## Laurent Series and z-Transform

- Geometric Series Causality A

|   |                                 | 1 |   | 7   |   |   |                            | _ | _ |
|---|---------------------------------|---|---|-----|---|---|----------------------------|---|---|
|   | ( )                             |   | ч | - 1 | u | n | S                          | 7 | Т |
| _ | $\mathbf{\mathbf{\mathcal{C}}}$ |   | J | _   | V | V | $\boldsymbol{\mathcal{L}}$ | u | L |

Copyright (c) 2016 - 2018 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

### 2 formulas of z

$$\frac{3}{2} \frac{-1}{(2-0.5)(2-2)} = \left( \frac{1}{\xi-0.5} - \frac{1}{\xi-2} \right)$$

$$\frac{3}{3} \frac{(5-5)(5-0.5)}{}$$

$$\frac{3}{2} \frac{-1}{(2-0.5)(2-2)} = \frac{3}{2} \frac{1}{3} \left( \frac{1}{\xi-0.5} - \frac{1}{\xi-2} \right)$$

$$\frac{\xi^{-1}}{\xi^{-0.5}} - \frac{1}{\xi^{-2}}$$

$$\frac{3}{2} \frac{-1}{(2^{\frac{1}{2}} - 0.5)(2^{\frac{1}{2}} - 2)} = \frac{3}{2} \frac{2}{3} \left( \frac{1}{\xi^{-1} - 0.5} - \frac{1}{\xi^{-1} - 2} \right) \\
= \left( \frac{2}{2\xi^{-1} - 1} - \frac{0.5}{0.5\xi^{-1} - 1} \right) \\
= \left( \frac{2\xi}{2 - \xi} - \frac{0.5\xi}{0.5 - \xi} \right) \\
= \left( \frac{-2\xi}{\xi - 2} + \frac{0.5\xi}{2 - 0.5} \right) \\
= \xi \left( \frac{-2}{\xi - 2} + \frac{0.5\xi}{2 - 0.5} \right) \\
= \xi \left( \frac{-\frac{3}{2}\xi}{(\xi - 2)(\xi - 0.5)} \right) \\
= \frac{3}{2} \frac{-\xi^{2}}{(\xi - 2)(\xi - 0.5)}$$

$$\frac{3}{2} \frac{-2^{2}}{(2-2)(2-0.5)} = \frac{3}{2} \frac{2}{3} \left( \frac{0.52}{(2-0.5)} - \frac{22}{(2-2)} \right)$$

f(z), g(z): causal form of Laurent series nominator polynomial of & denominator polynomial of & f(z'), g(z'): conti-causal form of Laurent series nominator polynomial of & denominator polynomial of 21 X(Z), Y(Z): causal form of Z-Trans nominator polynomial of 21 denominator polynomial of 21 X(ET). Y(ET): conti-rausal form of Z-Trans nominator polynomial of & denominator polynomial of &

### 2 formulas

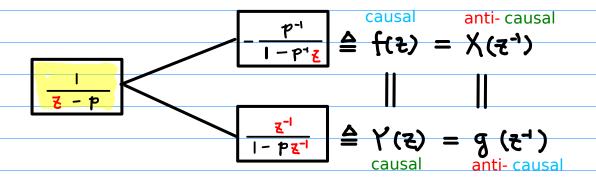
Simple Pole Form

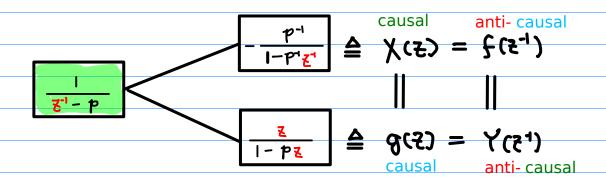




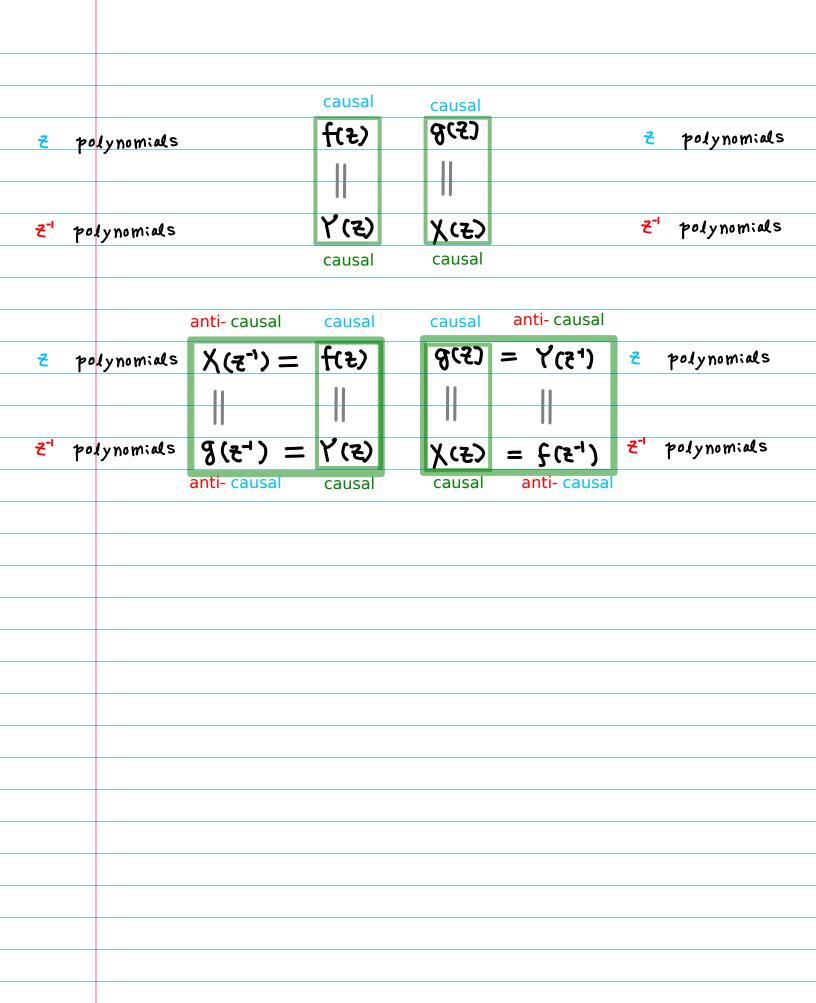
#### 2 representations each

Geometric Series Form





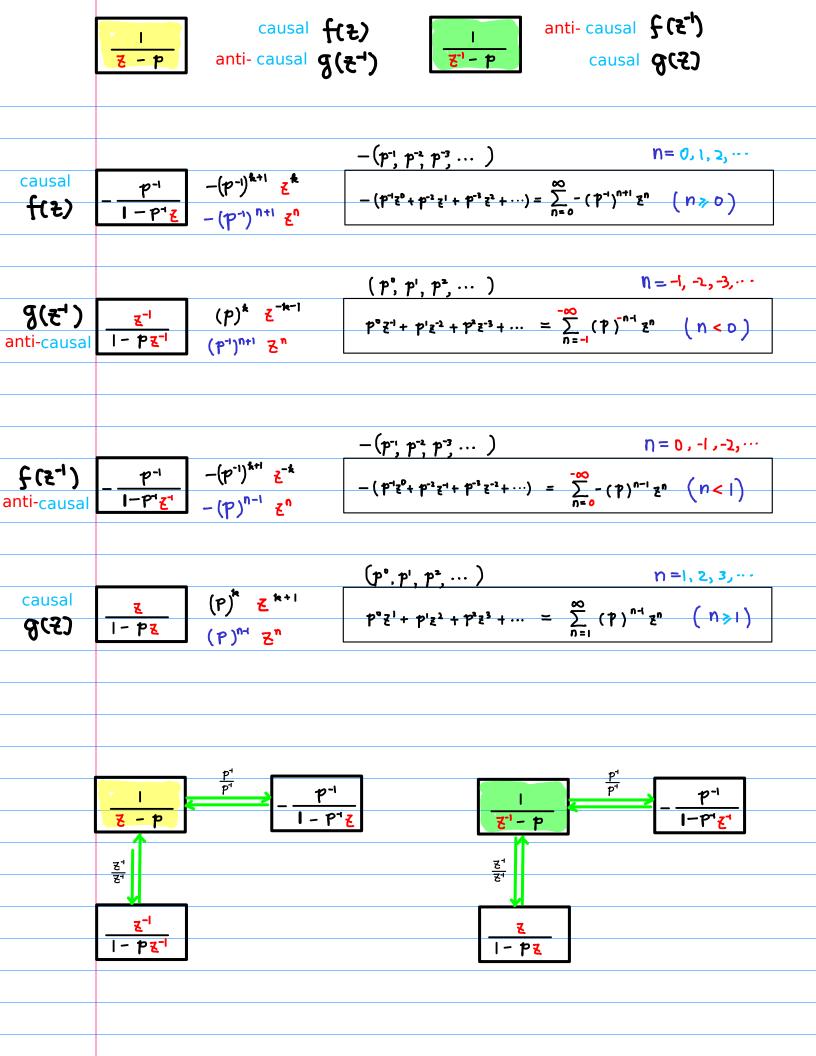
Simple Pole Form

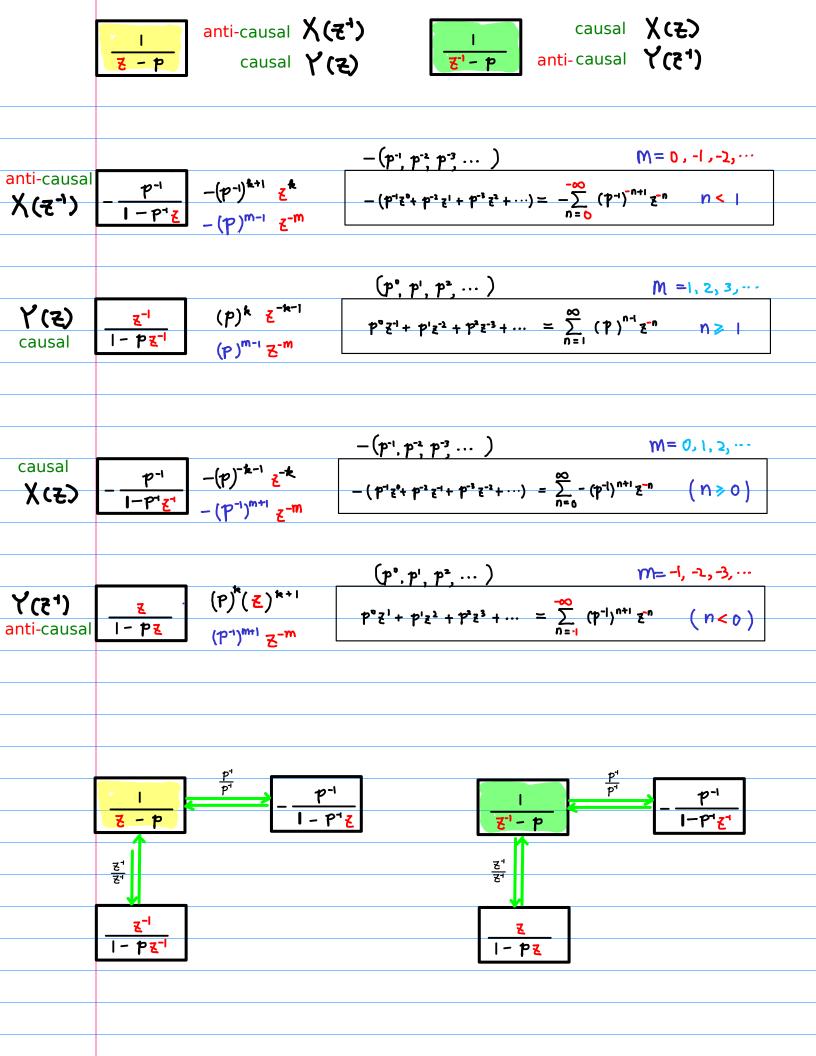


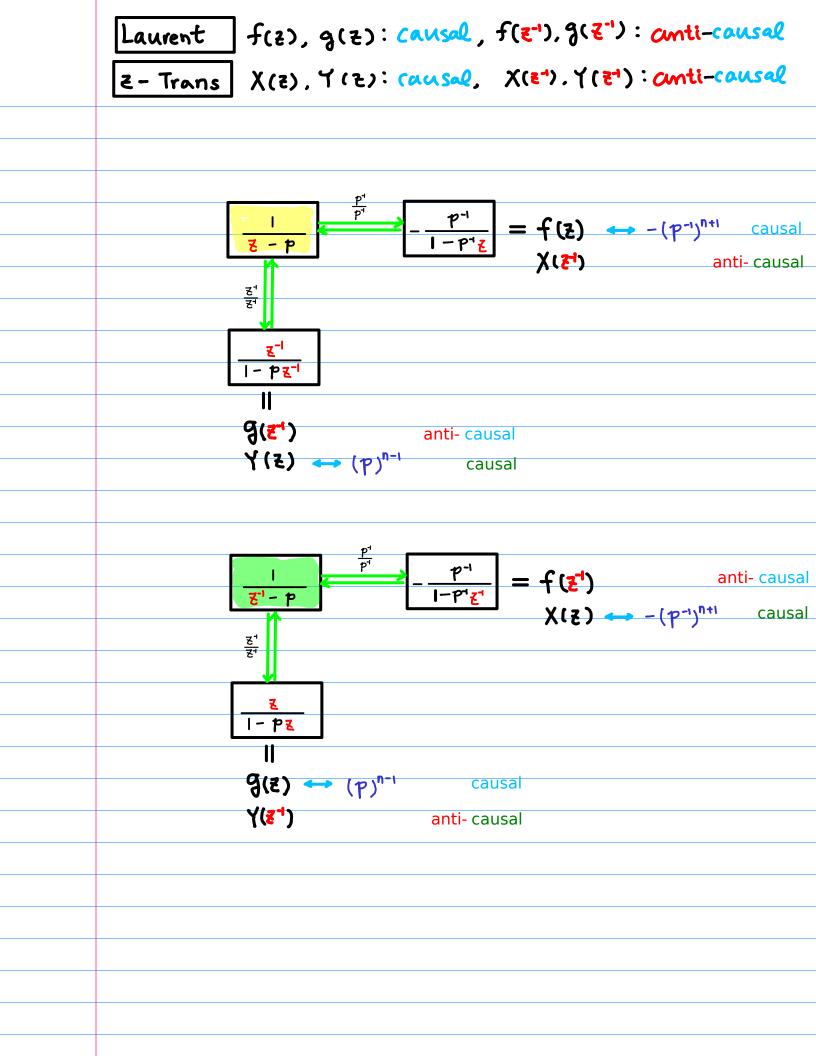
7 - p

| p-1     | = -(p-1)*+1 <*                 | k    | -(p <sup>-1</sup> , p <sup>-2</sup> , p <sup>-3</sup> ) |             |                      |
|---------|--------------------------------|------|---------------------------------------------------------|-------------|----------------------|
| 1 - P'Z | () - (p-1) n+1 Zn              | 'n   | n= 0, 1, 2,                                             | cansal      | f(z)                 |
|         | 3 - (p-1)-m+1 z-m              | -M   | M=0,-1,-2,···                                           | anti-causal | <b>太(圣」</b> )        |
|         |                                |      |                                                         |             |                      |
| 론-1     | $= (p)^k  \mathbf{\xi}^{-k-1}$ | -k-1 | (p°, p', p²,)                                           |             |                      |
| 1- pz-1 | (P-1) n+1 Zn                   | n    | n= -1, -2, -3,                                          | anti-causal | g ( <del>Z</del> -1) |
|         | 2 (p-1)-m+1 Z-m                | -m   | M= , 2, 3,                                              | causal      | ٧Œ)                  |
|         |                                |      |                                                         |             |                      |

<u>£,1</u> – 15



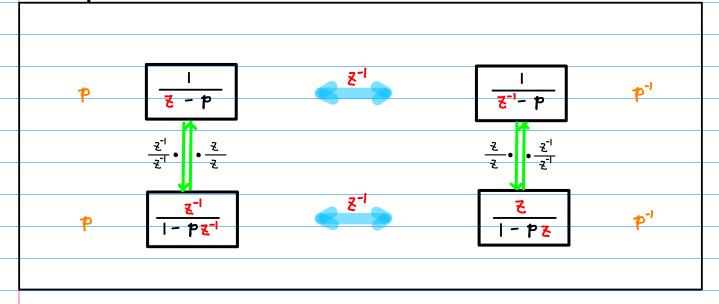


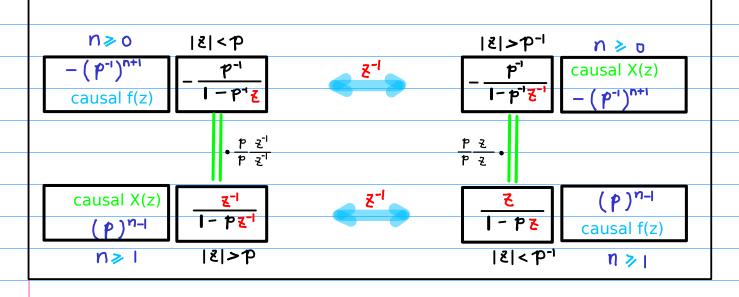


2 formulas of & f(z), g(z) 2 representations f(z'), g(z')

 $\chi(\xi)$ ,  $\gamma(\xi)$  $X(\xi'), Y(\xi')$ 

\* Simple Pale Forms

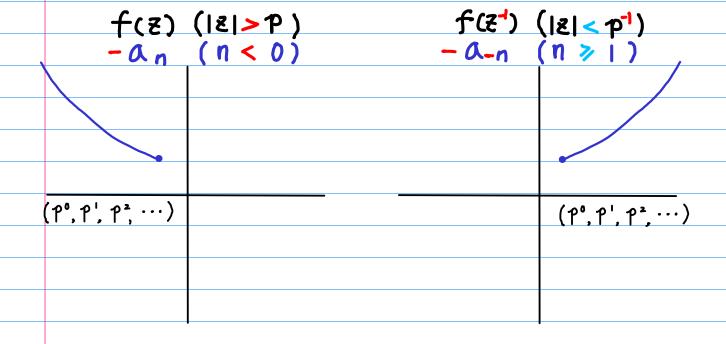




### Laurent Series

|              |       |                                     | anti-             | causal   |          |                                                               |
|--------------|-------|-------------------------------------|-------------------|----------|----------|---------------------------------------------------------------|
|              |       | causa                               | 1                 |          |          |                                                               |
|              |       |                                     |                   |          |          |                                                               |
| causa        | f(2)  | (121-10)                            | $\leftrightarrow$ | <b>A</b> | (n ≥ n)  | - (p <sup>-1</sup> , p <sup>-2</sup> , p <sup>-3</sup> , ···) |
|              |       |                                     |                   |          |          |                                                               |
| anti- causal | f(E)  | (  &  <b>&gt;</b> p <sup>-1</sup> ) | $\leftrightarrow$ | Q-n      | (n <   ) | - (p <sup>-1</sup> , p <sup>-2</sup> , p <sup>-3</sup> , ···) |
|              |       |                                     |                   |          |          |                                                               |
| anti- causal | f(8)  | (181>7)                             | $\leftrightarrow$ | -an      | (n < 0)  | (p°,p',p²,···)                                                |
| causal       | f(E') | ( &  <p<sup>-1)</p<sup>             | $\leftrightarrow$ | - a-n    | (n > 1)  | (p°, p', p², ···)                                             |
|              |       |                                     |                   |          |          |                                                               |
|              |       |                                     |                   |          |          |                                                               |
|              |       |                                     |                   |          |          |                                                               |
|              |       |                                     |                   |          |          |                                                               |
|              |       |                                     |                   |          |          |                                                               |
|              |       |                                     |                   |          |          |                                                               |
|              |       |                                     |                   |          |          |                                                               |
|              |       |                                     |                   |          |          |                                                               |
|              |       |                                     |                   |          |          |                                                               |
|              |       |                                     |                   |          |          |                                                               |
|              |       |                                     |                   |          |          |                                                               |
|              |       |                                     |                   |          |          |                                                               |
|              |       |                                     |                   |          |          |                                                               |
|              |       |                                     |                   |          |          |                                                               |

| f(z) | ( &  <p) (n="" 0)<="" th="" ≥=""><th>f(₹<mark>'</mark>) (</th><th>( &amp; <i>&gt;</i>p<sup>-1</sup>)<br/>(n &lt;   )</th></p)> | f(₹ <mark>'</mark> ) ( | ( &  <i>&gt;</i> p <sup>-1</sup> )<br>(n <   ) |
|------|--------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------------------------------|
| an   | (n ≥ o)                                                                                                                        | a-n                    | (n <   )                                       |
|      |                                                                                                                                |                        |                                                |
|      |                                                                                                                                |                        |                                                |
|      |                                                                                                                                |                        |                                                |
|      | - (p-1, p-2, p-3, ···)                                                                                                         | - (p-1, p-2, p-3, ···) |                                                |
|      |                                                                                                                                |                        |                                                |
|      |                                                                                                                                |                        |                                                |
|      |                                                                                                                                |                        |                                                |
|      |                                                                                                                                |                        |                                                |
|      |                                                                                                                                |                        |                                                |



Geometric Series Forms

$$f(z) = \frac{p^{-1}}{1 - p^{+}z}$$

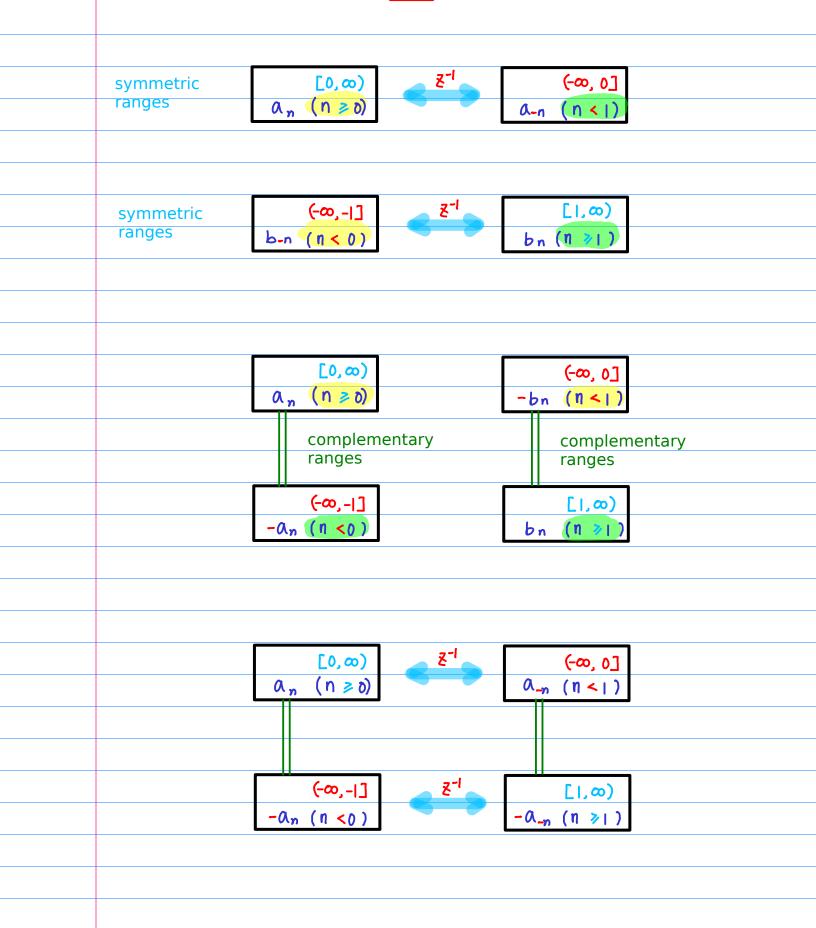
$$\frac{z}{|-pz|} = g(z) p^{-1}$$

$$f(z) = \begin{bmatrix} |z|$$

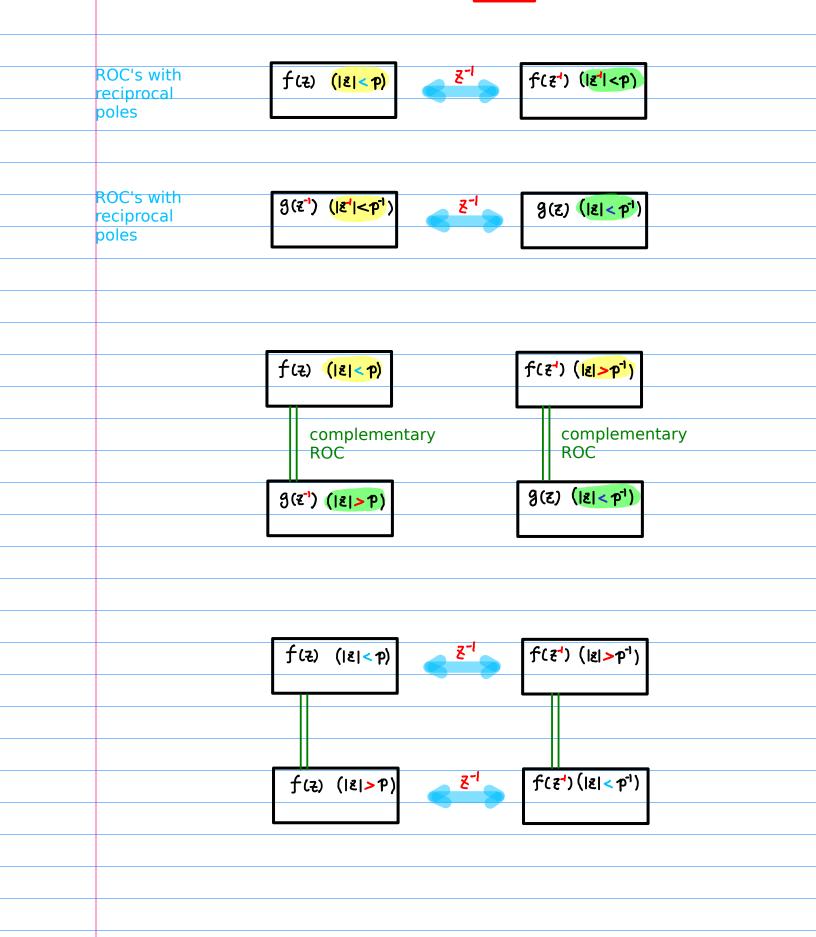
$$f(z) = \begin{bmatrix} -\frac{p^{-1}}{1 - p^{-1}z^{-1}} & \frac{z^{-1}}{1 - p^{-1}z^{-1}} & -\frac{p^{-1}}{1 - p^{-1}$$

$$\frac{z}{|-pz|} = g(z)$$

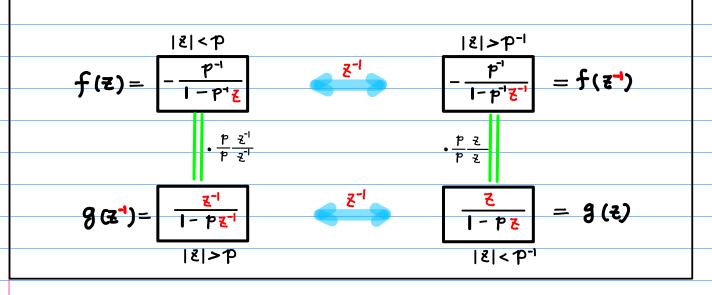
# Laurent Series an f(z)

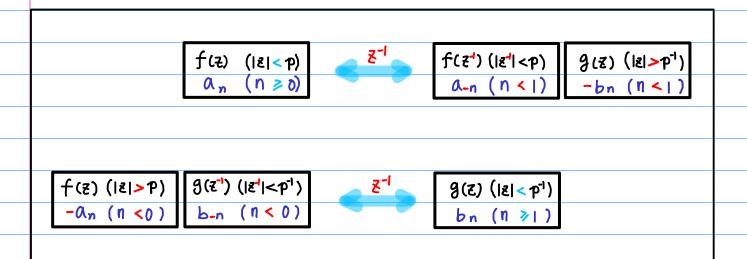


# Laurent Series an f(z)

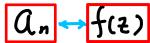


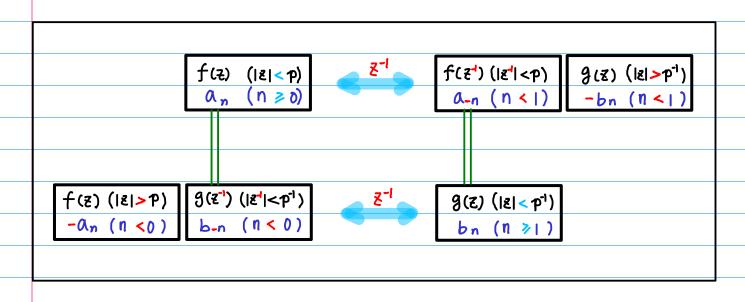
# Laurent Series an f(z) bn = g(z)





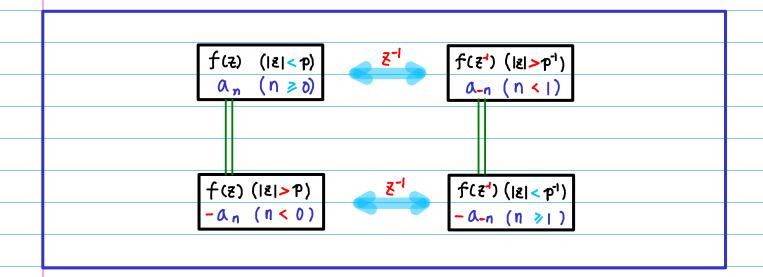
## Laurent Series using only an f(2)





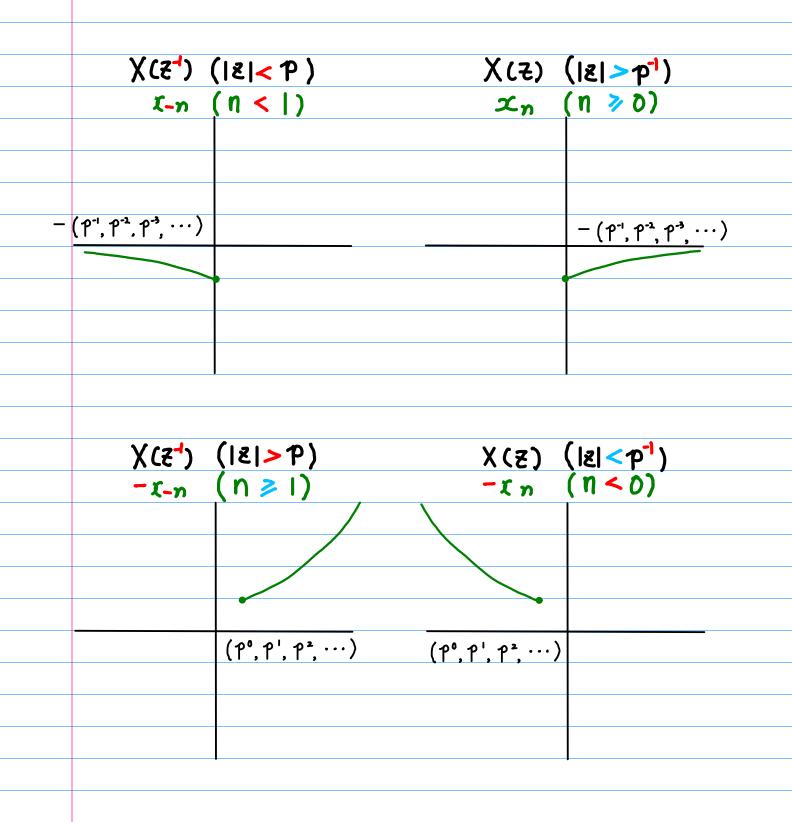
$$a_{-n} = -b_n$$
  $-a_{-n} = b_n$ 

$$-a_{-n} = b_{n}$$



# 2 - Transform

| anti- causa | $\chi(\mathcal{E}^{-1}) \left( \mathcal{E}  < \mathcal{P}\right) \iff \chi_{-n} \left( n  <  n \right) - (p^{-1}, p^{-2}, p^{-3}, \cdots)$                   |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             |                                                                                                                                                              |
| causal      | $X(z)$ ( z > $p^{-1}$ ) $\leftrightarrow$ $x_n$ ( $n > 0$ ) $-(p^{-1}, p^{-2}, p^{-2}, \cdots)$                                                              |
|             |                                                                                                                                                              |
|             |                                                                                                                                                              |
|             |                                                                                                                                                              |
| causa       | $\chi(\mathcal{E}')$ ( $ \mathcal{E}  > \mathcal{P}$ ) $\longleftrightarrow$ $-x_{-n}$ ( $n \ge 1$ ) ( $\mathcal{P}', \mathcal{P}', \mathcal{P}^2, \cdots$ ) |
|             |                                                                                                                                                              |
| anti- causa | $X(z)$ ( $ z  < p^{-1}$ ) $\leftrightarrow$ $-x_n$ ( $n < 0$ ) ( $p^0, p^1, p^2, \cdots$ )                                                                   |
|             |                                                                                                                                                              |
|             |                                                                                                                                                              |
|             |                                                                                                                                                              |
|             |                                                                                                                                                              |
|             |                                                                                                                                                              |
|             |                                                                                                                                                              |
|             |                                                                                                                                                              |
|             |                                                                                                                                                              |
|             |                                                                                                                                                              |
|             |                                                                                                                                                              |
|             |                                                                                                                                                              |
|             |                                                                                                                                                              |
|             |                                                                                                                                                              |
|             |                                                                                                                                                              |
|             |                                                                                                                                                              |
|             |                                                                                                                                                              |
|             |                                                                                                                                                              |
|             |                                                                                                                                                              |



Geometric Series Forms

$$-\frac{1-b_1 \xi_{-1}}{b_{-1}} = \chi(\xi)$$

$$|\xi| < p$$

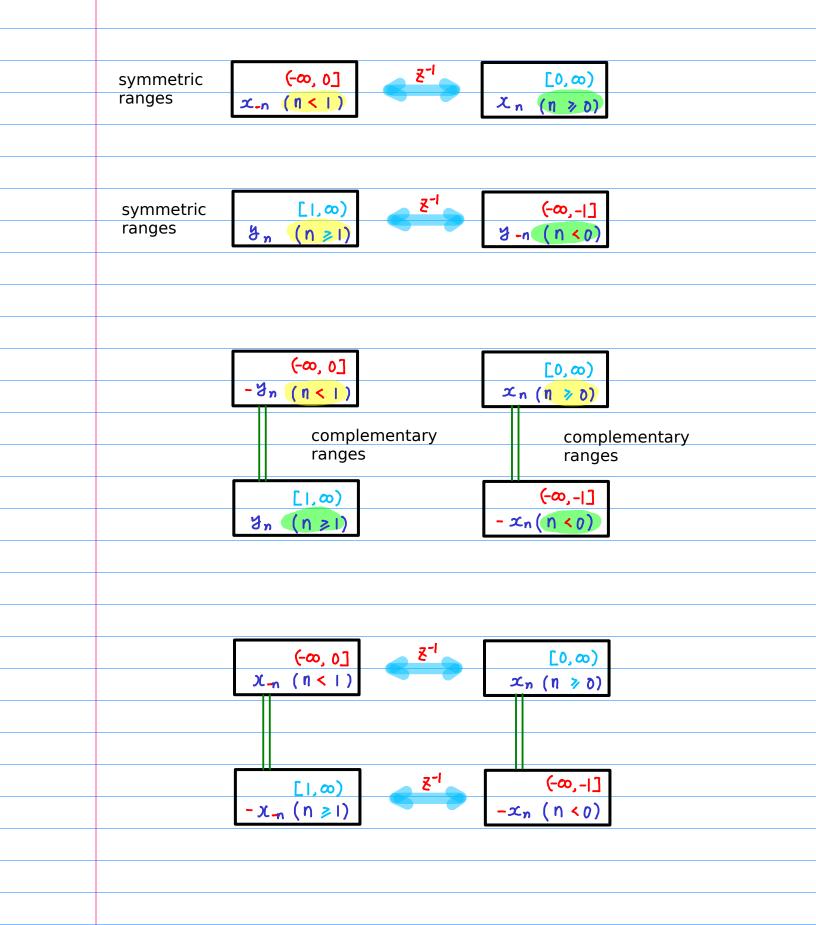
$$|\xi| < p$$

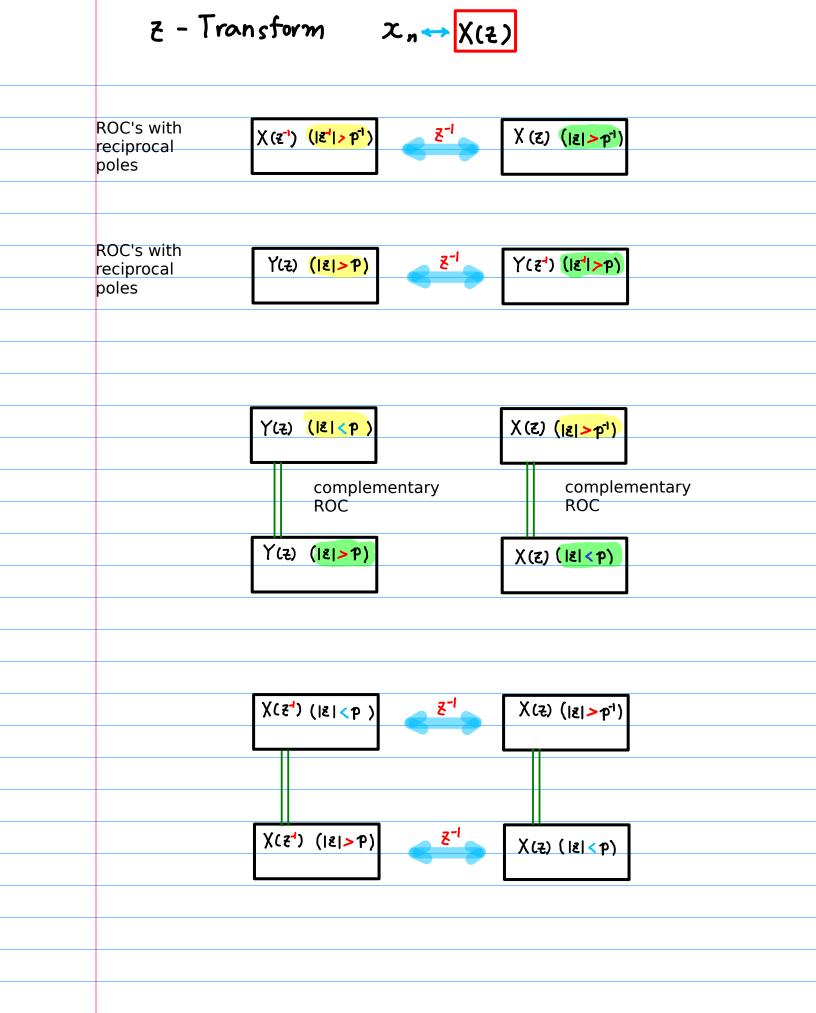
$$|-\frac{p^{-1}}{1 - p^{+}\xi}$$

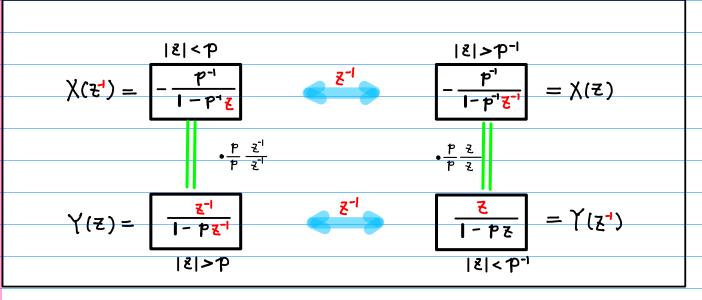
$$\frac{|z| > p^{-1}}{|-p^{-1}z^{-1}|} = \chi(z)$$







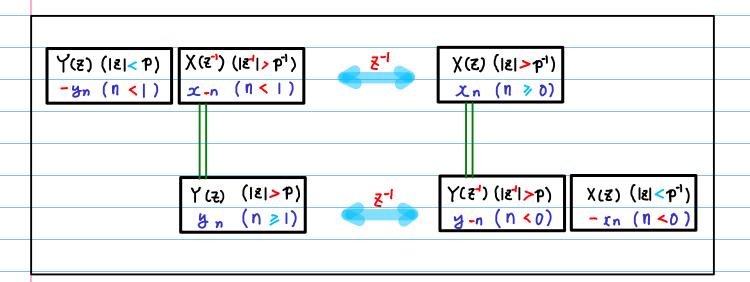




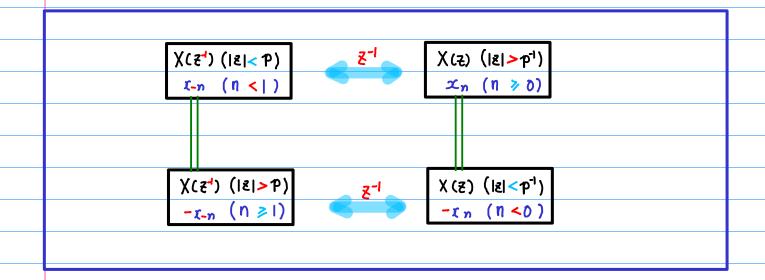




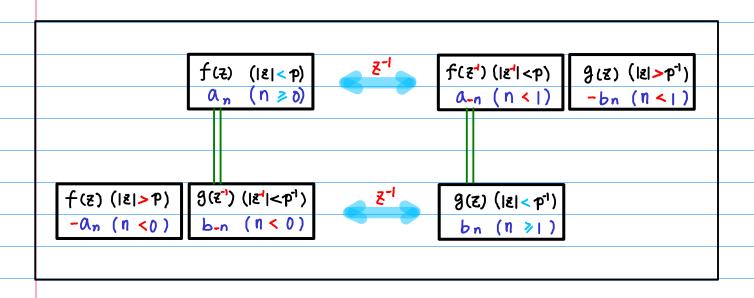


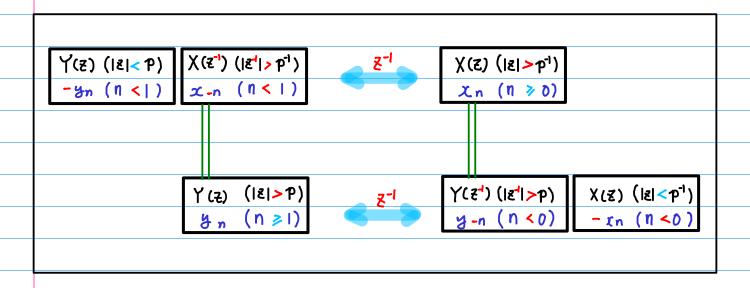


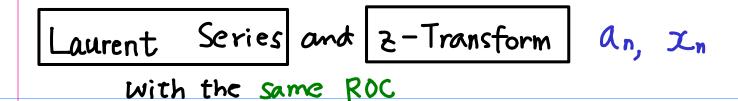
$$X_{-n} = -y_n$$
  $-x_{-n} = y_n$ 

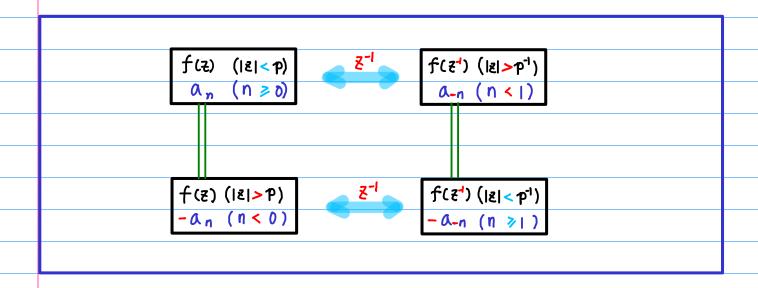




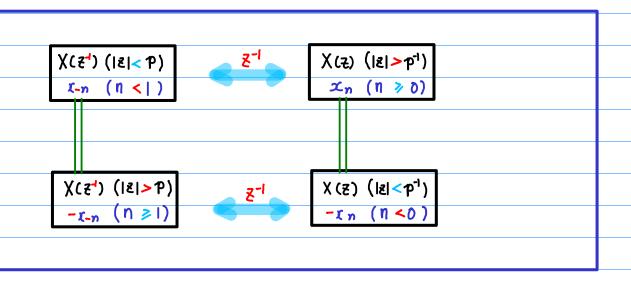


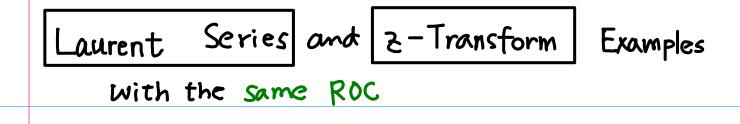


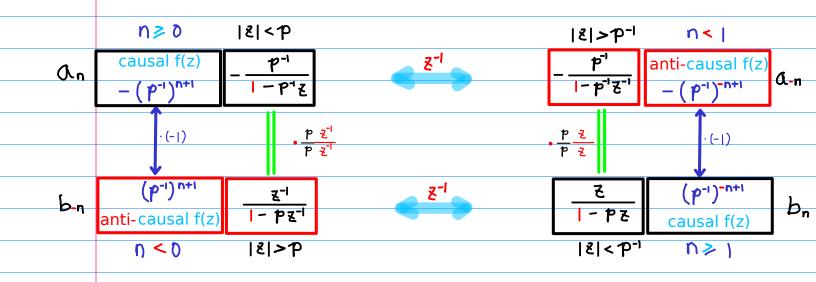




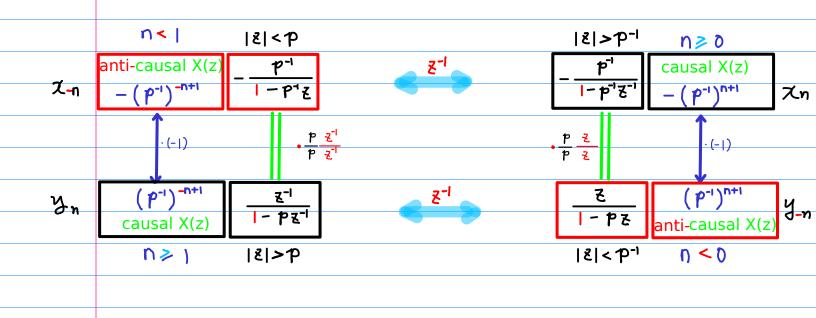
$$a_n = x_n$$







#### 2-Transform



Laurent Series and 2-Transform

$$f(z) \ (|z| < p) \iff \alpha_n \ (n \ge 0) \ -(p^n, p^n, p^n, p^n, \cdots)$$

$$X(z^n) \ (|z| < p) \iff x_n \ (n < |) \ -(p^n, p^n, p^n, p^n, \cdots)$$

$$f(z^n) \ (|z| > p^n) \iff \alpha_n \ (n < |) \ -(p^n, p^n, p^n, p^n, \cdots)$$

$$X(z) \ (|z| > p^n) \iff x_n \ (n \ge 0) \ -(p^n, p^n, p^n, p^n, \cdots)$$

$$f(z) \ (|z| > p) \iff -\alpha_n \ (n < 0) \ (p^n, p^n, p^n, p^n, \cdots)$$

$$X(z^n) \ (|z| > p) \iff -x_n \ (n \ge 1) \ (p^n, p^n, p^n, p^n, \cdots)$$

$$X(z^n) \ (|z| < p^n) \iff -\alpha_n \ (n \ge 1) \ (p^n, p^n, p^n, p^n, \cdots)$$

$$X(z) \ (|z| < p^n) \iff -\alpha_n \ (n \ge 1) \ (p^n, p^n, p^n, p^n, \cdots)$$

```
X(z¹) <mark>(|&|< 1)</mark>
                                              X(z) (|z| > p^{-1})
          I-n (n < |)
                                                       (n > 0)
                                               x_n
                                             f(z¹) (|z|>p¹)
       f(元) (121<中)
         a<sub>n</sub> (n ≥ 0)
                                               a-n
                                                       (n < 1)
- (p^{-1}, p^{-2}, p^{3}, \cdots) - (p^{-1}, p^{-2}, p^{3}, \cdots) - (p^{-1}, p^{-2}, p^{-3}, \cdots)
                                                         - (p-1, p-2, p-3, ···)
       X(z') (|z| > P)
                                            X(を) (|&|<p<sup>-1</sup>)
       -x-n (n > 1)
                                            -xn (n<0)
       f(z) (|z|>P)
                                             f(z1) (|z| < p1)
       -\alpha_n \quad (n < 0)
                                           - a-n (n > 1)
 (p°, p', p', ···)
                                        (p°, p', p', ···)
                   (p°, p', p², ···)
                                                          (p°, p', p², ···)
```

$$-(p^{1}, p^{2}, p^{3}, ...) - (p^{1}, p^{1}, p^{3}, ...)$$

$$(p^{0}, p^{1}, p^{2}, ...) - (p^{0}, p^{1}, p^{2}, ...)$$

$$f(z) g(z)$$
  
 $f(z) g(z)$ 

$$\begin{cases}
f(z) & g(z) & Y(z) \\
f(z) & g(z) & Y(z)
\end{cases}$$

$$[0,\infty)$$
  $(-\infty,0]$   $(-\infty,-1]$   $[1,\infty)$ 

$$(-\infty, 0]$$
  $[0, \infty)$   $[-\infty, -1]$ 

$$f(z)$$
  $g(z)$   $Y(z)$   $X(z)$   $a_n a_n$   $f(z)$   $g(z)$   $Y(z)$   $Y(z)$   $X(z)$ 

Y(Z) X(Z) -an-an -xn-xn

**2**n 2n

$$-(p_{1}^{1}, p_{2}^{2}, p_{3}^{2}, \cdots) -(p_{1}^{1}, p_{2}^{2}, p_{3}^{3}, \cdots)$$

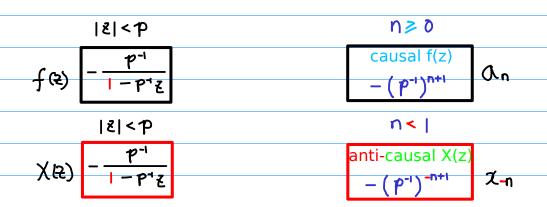
$$(p_{2}^{0}, p_{1}^{1}, p_{2}^{2}, \cdots) -(p_{2}^{0}, p_{1}^{1}, p_{2}^{2}, \cdots)$$

| an an           |
|-----------------|
| An A-n b-n bn   |
|                 |
|                 |
| Xn Xn<br>Yn Y-n |
| yn y-n          |
|                 |
|                 |
|                 |
|                 |
|                 |
|                 |
|                 |
|                 |
|                 |
|                 |
|                 |
|                 |
|                 |
|                 |
|                 |
|                 |
|                 |
|                 |
|                 |
|                 |
|                 |
|                 |
|                 |
|                 |



$$\begin{array}{c|cccc}
f(z) & (|z| < p) & \longleftrightarrow & \alpha_n & (n \ge 0) \\
& & \text{the same} & & \text{symmetric} \\
& & \text{ROC} & & \text{ranges}
\end{array}$$

$$\chi(z^{-1}) & (|z| < p) & \longleftrightarrow & \chi_{-n} & (n < |)$$





$$f(\xi^{-1}) (|\xi| > p^{-1}) \longleftrightarrow \Delta_{-n} (n < |)$$
the same
$$ROC$$

$$x_n (n > 0)$$

$$x_n (n > 0)$$

$$\begin{array}{c|c}
|\xi| > p^{-1} & \text{n} < |\\
\hline
f(z^1) - \frac{p^{-1}}{1 - p^{-1}z^{-1}} & -(p^{-1})^{-n+1} & a_{-n} \\
|\xi| > p^{-1} & n \ge 0 \\
\hline
\chi(z) - \frac{p^{-1}}{1 - p^{-1}z^{-1}} & -(p^{-1})^{n+1} & \chi_n
\end{array}$$



```
\alpha_{n}, \chi_{-n} = -(p^{-1}, p^{-2}, p^{-3}, \cdots) = -(z^{0}, z^{1}, z^{2}, \cdots) f(z), \chi(z^{1})

b_{n}, \chi_{n} = (p^{0}, p^{1}, p^{2}, \cdots) = -(z^{-1}, z^{-2}, z^{-3}, \cdots) g(z^{-1}), \chi(z)

\alpha_{-n}, y_{n} = -(p^{-1}, p^{-2}, p^{-3}, \cdots) = -(z^{0}, z^{-1}, z^{-2}, \cdots) f(z^{1}), \chi(z)

b_{-n}, y_{-n} = (p^{0}, p^{1}, p^{2}, \cdots) = -(z^{1}, z^{2}, z^{3}, \cdots) g(z), \chi(z^{1})
```

$$f(z)$$
 (|z|A\_n (n > 0)
 $-(p^2, p^{-2}, p^{-3}, ...)$ 

$$f(2^{-1})$$
 ( $|z| > p^{-1}$ )  
 $O(-n)$  ( $n < 1$ )  
 $-(p^{-1}, p^{-2}, p^{-3}, ...)$ 

9(2-1) 
$$(|z| > p)$$
  
b-n  $(n < 0)$   
 $(p^0, p^1, p^2, ...)$ 

$$\frac{2}{p}$$
 (|z|<  $p^{-1}$ )
 $\frac{1}{p^0, p^1, p^2, \cdots}$ 

$$X(2)$$
 ( $|z| > p^{-1}$ )  
 $X_n$  ( $n \ge 0$ )  
 $-(p^1, p^{-2}, p^{-3}, ...)$ 

$$Y(z^{-1})$$
 ( $|z| < p^{-1}$ )

 $z_{-n}$  ( $n < 0$ )

 $(p^0, p^1, p^2, ...)$ 

$$a_n = -b_n$$
  $a_n = -y_n$ 

$$bn = -a-n \quad yn = -x-n$$

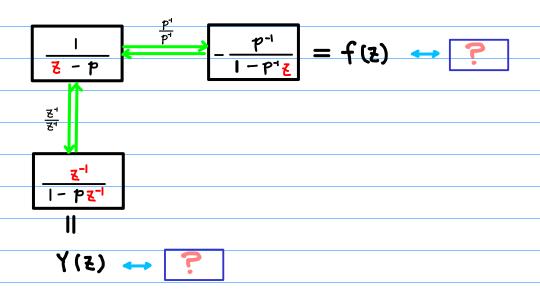
$$\Delta_n = x_n \qquad b_n = y_n$$

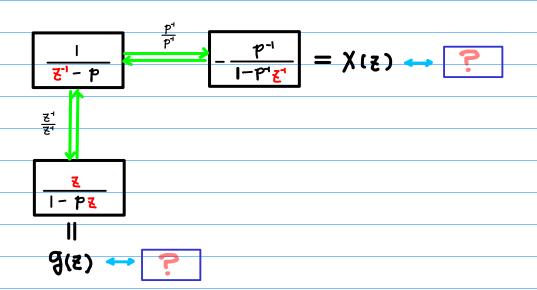
$$x_n = a_n \quad y_n = b_n$$

$$\Delta_{\eta} = -y_{\eta}$$
 $b_{\eta} = -x_{\eta}$ 

$$x_n = -b_n$$
  $y_n = -a_n$ 

## getting causal sequence





## getting causal sequence w/o memorizing

Left shift 
$$(n \leftarrow n-1)$$

|  $(z) \leftrightarrow (p)^{n-1}$ 

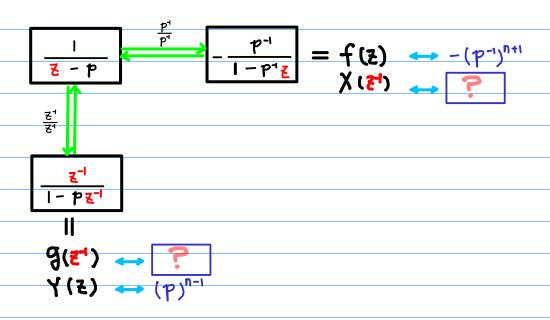
$$|| \qquad \qquad | \qquad \qquad |$$

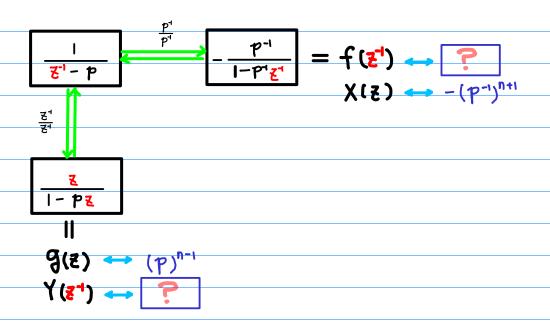
$$|| \qquad \qquad | \qquad \qquad | \qquad \qquad |$$

$$|| \qquad \qquad | \qquad \qquad | \qquad \qquad |$$

$$|| \qquad \qquad | \qquad \qquad | \qquad \qquad | \qquad \qquad |$$

## getting anti-causal sequence





$$\bigcirc \quad \mathcal{Z} \leftarrow \mathcal{Z}^{-1} \qquad \bigcirc \quad \mathcal{A}_n \leftarrow \mathcal{A}_{-n}$$

$$(2) \Leftrightarrow a_n \quad g(2) \Leftrightarrow b_n$$

$$\boxed{3} \boxed{n \rightarrow -n} \qquad a_{-n}, b_{-n}$$

## X(E1) Y(E1)

$$f(z') = \frac{p^{-1}}{1 - p^{-1}z'}$$
  $g(z') = \frac{z^{-1}}{1 - pz^{-1}}$  anti-causal
$$f(z) = -\frac{p^{-1}}{1 - pz^{-1}}$$
  $g(z) = \frac{z}{1 - pz^{-1}}$ 

$$Y(\xi^{-1}) = \frac{\xi}{1 - p\xi} \qquad X(\xi^{-1}) = -\frac{p^{-1}}{1 - p^{-1}\xi} \qquad \text{anti-causal}$$

$$Y(\xi) = \frac{\xi^{-1}}{1 - p\xi^{-1}} \qquad X(\xi) = -\frac{p^{-1}}{1 - p^{-1}\xi^{-1}}$$

f(z') 
$$g(z')$$

T  $z' \rightarrow z$  f(z),  $g(z)$ 

$$f(z') = -\frac{p^{-1}}{1 - p^{-1}z'} \qquad g(z') = \frac{z^{-1}}{1 - pz^{-1}}$$

$$f(z) = -\frac{p^{-1}}{1 - p^{-1}z'} \qquad g(z) = \frac{z}{1 - pz}$$

$$2 \quad a_{n} = -(p^{-1})^{n+1} \qquad b_{n} = (p)^{n-1}$$

3 
$$q-n = -(p^{-1})^{-n+1}$$
  $p-n = (p)^{-n-1}$ 

$$\begin{array}{c|cccc} \hline 2 & \chi(z) \leftrightarrow \chi_n & \gamma(z) \leftrightarrow \gamma_n \\ \hline \hline 3 & n \rightarrow -n & \chi_{-n}, \chi_{-n} \end{array}$$

$$\chi(\mathbf{z}_{\mathbf{i}}) = \begin{bmatrix} \frac{\mathbf{z}}{1 - \mathbf{p}\mathbf{z}} \\ \frac{1 - \mathbf{p}\mathbf{z}}{\mathbf{z}} \end{bmatrix} \qquad \chi(\mathbf{z}_{\mathbf{i}}) = \begin{bmatrix} \frac{\mathbf{p}_{\mathbf{i}}}{1 - \mathbf{p}_{\mathbf{i}}\mathbf{z}} \\ \frac{\mathbf{p}_{\mathbf{i}}}{1 - \mathbf{p}_{\mathbf{i}}\mathbf{z}} \end{bmatrix}$$

$$2 \quad \forall \mathbf{n} = (\mathbf{p})^{\mathbf{n}-\mathbf{1}} \qquad \mathbf{x}_{\mathbf{n}} = -(\mathbf{p}^{-\mathbf{1}})^{\mathbf{n}+\mathbf{1}}$$

3 
$$y_{-n} = -(p^{-1})^{-n+1}$$
  $x_{-n} = (p)^{-n-1}$ 





