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Abstract. In this article, we give a new proof of the Rödseth–Gupta theorem on binary partitions and give one possible
generalization of this theorem.
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1. INTRODUCTION

In this work, we consider partitions of the natural number n into the powers of two. The partitions which
differ in the order of summands are considered to be identical. Let the number of partitions, i.e., the number of
solutions of the equation

n = ms2
s + ms−12s−1 + · · · + m0 (1)

in nonnegative integers be b(n). This function was investigated by L. Euler (1750), A. Tanturi (1918), and K.
Mahler (1940) among others. Let, for simplicity, b(0) = 1. The generating power series of the sequence b(n) is

F(x) =
∞∑
i=0

b(n)xn =
∞∏
i=0

(1 − x2i

)
−1

.

This function satisfies the functional equation (1 − x)F(x) = F(x2) and, by comparing coefficients at the same
powers of x, we get

b(2n + 1) = b(2n), b(2n) = b(2n − 1) + b(n). (2)

This has an obvious combinatorial meaning: the number of the partitions of the number 2n with m0 �= 0 is
b(2n − 1), the summands of the rest partitions are divisible by 2, hence the number of such partitions is b(n).
On the other hand, every partition of the number 2n + 1 has at least one summand equal to 1, and this gives
the first formula of (2). I was not aware of the previous works when in 1997 I proposed for the International
Mathematical Olympiad for the school pupils the following problem. Prove that 2n2/4 < b(2n) < 2n2/2 for n � 3.
This statement can be proved using the recurrence relations (2). It can be deduced from here that b(2h) � hb(h)

and b(4h) > 2hb(h) for h � 2. K. Mahler investigated the difference equation (f (z + ω) − f (z))ω−1 = f (qz)

and derived the following asymptotic formula for b(n):

b(2n) = eO(1)

∞∑
v=0

2−v(v−1)nv

v!
, n → ∞.
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This gives the exact asymptotic for ln b(n). N. de Bruin (his results and possible generalizations are given in
[6]) sharpened the Mahler results by using the Tauber type theorems. He extracted from the remainder term
O(1) some periodical function, thus getting an o(1) term. The first asymptotic term of the logarithm

ln b(n) ∼ (ln n)2

2 ln 2
(3)

can be easily calculated using the geometrical method [7]. This result was elementary (combinatorially) proved
by G. Eckstein [8]. In 1969, R. F. Churchhouse [1] noted some arithmetical properties of the sequence b(n). He
proved some theorems and made a conjecture which now is known as the Rödseth–Gupta theorem.

THEOREM. For an odd n the following congruence holds:

b(2s+2n) − b(2sn) ≡ 2µ(s)(mod 2µ(s)+1), µ(s) =
[3s + 4

2

]
. (4)

This fact was independently proved by Ö. Rödseth [2] and H. Gupta [3]. The third proof was given in G.
Andrews’ book [4]. In our work, we shall give a new proof of the Rödseth–Gupta theorem, which is different
from the rest above mentioned ones and is more close to the original proof of Gupta but technically easier. This
approach can be generalized, which allows us to write other congruences of type (4). In particular, we prove
that for an odd n and s � 2 the expression b(2s+4n) + 7b(2s+2n) − 8b(2sn) is divisible by exactly [ 3s

2 + 8]th
power of 2 (note that the theorem of Rödseth–Gupta implies the division of this expression only by [3s

2 + 6]th
power of 2 and does not say anything about the precision of the division). We end with some other properties
of the sequence b(n).

2. THE RÖDSETH–GUPTA THEOREM

Define by bs(n) the number of the partitions of the number n into the powers of 2 not exceeding s. The
generating power series is

Hs(n) =
∞∑

n=0

bs(n)xn =
s∏

i=0

(1 − x2i

)−1.

It is clear that (1−x)Hs+1(x) = Hs(x
2) and by comparing the coefficients we get bs+1(2n)−bs+1(2n−1) = bs(n),

bs+1(2n + 1) = bs+1(2n), i.e., bs+1(2n) = ∑n
i=0 bs(i). This allows us to find the explicit expression of bs(n):

b0(n) = 1, b1(n) =
[n

2

]
+ 1, b2(n) = 1

4

[n

2

]2 +
[n

2

]
+ 4 − ε1(n)

4
,

where ε1(n) is the digit at the power 21 of the binary expansion of the natural number n. Define a function
fs(n) = bs(2sn). The number of the partitions of 2s+1n into the powers of 2 with exponent not exceeding s + 1,
where 2s+1 appears as a summand exactly t times, is equal to bs(2s+1(n − t)); hence

fs+1(n) = bs+1(2
s+1n) =

n∑
t=0

bs(2
s+1(n − t)) = fs(0) + fs(2) + · · · + fs(2n). (5)

Equality (5) is also a conclusion of the formula Hs+1(x) = (
∑∞

i=0 xi)Hs(x
2). Thus, we can find the expression
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of fs(n) recurrently. First, we have f0(n) = b0(n) = 1. Hence,

f0(n) = 1

f1(n) = n + 1

f2(n) = (n + 1)2

f3(n) = 4

3
(n + 1)3 − 1

3
(n + 1)

f4(n) = 8

3
(n + 1)4 − 5

3
(n + 1)2

f5(n) = 27

15
(n + 1)5 − 28

3
(n + 1)3 + 9

5
(n + 1).

(6)

We see that fs(n) is a linear combination of (n+1)s, (n+1)s−2, . . . . Let Ds = ∑n
k=0(2k+1)s. We will proceed

by induction. Our assumption (i.e., that fk(n) is a distinct linear combination of (n + 1)k, (n + 1)k−2, . . .)
is true for k � 5. Suppose that it is true for T . We will prove that it is true for T + 1. By assumption,
fT (n) = ∑

l,0�2l�T aT,l(n + 1)T −2l . Then (5) yields that fT +1(n) = ∑
l,0�2l�T aT,lDT −2l . Thus, it is enough to

prove that Ds is a linear combination of (n+ 1)s+1, (n+ 1)s−1, . . . , for all natural s. This is a sequel of the two
following lemmas.

LEMMA 1. The natural numbers Ds satisfy the identity

∑
0�j�[ s

2 ]

Ds−2j ·
(

s + 1

2j + 1

)
= 2s(n + 1)s+1.

Proof . We have

(k + 1)s+1 − ks+1 =
((

k + 1

2

)
+ 1

2

)s+1

−
((

k + 1

2

)
− 1

2

)s+1

=
∑

0�j�[ s
2 ]

2
(
k + 1

2

)s−2j(1

2

)2j+1
(

s + 1

2j + 1

)
.

Hence, 2s((k + 1)s+1 − ks+1) = ∑
0�j�[ s

2 ](2k + 1)s−2j
(

s+1
2j+1

)
and summing over k from 0 to n we obtain the

equality of the lemma.
Now using this lemma we can express Ds as a linear combination of the powers of (n + 1).

LEMMA 2. There exist constants ci for which

Ds =
∑

0�i�[ s
2 ]

ci

s!

(s − 2i + 1)!
2s−2i(n + 1)s−2i+1. (7)

Furthermore, ci = ri
(2i+1)! where ri is a rational number with odd numerator and odd denominator.
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Proof . Let us take in Lemma 1 s − 2i instead of s, multiply both sides by ci
(s+1)!

(s−2i+1)! and sum over i. We
obtain

∑
0�i+j�[ s

2 ]

Ds−2i−2j · ci · (s + 1)!

(2j + 1)!(s − 2i − 2j)!

=
∑

0�n�[ s
2 ]

Ds−2n

(s + 1)!

(s − 2n)!
·

∑
i+j=n

ci

(2j + 1)!

=
∑

0�i�[ s
2 ]

ci

(s + 1)!

(s − 2i + 1)!
2s−2i(n + 1)s−2i+1.

(8)

Hence, we can define c0 = 1 and then recurrently

n∑
i=0

ci

(2n − 2i + 1)!
= 0, n � 1. (9)

Dividing Eq. (8) by s+1, we get the first statement of the lemma. Thus, c0 = 1, c1 = − 1
3! , c2 = 7

3·5! , c3 = − 31
3·7! .

The second statement of the lemma is correct for i = 0. Suppose that it is correct for i � n − 1, n � 1, i.e.,
ci = ri

(2i+1)! . Hence, Eq. (9) multiplied by (2n + 1)! gives

n−1∑
i=0

ri

2n − 2i + 1

(
2n + 1

2i + 1

)
= −(2n + 1)!cn.

The sum on the left-hand side is a rational number and it has an odd denominator, the parity of numerator
coincides with the parity of the number

∑n−1
i=0

(2n+1
2i+1

) = 22n − 1 (since ri by assumption are rational numbers
with odd numerators and odd denominators), and this number is odd. The lemma is proved.

Sum (7) can be written as

Ds =
∑

0�i�[ s
2 ]

ri

2i + 1

(
s

2i

)
1

s − 2i + 1
2s−2i(n + 1)s−2i+1.

Define by π(t) the power of 2 in the canonical expression of the rational number t . It is easy to check that for
the integer t � 4 we have the inequality t − π(t + 1) � 4 and, therefore, all the coefficients of sum (7) at the
powers of n + 1 not less than 5

are divisible by 24. (10)

Let for convenience write down the two last terms of (7):

D2s = · · · + 4

3
rs−1 · s · (n + 1)3 + rs

2s + 1
(n + 1),

D2s+1 = · · · + 2

3
rs−1(2s + 1) · s · (n + 1)4 + rs(n + 1)2.

(11)
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Note that

f3(n) − f1(n) = 4

3
(n + 1)3 − 4

3
(n + 1)

f4(n) − f2(n) = 8

3
(n + 1)4 − 8

3
(n + 1)2

f5(n) − f3(n) = 27

15
(n + 1)5 − 32

3
(n + 1)3 + 32

15
(n + 1).

This gives a hint to formulate the following lemma.

LEMMA 3. Let, for k � 1,

f2k+2 − f2k = a
(k)
2k+2(n + 1)2k+2 + · · · + a

(k)
4 (n + 1)4 + a

(k)
2 (n + 1)2,

f2k+1 − f2k−1 = b
(k)
2k+1(n + 1)2k+1 + · · · + b

(k)
3 (n + 1)3 + b

(k)
1 (n + 1).

Then

π(a
(k)
2 ) = π(a

(k)
4 ) = 3k, π(a

(k)
2i ) � 3k + 5,

π(b
(k)
1 ) = π(b

(k)
3 ) = 3k − 1, π(b

(k)
2i−1) � 3k + 1, if i > 2.

(12)

Proof . Suppose that the second formula of (12) is correct. Then f2k+2(n) − f2k(n) = b
(k)
2k+1D2k+1 +

· · · + b
(k)
3 D3 + b

(k)
1 D1. Let us express D via (7). Then every power of n + 1 not less than 5 will appear

with the coefficients for which π � 3k + 1 + 4 = 3k + 5 (we use ((10) and (12)). Further, (11) gives
a

(k)
2 = b

(k)
1 r0 + b

(k)
3 r1 + · · · + b

(k)
2k+1rk. For all the summands, except for the first two, we have π � 3k + 1.

Further, f2k+1(0) − f2k−1(0) = b
(k)
2k+1 + · · · + b

(k)
3 + b

(k)
1 = 0, hence, π(b

(k)
3 + b

(k)
1 ) � 3k + 1 and, therefore,

π(b
(k)

1 − b
(k)

3 ) = π((b
(k)

1 + b
(k)

3 ) − 2b
(k)

3 ) = 3k. Since r0 = 1, r1 = −1, we have π(a
(k)

2 ) = 3k. Similarly, (11)
gives

a
(k)
4 = b

(k)
3

2

3
· 3 · r0 + · · · + b

(k)
2k+1

2

3
(2k + 1)krk−1.

For all the summands except the first, π � 3k + 2, which gives π(a
(k)
4 ) = 3k. Suppose that the first formula of

(12) is correct. Then

f2k+3(n) − f2k+1(n) = a
(k)
2k+2D2k+2 + · · · + a

(k)
4 D4 + a

(k)
2 D2.

Every power of n + 1 not less than 7 will appear with the coefficients for which π � 3k + 5 + 4 > 3k + 4 (we
use (12) and (10) again). The fifth power will appear with similar coefficients except the one which is obtained
from a

(k)
4 D4 (and for this coefficient we have π = 3k + 4). Further, (11) gives

b
(k+1)
1 = a

(k)
2

r1

3
+ a

(k)
4

r2

5
+ · · · + a

(k)
2k+2

rk+1

2k + 3
.

For all the summands, except the first two, π � 3k+5. The first two are − 1
3a

(k)
2 + 7

15a
(k)
4 = − 1

3 (a
(k)
2 +a

(k)
4 )+ 4

5a
(k)
4 ,

and since similarly π(a
(k)
2 + a

(k)
4 ) � 3k + 5, we have π(b

(k+1)
1 ) = 3k + 2. Equality (11) gives

b
(k)
3 = 4

3
r0a

(k)
2 + 4

3
r1 · 2a

(k)
4 + · · · + 4

3
rk(k + 1)a

(k)
2k+2,
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and, therefore, π(b
(k+1)
3 ) = 3k + 2. The lemma is proved.

The proof of the Rödseth–Gupta theorem. We derive from Eq. (12) that for any odd number n 23k+2|(f2k+2(n)−
f2k(n)) and 23k|(f2k+1(n)−f2k−1(n)), therefore 2µ(k)|fk+2(n)−fk(n) (see (4)) and the division is precise if and
only if

n ≡ 1(mod 4). (13)

Note that every partition of the number 2sn can be expressed as 2sn = ∑
a�s 2a + ∑

b>s 2b = ∑
a�s 2a + 2s+1t .

It is clear that the second sum can be written in b(t) ways. Consequently,

b(2sn) =
∑

0�t�[ n
2 ]

bs

(
2s(n − 2t)

) · b(t) =
∑

0�t�[ n
2 ]

fs(n − 2t) · b(t)

and, therefore,

b(2s+2n) − b(2sn) =
∑

0�t�[ n
2 ]

(
fs+2(n − 2t) − fs(n − 2t)

) · b(t).

If n is odd, then the first multiplier is divisible by 2µ(s). Further, b(0) = b(1) = 1, and b(t) is even for t � 2.
Hence,

b(2s+2n) − b(2sn) ≡ (
fs+2(n) − fs(n)

) + (
fs+2(n − 2) + fs(n − 2)

)(
mod 2µ(s)+1).

(This equality is true for n = 1, since fs(−1) = 0). It remains to note that one of the numbers n or n − 2 ≡
1(mod 4) and the other ≡ 3(mod 4). Now we can use (13) to obtain (4). The theorem is proved.

3. GENERALIZATION OF THE THEOREM

We succeeded in proving the Rödseth–Gupta theorem because, for small k, the value of π of the coefficients
at small powers of n+1 of the polynomials fk+2 −fk is more than zero. Hence, for the polynomials fk+3 −fk+1
the value of π increases. We can investigate other linear combinations of fk and investigate the value of π of
the coefficients at small powers of n + 1. The generalization is possible in all the proofs of the Rödseth–Gupta
theorems but this has not been done so far. One of the possible realizations of this idea is as follows.

Define by Uk some linear combination of the polynomials fk, fk+2, . . . , fk+2t :

Uk =
t∑

i=0

θifk+2i , where θi ∈ Z,

t∑
i=0

θi = 0. (14)

In other words, Uk is some linear combination of (n + 1)k+2t , (n + 1)k+2t−2, . . . .

THEOREM 1. Let

Uk = · · · + c(n + 1)4+δk + b(n + 1)2+δk + a(n + 1)δk ,

where δk = 2 if k is even and δk = 1 if k is odd. Suppose that for some k the following conditions hold:

π(a) = π(b) = τ, π(d) � τ + 2 for the rest coefficients c, . . . .

Then for any odd n the expression

As =
t∑

i=0

θi · b(2s+2in) (15)

is divisible by the [ 3(s−k)+2τ+2+δk

2 ]th power of two.
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Proof . The proof follows from the argument of Lemma 3 and subsequent considerations, therefore we shall
only sketch it here. Let

U2l−1 = · · · + b
(l)
5 (n + 1)5 + b

(l)
3 (n + 1)3 + b

(l)
1 (n + 1),

U2l = · · · + a
(l)
6 (n + 1)6 + a

(l)
4 (n + 1)4 + a

(l)
2 (n + 1)2.

(16)

Suppose that for l we have π(a
(l)
2 ) = π(a

(l)
4 ) = γ and π(a

(l)
2i ) � γ + 2, for i > 2. Then U2l+1 = · · · + a

(l)
6 D6 +

a
(l)
4 D4 + a

(l)
2 D2. Every power of n + 1 � 7 will appear in U2l+1 with the coefficients for which π � γ + 2 + 4

(from (10)). The fifth power will appear with similar coefficients with the exception of a coefficient which is
obtained from a

(l)
4 D4 (for it π = γ + 4). In all these cases π(b

(l+1)
2i+1 ) � γ + 4, i � 2. Further,

b
(l+1)
1 = a

(l)
2

r1

3
+ a

(l)
4

r2

5
+ · · · + a

(l)
2l+2t

rl+t

2l + 2t + 1

(from (11)). In Lemma 3 for π of the coefficients a
(l)
2i we had a bigger reserve. Nevertheless,

a
(l)
2

r1

3
+ a

(l)
4

r2

5
= −1

3

(
a

(l)
2 + a

(l)
4

) + 4

5
a

(l)
4 = 1

3

k+t∑
i=3

a
(l)
2i + 4

5
a

(l)
4

((14) and (16) for n = 0 gives U2l (0) = ∑k+t
i=0 a

(l)
2i = 0). Substituting this expression into the formula for b

(l+1)
1

we obtain that the coefficients at a
(l)
2i for i � 3 are equal to ( ri

2i+1 + 1
3), hence, for all the summands of the sum

(except the first 4
5a

(l)
4 ), the value of π will be � γ + 2 + 1 = γ + 3. Thus, π(b

(l+1)
1 ) = γ + 2. Further,

b
(l+1)
3 = 4

3
r0a

(l)
2 + 4

3
r1 · 2 · a(l)

4 + · · · + 4

3
rl+t−1(l + t)a

(l)
2l+2t

(we use (10) again) and this gives π(b
(l+1)
3 ) = γ + 2.

Now if for some l we have π(b
(l)
1 ) = π(b

(l)
3 ) = γ , π(b

(l)
2i+1) � γ + 2 for i � 2, then as in Lemma 3

π(a
(l)
2 ) = π(a

(l)
4 ) = γ + 1, π(a

(l)
2i ) � γ + 3 for i > 2. We see that when passing from Uk to Uk+1 the value

of π of the two last coefficients at n + 1 increases by 2 if k is even and by 1 if k is odd. What remains is
an easy exercise. For the last two coefficients of Uk+2l, the value of π equals τ + 3l whereas for the remining
ones π � τ + 3l + 2. For the last two coefficients of Uk+2l+1 the value of π equals τ + 3l + δk whereas for the
remaining ones π � τ + 3l + δk + 2.

Similarly, for odd n the number Uk+2l(n) is divisible by 2τ+3l+δk , Uk+2l+1(n) is divisible by 2τ+3l+δk+δk+1 =
2τ+3l+3, and the division is exact if and only if n ≡ 1(mod 4). The argument following Lemma 3 can be repeated
without any change. It remains to note that the correspondence k + 2l → τ + 3l + δk , k + 2l + 1 → τ + 3l + 3
coincides with s → [ 3(s−k)+2τ+2+δk

2 ] for s � k. The theorem is proved.

4. CONCLUSIONS

1. The Rödseth–Gupta theorem is a trivial corollary of Theorem 1.
2. Calculations show that

f6 + 7f4 − 8f2 = 211

45
(n + 1)6 − 29

9
(n + 1)4 + 29

45
(n + 1)2.

Hence, we can apply the theorem with k = 2, τ = 9. Therefore, for odd n we have the following claim:
b(2s+4n) + 7b(2s+2n) − 8b(2sn) is exactly divisible by the [ 3s

2 ] + 8 power of two for s � 2.
To end, we shall list some more properties of the sequence b(n) (this generalizes the results obtained by

Churchhouse.) Some elementary properties of this sequence were proved in [1]. Namely:
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1. b(n) = 0(mod 2) for all n � 2.

2. b(n) = 0(mod 4) if and only if n or n − 1 = 4m(2k + 1), m � 1.

3. b(n) �= 0(mod 8) for all n.

Let w(n) be the Thue–Morse sequence with w(0) = 0 and w(1) = 1 and let τ(n) be the Rudin–Shapiro
sequence with τ(0) = 0 and τ(3) = 1. It is easy to see that w(n) = 0 if the sum of the digits of n in the binary
expansion is even and w(n) = 1 if this sum is odd. In the same way, τ(n) = 0 if in the binary expansion of the
number n there is an even number of the blocks of 11 and τ(n) = 1, otherwise. Then, using the mathematical
induction on the argument (in the first three cases), we can easily prove the following theorem.

THEOREM 2.

1. b(22s+1(2n + 1)) ≡ 10 + 20w(n) + 8w([n/2]) + 16τ(n)(mod 32) for s � 1.

2. b(4n + 2) ≡ 2 + 4w(n) + 8w([n/2]) + 16τ(n)(mod 32).

3. b(22s(2n + 1)) ≡ 4 + 8w([n/2]) + 16w(n)(mod32) for s � 1.

4. For every s, 3 � s � 14, s �= 8, infinitely many b(n) are divisible by s.
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