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Abstract

Correlations in an Einstein-Podolsky-Rosen-Bohm experiment can be made stronger than quantum cor-

relations by allowing a single bit of classical communication between the two sides of the experiment.
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From an operational point of view, the nonlocal quantum correlations giving rise to violations

of Bell-type inequalities amount to the fact that certain joint events at spacelike separated locations

occur with greater or smaller frequencies than can possibly be expected from classical, local real-

istic models. Two detectors at different locations register pairs of particles or particle properties

more frequently or infrequently as can be explained by the usual classical assumptions such as

value definiteness.

With the rise of quantum algorithms and quantum information theory [1], the emphasis shifted

to the communication cost and to the quantum communication complexity related to those quan-

tum correlations. The question of the expense of obtaining quantum-type correlations from classi-

cal systems was stimulated by quantum [2] and classical [3–6] teleportation. In a recent Letter [7],

Toner and Bacon, based on Refs. [4, 8], argue that classical systems could mimic quantum sys-

tems by reproducing the cosine law for correlation functions with the exchange of just one bit of

classical information.

The formal coincidence of the quantum correlation function with classical correlations aug-

mented with the exchange of a single classical bit might indicate a deep structure in quantum

correlations. One could, for instance, speculate that two-partite quantum systems may be capable

of conferring a single bit, a property which is reflected by the cosine form of the expectation func-

tion. In what follows it will be argued that, while this may still be the case for the Toner-Bacon

protocol [7], in general the exchange of a single classical bit can give rise to stronger than quantum

correlations.

Since the systems discussed are entirely planar, whenever possible, polar angles are used to

represent the associated unit vectors. The same symbols denote polar angles (without hat) and

the associated vectors (with hat). Consider two correlated and spatially separated classical sub-

systems sharing common directions λi, i = 1, . . . which are chosen independently of each other

and are distributed uniformly. All parameters λi are assumed to be identical on each one of the

two subsystems. There are two measurement directions a and b of two dichotomic observables

with values “-1” and “1” at two spatially separated locations. The measurement direction a at

“Alice’s location” is unknown to an observer “Bob” measuring b and vice versa. A two-particle

correlation function E(θ) with θ = |a− b| is defined by averaging the product of the outcomes

O(a)i,O(b)i ∈ −1,1 in the ith experiment; i.e., E(θ) = (1/N)∑N
i=1 O(a)iO(b)i.

The following nonadaptive, memoryless protocols could give rise to stronger-than-quantum

correlations by allowing the exchange of a single bit per experiment. The protocols are similar
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to the one discussed by Toner and Bacon [7], but require only a single share λ, and an additional

direction ∆(δ), which is obtained by rotating λ̂ clockwise around the origin by an angle δ which

is a constant shift for all experiments. That is, ∆(δ) = λ + δ. Alice’s observable is given by

α = sgn(â · λ̂) = sgn [cos(a−λ)]. The bit communicated by Alice is given by c(δ) = sgn(â ·
λ̂)sgn

[
â · ∆̂(δ)

]
= sgn [cos(a−λ)]sgncos [a−∆(δ)]. Bob’s observable is defined by β(δ) = sgn[b̂ ·

(λ̂+ c(δ)∆̂(δ))]. This protocol becomes Toner and Bacon’s if δ is allowed to vary randomly, with

uniform distribution.

The strongest correlations are obtained for δ = π/2; i.e., in the case where the two directions

associated with λ and ∆ = λ+π/2 are orthogonal and the information obtained by c(π/2) is about

the location of a within two opposite quadrants. Let H(x) stand for the Heaviside step function of

x. The effective shift in the parameter direction λ̂ −→ λ̂± λ̂⊥ yields a correlation function of the

form

E
(
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π
2

)
= H

(
θ− 3π

4

)
−H
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4
−θ

)
−2

(
1− 2

π
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H
(
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4

)
H

(
3π
4
−θ

)
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To obtain a better understanding for the shift mechanism, in Fig. 1 a configuration is drawn which,

without the shift λ̂−→ λ̂− λ̂⊥, sgn(b̂ · λ̂) = sgncos(b−λ) would have contributed the factor −1.

The shift results in a positive contribution sgn[b̂ · (λ̂− λ̂⊥)] to the expectation value. This shift

mechanism always yields the strongest correlations±1 as long as the angle θ does not lie between

π/4 and 3π/4.

For general 0≤ δ≤ π/2, Fig. 2 depicts numerical evaluations which fit the correlation function

E(θ,δ) =





−1 for 0≤ θ≤ δ
2 ,

−1+ 2
π(θ− δ

2) for δ
2 < θ≤ 1

2(π−δ),

−2(1− 2
πθ) for 1

2(π−δ) < θ≤ 1
2(π+δ),

1+ 2
π(θ−π+ δ

2) for 1
2(π+δ) < θ≤ π− δ

2 ,

1 for π− δ
2 < θ≤ π.

(2)

Its domains are depicted in Fig. 3. For all nonzero δ, E(θ,δ) correlates stronger than quantized

systems for some values of θ. With δ = π/2, the Clauser-Horne-Shimony-Holt (CHSH) inequality

|E(a,b)+ E(a,b′)+ E(a′,b)−E(a′,b′)| ≤ 2 for a = π/2, a′ = 0, b = π/4, b′ = 3π/4 is violated

by the maximal algebraic value of 4 [9], a larger value than the Tsirelson bound for quantum

violations 2
√

2. This is due to the fact that, phenomenologically, the strategy allows for certain

joint events to occur with greater or smaller frequencies as can be expected from quantum entan-
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FIG. 1: Demonstration of the shift mechanism. Concentric circles represent the measurement directions â

and b̂ (outer circle), as well as parameter directions λ̂ and λ̂⊥ (inner circle) and their associated projective

sign regions. The four measurement regions spanned by â and b̂ are indicated by “±1,” respectively. Positive

and negative octants spanned by λ̂ and λ̂⊥ are indiated in the inner circle by “±,” respectively. In this

configuration, the shift λ̂−→ λ̂− λ̂⊥ pushes λ̂ into a positive region.
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FIG. 2: Classical and stronger-than-quantum correlation functions obtained through the exchange of a single

bit in the memoryless regime for values of δ ∈ {0, π
10 , π

5 , 3π
10 , 2π

5 , π
2} between 0 (straigt line) and π/2 [cf.

Eq (1)].
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FIG. 3: Domains of the correlation function E(θ,δ). Consecutive sections from left to right cover the

domains of Eq. (2) from bottom to top: (1) 0≤ θ≤ δ
2 , (2) δ

2 < θ≤ 1
2(π−δ), (3) 1

2(π−δ) < θ≤ 1
2(π+δ),

(4) 1
2(π+δ) < θ≤ π− δ

2 , (5) π− δ
2 < θ≤ π.

gled state measurements. For δ = 0, the classical linear correlation function E(θ) = 2θ/π− 1 is

recovered, as can be expected.

The average over all 0≤ δ≤ π/2 yields a very similar, but not identical behaviour as the quan-

tum cosine correlation function. More precisely, assume two independent, uniformly distributed

shares λ1 and λ2, and a single communicated bit H
[
c(λ̂1, λ̂2)

]
with c(λ̂1, λ̂2) = sgn(â · λ̂1)sgn(â ·

λ̂2) = sgncos(a−λ1)sgncos(a−λ2) per measurement of sgn(â · λ̂1)sgn[b̂ · (λ̂2− cλ̂1)]. The asso-

ciated correlation function is

E(θ) = 1
(2π)2

∫
dλ̂1dλ̂2 sgn(â · λ̂1)sgn[b̂ · (λ̂2− cλ̂1)]

= 1
2π2

∫
dλ̂1 sgn(â · λ̂1)

∫
dλ̂2 sgn[b̂ · (λ̂2− λ̂1)].

(3)

The elemination of c at the cost of the prefactor 2 on the right hand side of Eq. (3) is achieved

by using the symmetries of the outcomes under the exchange λ̂1 ←→ −λ̂1 and λ̂2 ←→ −λ̂2 as

outlined in Ref. [7]. Note that, although the correlation function E(θ) is nonlocal (Bob’s output

depends on c, which contains a), after some recasting, despite the prefactor of 2 which accounts for

nonlocality, it appears to be perfectly local, since it is the product of two sign functions containing

merely a and (separately) b, respectively. (The two parameters λ1,λ2 are common shares.)

The λ2 integration can be performed by arranging b̂ along the positive y-axis (0,1) and by the

parameterization λ̂1 = (sin t,cos t) and λ̂2 = (sinτ,cosτ). The positive contributions amount to

A+ = 2
∫ t

0 dτ = 2t; thus the negative contributions are A− = 2π−A+, and the entire integral is

(A+−A−)/(2π) = 2t/π−1 = 2cos−1(b̂ · λ̂1)/π−1.

For the λ1 integration, â is arranged along the positive y-axis (0,1), b̂ along (sinr,cosr), and λ̂1

along (sinτ,cosτ). Since cos−1(cos(x)) = |x| for−1≤ x≤ 1, one obtains for the correlation value
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(4/π2)
∫ π

0 dτ sgn(cosτ)|τ−r|. After evaluating all cases, the λ̂1 integration, for 0≤ θ = |a−b| ≤ π,

yields

E(θ) =
4
π2

[(
θ2− π2

4

)
−2H

(
θ− π

2

)(
θ− π

2

)2
]
, (4)

which is plotted in Fig. 4. An alternative derivation of Eq. (4) is via (2/π)
∫ π/2

0 dδ E(θ,δ) with
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FIG. 4: The correlation E(θ) of Eq. (4) as a function of θ = |a−b| for the memoryless exchange of a single

bit per experiment in the planar configuration. Note that, although the shape resembles the quantum cosine

law, the function is piecewise quadratic.

E(θ,δ) from Eq. (2). The difference to the cosine law obtained by Toner and Bacon [7] is due to

the reduced dimensionality of the problem.

Let us briefly sketch a protocol requiring memory which, by the exchange of more than one

bit, could give rise to maximal violations [10] of the CHSH inequality. The protocol is based

on locating and communicating information about Alice’s measurement direction to Bob, who

then rotates his subsystem (or alternatively his measurement direction) so as to obtain the desired

correlation function.

When compared to the protocol discussed by Toner and Bacon [7] or to the memoryless pro-

tocoll introduced above, the adaptive protocols share some similarities. Both exchange very

similar information, as can for instance be seen by a comparison between c2 above and the bit

c = sgncos(a− λ1)sgncos(a− λ2) exchanged in the Toner and Bacon protocol. After the ex-

change of just a few bits, the adaptive protocols appear to be more efficient from the communi-
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cation complexity point of view. However, these strategies require memory. Operationally, this

presents no problem for Alice and Bob, but if one insist on nonadaptive, single particle strategies,

these protocols must be excluded.

In summary we have found that, as long as adaptive protocols requiring memory at the re-

ceiver side are allowed, the CHSH inequality can be violated maximally. Furthermore, we have

presented a type of memoryless, nonadaptive protocol giving rise to stronger-than-quantum corre-

lations which yields the maximal algebraic violation 4 of the CHSH inequality, as compared to the

quantum Tsirelson bound 2
√

2. The question about the effect of an information exchange between

entangled quantum subsystems still remains open.
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