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Generalizing Tsirelson’s Bound on Bell Inequalities Using a Min-Max Principle
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Bounds on the norm of quantum operators associated with classical Bell-type inequalities can be
derived from their maximal eigenvalues. This quantitative method enables detailed predictions of the
maximal violations of Bell-type inequalities.
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The violations of Bell-type inequalities represent a
cornerstone of our present understanding of quantum
probability theory [1]. Thereby, the usual procedure is
as follows: First, the (in)equalities bounding the classical
probabilities and expectations are derived systematically,
e.g., by enumerating all conceivable classical possibilities
and their associated two-valued measures. These form the
extreme points which span the classical correlation poly-
topes [2–12], the faces of which are expressed by Bell-
type inequalities which characterize the bounds of the
classical probabilities and expectations—in Boole’s term
[13,14], the ‘‘conditions of possible experience.’’ (Gener-
ating functions is another method to find bounds on
classical expectations [15,16].) The Bell-type inequalities
contain sums of (joint) probabilities and expectations. In
a second step, the classical probabilities and expectations
in the Bell-type inequalities are substituted by quantum
probabilities and expectations. The resulting operators
violate the classical bounds. Until recently, little was
known about the fine structure of the violations.
Tsirelson (also written Cirel’son) published an absolute
bound for the violation of a particular Bell-type inequal-
ity, the Clauser-Horne-Shimony-Holt (CHSH) inequality
[2,3,17,18]. Cabello has investigated a violation of the
CHSH inequality beyond the quantum mechanical
bound by applying selection schemes to particles in a
Greenberger-Horne-Zeilinger state [19,20]. Recently, de-
tailed numerical [21] and analytical studies [22] stimu-
lated experiments [23] to test the quantum bounds of
certain Bell-type inequalities.

In what follows, a general method to compute quan-
tum bounds on Bell-type inequalities is reviewed system-
atically. It makes use of the min-max principle for self-
adjoint transformations (Ref. [24], Sec. 90 and Ref. [25],
Sec. 75) stating that the operator norm is bounded by the
minimal and maximal eigenvalues. These ideas are not
entirely new and have been mentioned previously
[15,21,22], yet to our knowledge no systematic investiga-
tion has been undertaken yet. It should also be kept in
mind that this method a priori cannot produce quantum
polytopes [21,26], but the quantum correspondents of
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classical polytopes. Indeed, as we demonstrate explicitly,
the resulting geometric forms are not convex. This, how-
ever, does not diminish the relevance of these quantum
predictions to experiments testing the quantum violations
of classical Bell-type inequalities.

As a starting point note that since �A� B�y � Ay �
By � �A� B� for arbitrary self-adjoint transformations
A;B, the sum of self-adjoint transformations is again self-
adjoint. That is, all self-adjoint transformations entering
the quantum correspondent of any Bell-type inequality
are again self-adjoint transformations. The sum does not
preserve eigenvectors and eigenvalues; i.e., A� B can
have different eigenvectors and eigenvalues than A and
B taken separately (i.e., A and B need not necessarily
commute). The norm of the self-adjoint transformation
resulting from summing the quantum counterparts of all
the classical terms contributing to a particular Bell in-
equality obeys the min-max principle. Thus determining
the maximal violations of classical Bell inequalities
amounts to solving an eigenvalue problem. The associated
eigenstates are the multipartite states which yield a maxi-
mum violation of the classical bounds under the given
experimental (parameter) setup [27].

Let us demonstrate the method by considering two
particles propagating in inverse directions, their polar-
ization or spin being measured along two or more (m)
distinct directions per particle perpendicular to their
propagation directions. For these configurations, we enu-
merate analytical quantum bounds corresponding to the
Clauser-Horne (CH) inequality, as well as of more gen-
eral inequalities for m> 2 [10–12].

For m�2, the CH inequalities restrict classical prob-
abilities by �1 � p13 � p14 � p23 � p24 � p1 � p3 �
0, as well as permutations thereof. Here, p1 and p3 stand
for the probabilities that the first particle is measured
along the first direction and the second particle is mea-
sured along the third direction. pij stands for the joint
probability to find the first particle along the direction i
and the second particle along the direction j.

In order to evaluate the quantum counterpart of the CH
inequalities, the classical probabilities have to be substi-
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tuted by the quantum ones, i.e.,

p1 ! q1��� �
1
2	I2 � ����
 � I2;

p3 ! q3��� � I2 �
1
2	I2 � ����
;

pij ! qij��; �
0� � 1

2	I2 � ����
 � 1
2	I2 � ���0�
;

(1)

with
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���� �
cos� sin�
sin� � cos�

� �
;

where � is the relative measurement angle in the x-z plane,
and the two particles propagate along the y axis. The
quantum transformation associated with the CH inequal-
ity enumerated above is thus given by
O22��;�; �; �� � q13��; �� � q14��; �� � q23��;�� � q24��; �� � q1��� � q3���

� 1
2	I2 � ����
 � 1

2	I2 � ����
 � 1
2	I2 � ����
 � 1

2	I2 � ����
 � 1
2	I2 � ����


�1
2	I2 � ����
 � 1

2	I2 � ����
 � 1
2	I2 � ����
 � 1

2	I2 � ����
 � I2 � I2 �
1
2	I2 � ����
; (2)

where �, �, �, and � denote the measurement angles lying in the x-z plane: � and � for one particle, � and � for the
other one. The eigenvalues of the self-adjoint transformation in (2) are

�1;2;3;4��;�;�;���
1
2	


���������������������������������������������������
1
sin�����sin�����

q
�1
 (3)

yielding the maximum bound kO22k � maxi�1;2;3;4�i. Note that for the particular choice of parameters � � 0; � �
2�; � � �; � � 3� adopted in [21,22], one obtains jO22j �

1
2 f	�3� cos4��=2
1=2 � 1g.

In the Bell basis fj��i; j �i; j �i; j��ig with j 
i � 1=
���
2

p
�j01i 
 j10i� and j�
i � 1=

���
2

p
�j00i 
 j11i�, the eigen-

vectors corresponding to the maximal violating eigenstates are

j�
i � 	F
��;�;��;���j �i � j��i
	1� F
��;�;��;���2
�1=2;

j�
i � 	F
��;�; �; ��j��i � j �i
	1� F
��;�; �; ��2
�1=2;
(4)

with

F
��;�; �; �� � 
2
�������������������������������������������������������
1� sin��� �� sin��� ��

q cos��� �� � cos��� �� � cos��� �� � cos��� ��
sin��� �� � sin��� �� � sin��� �� � sin��� ��

:

The states (4) are maximally entangled, corroborating the approach of Cabello [22] to utilize a set of maximally
entangled states to reconstruct the quantum bound for the setting of the relative angles � � 0, � � 2�, � � �, and
� � 3� [29]. From the particular form of the eigenstates, we conclude that the maximal violating eigenstates of theO22

operator are maximally entangled for general measurement angles lying in the x-z plane.
Generalizations for m measurements per particle are straightforward; for example, the extension to three measure-

ment operators for each particle yields only one additional nonequivalent (with respect to symmetries) inequality
[11,12] I33 � p14 � p15 � p16 � p24 � p25 � p26 � p34 � p35 � p1 � 2p4 � p5 � 0 among the 684 inequalities [10]
representing the faces of the associated classical correlation polytope. The associated operator for symmetric measure-
ment directions is given by

O33�0;�;2�;0;�;2��� q14�0;0��q15�0;���q16�0;2���q24��;0��q25��;���q26��;2���q34�2�;���q35�2�;��

�q1�0��2q4�0��q5���

�
1

4

�4sin2� 0 0 0
0 �5�2cos��3cos2��2cos3� 4cos2 �2 2sin��3sin2��2sin3�
0 4cos2 �2 �2�3�cos2�� �2sin�
0 2sin��3sin2��2sin3� �2sin� 2sin2 �2cos

2 �
2 �4cos��3�

0
BBB@

1
CCCA; (5)
again in the Bell basis and for quantum expressions
similar to the ones enumerated in Eq. (1) [32].

In this basis, the operator O33�0; �; 2�; 0; �; 2�� splits
into a direct sum of a one-dimensional part �sin2� and a
three-dimensional part o, respectively. Using the
Cardano method (see Ref. [33]), one can solve the char-
acteristic equation of the three-dimensional submatrix o
in the lower right corner of O33,

�3 � b����2 � c����� d��� � 0; (6)

with the coefficients b � �Tro, c � 1=2�Tr2o� Tro2�,
d � � deto. (For convenience we omit here the depen-
dence on �.) The (real) eigenvalues can then be written
as [33]
130407-2
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�2 � �2
������
juj

p
cos

"
3
�
b
3
;

�3;4 �
������������
ju�x�j

q �
cos

"
3

 sin

"
3



�
b
3
;

(7)

with u � 1=9�3c� b2� and cos" � 1
54 �9bc� 2b3 �

27d�=�u
������
juj

p
�. In Fig. 1, the eigenvalues �2; �3; �4, to-

gether with the eigenvalue �1 � �sin2� from the one-
dimensional part of O33, are plotted as functions of the
parameter �. The maximum violation of 1=4 is obtained
for � � #=3 with the associated eigenvector

j�maxi �

���
3

p

2
j��i �

1

2
j �i: (8)

As indicated in Ref. [11], this scheme can be extended
to m measurements on each particle by considering in-
equalities Imm � 0 and corresponding operators Omm of
the form

Imm �
Xm
j�1

Xm�j�1

i�1

P�AiBj� �
Xm�1

i�1

P�Ai�1Bm�i�1�

�
Xm
i�1

�m� i�P�Bi� � P�A1� � 0; (9)

where P�AiBj� denotes the joint probability of obtaining
the value one of the projection operators Ai and Bj opera-
tors on the left- and on the right-hand side, and
P�Ai�; P�Bj� the marginal probabilities on one side, re-
spectively. For a choice of measurement directions
f0; �; 2�; . . . ; m�g on both sides, the maximizing eigen-
values are plotted in Fig. 2. The matrices belonging to the
operators Omm (m � 6) are of the same form as is O33;
i.e., they split up into a direct sum of two matrices in the
Bell basis; the maximal eigenvalues can therefore be
calculated explicitly using Eqs. (6) and (7).

For experimental realizations of the O33 case and
special parameter configurations, the ansatz of Cabello
[22] and Bovino et al. [23] can be generalized to arbitrary
local unitary transformations U2�2 2 SU�2� � SU�2� ap-
π/ 2 π 3π/ 2 2π
θ[ rad]
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FIG. 1. Eigenvalues of O33 in dependence of the relative
angle �.
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plied to each one of the two particles in some Bell-basis
state j’i separately; i.e.,

U�!1; �1; �1� �U�!2; �2; �2�j’i: (10)

The single qubit operators are taken as U�!; �;�� �
ei

!
2 ~n� ~� 2 SU�2� with ! as the rotation angle about the

axis ~n � �sin� cos�; sin� sin�; cos��T . For example, the
use of the Bell state j �i and the successive application of
the local unitary operation U�!1; �1; �1� �U�!2; �2; �2�
with !1 � 2#=3, �1 � �1 � #=2, and !2 � �2 � �2 �
0 yields the maximally violating eigenvector j�maxi from
Eq. (7) which is also maximally entangled.

For the general m> 2 case, however, it is not always
possible to obtain all possible maximally violating states
by starting from a Bell state: for general measurement
angles, the experimental realization additionally requires
a two-qubit transformation from SU�4�=	SU�2� � SU�2�
,
followed by a local unitary operation U2�2 in order to
obtain all possible states [34]. As an example, consider
the maximally violating but not maximally entangled
state at � � #=2: j�#=2i � 0:86j �i � 0:17j �i �

0:47j��i cannot be obtained from a Bell state, as entan-
glement is preserved under SU�2� � SU�2� operations.

Alternatively, multiport interferometry [35–37] offers
a direct proof-of-principle implementation: By choosing
the appropriate transmission coefficients and phases in a
generalized beam splitter setup, one can prepare any pure
state from an input state j11i � �0; 0; 0; 1� corresponding
to a photon in a single input port. Take, for example, the
maximal eigenstate of the O33 operator at � � #=2,
j�#=2i � 0:86j �i� 0:17j �i� 0:47j��i � �0:34;0:73;
0:49;�0:34�. The appropriate transmission parameters
can be calculated via the identification [35]

0

0

0

1

0
BBBB@

1
CCCCA

T

R�N��1 �

0:34
0:73
0:49
�0:34

0
BBB@

1
CCCA
T

�

e�i�1 cos!1

�e�i�2 cos!2 sin!1

e�i�3 cos!3 sin!2 sin!1

� sin!3 sin!2 sin!1

0
BBBBB@

1
CCCCCA

T

(11)

for !1 � 1:23, !2 � 2:46, !3 � 0:60, and �1 � �2 �
�3 � 0, whereR�N� is a SU(4) rotation serially composed
by two-dimensional beam splitter matrices.

In summary, we have shown how to construct and
experimentally test the exact quantum bounds of Bell-
type inequalities by solving the eigenvalue problem of the
associated self-adjoint transformation. Several problems
remain open. Among them is the exact derivation of the
quantum correlation hull [21,26], in particular, whether
the quantum hull is obtainable by extending the classical
Bell-type inequalities in the way as presented above; i.e.,
130407-3
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FIG. 2. Maximum violation of the operator Omm for m �
2; . . . ; 6 for a symmetric measurement setup; the longer dashes
indicate larger m.
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by substituting the quantum probabilities for the classical
ones. This is by no means trivial, as the sections of the
quantum hull need not necessarily be derivable by mere
classical extensions. A second open question is related to
the geometric structures arising from quantum expecta-
tion values. These need not necessarily be convex. Again,
the question of direct extensibility remains open for the
hull of quantum expectations from the classical ones.
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