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Abstract

We define a “nit” as a radix n measure of quantum information which is based on state partitions

associated with the outcomes of n-ary observables and which, for n > 2, is fundamentally irreducible

to a binary coding. Properties of this measure for entangled many-particle states are discussed.

k particles specify k nits in such a way that k mutually commuting measurements of observables

with n possible outcomes are sufficient to determine the information.
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The formal concept of information is tied to physics, at least as far as applicability is a

concern. There seems to be one issue, which, despite notable exceptions (e.g., [1, Footnote

6] and [2]), has not yet been acknowledged widely: the principal irreducibility of quantum

information in base n. Define a “nit” as a unit of information equal to the amount of infor-

mation obtained by learning which of n equally likely events occurred. An n-state particle

can be prepared in a single one of n possible states. Then, this particle carries one nit of

information, namely to “be in a single one from n different states.” Subsequent measure-

ments may confirm this statement. The most natural code basis for such a configuration is

n, and not a binary one.

Classically, there is no preferred code basis whatsoever. Every classical state is postulated

to be determined by a point in phase space. Formally, this amounts to an infinite amount of

information in whatever base, since with probability one, all points are random; i.e., algo-

rithmically incompressible [3]. Operationally, only a finite amount of classical information

is accessible. Yet, the particular base in which this finite amount of classical information is

represented is purely conventional. The same holds true for discrete classical systems, such

as n modes of vibration on a string, where the restriction to these particular states is rather

arbitrary.

The fundamental difference between classical and quantum information with respect to

code bases could be illustrated by the following example. Physically, each nit could be

represented by an n-level system. A single measurement collapses an n-state superposition

and yields only one output, not log2 n outputs. In the nonentangled k particle case, the

k mutually commuting observables could be some physical quantity (e.g., energy levels)

associated with each particle. This sets the stage for the more general observables associ-

ated with “entangled” states. References [1] and [4] discuss examples with Bell states and

Greenberger-Horne-Zeilinger states for the binary case, respectively.

In what follows, let us always consider a complete system of base states B associated with

a unique “context” or “communication frame” F = {F1, F2, . . . , Fk}, which corresponds

to co-measurable observables with n outcomes. For n = 2, their explicit form has been

enumerated in [4]. In this particular case, the F ’s can be identified with certain projection

operators from the set of all possible mutually orthogonal ones, whose two eigenvalues can

be identified with the two states. For three or more particles, this is no longer possible.

It should be emphasized that only the case of an entanglement between different particles
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but not within each particle is considered. If more than one observable could be associated

with each particle, then these can become entangled as well, and then k n-ary observables

will no longer be sufficient to describe k particles.

For a single n-state particle, the nit can be formalized as a state partition which is fine

grained into n elements, one state per element. That is, if the set of states is represented

by {1, . . . , n}, then the nit is defined by {{1}, . . . , {n}}. Of course, any labeling would

suffice, as long as the structure is preserved. It does not matter whether one calls the

states, for instance, “+,” “0” and “-”, or “1,” “2” and “3”, resulting in a trit represented by

{{+}, {0}, {−}} or {{1}, {2}, {3}} (here, the term “trit” stands for a nit with n = 3). Thus,

nits are defined modulo isomorphisms (i.e., one-to-one translations) of the state labels. To

complete the setup of the single particle case, let us recall that any such state set would

correspond to an orthonormal basis of n-dimensional Hilbert space.

Before proceeding to the most general case, we shall consider the case of two particles

with three states per particle in all details. We shall adopt an n-ary search strategy. Assume

that the first and the second particle has three orthogonal states labeled by a1, b1, c1 and

a2, b2, c2, respectively. Then nine product states can be formed and labeled from 1 to 9

in lexicographic order; i.e., a1a2 ≡ 1, · · · , c1c2 ≡ 9. Consider a set of two comeasurable

three-valued observables inducing two state partitions of the set of states S = {1, 2, . . . , 9}

with three partition elements with the properties that (i) the set theoretic intersection of

any two elements of the two partitions is a single state, and (ii) the union of all these nine

intersections is just the set of state S. As can be easily checked, an example for such state

partitions are

F1 = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}} ≡ {{a1}, {b1}, {c1}},

F2 = {{1, 4, 7}, {2, 5, 8}, {3, 6, 9}} ≡ {{a2}, {b2}, {c2}}.
(1)

Operationally, the trit F1 can be obtained by measuring the first particle state: {1, 2, 3}

is associated with state a1, {4, 5, 6} is associated with b1, and {7, 8, 9} is associated with

c1. The trit F2 can be obtained by measuring the state of the second particle: {1, 4, 7} is

associated with state a2, {2, 5, 8} is associated with b2, and {3, 6, 9} is associated with c2.

This amounts to the operationalization of the trits (1) as state filters. In the above case,

the filters are “local” and can be realized on single particles, one trit per particle. In the

more general case of rotated “entangled” states (cf. below), the trits (more generally, nits)

become inevitably associated with joint properties of ensembles of particles. Measurement
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FIG. 1: Representation of state partitions as cells of a two-dimensional square spanned by the

single cells of the two three-state particles.

of the propositions, “the particle is in state {1, 2, 3}” and, “the particle is in state {3, 6, 9}”

can be evaluated by taking the set theoretic intersection of the respective sets; i.e., by

the proposition, “the particle is in state {1, 2, 3} ∩ {3, 6, 9} = 3.” In figure 1, the state

partitions are drawn as cells of a two-dimensional square spanned by the single cells of the

two three-state particles.

A Hilbert space representation of this setting can be obtained as follows. Define the

states in S to be one-dimensional linear subspaces of nine-dimensional Hilbert space; e.g.,

1 ≡ (1, 0, 0, 0, 0, 0, 0, 0, 0), · · · , 9 ≡ (0, 0, 0, 0, 0, 0, 0, 0, 1). The trit operators are given by

(the terms “trit operator,” “observable,” and the corresponding state partition will be used

synonymously)

F1 = diag(a, a, a, b, b, b, c, c, c),

F2 = diag(a, b, c, a, b, c, a, b, c),
(2)

for a, b, c ∈ R, a 6= b 6= c 6= a.

If F2 = diag(d, e, f, d, e, f, d, e, f) and a, b, c, d, e, f, are six different prime numbers, then,

due to the uniqueness of prime decompositions, the two trit operators can be combined to

a single “context” operator

C = F1 · F2 = F2 · F1 = diag(ad, ae, af, bd, be, bf, cd, ce, cf) (3)

which acts on both particles and has nine different eigenvalues. Just as for the two-particle

case [4], there exist 32! = 9! = 362880 permutations of operators which are all able to

separate the nine states. They are obtained by forming a (2 × 9)-matrix whose rows are
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the diagonal components of F1 and F2 from Eq. (2) and permuting all the columns. The

resulting new operators F ′
1 and F ′

2 are also trit operators.

A generalization to k particles in n states per particle is straightforward. We obtain k

partitions of the product states with n elements per partition in such a way that every single

product state is obtained by the set theoretic intersection of k elements of all the different

partitions.

Every single such partition can be interpreted as a nit. All such sets are generated by per-

muting the set of states, which amounts to nk! equivalent sets of state partitions. However,

since they are mere one-to-one translations, they represent the same nits. This equivalence,

however, does not concern the property of (non)entanglement, since the permutations take

entangled states into nonentangled ones. We shall give an example below.

Again, the standard orthonormal basis of nk-dimensional Hilbert space is identified with

the set of states S = {1, 2, . . . , nk}; i.e., (superscript “T” indicates transposition)

1 ≡ (1, . . . , 0)T ≡| 1, . . . , 1〉 =| 1〉 ⊗ · · · ⊗ | 1〉,
...

nk ≡ (0, . . . , 1)T ≡| n, . . . , n〉 =| n〉 ⊗ · · · ⊗ | n〉.

(4)

The single-particle states are also labeled by 1 through n, and the tensor product states are

formed and ordered lexicographically (0 < 1).

The nit operators are defined via diagonal matrices which contain equal amounts nk−1 of

mutually n different numbers such as different primes q1, . . . , qn; i.e.,

F1 = diag(q1, . . . , q1︸ ︷︷ ︸
nk−1 times

, . . . , qn, . . . , qn︸ ︷︷ ︸
nk−1 times︸ ︷︷ ︸

n0 times

),

F2 = diag(q1, . . . , q1︸ ︷︷ ︸
nk−2 times

, . . . , qn, . . . , qn︸ ︷︷ ︸
nk−2 times︸ ︷︷ ︸

n1 times

),

...

Fk = diag(q1, . . . , qn︸ ︷︷ ︸
nk−1 times

).

(5)

The operators implement an n-ary search strategy, filtering the search space into n equal

partitions of states, such that a successive applications of all such filters renders a single

state.
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FIG. 2: Entangled schemes through diagonalization and counterdiagonalization of the states.

There exist nk! sets of nit operators, which are are obtained by forming a (nk×nk)-matrix

whose rows are the diagonal components of F1, . . . , Fk from Eq. (5) and permuting all the

columns. The resulting new operators F ′
1, . . . , F

′
k are also nit operators.

All partitions discussed so far are equally weighted and well balanced, as all elements of

them contain an equal number of states. In principle, one could also consider nonbalanced

partitions. For example, one could take the partition F 1 = {{1}, {2, 3}, {4, 5, 6, 7, 8, 9}}

instead of F1 in (1), represented the by trit diagonal operator diag(a, b, b, c, c, c, c, c, c). Yet

any such attempt would result in a deviation from the optimal n-ary search strategy, and in

an nonoptimal measurement procedures. Another, more principal, disadvantage would be

the fact that such a state separation could not reflect the inevitable n-arity of the quantum

choice.

In terms of partitions, entanglement occurs for diagonal or antidiagonal arrangements

of states which do not add up to completed blocks. Take, for example, the state partition

scheme of Fig. 1, which results in nonentangled states and state measurements. A mod-

ified, entangled scheme can be established by just grouping the states into diagonal and

counterdiagonal groups as drawn in Fig. 2. The corresponding trits are

F1 = {{1, 5, 9}, {2, 6, 7}, {3, 4, 8}},

F2 = {{1, 6, 8}, {2, 4, 9}, {3, 5, 7}}.
(6)

We can now introduce new 2× 3 basis vectors grouped into the two bases {a′1, b′1, c′1} and
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{a′2, b′2, c′2} by

|a′1〉 = 1√
3
(|a1a2〉+ |b1b2〉+ |c1c2〉),

|b′1〉 = 1√
3
(|a1b2〉+ |b1c2〉+ |c1a2〉),

|c′1〉 = 1√
3
(|a1c2〉+ |b1a2〉+ |c1b2〉),

|a′2〉 = 1√
3
(|a1a2〉+ |b1c2〉+ |c1b2〉),

|b′2〉 = 1√
3
(|a1b2〉+ |b1a2〉+ |c1c2〉),

|c′2〉 = 1√
3
(|a1c2〉+ |b1b2〉+ |c1a2〉).

(7)

The new orthonormal basis states are “entangled” with respect to the old bases and

vice versa. Their tensor products generate a complete set of basis states in a new nine-

dimensional Hilbert space. In terms of the new basis states, the trits can be written as

F1 ≡ {{a′1}, {b′1}, {c′1}} and F2 ≡ {{a′2}, {b′2}, {c′2}}. The associated bases will be called

diagonal bases. Note that the permutation which produces the entangled case (6) the nonen-

tangled (1) one is 1 → 1, 2 → 9, 3 → 5, 4 → 6, 5 → 2, 6 → 7, 7 → 8, 8 → 4, 9 → 3, or

(1)(2, 9, 3, 5)(4, 6, 7, 8) in cycle form. A generalization to diagonal bases associated with an

arbitrary number of nits is straightforward.

In summary we have shown that, by adopting an n-ary search strategy, k particles (en-

tangled or not) specify k nits in such a way that k mutually commuting measurements

of independent observables with n outcomes are necessary and sufficient to determine the

information. This finding is compatible to Zeilinger’s foundational principle for quantum

mechanics [1]. In general, the main emphasis in the area of quantum computation has been

in the area of binary decision problems. It is suggested that these investigations should be

extended to decision problems with n alternatives (e.g., [5, pp. 332-340]), for which quantum

information theory seems to be extraordinarily well equipped.
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