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Converting nonlocality into contextuality
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Matrix pencils provide a robust method for finding simultaneous eigensystems of mutually commuting
degenerate operators. In this paper, we utilize these techniques to investigate the quantum logical structures
of the Peres-Mermin square and the Greenberger-Horne-Zeilinger-Mermin configuration. Our analysis uncovers
analogous complete contradictions between classical and quantum predictions in a four-dimensional system
involving two spin-1/2 particles.
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I. INTRODUCTION

Heuristically, quantum contextuality encompasses any as-
pect that contradicts classical predictions, with strong types
of contextuality entailing complete contradictions relative to
classical expectations. In what follows, we shall concentrate
on “strong” quantum contextuality rendered by operator-
valued arguments exhibiting nonlocality. While the inverse
problem—converting contextuality into nonlocality [1]—can
be of empirical importance, solving the former task can iden-
tify the particular type of contextuality exhibited, as well as
suggest further experiments.

From a structural standpoint—in terms of the quantum
logical algebraic relations of the associated propositions—
operator-valued arguments may be closely related, although
they may formally appear to be very different. For instance,
as observed by Cabello [2,3], Hardy’s theorem [4,5] can,
in quantum logical terms, be transcribed as a true-implies-
false arrangement (in graph theoretical terms, a gadget) of
observables [6,7]. However, as we shall see in comparing
Kochen-Specker (KS) and Greenberger-Horne-Zeilinger ar-
guments, there need not be such a close relationship.

Operators in quantum mechanics can have varied spectra,
but through their spectral decomposition, their fundamental
components are orthogonal projection operators formed from
orthonormal bases of Hilbert spaces. In this way, every normal
operator “masks” or “contains” within itself an orthonormal
basis, which can be identified with a measurement context.
From dimension three onwards, these bases can intertwine.

Due to their idempotent nature, projection operators admit
only two real solutions (0 and 1) and can thus be associated
with elementary logical propositions. The Hilbert space op-
erations of the linear span and the intersection can then be
identified with the logical disjunction “or” and conjunction
“and” operations, respectively [8,9].

Hence, general quantum observables, which are not ele-
mentary binary propositions, mask the underlying contexts,
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as they do not directly reflect propositions but rather functions
thereof (see Sec. 82 in Ref. [10]). To analyze and utilize these
observables and their associated operators effectively, it is
necessary to delineate the undelying contexts by extracting
their associated idempotent self-adjoint projection operators.
In von Neumann’s words (pp. 241 and 242 in Ref. [11]), “from
the mathematical point of view the more desirable system to
treat is not operator theory, but that part of it which deals with
idempotents, because that corresponds to logics, whereas the
whole system corresponds to a somewhat unpleasant exten-
sion of logics, namely where you deal with quantities which
can have any number of numerical values, in other words,
physical quantities.”

If the operator is nondegenerate and thus of maximal
resolution, this extraction of projection operators is straight-
forward: It requires computing the eigensystem.

However, if the operators are degenerate, they have mul-
tiplicities in the eigenvalues, which makes their spectral
decomposition—and thus their contexts—somewhat arbitrary.
This arbitrariness of the contexts of quantum observables
can be overcome by enlisting other observables that mutually
commute with each other and with the original observable. In
this way, a proper “complete” or “maximal resolution” system
of observables could uniquely define a context.

A technical problem arises if the mutually commuting op-
erators of the observables are all degenerate. For the sake of
an example, take, for instance, the two Hermitian matrices

⎛
⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

⎞
⎟⎟⎠ and

⎛
⎜⎜⎝

0 0 0 −1
0 0 1 0
0 1 0 0

−1 0 0 0

⎞
⎟⎟⎠,

which commute, and yet none of their respective eigenval-
ues coincide: Indeed, the eigensystem of the first matrix
consist of separable vectors (1,±1, 0, 0)ᵀ and (0, 0, 1,±1)ᵀ

while the eigenvectors of the second matrix (1, 0, 0,±1)ᵀ and
(0, 1,±1, 0)ᵀ (the symbol ᵀ stands for transposition) are all
nonseparable. In such cases, finding their respective unique
context can be rather tedious, although constructively feasible,
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as it involves finding simultaneous eigenvectors for all the
commuting operators (see Sec. 1.3 in Ref. [12]).

In the first part of this paper, we propose applying gen-
eralized matrix pencils to the problem of finding a maximal
resolution operator for a set of mutually commuting degener-
ate operators. With this approach, determining the associated
unique context becomes straightforward: It only requires com-
puting the eigensystem of a nondegenerate and thus maximal
resolution operator that has no eigenvalue multiplicities.

Next, we apply the matrix pencil method to two interesting
cases: the Peres-Mermin (PM) square and Mermin’s form of
the Greenberger-Horne-Zeilinger (GHZM) argument. We find
that the quantum logical structure of the PM square constitutes
a KS argument, as it does not allow a classical counterfactual
truth assignment that is both noncontextual as well as allows
global value assignments of (potential) elements of physical
reality. The GHZM argument, on the other hand, is fundamen-
tally different: It operates within a single three-partite context
that permits as many classical truth assignments (eight) as
its elementary propositions. However, through a parity argu-
ment, the associated eigensystem contradicts these classical
predictions. This is because a serial concatenation of mutually
commuting operators includes only even factors of counter-
factual observables, yet their product yields a negative value
quantum mechanically.

In the third part, we use the matrix pencil method to con-
struct a two-partite GHZM-type argument. This configuration
is based on the observables in the PM square that have a
nonlocal eigensystem corresponding to nonseparable vectors
associated with entangled quantum states.

II. MATRIX PENCILS

The algorithmic and thus constructive analysis of a tran-
scription process for cases of operator-value arguments
demonstrating nonclassical behavior is based on the proper
spectral decomposition of the operators involved. Mutually
commuting normal operators (such as Hermitian or uni-
tary operators that commute with their respective adjoints)
A1, . . . , Al share common projection operators. However, if
their spectra are degenerate we need to find an orthonormal
basis in which every single one of this collection of mutually
commuting operators is diagonal. The conventional approach
to this task can be quite complex [13]. Alternatively, we can
diagonalize the generalized matrix pencil that is a linear com-
bination of the operator matrices (see Chap. 12 in Ref. [14]),

P =
l∑

i=1

aiAi, (1)

where ai are scalars (for our purposes, real numbers). As
P commutes with A1, . . . , Al , they share a common set of
projection operators. Moreover, since the scalar parameters
ai can be adjusted, and in particular, can be identified with
Kronecker delta functions δi j , and as P commutes with each
operator Aj for 1 � j � l , P and Aj share a common set of
projection operators.

Equipped with these techniques, any collection of com-
measurable multipartite observables corresponding to mutu-
ally commuting operators can be transcribed into projection

operators in the spectrum of the operators of these observ-
ables. If these operators render a maximal resolution, the
respective vectors correspond to an orthonormal basis called
a context with respect to A1, . . . , Al . The merging or pasting
of possibly intertwining contexts then generates a quantum
logic which can be analyzed to identify and characterize the
contextual (nonclassical) predictions and features.

III. PERES-MERMIN SQUARE

Applying these techniques to the Peres-Mermin (PM)
square [15–18] renders 24 propositions and 24 contexts,
henceforth called the 24-24 configuration, that is the “com-
pletion” of the (minimal in four dimensions [19,20]) 18-9 KS
configuration comprising 18 vectors in 9 contexts [2]. In more
detail, this configuration involves nine dichotomic observ-
ables with eigenvalues ±1 arranged in a 3 × 3 PM matrix (2).
Its rows and columns are masking six four-element contexts,
one per row and column (σiσ j stands for the tensor product of
Pauli spin matrices σi ⊗ σ j , with similar notation for 12),

⎛
⎜⎝

σz12 12σz σzσz

12σx σx12 σxσx

σzσx σxσz σyσy

⎞
⎟⎠. (2)

To explicitly demonstrate the difficulties involved codi-
agonalization of commuting degenerate matrices, consider
the last row of the PM square (2). Its operators σzσx, σxσz,
and σyσy mutually commute—for instance, [σzσx, σyσy] = 0.
However, a straightforward calculation of the eigenvectors
of σzσx yields (0, 1, 0, 1)ᵀ, (−1, 0, 1, 0)ᵀ, (0,−1, 0, 1)ᵀ, and
(1, 0, 1, 0)ᵀ. None of these eigenvectors are eigenvectors of
σyσy, and vice versa. This demonstrates the difficulties in-
volved in codiagonalizing commuting degenerate matrices.

Nonetheless, the “joint” PM square contexts are revealed as
the normalized eigenvectors of the respective matrix pencils
(1). Table I enumerates those contexts, provided that the σ

matrices are encoded in the standard form.
Analysis of their orthogonality relations yields an adja-

cency matrix that, in turn, can be used to construct the
respective (hyper)graph through the intertwining 24 cliques
and thus contexts thereof. As can be expected, there are
only four cliques corresponding to orthonormal bases in four-
dimensional Hilbert space. Figure 1(a) depicts the hypergraph
representing these intertwining contexts as smooth lines, and
the vector labels as elements of these contexts, as enumerated
in Table I.

The 24 rays were already discussed by Peres [15] as
permutations of the vector components of (1, 0, 0, 0)ᵀ,
(1, 1, 0, 0)ᵀ, (1,−1, 0, 0)ᵀ, (1, 1, 1, 1)ᵀ, (1, 1, 1,−1)ᵀ, and
(1, 1,−1,−1)ᵀ. The “full” 24-24 configuration was obtained
by Pavičić [21] who reconstructed additional 18 contexts
not provided in the original Peres paper [15] by hand [22].
Peres’ 24-24 configuration is arranged in four-element con-
texts associated with four-dimensional Hilbert space, with
vector components drawn from the set {−1, 0, 1}, that do not
support any two-valued state. Pavičić, Megill, and Merlet (see
Table 1 in Ref. [23]) have demonstrated that Peres’ 24-24
configuration contains 1233 sets that do not support any two-
valued states. Among these 1233 sets are six “irreducible” or

012215-2



CONVERTING NONLOCALITY INTO CONTEXTUALITY PHYSICAL REVIEW A 110, 012215 (2024)

TABLE I. Eigensystems of the matrix pencils of the rows and columns of the PM square (2) with normalization factors omitted. The
eigenvectors corresponding to the last row and column are nonseparable and thus entangled, while all others are separable. This set of 24
vectors includes the 18 vectors of Cabello, Estebaranz, and García-Alcaine [2]. As already noted by Peres [15], these six “primary” contexts
associated with orthogonal tetrads are disjoint (not intertwined). In the hypergraph representation depicted in Fig. 1(a) they are represented as
the “small ovals” on the six edges of the hypergraph.

Eigenvalues

Matrix pencils a − b − c −a + b − c −a − b + c a + b + c

aσz12 + b12σz + cσzσz |7〉 = (0, 1, 0, 0)
ᵀ |3〉 = (0, 0, 1, 0)

ᵀ |1〉 = (0, 0, 0, 1)
ᵀ |17〉 = (1, 0, 0, 0)

ᵀ

a12σx + bσx12 + cσxσx |20〉 = (−1, −1, 1, 1)
ᵀ |13〉 = (−1, 1, −1, 1)

ᵀ |11〉 = (1,−1, −1, 1)
ᵀ |24〉 = (1, 1, 1, 1)

ᵀ

aσzσx + bσxσz + cσyσy |21〉 = (1, 1, −1, 1)
ᵀ |14〉 = (1, −1, 1, 1)

ᵀ |23〉 = (−1, 1, 1, 1)
ᵀ |10〉 = (−1,−1, −1, 1)

ᵀ

aσz12 + b12σx + cσzσx |12〉 = (−1, 1, 0, 0)
ᵀ |4〉 = (0, 0, 1, 1)

ᵀ |2〉 = (0, 0, −1, 1)
ᵀ |22〉 = (1, 1, 0, 0)

ᵀ

a12σz + bσx12 + cσxσz |15〉 = (−1, 0, 1, 0)
ᵀ |8〉 = (0, 1, 0, 1)

ᵀ |6〉 = (0, −1, 0, 1)
ᵀ |19〉 = (1, 0, 1, 0)

ᵀ

−a − b − c a + b − c a − b + c −a + b + c
aσzσz + bσxσx + cσyσy |5〉 = |�−〉 = (0, 1, −1, 0)

ᵀ |18〉 = |�+〉 = (1, 0, 0, 1)
ᵀ |16〉 = |�−〉 = (1, 0, 0,−1)

ᵀ |9〉 = |�+〉 = (0, 1, 1, 0)
ᵀ

“critical” configurations which do not contain any proper sub-
set that does not support two-valued states. Notably, among
these configurations is the previously mentioned 18-9 config-
uration proposed by Cabello, Estebaranz, and García-Alcaine
[2]. Previously, Pavičić, Merlet, McKay, and Megill [see
Sec. 5(viii) in Refs. [19,20]) had shown that, among all sets
with 24 rays and vector components from the set {−1, 0, 1},
and 24 contexts, only one configuration does not allow any
two-valued state—and that one is isomorphic to Peres’ “full”
(including 18 additional contexts) 24-24 configuration enu-
merated by Pavičić [21]. This computation had taken 1 yr on
a single CPU of a supercomputer [22]. More recently, Pavičić
and Megill (see Table 1 in Ref. [24]) have demonstrated
that the vector components from the set {−1, 0, 1} vector-
generate a 24-24 set, which contains all smaller KS sets and is

simultaneously isomorphic to the “completed” 24-24 config-
uration configuration.

We conjecture that if a “larger” collection of contexts (such
as 24-24) contains a “smaller” collection of contexts (such as
18-9), then it inherits the scarcity or total absence of two-
valued states of the latter: If the smaller set cannot support
features related to two-valued states, such as separability of
propositions (see Theorem 0 in Ref. [25]), then intertwining or
adding contexts can only impose further constraints, thereby
exacerbating the situation by introducing new conditions.

IV. GREENBERGER-HORNE-ZEILINGER ARGUMENT

Based on the GHZ argument Mermin has sug-
gested [17,26] a “simple unified form for the major

FIG. 1. (a) Hypergraph representing contexts (or cliques or orthonormal bases or maximal operators) as smooth lines. This is an
“orthogonal completion” [15,21] of the KS set comprising 18 vectors in 9 contexts introduced by Cabello, Estebaranz, and García-Alcaine [2].
The shaded small ovals on the edges correspond to the “primary” isolated (nonintertwined) contexts from the matrix pencil calculations
enumerated in Table I. (b) Hypergraph representing a 16-12 configuration: 16 elements in 12 contexts enumerated in the first, second,
fourth, and fifth row of Table I. These vectors are separable and thus correspond to factorizable, nonentangled states. (c) Two equivalent
hypergraph representations of a 8-4 configuration—8 elements in 4 contexts enumerated in the third and sixth row of Table I. These vectors
are nonseparable and thus correspond to entangled states
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no-hidden-variables theorems” in which he identified four
commuting three-partite operators: σxσxσx, σxσyσy, σyσxσy,
and σyσyσx. A parity argument reveals a state-independent
quantum contradiction to the classical existence of (local,
noncontextual) elements of physical reality: The quantum
mechanical expectation of the product of these four
commuting three-partite operators for any quantum state
is −1 = 〈−18〉 = 〈12(−12)12〉 = 〈(σx · σx · σy · σy)(σx · σy ·
σx · σy)(σx · σy · σy · σx )〉 = 〈(σxσxσx ) · (σxσyσy) · (σyσxσy) ·
(σyσyσx )〉 = 〈σxσxσx〉〈σxσyσy〉〈σyσxσy〉〈σyσyσx〉. In this
formulation, every operator σx and σy for each of the three
particles occurs twice. Therefore, if classically all such
single-particle observables would coexist as elements of
physical reality and independent of what other measurements
are made alongside, then their respective product must be 1,
the exact negative of the quantum expectation.

Mermin’s configuration can be analyzed in terms of its ma-
trix pencil aσxσxσx + bσxσyσy + cσyσxσy + dσyσyσx, thereby
revealing the underlying, hidden context in terms of the
simultaneous eigensystem of the four mutually commut-
ing operators. These eight nonseparable vectors form an
orthonormal basis of an eight-dimensional Hilbert space cor-
responding to an isolated single context (see Table 1 in
Ref. [27]) of entangled states. Therefore, Mermin’s config-
uration does not constitute a KS proof, as it still permits a
separating set of eight two-valued states.

In view of this, how does one arrive at a complete GHZ
contradiction with classical elements of physical reality, as
outlined above? The criterion employed in an experimental
corroboration [28] is to select any one of the eigenstates
forming the orthonormal basis, such as (1/

√
2)(|z+z+z+〉 +

|z−z−z−〉). Since this is an eigenstate of all four terms of the
matrix pencil, four separate measurements can be performed
(possibly temporally separated) yielding the eigenvalues +1
for σxσxσx as well as −1 for the three others. These three
factors −1 and one factor +1 contribute to their product value
−1, in total contradiction to the classical expectation +1. Note
that similar contradictions arise if the seven other eigenstates
of the matrix pencil are considered (Table 1 in Ref. [27]).

V. BIPARTITE GREENBERGER-
HORNE-ZEILINGER ARGUMENT

Can an equally convincing argument be made involving
just two particles? Natural candidates would be the “nonclas-
sical” elements of the PM square (2). Note that its “masked”
or “hidden” contexts, revealed by the matrix pencils, can be
partitioned into four “separable” type contexts depicted in
Fig. 1(b) containing only separable vectors—corresponding to
the first and second rows and columns—and two nonclassical
contexts consisting of nonseparable vectors—corresponding
to the last row and column, as depicted in Fig. 1(c).

Concentrating on these two latter contexts consisting of
nonseparable vectors, we make the following observations:
Since the observables from the last row and last column (with
the exception of σyσy) do not commute, they cannot be si-
multaneously measured. Nevertheless, by forming products
within the last row and column, we may create two com-
muting operators (σzσx ) · (σxσz ) = −(σxσx ) · (σzσz ) = (σz ·
σx )(σx · σz ) = σyσy = antidiag(−1, 1, 1,−1). Their matrix

TABLE II. Eigensystem of the matrix pencil (3) associated with
the commuting products of operators in the last (third) row and the
last (third) column of the PM square, constituting the Bell basis. In-
clusion of (σyσy ) · (σyσy ) = 14 does not change the calculation and is
therefore omitted. The values +1 and −1 represent the (co)measured
values of the respective commuting operators.

Value Vector (σzσx ) · (σxσz ) σxσx σzσz (σxσx ) · (σzσz )

a − b |�+〉 +1 +1 −1 −1
a − b |�−〉 +1 −1 +1 −1
−a + b |�−〉 −1 −1 −1 +1
−a + b |�+〉 −1 +1 +1 +1

pencil,

a(σzσx ) · (σxσz ) + b(σxσx ) · (σzσz ), (3)

has a degenerate spectrum with the Bell basis as
eigenvectors—the same as the eigenvectors of the matrix
pencil of the last column of the PM square. [Alternatively, we
could have used the pencil a(σzσx ) · (σxσz ) + bσxσx + cσzσz

to avoid multiplicities.] It is enumerated in Table II.
Hence, preparing a state in one Bell basis state and mea-

suring (successively or separately) (σzσx ) · (σxσz ), and either
(σxσx ) · (σzσz ) or σxσx as well as σzσz separately, yields

−1 = 〈−14〉 = 〈12(−12)〉
= 〈(σz · σx · σx · σz )(σx · σz · σx · σz )〉
= 〈(σzσx ) · (σxσz ) · (σxσx ) · (σzσz )〉
= 〈(σzσx ) · (σxσz )〉〈(σxσx ) · (σzσz )〉. (4)

In contrast, and in analogy to Mermin’s version of the GHZ
argument, the classical prediction is that the product of these
terms always needs to be positive, as every alleged “element
of reality,” in particular corresponding to σx and σz, enters an
even number of times (indeed, twice per particle).

VI. CONCLUSIONS

The matrix pencil method provides an elegant solu-
tion for simultaneously diagonalizing commuting operators
with degenerate spectra. It offers a systematic approach
for identifying contextual nonclassical performance in quan-
tized systems, particularly in delineating operator-valued
arguments.

The Peres-Mermin (PM) square demonstrates a fundamen-
tal contradiction (quantum −1 versus classical +1) compared
to classical expectations in a dichotomic operator-valued for-
mulation. By employing matrix pencils, this contradiction can
be transcribed into a Kochen-Specker (KS) type argument in-
volving 24 vectors. This configuration, which does not support
any binary (two-valued) state, consists of six original isolated
contexts from the matrix pencils associated with every row
and column of the PM square, as well as 18 secondary inter-
twining contexts obtained by studying orthogonalities.

Mermin’s rendition of the GHZ operator-valued argument
is fundamentally different. When transcribed into quantum
logic, it reveals a single isolated context that is perfectly set-
representable, for instance, by partition logic. The quantum
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state becomes crucial for any experimental corroboration: If
one takes any eigenstate of the matrix pencil, it leads to a com-
plete contradiction (again quantum −1 versus classical +1)
when multiplying all the results and comparing the squares of
operators in a parity argument.

In analyzing the entangled contexts corresponding to the
last row and column of the PM square and constructing mu-
tually commuting products thereof, one arrives at a similar
argument to Mermin’s rendition of the GHZ argument. It is
also state independent and operates within a single context.
The operators involved are(σzσx ) · (σxσz ) and alternatively, ei-
ther (σxσx ) · (σzσz ) or σxσx and σzσz and, although not needed
for the contraction, (σyσy) · (σyσy). These operators commute,
and for the Bell basis yield a complete contradiction (quantum
−1 versus classical +1) contingent on the assumption of non-
contextual classical existence of those elements of physical
reality. This reduces the eight-dimensional argument to a four-
dimensional one.

Why or how can operator-valued contradictions arise
within a single isolated context? This occurs because
measurements such as σxσz, which partly define a context
derived from a matrix pencil, should not be considered
local and cannot be conducted as independent single-qubit
local measurements [18]. Such operator-valued arguments
are traditionally rooted in the classical assumption that any
multiparticle state can be decomposed into single-particle
states while preserving the properties of the original multi-
particle state. However, this assumption fails in the case of
entangled states, which encodes relational information at the
expense of local properties [29]. From this perspective, both
dichotomic operator-valued GHZM arguments and binary

two-valued state KS arguments against noncontextuality share
a nonoperational and therefore (meta)physical presumption:
the contingent use of counterfactuals.

In summary, this paper proposed using matrix pencils
to find a maximal resolution operator for mutually com-
muting degenerate operators, simplifying the determination
of the associated unique context. This method was applied
to the Peres-Mermin (PM) square and Mermin’s form of
the Greenberger-Horne-Zeilinger (GHZM) argument. The
PM square’s quantum logical structure presented a Kochen-
Specker (KS) argument, while the GHZM argument involved
a single three-partite context, with quantum mechanical re-
sults contradicting classical predictions through a parity
argument. Finally, the matrix pencil method was used to con-
struct a two-partite GHZM-type argument based on nonlocal
observables in the PM square.
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[19] M. Pavičić, J.-P. Merlet, B. McKay, and N. D. Megill, Kochen-
Specker vectors, J. Phys. A: Math. Gen. 38, 1577 (2005).

012215-5

https://doi.org/10.1103/PhysRevLett.127.070401
https://doi.org/10.1016/0375-9601(96)00134-X
https://doi.org/10.1103/PhysRevLett.111.180404
https://doi.org/10.1103/PhysRevLett.68.2981
https://doi.org/10.1103/PhysRevLett.71.1665
https://doi.org/10.1103/PhysRevA.98.012106
https://doi.org/10.1103/PhysRevA.103.022204
https://doi.org/10.2307/1968621
https://arxiv.org/abs/2006.16364
https://doi.org/10.1088/0305-4470/24/4/003
https://doi.org/10.1016/0375-9601(90)90172-K
https://doi.org/10.1103/PhysRevLett.65.3373
https://doi.org/10.1103/RevModPhys.94.045007
https://doi.org/10.1088/0305-4470/38/7/013


KARL SVOZIL PHYSICAL REVIEW A 110, 012215 (2024)

[20] M. Pavicic, J.-P. Merlet, B. McKay, and N. D. Megill, Corri-
gendum: Kochen-Specker vectors, J. Phys. A: Math. Gen. 38,
3709 (2005).
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