, L, A, t, a, _, 7,
L,1_, L, L,1_,0,0,7,0,0,7, r, a, -,7,0, 0, a, 0, 0, L, L, 0, 7, L, 0, 0, L, a, t,
0, 1_, L, L, 0, 0, L, 1_, 1, 0, 0, 0, L, 0, a ,

0, L, 0, 0, 0, 0, L, 0, 0, L, 7, 0, 0, 7, L,
0, 0, L, 0, 1_, 0, 0, 0, t, 0, L, 0, L, 0, L,
1, 0, 0, r, L, 0, 1, 0, 0, 0, 0, L, t, 0, r,
0,0, L,7, r,0, t, L,0,1-, L,0,1_,1-,0,
t, L, 0, t, 0, 7, t, 0, L, 1_, 0, L, 0, L, L,
0, L, L, L, 0, L, 1_, 0, 0, 0, L, L, L, 0, 0,
t, L, 0, L, 0, 0, 1_, L, 0, 0, L, 0, 0, 0, 0,
0, a, 0, L, L, 0, 0, L, 0, L, L, 0, 0, 0, 1]

Next, I searched for all consecutivc bit strings of
length 4. There are 236 such strings within thc bit string
shown above. They matched one of 16 possible patterns
{0, 0, 0, 0}, {0, 0, 0, 1}, ..., {1, 1, 1, 1}. The foliowing is the
frecluency count found for these patterns.

14 {0, 0, 0, 0}

12 10, 0, 0, 1l

13 10, 0, 1, 0l

14 10, 0, 1, 1)

12 {0, 1, 0, 0}

15 10, t, 0, 1)

25 10, 1, 1, 0)

10 {0, 1, 1, t}
12 11, 0, 0, 0l

i6 {1, 0, 0, 1}

14 {1, 0, 1, 0}

21 {1, 0, 1, t}
16 {1, 1, 0, 0}

20 11, 1, 0, 1I

11 11, 1, 1, 0)

1111, 1, 1, 1)

Finally, I assigned each oi t1're bit patterlls its corre-
sponding dccimal numLrer, 10, 0, 0, 0l --+ 0, 10, 0, 0, 1| ; 1,

la,b, c, dl -s a23 + b2) + c21 + d,. ., li, I 1, 1l + 15, ancl
graphcd the results.

The graph represents thc frcclucncy cor,urt of the
bit string patterns \n, b, c, d| found in tl-rc binary rep-
rcscntation of the rnillionth prime raisccl to tl-rc 10tl-r
power. Each bit pattern is assigncd thc corresponcl-
ing integer a23 + b2) + c).1 + d ir-r the graph. This sug-
gests a problem, which, yolr gucssccl it, is your Chal-
lenge Outta Wiscottsin.

c0tlll r3
Write a program that will transform any number into

its corresponding binary representation and produce a

frequency count for consecutive bit strings for any
specified length found in the binary representation. For
a bit pattern of length n, assign the decimal number to
each bit string and graph the corresponding frequency
distribution defined on {0, 1, ...,2n - 1}. Test your pro-

25

15

10
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gram on the number x = Prime[l06]100, and examine the placing first in the week-long summer training program
bit strings of length 4. held at the University of Wisconsin-Parkside in |uly. It

while listening to the ostrich sing, was reassuring to know that compared to the best com-

output the sounds in a long bit string. f,f-t11nroblem 
solvers from a1l over the wor1d, many of

Find. the patterns that keep thu auoii." them with years of IOI experience, Adrian ranks with
And couit them all as they rcpeat.'' the very best. This was Adrian's final year, because he

when you'rc done, present the graph. :,|:ii:d carnegie Mellon university as a freshman in
you,ve solved this COW and d.oneiiu *ort . the fal1. We not only lost our top competitor, but a very

j;. il;"'- ,"rt:lxta,xte 
Frisbee player. Expect a call from us in

[e[m Fom Pol'UUal
Paul & Paula's Holstein Dairy
Creamery Lane,
Primevilie, Wisconsin

September 12, l99B

Dear Paul and Paula,

How time flies when you're having fun in Portugal. Here
it is the next-to-last day of the 10th IOI (International
Olympiad in In{ormatics ) in Seuibal, about an hour's drive
south of Lisbon. We just got back from the awards cer-
emony at the town theater, where 22 gold,40 silver, and
59bronze medals were awarded to approximately half of
the 248 participants representing 65 countries.

Our veteran, Matt Craighead, from St. Paul Academy
in Minnesota, received a silver medal in his final appear-
ance as a USA team member. In the two previous IOI's
he received abronze and a gold medal, making him our
most decorated team member {rom the United States.
Even though he is only 16 and normally would have
three more years of eligibility, he just entered MIT as a
freshman, which automati-
cally ends his career in this
world-class computing com-
petition for pre-college stu-
dents. we will miss Matt a
lot. We have had the pleasure
o{ watching a boy 1itera11y
grow before our eyes into a
fine young man who we'll
hear from again. In fact, we'1l
be calling on him in the year
2003, as well as on other
former USA team members,
to help us conduct the 15th
IOI in the United States.

Adrian Sox, 18, from Up-
per Dublin High School in
Fort Washington, Pennsylva-
nia, brought home a gold
medal in his first try at IOI.
Adrian had been our top-
ranked competitor all year,
winning one of the three
Internet competitions, rank-
ing number one in the USA
National Competition, and

Alex Wissner-Gross, a junior at Great Neck South
High School in Great Neck, New York, and Chuong Do,
a sophomore at Garland High School, in Garland, Texas,
completed our team of four members. Both missed the
cut-off score to medal this year, but both have a chance,
since they are still in high school, to come back and try
again. fust getting to the IOI is a reward in itself-an all-
expense-paid trip to a new part of the world for an ex-
citing and stimulating week of fun and competition. But
now, with a bit of experience under their belts, Alex and
Chuong have become veterans who know what it takes
to crack into the medal range at IOI. We're expecting
great things from them in1999.

You may be wondering if an IOI is all work and no
play. Let me tell you a bit about its recreational side.
Two days were set aside for excursions. One of the rea-
sons that Portugal hosted the IOI in 1998 was the pres-
ence of the 1998 World Exposition. So, naturally, one
of the excursions was to Expo 98. Another excursion
was to the Palmela castle, which the first king of Por-
tugal took from the Moors in ll47 and later offered to
the nuns of Saint |ames. Today the castle, restored by

1S$8 USA
Ctrxputingi $Iyrnpind

Hcst!
Cnis.f, 6iljt 3f l{israa*I*-Parhside

Sle{c$n
U$ilNIX

Staff and finalists of the 1998 USA Computing Olympiad.
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The 1998 USA Contlttttinit Team; iirr-tnt leit to
Chuong Do, and AJer 1'lissner'-C}.os.s.

the state, is a national monument hotel.
Running an IOI with 250 students is not something

a country gets much experience doing. After all, this is
a once-in-a-lifetime undertaking. As a result, it is not
unusual to have a few bugs creep into the operation.
Sure enough, a bug hit at the conclusion of the first day's
five-hour competition. The program being used by the
judges to grade aLl248 students failed. As a result, the
grading was delayed approximately eight hours while
the bugs were fixed. This caused exhaustion both for the
team members, who hadbeen up since 5:00 e.n., and the
judges charged with grading ail the programs. We made
the decision to send our team to bed a{ter 11 p.nr. The
United States team, which comes near the end o{ the
alphabet, was not graded until 2 e.vr. I stayed around to
witness the process and just made it for the last ferry
ride back to Troia at 3 e.m.

One might think that grading computer programs
would be easy. A data set of numbers is input to each
program/ and the output is checked with a known so-
lution. If the output matches the known solution and
it is produced within a given time limit, you get full
credit for the data set. A total of five different data sets
were tested with each program, and the total score was
then computed. A perfect score meant all five data sets
produced the expected answer within the time period
allotted. What could be easier?

Automated grading systems are wonderful, if they
work as expected. They are completely objective and do
all the laborious checking of answers. However, if they
have a mind of their own or have been instructed to only
accept answers of a particular form, then a correct pro-
gram that produces all the right output can be given a
zero mark.

tiglttl llatt Craiglte nd, Adnrill Sox,

This is not just a hypothetical
situation; it happened on the first
problem of the first day's competi-
tion. Students who produced a cor-
rect answer-let's say 123, but out-
put their solution as 123#, where #
is a space, received zero points for
a problem worth 100 points. Cor-
recting this problem required a

meeting of the general assembly,
which debated the rules and over-
whelmingly voted that this prob-
lem should be regraded since the
IOI is basically an algorithm con-
test and not a tricky output com-
petition.

Unfortuna tely, the problems
that plagued the first round over-
whelmed the iudges, and they were
never able to recover the time to do
the regrading. So the results stood,
and approximately 20 students lost
100 points each, which had the ef-
fect of dropping them down one

medal level. Matt was one of those affected. But it didn't
bother him as much as it did the rest of us. He knew he
had the correct answer/ and that's a1l that mattered. In
ail fairness to the Portuguese judges, they worked very
hard under difficult and stressful conditions. We ap-
plaud them for their valiant efforts.

Tomorrow the team and its leaders and I are headed
home. I took lots of digital photos that I will put up
shortly on our web site athttp:f f usaco.uwp.edu. By the
way, Slovakia had the most successful team at this
year's iOI and the only one with four gold medals. You
don't need to be a big country to have top-flight com-
puter programmers.

Team leaders Don Piele, Rob Kolstad, and Greg
Galperin all send their best wishes. Oh yes, I can't for-
get to mention our wonderful sponsor USENIX, which
puts up the money each year in support of the USA
Computing Olympiad. What would we do without
them?

Looking forward to my return to Wisconsin.

Dr. Mu

p.s. The 1999IOI will be held in Antalya, Turkey. Can
I go along as the team mascot again? O

American Mathematical Society 19

National Science Teachers Association 9,39
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Teacfier lellowshh prourflln

Earthwatch Institute will offer
funding for K-12 educators to par-
ticipate in two-week field research
expeditions around the world during
spring and summer L999. Through
generous support from prograrn
sponsors/ Earthwatch Institute aims
to develop multidisciplinary science
and social studies curriculums in
schools nationwide and to rejuve-
nate teachers and enhance the aca-
demic experience of students. The
Earthwatch Institute Teacher FeI-
lowship Program is endorsed by
NSTA, the National Science Teach-
ers Association.

Earthwatch lnstitute, an interna-
tional nonprofit organization
founded in 1972, supports the work
of renowned scientists in the fields
of archaeology, cultural diversity,
endangered ecosystems, and bio-
diversity, among others. While in
the field, educators work side by side
with researchers on one of more
than 50 ongoing research studies. In
most cases/ no special skills are nec-
essary. Funding ranges from partial
to ful1 fellowships with travel sti-
pends offered to approximately 50
percent of participants.

In 1998 more than 200 Teacher
Fellows from 35 states took part in
projects such as:

o Roman Fort on Tyne. Excavate a
Roman military site in northern
England to determine why the fort
was abandoned, and investigate Ro-
man influence on the region.
. Dancing Birds. Observe mating
rituals of the seemingly altruistic
long-tailed manakin in Costa Rica

HAPPEN INGS

Bullelin Boal'd

and consider the genetic implica-
tions of this uniclue behavior.
. Searchfor Neanderthals. Follow in
the footsteps of our distant relatives
and study how they met their basic
needs, communicated, and devel-
oped culturally 100,000 years ago.
. End of the Dinosaurs. Research
the theory that changes in Earth's
climate triggered a massive extinc-
tion among dinosaurs.

Applicants are encouraged to
download an application from the
Earthwatch Global Classroom at
www. earthwatch.org. Applications
are due February 15,1999, with roil-
ing admissions a{ter that date con-
tingent upon available funding.

To receive an application by mail,
please contact Matt Craig, Educa-
tion Awards Manager, by calling
617-926-8200 ext. 118 or sending e-
mail to mcraig@earthwatch.org.

Sunday lesl
It takes a quick thinker and an

agile mouse-clicker to be one of the
first 10 correct respondents to
Quantum' s CyberTeaser Contest.
Indeed, when faced with this
month's calendrical question (brain-
teaserB246 in this issue), the follow-
ing 10 readers didn't need a month
of Sundays to figure it out.

Bruno Konder (Rio de |aneiro, Brazill
Paul Williams (Red Deer, Canada)
Liam Hardy (Union City, Cal.)
Manny Dekermeniian (Sunnyvale,
Ca1.)

Theo Koupelis (Wausau, Wisc.)
Leo Borovskiy (Brooklyn, N.Y.)
H. Scott Wiley (Weslaco, Tex.)
|ohn Fernandes {Fremont, Cal.)

Eli Bachmupsky (Kfar-Saba, Israel)
Farokh lamaly Aria (Deer Park, Tex.)

Each winner will receive a free
copy of the September/October is-
sue and a Quantum button. Every-
one who submitted a coruect answer
in the allotted time was eligible to
win a copy of Quantum Quanda-
ries, a collection of the first 100
Quantum brainteasers.

Hankering f or aprize of your own?
Keep an eye out for the new contest
problem at www.nsta.org/quantum
and click the Contest button.

fieuhuu
Russrans in Space, CD-ROM

{Mac, Windows), $44.95 plus ship-
ping and handling. Published in
1997 by the Ultimax Group, 112
Mason Lane, Oak Ridge, TN, 1-800-
ULTIMAX; http: I I catalog.com/
ultimax/.

Fortyyears ago the Sputnik space-
craft was launched by the Soviet
Union. This heralded the human
race into the space age, and much
has happened since that first initial
foray into outer space. The CD-
ROM Russi ans in Space chronicles
the history/ programs/ technology,
and other aspects of the Soviet space
plogram.

CD-ROMs can function as valu-
able encyclopedias with their ability
to contain massive collections of
sound, graphics, and text that can
help enrich learning. This CD helps
the learning process by providing
brilliant color graphics, music, nar-
ration, textual information, video
clips, and a variety of topics related
to the Soviet space program.

Russians in Space is divided into
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four main sections. The section called
"Personal" includes information
about the development of the space
program during the eighteenth and
nineteenth ienturies, including key
figures, jet propulsion information,
and the engineers who designed the
rockets and made them f1y. The "Pro-
grams" section details the Mars and
Venus missions and the attempts to
land on and explore planets with un-
manned spacecraft. The "Tech" sec-

tion highlights the spacecraft from the
first Sputnrk to the Buran space
shuttle look-alike. The "Basic" sec-
tion covers arti{icial and spy satellites,
orbital stations, ground control, and
research programs.

The top main tool bar allows the
user to access additional informa-
tion via a timeline and history of the
space program. Navigation and
searching tools within this menu
bar (unfortunately sometimes cov-

ered by video/screens) also can assist
in finding specific information.

The CD is quite engaging and
well designed. Educators at the el-
ementary to high school level who
would like to survey information
about the Russian space program
will find the CD useful if they are
willing to do a little work to inte-
grate the CD into their program to
meet their needs and objectives. Q

-Eric Flescher
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GALLERY C II

D Y JTJXTAPOSINC EXCELLENT ART AND ILLUSTRA-
Il tions with thought-provoking discussions of mathemat-
ics and science, Quantum has always striven to emphasize
the importance of different modes of thinking and to draw
connections between the seemingly disparate worlds of art
and science. This image, created by Michael Trott using
Mathematica software, goes one step further, obliterating
the boundaries between those two worlds.

The basic geometric unit in this image is the ortho-
tetrakaidecahedron, or truncated octahedron, which has
the notable property of being a space filler-a solid that

Inverted lattice of orthotetrakaidecahedrons (1998) by Michael Trott

when packed together with same-size copies leaves no
spaces in between. Trott gives a two-step "recipe" for
creating this type of image: "First, qeate a regular lat-
tice by repeating a certain shape; second, turn that lat-
tice inside out."

Lattices are important in crystallography, a {act ex-
panded on in "Lattices and Brillouin Zones" on page 4 in
this issue. Look again at the image above. Are you look-
ing at the fancy of an artist, the beauty of a mathematical
pattern/ the internal structure of a crystal? Where is the
demarcation between aft and science?

Cc4tvtight A 1998 Michae|Trctt. Ftont tlrc bctok Grrrphica 1: The l\ior1d of Mothcnrarri:a Graphics /ntrtrgiaphtca.ccnt)


