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Optimal tests of quantum nonlocality
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We present a general method for obtainaligBell inequalities for a given experimental setup. Although the
algorithm runs slowly, we apply it to two cases. First, the Greenberger-Horne-Zeilinger setup with three
observers each performing one of two possible measurements. Second, the case of two observers each per-
forming one ofthree possible experiments. In both cases we obtain hundreds of inequalities. Since this is the
set of all inequalities, the one that is maximally violated in a given quantum state must be among them. We
demonstrate this fact with a few examples. We also note the deep connection between the inequalities and
classical logic, and their violation with quantum logic.
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We shall present a general method for the derivatiomllof Boolean algebra generated by the evexisA,,B,,B,. Itis
Bell inequalities for each given experimental setup. The vanot hard to see that the vector
lidity of the method has been proved previoufly2]. The
purpose of this paper is to turn the method into a working P=[P(A1)., P(A2), P(B1), P(By), P(AiBy),
algorithm and demonstrate its strength in two cases. P(A;B,), P(A,B;), P(A,B,)] )
Consider some arbitrary elementary evel{sB, C, ...,
such as‘the electron spin in the x direction is up,4s well  is an element ofC. Conversely, ifpeC, then there is a
as some of the joints of these propositions; e4B, probability distributionP such thatp has the representation

AC, ..., ABC,...,. Inorder to be consistently interpret- (1) [1]. _
able, the probabilities of these even®(A), P(B), Every convex polytope has two representations: One as
P(C), ..., P(AB), P(AC), ..., P(ABC), ..., must sat- the convex hull of its vertice@he V representationand the

other as the intersection of a finite number of half spaces,
each given by a linear inequalitthe H representationThe
roblem of finding the inequalities when the vertices are
nown is calledthe hull problem.

isfy some inequalities; for exampl&(A)+ P(B) - P(AB)
<1 or P(A)—P(AB)—P(AC)+P(BC)=0. These in-
equalities are satisfied for every possible classical probabilit\z

distribution P. : .

In the middle of the 19th century, George Bodle3—6| $PS(?AI\:IQ?QE?ASUHP?g?lenl];gr(;:;i &g_;ﬁﬁgg?s 0
investigated these inequalities and referred to thexoasi- ij= 1’2,1 as well as— 1< P(AB,)+ P(AlB]2)+ P(Aszz)
tions of po;glblg experienc&€he number and complexity of P(A,B;)— P(A;)— P(B,)=<0, and permutations
the inequalities increase fast as the ngmber of evgnt; gI’OV(AlHAz; B, B,) thereof.

Among them are the famous inequalities that arise in the A necessary and sufficient condition that a vegids an
Einstein-Podolsky-RosefEPR experiment and its generali- gjement ofC is that its coordinates satisfy these inequalities
zations, in particular the Be{EPR) experiment and its gen- [1]. As is well known, some of the CH inequalities are vio-
eralizations, in particular, the Bell inequalities and Clauserated by the relative frequencies measured in the EPR experi-
Horne (CH) inequalities[7—-10)]. ment. This fact can be taken as an indication that the under-

Consider, for example, the latter. We have four eventslying Boolean structuréclassical propositional logicshould
A1,A, that correspond to Alice’s measurements on the lefthe replaced by the nondistributive quantum lojgigl 1].
andB,,B, measured by Bob on the right. In order to derive  The above procedure can be applied to any number of
the CH inequalities we list the*2= 16 extreme cases where events. If there ar@ elementary events, then we have 2
the probability of the elementary everts ,A,,B,,B, are  vertices, and the dimension of the spaceisk, wherek is
set to be either zero or one. That is, we considertthth ~ the number of(pair, triple ..., intersections that we con-
Table I, wheret(A)),t(B;) €{0,1}. Assume that each of the sider. There are algorithms to solve the hull problem but they
sixteen rows in the truth table is a vector in an eight-run in exponential time im. (In fact, deciding if a vectop is
dimensional real space. Denote Bythe convex hull of the an element of the corresponding correlation polytophl %
sixteen vectors taken as vertic€sis acorrelation polytope  complete[2].) However, for small enough cases the problem
Now, let P be any classical probability distribution on the can be solved fairly quickly by one of the available algo-

rithms.
We have chosen thebb package[12] which is an effi-
*Electronic address: itamarp@vms.huiji.ac.il cient implementation of the double description mettbd]
"Electronic  address:  svozil@tuwien.ac.at; URL: http:// due to Fukuda, Prodon, and Ro$tiad—16, as well as the
tph.tuwien.ac.at/ svozil LPOLY package due to Kreuzer and SkafKke’]. We have
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TABLE I. Truth table corresponding to the CH inequalities.

A Az B, B, A1B, A.B; AzB, AzB;

t(A1) t(Az) t(B1) t(By) t(A)t(By) t(A)t(B,) t(A2)t(By) t(A)t(B,)

selected two examples by which to demonstrate the methoidig of all Boole-Bell type inequalities, see R¢R2]. Many

and the violation of the inequalities by quantum frequenciesof these inequalities are trivial; e.g.,P(A;B;)

The first is the Greenberger-Horne-Zeiling@HZz) case of =P(A;B;C;)=0 or P(A,)+P(A;B,;C;)=P(A;B,)
three particles and two possible measurements on each par-p(A;C,). Many inequalities can be reduced to others by
ticle. The second is the case of two particles #mepos-  the symmetries. There are two types of symmetries. One
sible measurements on each one. This last case may be |ghd is obtained by permuting the events, the second type by
particular interest to experimentalists. Here, one obtains fomplementinghe events. If an inequality is valid for an

considerable improvement of the resulis the strength of eventA then it is also valid for its ComplemelATt. Thus, we

violation of the inequalities, and in theumberof inequali- . — . . .
ties that are violatedwithout an intractable increase in the Can SubstituteP(A)=1—P(A) instead ofP(A) in the in-
complexity of the experiment. equality, substitute P(AB)=P(B)—-P(AB) instead of

In the Mermin versior{18,19 of the GHZ casd20,21, P(AB), and replace P(ABC) by P(ABC)=P(BC)
the relevant propositions involve three particles, denoted by- P(ABC). Each event can be complemented in this way
A,B,C, and two properties, denoted by 1,2, respectively. Theesulting in additional 2=64 symmetry operations. In-
set of 26 propositions involve all three-particle events and isqualities which have been discussed in this context by Lars-
given by{A;, A,, B;, By, C4, Cy, A;B;, A;Cq, A;By, son and Semitecold®3] and by de Barros and Supplext]

A,C,, ABy, A,Cq, AB,, AC,, B,Cq, B,C,, B,Cy, have similar counterparts in the enumeration. See also Kas-
B,C,, AB:C,, AB,C,, AB,C;, AB,C,, A,B.Cy, zlikowski et al. [25] for a related approach. We stress here
A,B.C,, A,B,Cq, A,B,C,}. that our method producesptimal Boole-Bell inequalities in

The resulting correlation polytope is 26-dimensional andthe sense that they represent test possible upper bounds
has 64 vertices and 53 856 faces corresponding to an equir the conceivable classical probabilities. In what follows,
amount of Boole-Bell type inequalities. For a complete list-we shall enumerate some of the new Boole-Bell inequalities.

|
2=—-P(A))+2P(Ay)+P(B;)+P(B,)—P(C;)+2P(C,)—P(A;B;) +P(A;Cy)+2P(AB5) +P(A.C»)
—P(A;B1) +P(A2C1) = 2P(A;B) —3P(A;C,) + P(B1Cy) — P(B,Cy) — P(B1C3) —2P(B,C,) +2P(A;1B,Cy)
—2P(A,B,C,)—2P(AB,C;)—2P(A;B,C5)+2P(A,B,C,)+2P(A,B,C,)—P(A:B,C,) +3P(A,B,C,), (2
3=+ 2P(A,) +3P(By) + 2P(Cyp) + 2P(A;C;) — P(A;C,) + P(A,By) — P(A,Cq) — 3P(A,B,) — P(A,C,) + P(B1Cy)
—3P(B,C,)+P(A;B,C,)—2P(A,B,C,)—3P(A;B,C;)—2P(A:B,C,)+2P(A,B,C,)—2P(A,B,C>)
+2P(AB,C,)+2P(A,B,C,), 3
0=-3P(A,)—2P(B;)—P(Cy)+2P(A:B;)+P(ACy)+3P(A;B,)+3P(A;C,)+2P(A,B,) +P(A,C,)
—2P(A;B3) —P(A,Cy) +P(B,Cy) +P(B,Cy) +2P(B;,Cy) —2P(B,C;) + P(A;1B,C1) —2P(A;B,Cy)

—3P(A,B,C;)—4P(A;B,C,)+ P(A;B,C,)—P(A;B,C;) —P(A;B,C;) +3P(A;B,C,), 4

—P(A;B,) —P(A,C,)+2P(B;C;) +2P(B,C,) + 2P (B, C,) —2P(B,C,) —P(A1B,C1) —2P(A;B,Cy)
—3P(A;B,C;) —3P(A;B1C;) — P(A;B,Cq) —P(A;B,C,) — P(A1B,C,) +4P(A,B,C5). (5

Suppose the elementary experiences or propositions athree anglesp,,®,,¢5 in each one of the detector groups
clicks in a counter of a three particle interferometer as disA,B,C, respectively. They are given byP(AB;Cy)
cussed by Greenberger, Horne, Shimony, and Zeilif@glr = (1/8)[1—sin(¢a;+ ¢g;+ dc)], Where againi,j,k=1,2.

In the interferometric casd21], P(A;)=P(B;)=P(C)) For example,C, corresponds to the propositiotithe first
=1/2 and P(A;iBj)=P(ACj)=P(B,Cj)=1/4, wherei,j detector of the detector group C at angle. , clicks” (we
=1,2. The joint quantum probabilities of events depend oronly consider clicks in the first one of the two detectors
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here. Yet it should be stressed that the derived inequalities
are in no way dependent on this particular interpretation.
Any other, in particular, one evolving spin-state measure-
ments, would do just as well. Let us specify the angles at
¢ 1=0 and¢, ,= /2 for all particles labeled by=A,B,C.
Then, Egs.(2)—(5) are among the 1329 equalitiésut of
53856 which violate Boole’s condition of possible experi-
ence. The corresponding factors are 2:9/8, 3:25/8, 0:1/
0:1/2, respectively. Figure 1 represents a numerical study ok
the casep, ;=0 and 0< ¢, ,=< = (the drawing ism periodig

for all particles labeled by=A,B,C. All inequalities of the
form x=y have been rewritten as functiorigx,y)=y—x,

such that the zero baseline indicates the borderline between

the conditions of possible classical experience and the quan-
tum violation thereof.

Notice that the inequalities can also be written in a form
containing only coincidence probabilities of three events. For
instance, Eq(5) yields

0=-P(AB,C;1)—2P(A,B,C;)—3P(A;B,C,)
—3P(A;B,C,) —P(A;B,C1)—P(A;B;,Cy)
—P(A;B,C,)+4P(A;B,C;), (6)

which is maximally violated by 1:0.55 fog, ;=0 and ¢, ,
~1.45. We find that it is not possible to obtain a violation of
Boole-Bell type inequalities if only single-particle and three-
particle coincidences are taken into account. This occurs
only if the two-particle coincidences are also added.

We shall next consider the case of two particles, labeled
by A,B, and three properties per particle, denoted by 1,2,3,
respectively. The set of 15 propositions involve all three-
particle events and is given B, A,, Az, B4, B,, Bg,
A1B1, A1By, AiBs, AsB1, AsB;, AsBs, AsBi, AsB;,

The resulting correlation polytope is 15-dimensional and
has 684 faces, corresponding to 684 Boole-Bell type in-
equalities. For a complete listing of all Boole-Bell type in-
equalities, see Ref26]. Again, many of these inequalities
are trivial; e.g.,P(A,)=P(AB3)=0. Many inequalities are
familiar ones, such as the inequalities associated with th
Bell-Wigner polytope {A1,A5,A3,A1A;,A1A3,AAz);
ie.,

0.2 [rad]
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1=+P(A;)+P(B3)+P(ABy)—P(AB3)
—P(A;B1) —P(A;B3)
=+P(A)+P(A)+P(A3) —P(AA,)
—P(A1A3) = P(AzA3), (7)

Jf one identifies Ai=B;, i=1,2,3 [recall that P(AA;)
7 P(A1)]. The following Boole-Bell inequalities are less
nown.

3=2P(A1)+P(A,)+P(B,)+2P(B3)—P(A:B,)

—P(A;1B2) —P(A;B3) + P(A;B1) — P(A;B5)
—P(A2B3) +P(A3B;) —P(A3B3), 8
1=—P(A1)+P(Az) —P(B3)+ P(B3)+ P(A;By)
+P(A1B2) —P(A;B1) + P(A2B2) — P(A;B3)
+P(A3B1) —P(A3B2) — P(A3B3), 9)
1=P(Az) —P(A3)—2P(B;) + P(B3) +P(A.B;)
+P(A1B2) —P(A1B3) +P(A2B1) — P(A;B5)

—P(AzB3) +P(A3B1) + P(A3B3), (10
2=P(A,)+P(A3)+P(B;)+P(Bs3)+P(A;By)
—P(A1B2) —P(A1B3) = P(A;B1) + P(A;B5)
—P(A2B3) = P(A3B1) — P(A3B), (13)
0=-P(A1)—P(A2) —P(By) = P(B3) —P(A;By)
+P(A1By) +P(A;B3) + P(A;B1) + P(A;B3)
+P(A3B1) +P(A3B2) —P(A3B3), (12)
0=-P(A;)—P(B3)+ P(A1B;) + P(A;B3)
—P(AzB2) +P(A;B3). (13

Let us specify our experiment now by choosing the com-
gon spin-state measurements of two spin 1/2 particles pre-
pared in a singlet state. Thereby, every elementary proposi-
tion A, can be stated as, “the spin of particke in the

violation

0 05 1 15 2 25 3
6(A,) [rad]

FIG. 2. Evaluation of the quantum expressions corresponding to
FIG. 1. Evaluation of the quantum expressions corresponding tall 648 Boole-Bell type inequalities foé(A;=B;)=0, 0<6(A,
all Boole-Bell type inequalities fotp; ;=0 and O< ¢, ,=< = for all =B,)=27—0(A;=B3)<w. (The periodicity isw.) Any value
particles labeled by=A,B,C. Any value above the zero baseline above the zero baseline indicates violation of the conditions of pos-
indicates violation of the conditions of possible experience. sible experience.
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FIG. 3. Contour plot of the violations of classical conditions of possible experience for three scenarios using different(@ngles:
0(A1: B]_) = 0, OS 0(A2: Bz) y 0(A3: B3)$27T, (b) 0(A1: B]_) = 0, 0(A2) = 7T/3, 0(A3) = 27T/3, 0$ 0(82) y 0(83) SZ‘TT, (C) 0(A1: Bl)
=0, (A, =12, 8(A3)=27/3, 0<6(B,),6(B3)<2. A nonblack region indicates the violation of conditions of possible experience by

the quantum values.

directionx is up.” It is well known that, for the singlet state

case (| or | 1), the violation of(7) is 1:9/8 and of(11) is

of spin 1/2 particles, the probability to find the particles both2:5/4. In the less symmetric configuratiod(A;)=0,

either in spin-“up” or both in spin-“down” states is given
by P'T(9)=P! ()= (1/2)sirf(6/2), where ¢ is the angle

0(By)=—ml4, 0(A)=m/2, 0(B,)=ml4, 0(A3)=27/3,
0(B3)= /3, more inequalities violate the Bell inequalities,

between the measurement directions. Likewise, the probalthough to a lesser degree. In Figure 3 the violations of

abilities for different spin states is given bpP'!(6)
=P!1(9)=(1/2)cog(#/2). In searching for possible viola-

classical conditions of possible experience are plotted for a
variety of angles.

tions of the inequalities, one may choose a symmetric con- Besides its conceptual clarity as a royal road to the under-

figuration such as 6(A;=B;)=0, 6(A,=B,)=2%/3,

standing and constructive generation of Boole-Bell type in-

0(A;=B3)=4/3, in which case one obtains for the paral- equalities, the importance of the correlation polytopes

lel case (1 or | ]) a violation of 0:1/4 for(12) and of 0:1/8

method lies in the fact that, unlike previous methods, these

for (13). Figure 2 is a plot of the combined evaluation of inequalities can be guaranteed to yield maximal bounds for
guantum expressions for all the 684 equations correspondingpnsistent conditions of possible classical experience.

to inequalities. The zero baseline indicates a threshold for a This research was supported by the Israel Science Foun-
violation of Boole-Bell type inequalities. For the opposite dation, Grant No. 787/99-2.
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