	Z Transform (H.1)
	Definition
	20170715
(
(Copyright (c) 2016 - 2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software oundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Based on
Complex Analysis for Mathematics and Engineering
J. Mathews

Z - Transform $\begin{array}{l} \chi(z) = \sum_{k=-\infty}^{+10} \chi[k] z^{-k} & \overline{z} = |r| e^{j 2^{\pi} \overline{r}} \\ & = |r| e^{j \Omega} \end{array}$ X[n] <-> X(z) Onesided Z-transform $\chi(z) = \sum_{k=0}^{+\infty} \chi[k] z^{-k}$

$$I_{nverse} = Transform$$

$$X(z) = Z[(x_n)_{n=0}^{\infty}] \qquad x(z)$$

$$= \sum_{n=0}^{\infty} x_n z^{-n}$$

$$= \sum_{n=0}^{\infty} x c_n] z^{-n}$$

$$X_n = x c_n] \qquad x(z)$$

$$= Z^+[X(z)]$$

$$= \frac{1}{2\pi t} \int_C x(z) z^{n+} dz$$

Admissible Form of z-transform

$$\chi(z) = \sum_{n=0}^{\infty} \chi(n) z^{-n}$$

$$\chi(z): admissible z-transform$$
if $\chi(z)$ is a rational function

$$\chi(z) = \frac{P(z)}{Q(z)} = \frac{b_0 + h_2^2 + b_2 z^{n+1} + b_1 z^n}{a_0 + a_0^2 + a_0 z^{n+1} + a_0 z^n}$$

$$P(z): a \quad polynomial of degree p$$

$$Q(z): a \quad polynomial of degree g$$

Integration of a function of a complex var.

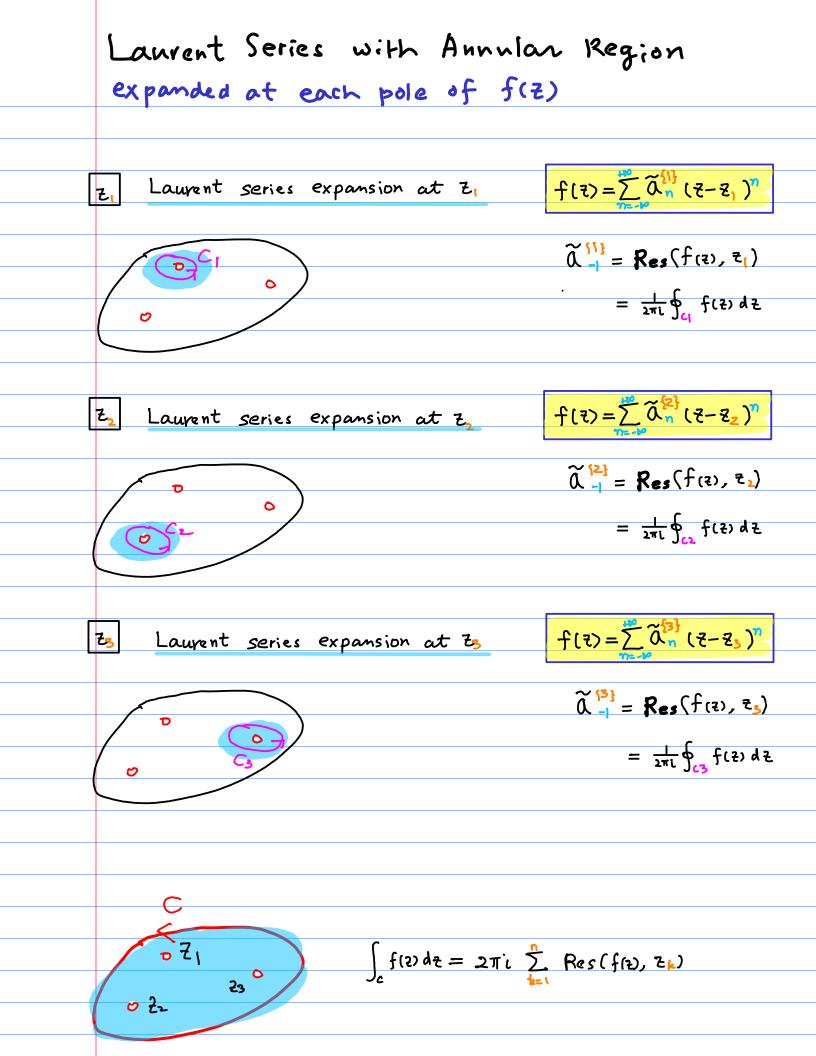
$$\oint_{c} f(z) dz = 2\pi i \sum_{k=1}^{n} \text{Res}(f(z), Z_{k})$$
finite number $k \circ f$
Singular points z_{k}
residue theorem
$$\oint_{c} f(z) dz = 0 \quad \text{if fiz} \text{ is analytic within and on C}$$
No Singularity
$$\oint_{c} f(z) dz = 0 \quad \text{if fiz} = F'(z) \text{ on C}$$

$$: F(z) \text{ is an article subscript of calculus}$$
Thomas j. Cavicchi
Digital Signal Processing, Wiley, 2000

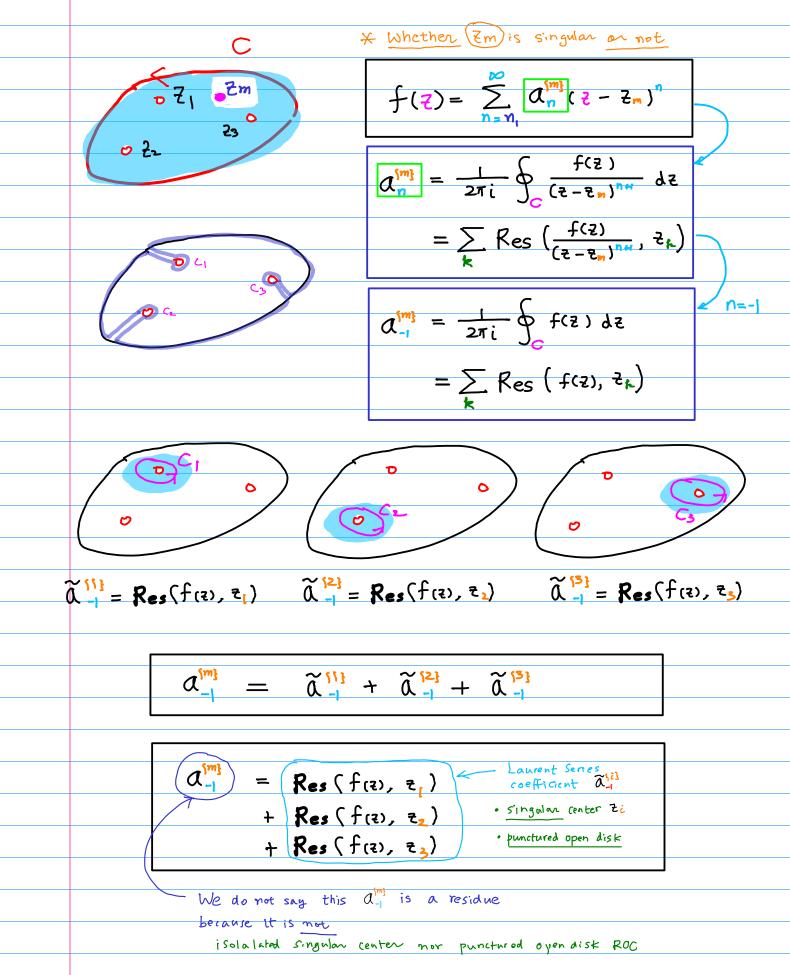
Series Expansion can expand f(z) about any point Zm over powers of (2-Zm) whether or not f(z) is singular at Zm or at other points between z and zm $f(z) = \sum_{n=1}^{\infty} \alpha_n^{[m]} (z - z_m)^n$ (Laurent Series Expansion of f(z) at Zm general mi - depend on f(z) and Zm 2 Z-transform of a general mi - depend on fiz) $z_m = 0$ 3 Taylor Series Expansion of f(z) at Zm positive (n) - depend on f(z) and Zm (n,70) (MacLaurin Series Expansion of f(z) at zm positive (-depend on f(z)) $z_m = 0$ (n, 70)

Series Expansion at
$$Z_{M}$$
 To annular region

$$f(z) = \sum_{n=2n}^{\infty} d_{n}^{(m)}(z - z_{n})^{n}$$


$$f(z) = \sum_{n=2n}^{\infty} d_{n}^{(m)}(z - z_{n})^{n}$$

$$f(z) = \sum_{n=2n}^{\infty} d_{n}^{(m)}(z - z_{n})^{n}$$


$$d_{n}^{(m)} = \frac{1}{2\pi i} \oint_{C} \frac{f(z)}{(z - z_{n})^{1/2}} dz$$

$$= \sum_{k} \operatorname{Res} \left(\frac{f(z)}{(z - z_{n})^{1/2}}, z_{k}\right)$$
Let z_{1}, z_{2}, z_{3} poles $f(z)$
Then the poles of $\frac{f(z)}{(z - z_{n})^{1/2}}$

$$f(z) = \sum_{k=1}^{\infty} dz_{k} - \frac{f(z)}{(z - z_{n})^{1/2}}$$

Residue Theorem + Lawrent Series

 Laurent Series
 Annular Region of Convergence
 no singularity in this region
 , , , , , , , , , , , , , , , , , , ,
 can be expanded at a singular/non-singular point
 this point need not be in the Convergence region
 Residue
 a punctured open disk and thus annular region
 must expanded at a pole (a singular point)
 $\widetilde{\mathcal{A}}_{-1}^{\{1\}} = \operatorname{Res}(f(z), \overline{z}_{1}) \qquad \widetilde{\mathcal{A}}_{-1}^{\{2\}} = \operatorname{Res}(f(z), \overline{z}_{2}) \qquad \widetilde{\mathcal{A}}_{-1}^{\{3\}} = \operatorname{Res}(f(z), \overline{z}_{2})$
 С
 0 022
 $\widetilde{\alpha}_{-1}^{[m]} = \operatorname{Res}(f(z), z_m)$

Computing
$$a_n^{(m)}$$
 (general formula)

$$f(z) = \sum_{n=n}^{\infty} a_n^{(m)} (z - z_n)^n \quad n \in \mathbb{R}$$

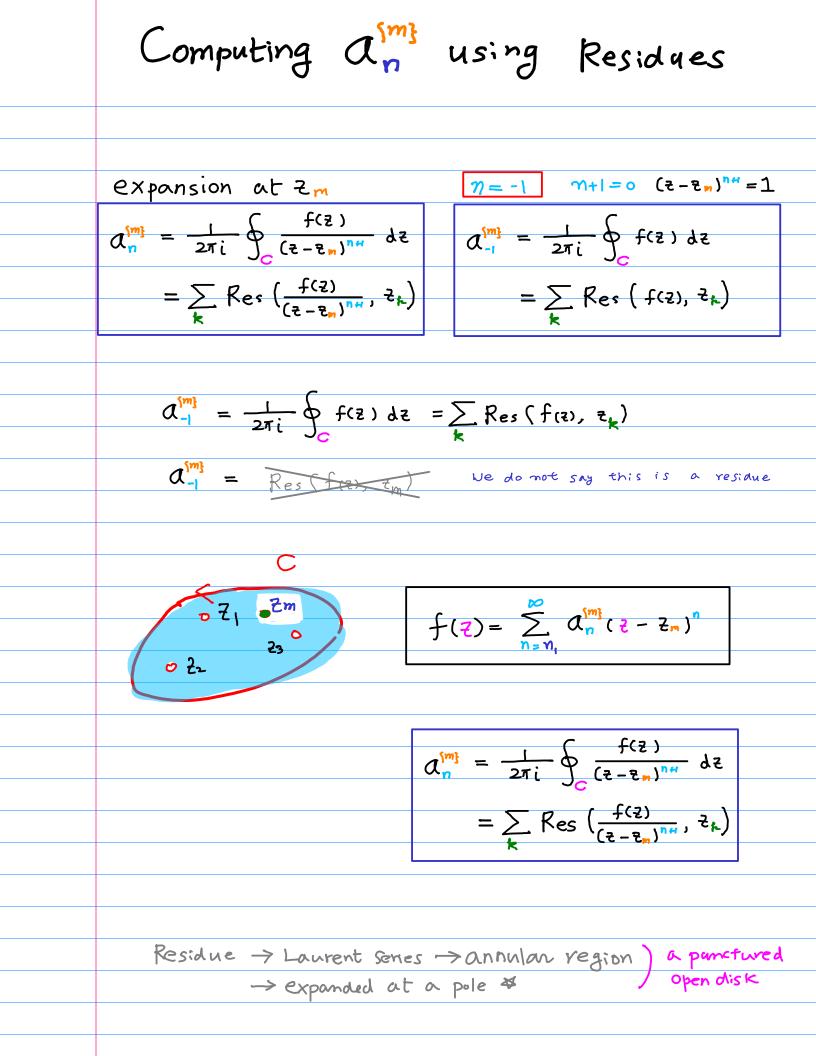
$$f(z) = \sum_{k=n}^{\infty} a_k^{(2-z_n)^k} \quad n \in \mathbb{R}$$

$$f(z) = \sum_{k=n}^{\infty} a_k^{(2-z_n)^k} \quad \frac{1}{n + ind_n + vanishe}$$

$$f(z) = \sum_{k=n}^{\infty} a_k^{(2-z_n)^{k-n-1}} \quad \frac{1}{n + ind_n + vanishe}$$

$$\int \frac{f(z)}{(z - z_n)^{n-1}} dz = \int \sum_{k=n}^{\infty} a_k^{(n)} (z - z_n)^{k-n-1} dz$$

$$\int \frac{f(z)}{(z - z_n)^{n-1}} dz = \int a_k^{(n)} \int a_k^{(n)} (z - z_n)^{k-n-1} dz$$


$$\int \frac{f(z)}{(z - z_n)^{n-1}} dz = \int a_k^{(n)} \int a_k^{(n)} (z - z_n)^{k-n-1} dz$$

$$\int \frac{f(z)}{(z - z_n)^{n-1}} dz = \int a_k^{(n)} \int a_k^{(n)} (z - z_n)^{k-n-1} dz$$

$$\int \frac{f(z)}{(z - z_n)^{n-1}} dz = \int a_k^{(n)} \int a_k^{(n)} (z - z_n)^{k-n-1} dz$$

$$\int \frac{f(z)}{(z - z_n)^{n-1}} dz = \int a_k^{(n)} \int a_k^{(n)} (z - z_n)^{k-n-1} dz$$

$$\int \frac{f(z)}{(z - z_n)^{n-1}} dz = \int a_k^{(n)} \int a_k^{(n)} (z - z_n)^{k-n-1} dz$$

••, $a_{-2}^{[m]}$, $a_{-1}^{[m]}$, $a_{0}^{[m]}$, $a_{+1}^{[m]}$, $a_{+2}^{[m]}$, ₽ Z | - Zm 23 $f(z) = \sum_{n=n_{1}}^{\infty} \alpha_{n}^{(m)} (z - z_{m})^{n}$ $\alpha_{n}^{[m]} = \frac{1}{2\pi i} \int \frac{f(z)}{(z-z_{m})^{n}} dz$ $= \sum_{k} \operatorname{Res} \left(\frac{f(z)}{(z-z_{m})^{n_{m}}}, z_{k} \right)$ $\alpha_{-1}^{[m]} = \frac{1}{2\pi i} \oint f(z) dz$ $= \sum_{k} \operatorname{Res} \left(f(z), z_{k} \right)$ $\mathcal{A}_{-3}^{[m]} = \sum_{\mathbf{k}} \operatorname{Res} \left(f(z) \left(z - \overline{z}_{m} \right)^{2}, \overline{z}_{k} \right)$ $\mathcal{A}_{-2}^{[m]} = \sum_{k} \operatorname{Res} \left(f(z) (z - z_{m})^{l}, z_{k} \right)$ $\alpha_{-1}^{[m]} = \sum_{k} \operatorname{Res} \left(f(z) , z_{k} \right)$ $\alpha_{\circ}^{(m)} = \sum_{k} \operatorname{Res}\left(\frac{f(z)}{(z-z_{m})}, z_{k}\right)$ $\alpha_{1}^{[m]} = \sum_{k} \operatorname{Res}\left(\frac{f(z)}{(z-z_{m})^{2}}, z_{k}\right)$ $\mathcal{A}_{2}^{[m]} = \sum_{k} \operatorname{Res} \left(\frac{f(z)}{(z - \overline{z}_{m})^{3}}, \overline{z}_{k} \right)$

	annula	n region		non-annu
	punctured		outside circle	region
Singular Center Zm	$f(z) = \sum_{n=1}^{\infty}$	(<u>₹</u> - ₹,,	,) ⁿ	
non-singular centerzzm	$a_n^{\{m\}} = \frac{1}{2\pi i}$	$\oint_{c} \frac{f(z')}{(z'-z_{m})^{n+1}}$	$dz' = \sum_{k} Re$	s (<u>f(z)</u> (z-z_) ⁿ⁺¹
	annula	n region		mon-annu
	punctured		ontside circle	region
singulan		0		
center Z	Lau	went Series		X
non-singuar				
	Lai	rvent Series		X
non-singular centerzz	La	Avent Series		X
non-singular centerzz	La	Avent Series		X
non-singular centerzz	Lai	Avent Series		X
non-singular centerzz				
non-singular centerzz	annula	n region	utside, circle	
non-singular centerz Zm			utside circle	MON-anni
non-singular centerz Zm Singular	annula	n region	Ntside circle	ηοη-αληι
non-singular centerz Zm Singular	annula punctured	n region		MON-anni

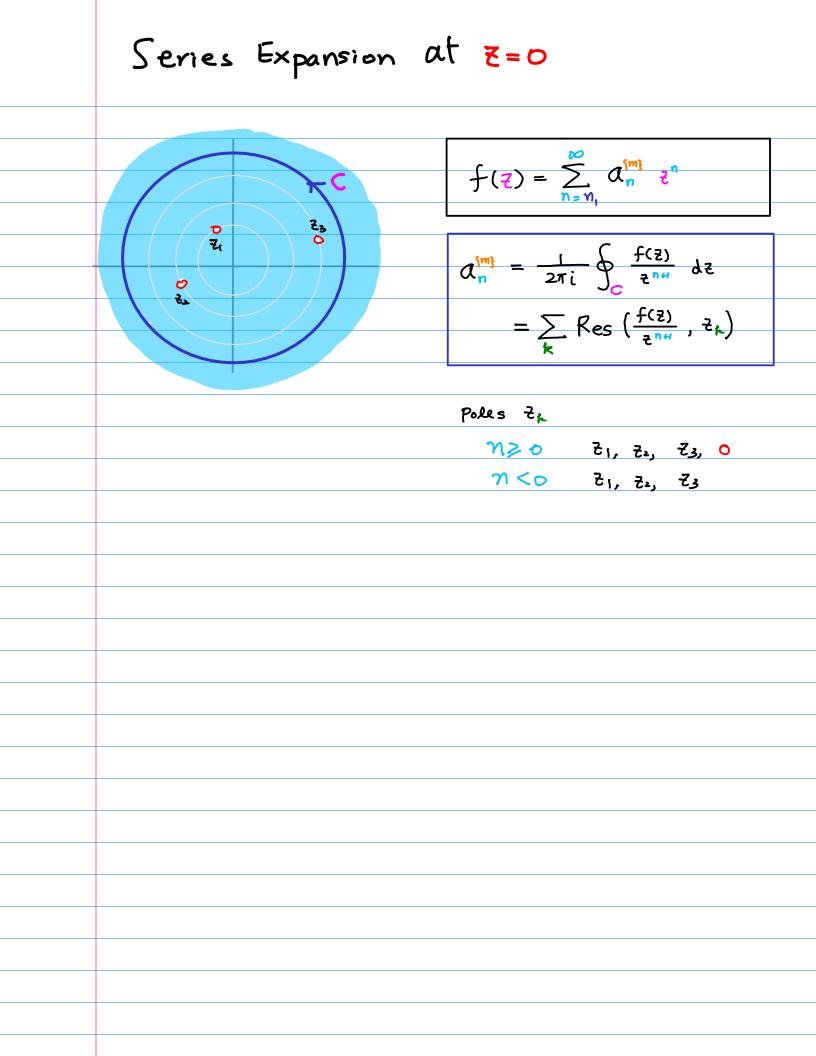
$$\int_{C} f(z) dz = 2\pi j \sum_{k=1}^{M} \tilde{a}_{1}^{(k)} = 2\pi j \sum_{k=1}^{M} Re(f(z), z_{k})$$

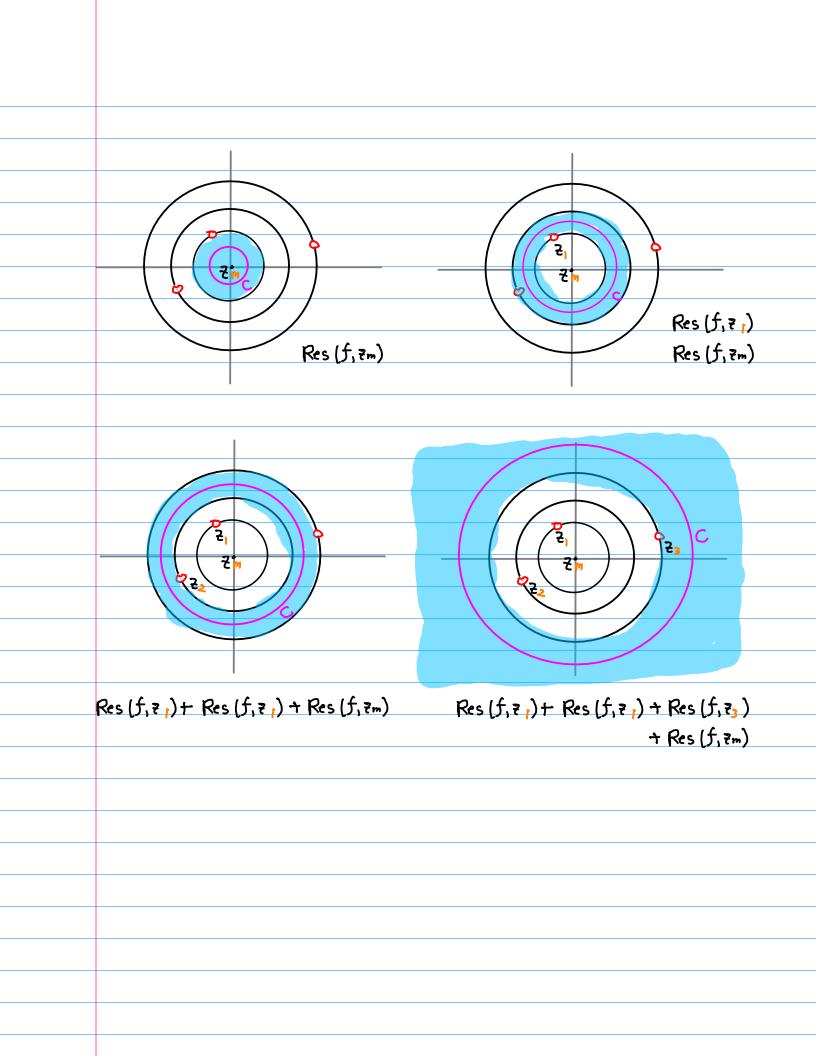
$$\int_{C} f(z) dz = 2\pi j \sum_{k=1}^{M} \tilde{a}_{1}^{(k)} = 2\pi j \sum_{k=1}^{M} Re(f(z), z_{k})$$

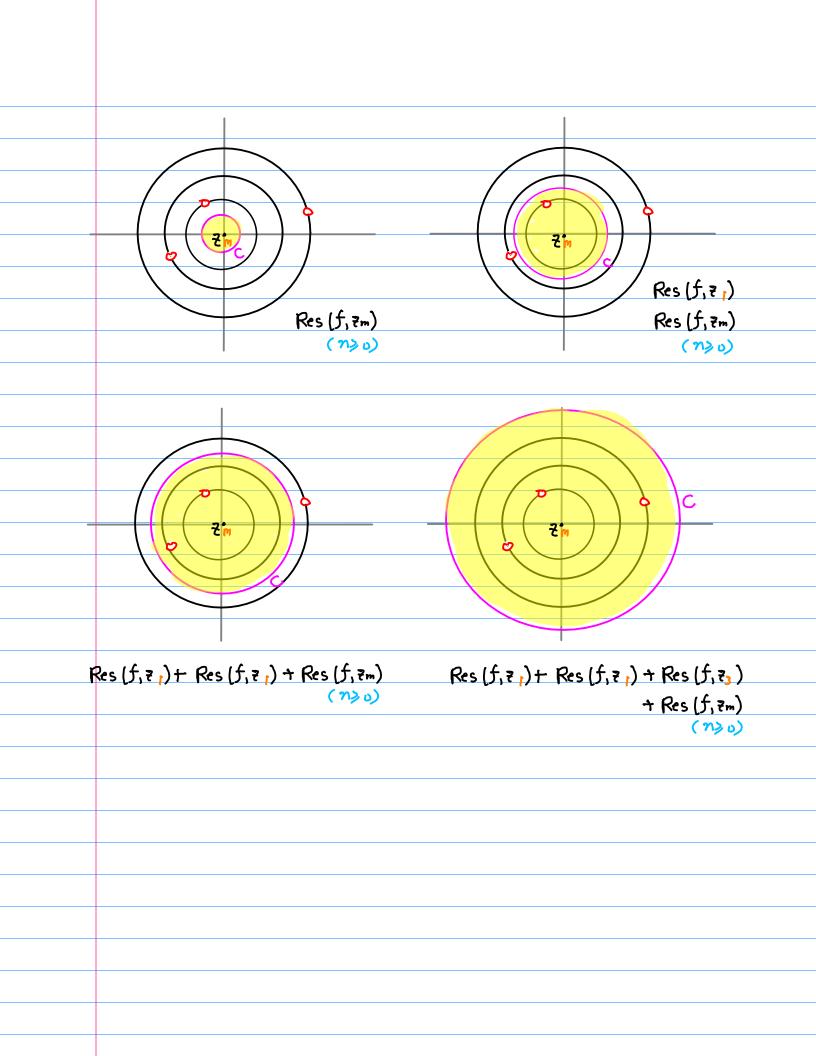
$$Pesidue theorem$$

$$A_{n} = \sum_{j=1}^{M} Res \left(\frac{f(z)}{(z-z_{n})^{n}}, z_{n}\right)$$

$$Leurent coefficient$$


$$C = ncloses k piles$$


$$C_{k} = ncloses k piles$$


$$C_{k} = ncloses k piles$$

$$\tilde{a}_{1}^{(k)} = the residue of the k-th pile = nclosed by C_{n} z_{k}$$

Residues $A_{-1} = \frac{1}{2\pi i} \oint_{C} f(s) ds = 2\pi \dot{c} \cdot A_{-1}$ $A_{-1} = \frac{1}{2\pi i} \oint_{\mathbb{C}} f(s) \, ds = \operatorname{Res}(f(z), z_{\bullet})$ $= \begin{cases} \lim_{z \to z_{\bullet}} (z - z_{\bullet}) f(z) & (simple) \\ \frac{1}{(n-1)!} \lim_{z \to z_{\bullet}} \frac{d^{h-1}}{dz^{n-1}} (z - z_{\bullet})^{n} f(z) & (order n) \end{cases}$

$$|\mathsf{n}\mathsf{v}\mathsf{erse} \ \mathbb{P}_{-}\mathsf{Transform} \ \mathbf{x} \ \mathbb{C}^{n}\mathbf{J} = \frac{1}{2\pi i} \int_{C} \mathbf{x}(\mathbf{z}) \mathbf{z}^{n} d\mathbf{z}$$

$$X(\mathbf{z}) = \sum_{k=0}^{\infty} x_{k} \mathbf{z}^{-k}$$

$$\mathbb{P}^{n} \ \mathbf{x}(\mathbf{z}) = \left(\sum_{k=0}^{\infty} x_{k} \mathbf{z}^{-k}\right) \mathbb{E}^{n+1} \ \int \mathbb{E}^{n+1} \ \mathsf{LHs} \ d\mathbf{z} = \int \mathbb{P}^{n} \mathbb{E}^{n+1} \ d\mathbf{z}$$

$$= \sum_{k=0}^{\infty} x_{k} \mathbf{z}^{-k+n-1} \ [0, 0^{\circ}) = [0, n+1] \cup [n+1, 0^{\circ}]$$

$$= \sum_{k=0}^{n+1} x_{k} \mathbf{z}^{-k+n-1} + \frac{x_{n}}{2} x_{k} \mathbf{z}^{-k+n-1} + \frac{x_{n}}{2} \mathbf{x}_{k} \mathbf{z}^{-k+n-1}$$

$$= \sum_{k=0}^{n+1} x_{k} \mathbf{z}^{-k+n-1} + \frac{x_{n}}{2} + \sum_{k=0}^{\infty} \frac{x_{k}}{2^{k}-n+1} d\mathbf{z}$$

$$\int_{0} \mathbf{x}(\mathbf{z}) \mathbf{z}^{n+1} \ d\mathbf{z} = \int_{0}^{n+1} x_{k} \mathbf{z}^{-k+n-1} \ d\mathbf{z} + \int_{0}^{\infty} \frac{x_{n}}{2^{k}} \ d\mathbf{z} + \int_{0}^{\infty} \frac{x_{k}}{2^{k}-n+1} d\mathbf{z}$$

$$= \sum_{k=0}^{n+1} x_{k} \left[\mathbf{z}^{-k+n-1} \ d\mathbf{z} + \mathbf{x}_{n} \left[\frac{1}{2^{1}} \ d\mathbf{z} + \frac{x_{n}}{2^{k}} \mathbf{x}_{k} \right] \left[\frac{1}{\mathbf{z}^{k-n+1}} \ d\mathbf{z} \right]$$

$$= \sum_{k=0}^{n+1} x_{k} \left[\mathbf{z}^{-k+n-1} \ d\mathbf{z} + \mathbf{x}_{n} \left[\frac{1}{2^{1}} \ d\mathbf{z} + \frac{x_{n}}{2^{k}} \mathbf{x}_{k} \right] \left[\frac{1}{\mathbf{z}^{k-n+1}} \ d\mathbf{z} \right]$$

$$= \sum_{k=0}^{n+1} x_{k} \left[\mathbf{z}^{-k+n-1} \ d\mathbf{z} + \mathbf{x}_{n} \left[\frac{1}{2^{1}} \ d\mathbf{z} + \frac{x_{n}}{2^{k}} \mathbf{x}_{k} \right] \left[\frac{1}{\mathbf{z}^{k-n+1}} \ d\mathbf{z} \right]$$

$$= \sum_{k=0}^{n+1} x_{k} \cdot \mathbf{0} + x_{n} \cdot \mathbf{2\pi i} + \sum_{k=0}^{\infty} \mathbf{x}_{k} \cdot \mathbf{0}$$

$$\mathbf{x}(n) = \frac{1}{2\pi i} \left[\sum_{k=0}^{n} \mathbf{x}_{k} \cdot \mathbf{0} + x_{n} \cdot \mathbf{2\pi i} + \sum_{k=0}^{\infty} \mathbf{x}_{k} \cdot \mathbf{0} \right]$$

$$\overline{Z} - \operatorname{transform} = \overline{2\pi i} - \oint_{\Gamma} f(2) \overline{z}^{nd} dz$$

$$\overline{X}(n) = -\frac{1}{2\pi i} - \oint_{\Gamma} f(2) \overline{z}^{nd} dz$$

$$= \sum_{k} \operatorname{Res} \left(f(2) \overline{z}^{nd}, \overline{z}_{k} \right)$$

$$x(n) \text{ includes } u(2n) \rightarrow \chi(2z) \text{ contains } \overline{z} \text{ on } its \text{ numerator}$$

$$x(n) \text{ includes } u(2n) \rightarrow \chi(2z) \text{ contains } \overline{z} \text{ on } its \text{ numerator}$$

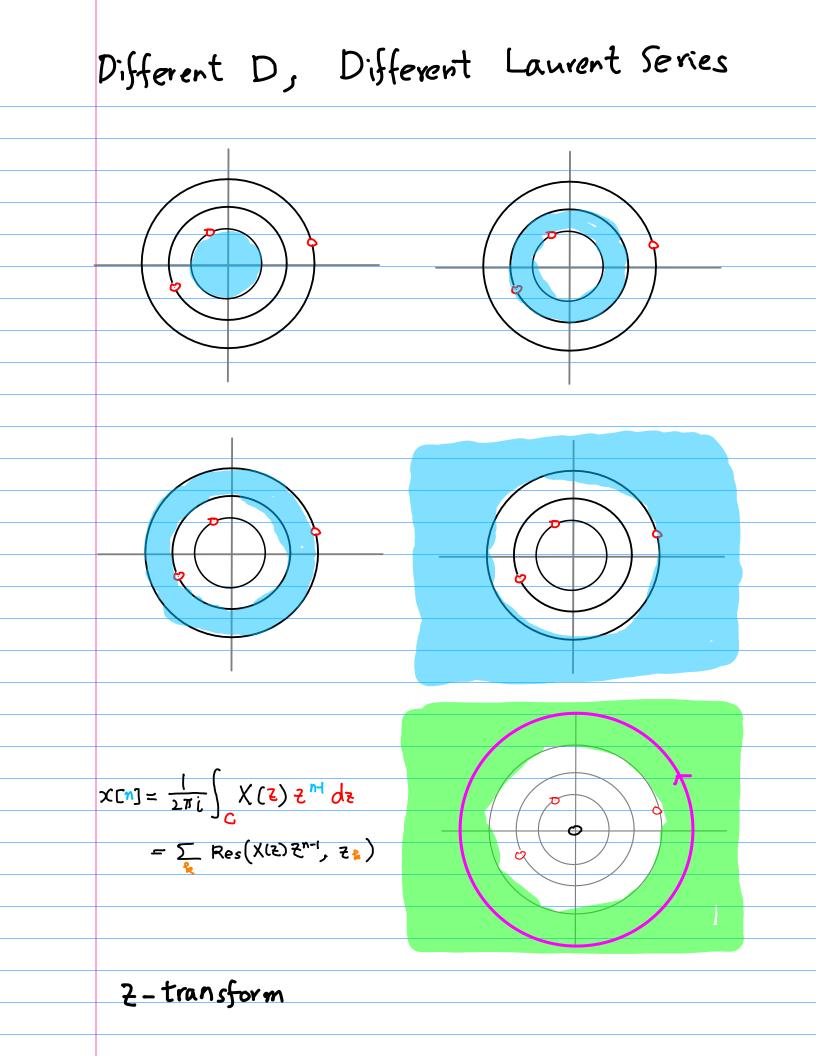
$$Also, \quad \text{think about } \operatorname{mod}: f(2d) \operatorname{partial} \operatorname{fraction} \frac{\chi'(21)}{\overline{z}}$$

$$laurent \quad \text{Expansion}$$

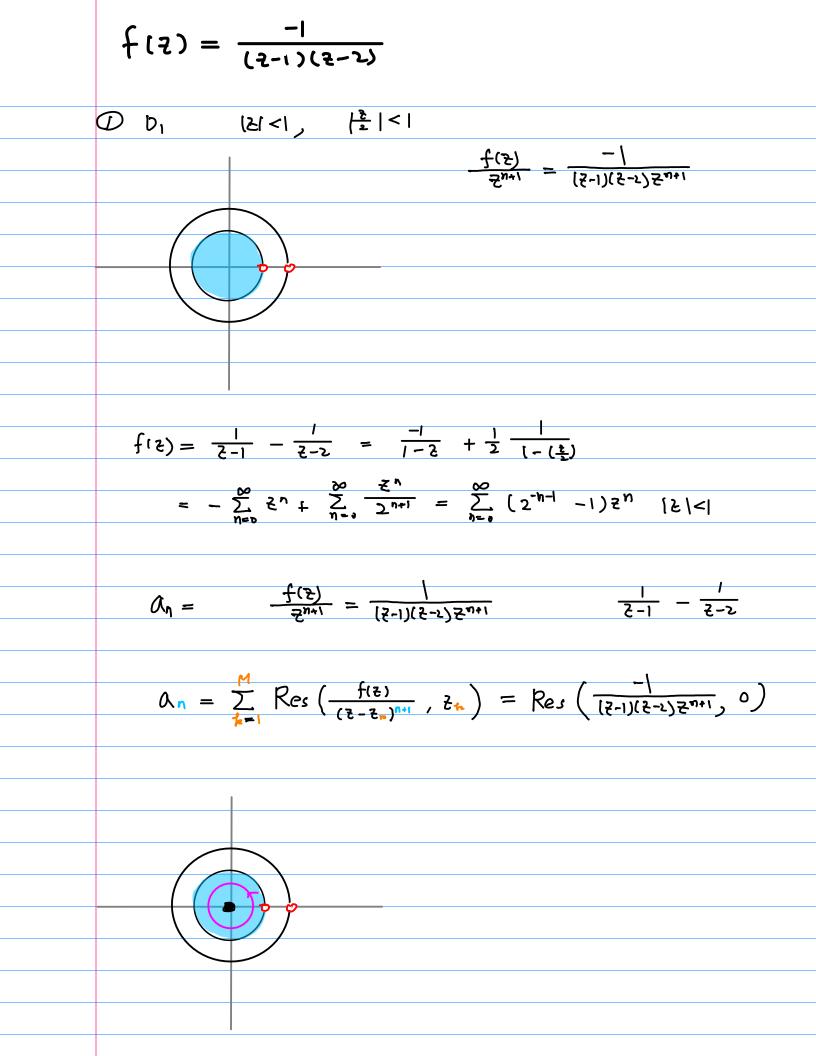
$$e \times pansion \quad \text{at } \overline{z}_{m} \qquad \overline{z}_{m} = \overline{D}$$

$$d_{n}^{(m)} = -\frac{1}{2\pi i} \oint_{\Gamma} \frac{f(2)}{(\overline{z} - \overline{z}_{m})^{n/2}} d\overline{z}$$

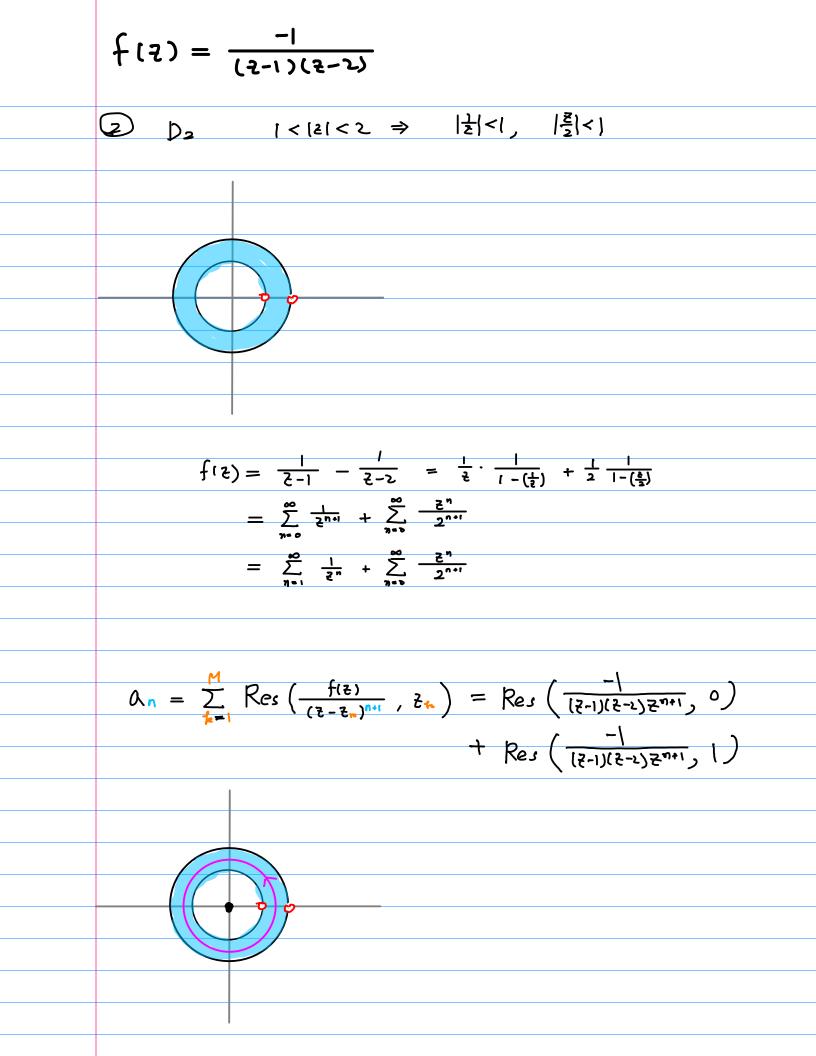
$$= \sum_{k} \operatorname{Res} \left(\frac{f(2)}{(\overline{z} - \overline{z}_{m})^{n/2}}, \overline{z}_{k} \right)$$


$$d_{-n}^{(0)} = -\frac{1}{2\pi i} \oint_{\Gamma} \frac{f(2)}{\overline{z}^{n/2}}, \overline{z}_{k}$$

$$d_{-n}^{(0)} = -\frac{1}{2\pi i} \oint_{\Gamma} \frac{f(2)}{\overline{z}^{n/2}} d\overline{z}$$


$$= \sum_{k} \operatorname{Res} \left(\frac{f(2)}{(\overline{z} - \overline{z}_{m})^{n/2}}, \overline{z}_{k} \right)$$

$$= \sum_{k} \operatorname{Res} \left(\frac{f(2)}{\overline{z}^{n/2}}, \overline{z}_{k} \right)$$


$$= \sum_{k} \operatorname{Res} \left(\frac{f(2)}{\overline{z}^{n/2}}, \overline{z}_{k} \right)$$

$$\begin{aligned} \int \left\{ \left(\frac{1}{2} \right) = \frac{-1}{\left(\frac{1}{2-1} \right) \left(\frac{1}{2-2} \right)} & \text{Complex Variables and Agric box 6. Churchill} \\ \int \left\{ \frac{1}{2} \right\} = \frac{-1}{\left(\frac{1}{2-1} \right) \left(\frac{1}{2-2} \right)} = \frac{-1}{2-1} - \frac{1}{2-2} & \text{Complex Variables and Agric box 6. Churchill} \\ \hline \int \left\{ \frac{1}{2} \right\} = \frac{-1}{\left(\frac{1}{2-1} \right) \left(\frac{1}{2-2} \right)} & = \frac{-1}{2-2} & -\frac{1}{2-2} & \text{Complex Variables and Agric box 6. Churchill} \\ \hline D_{1} : \left\{ \frac{1}{2} \right\} < 2 & \text{Complex Variables and Agric box 6. Churchill} \\ \hline D_{2} : \left\{ \frac{1}{2} \right\} < 2 & \text{Complex Variables and Agric box 6. Churchill} \\ \hline D_{1} : \left\{ \frac{1}{2} \right\} < 2 & \text{Complex Variables and Agric box 6. Churchill} \\ \hline \int \left\{ \frac{1}{2} \right\} & = \frac{1}{2-1} & -\frac{1}{2-2} & = -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2-2} \\ \hline \int \left\{ \frac{1}{2} \right\} & = \frac{1}{2-1} & -\frac{1}{2-2} & = -\frac{1}{2} & -\frac{1}{2} & \frac{1}{1-(\frac{1}{2})} \\ = & -\sum_{n=0}^{\infty} \frac{1}{2^n} + \sum_{n=0}^{\infty} \frac{2^n}{2^{nn}} \\ = & \sum_{n=0}^{\infty} \frac{1}{2^n} + \sum_{n=0}^{\infty} \frac{2^n}{2^{nn}} \\ = & \sum_{n=0}^{\infty} \frac{1}{2^n} + \sum_{n=0}^{\infty} \frac{2^n}{2^{nn}} \\ = & \sum_{n=0}^{\infty} \frac{1}{2^n} - \sum_{n=0}^{\infty} \frac{1}{2^n} + \sum_{n=0}^{\infty} \frac{1-2^n}{2^{nn}} \\ = & \sum_{n=0}^{\infty} \frac{1}{2^n} - \sum_{n=0}^{\infty} \frac{1-2^n}{2^n} \\ = & \sum_{n=0}^{\infty} \frac{1-2^{nn}}{2^n} \\ \end{bmatrix}$$

$$\begin{split} \Delta_{n} &= \sum_{k=1}^{M} \operatorname{Res} \left(\frac{f(z)}{(z-z_{k})^{n+1}}, z_{k} \right) = \operatorname{Res} \left(\frac{-1}{(z-1)(z-z_{k})^{2n+1}}, 0 \right) \\ &+ \operatorname{Res} \left(\frac{-1}{(z-1)(z-z_{k})^{2n+1}}, 1 \right) \\ &+ \operatorname{Res} \left(\frac{-1}{(z-1)(z-z_{k})^{2n+1}}, 1 \right) \\ &= \left(-1 \right)^{n} \left((z-1)^{n} - (z-2)^{n} \right) \\ &= (-1)^{n} \left((z-1)^{n-1} - (z-2)^{n-1} - (z-2)^{n-1} \right) \\ &= (-1)^{n} \left((z-1)^{n-1} - (z-2)^{n-1} - (z-2)^{n-1} \right) \\ &= (-1)^{n} \left((z-1)^{n-1} - (z-2)^{n-1} - (z-2)^{n-1} - (z-2)^{n-1} \right) \\ &= (-1)^{n} \left((z-1)^{n} - (z-2)^{n-1} - (z-2)^{n-1} - (z-2)^{n-1} - (z-2)^{n-1} - (z-2)^{n-1} \right) \\ &= (-1)^{n} \left((z-1)^{n} - (z-2)^{n-1} - (z-2)^{n-1} - (z-2)^{n-1} - (z-2)^{n-1} - (z-2)^{n-1} \right) \\ &= (-1)^{n} \left((z-1)^{n} - (z-2)^{n-1} -$$

$$f(z) = \frac{-1}{(z-1)(z-2)}$$
(3) $D_{z} \rightarrow (|z|) |\frac{1}{z}| < 1 |\frac{1}{z}| < 1$

$$f(z) = \frac{1}{z-1} - \frac{1}{z-z} = \frac{1}{z} \frac{1}{|-(z)|} - \frac{1}{z} \frac{1}{|-(z)|}$$

$$f(z) = \frac{1}{z-1} - \frac{1}{z-z} = \frac{1}{z} \frac{1}{|-(z)|} - \frac{1}{z} \frac{1}{|-(z)|}$$

$$= \frac{z}{z} \frac{1}{z} \frac{1}{z} - \frac{z}{z} \frac{z}{z} \frac{z}{z} = \frac{z}{z} \frac{1-z^{2}}{z^{2}}$$

$$a_{z} = \frac{1-z^{2}}{z^{2}}$$

$$Res\left(\frac{-1}{(2+1)(2+1)2^{n+1}}, \odot\right) = -1 + 2^{n+1} \quad (n \ge 0)$$

$$Res\left(\frac{-1}{(2+1)(2+1)2^{n+1}}, 1\right) = \lim_{\substack{2 \neq 1}} (2+1)\frac{-1}{(2+1)(2+1)2^{n+1}} = 1$$

$$Res\left(\frac{-1}{(2+1)(2+1)2^{n+1}}, 2\right) = \lim_{\substack{2 \neq 2}} (2+1)\frac{-1}{(2+1)(2+1)2^{n+1}} = -\frac{1}{2^{n+1}}$$

$$\frac{n-3}{2} \quad \frac{n-2}{2} \quad \frac{n-4}{2} \quad \frac{n-3}{2} \quad \frac{n-1}{2^{n+1}} \quad n=2$$

$$0 \quad 0 \quad 0 \quad -1 + 2^{n} \quad 1 + 2^{n} \quad -1 + 2^{n} \quad Res\left(\frac{2}{2^{n}}, 0\right)$$

$$I \quad I \quad (I \quad I \quad (I \quad Res\left(\frac{2}{2^{n}}, 1\right))$$

$$-2^{n} \quad -2 \quad -1 \quad -2^{n} \quad -2^{n} \quad -2^{n} \quad -2^{n} \quad Res\left(\frac{2}{2^{n}}, 1\right)$$

$$-2^{n} \quad (1-2 \quad 0 \quad 0 \quad 0 \quad 0$$

$$A_{n} = |-2^{n+1}, n < 0 \quad = \sum_{n=1}^{\infty} \frac{1-2^{n+1}}{2^{n}}$$

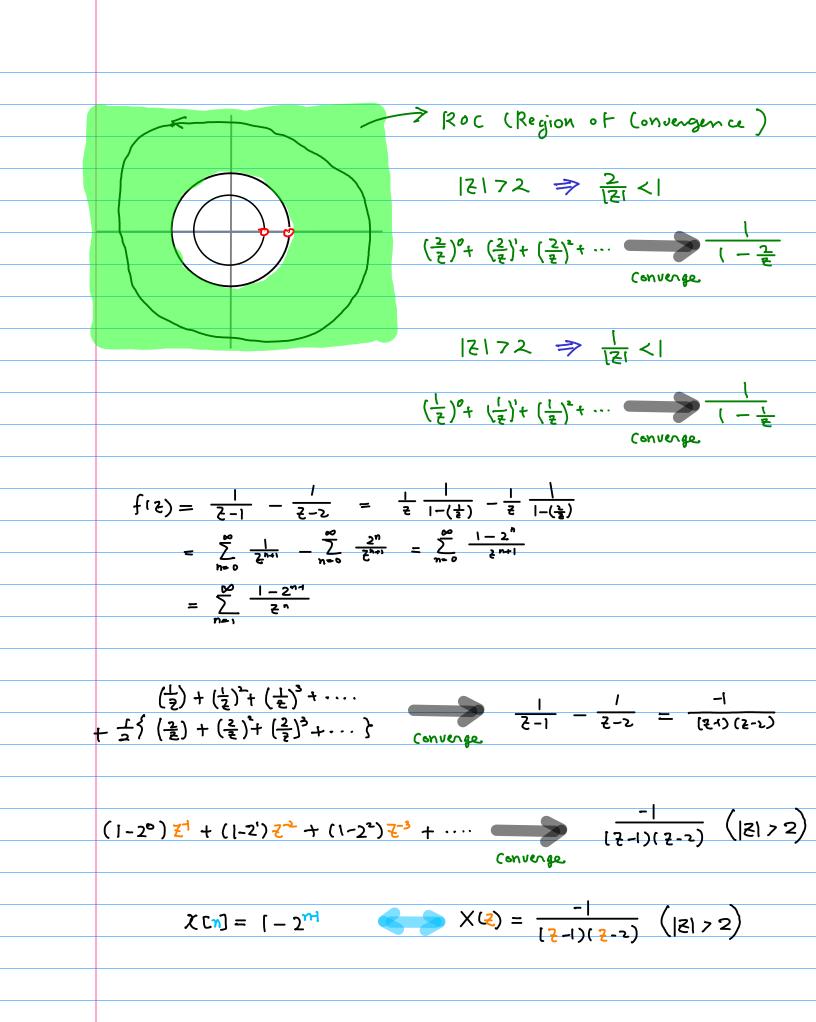
$$f(2) = \sum_{n=1}^{\infty} ((-2^{n+1})2^{n} = \sum_{n=1}^{\infty} \frac{1-2^{n+1}}{2^{n}}$$

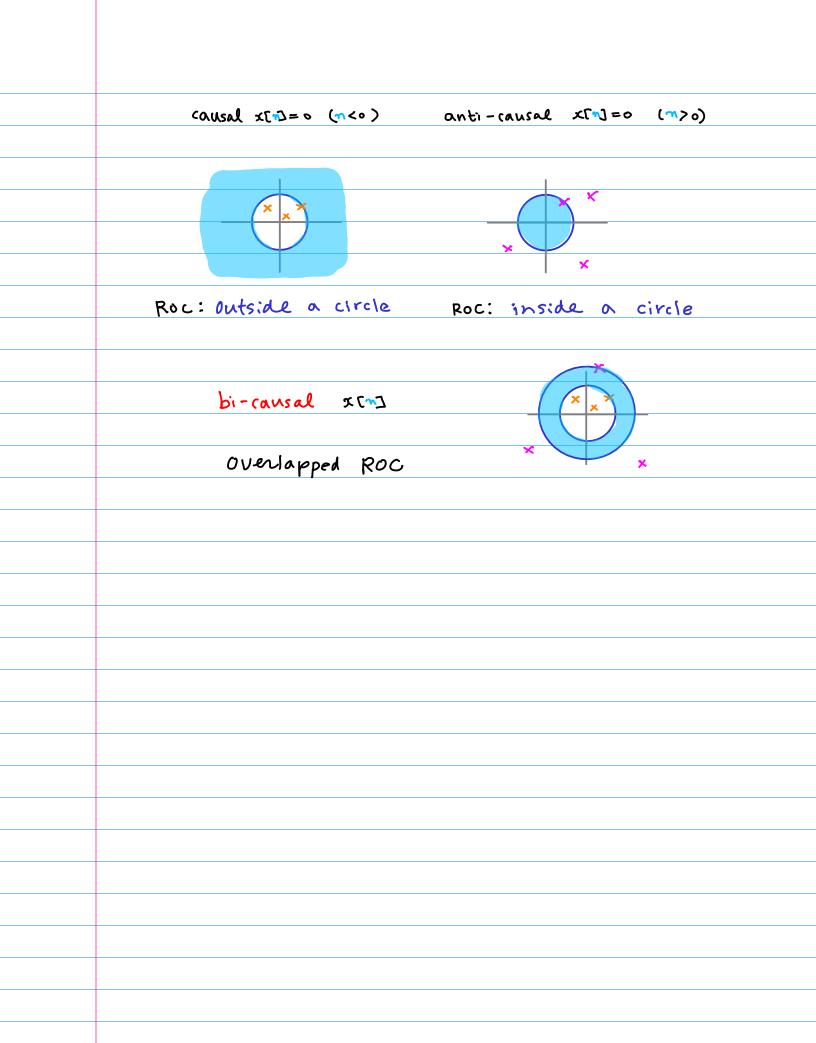
$$f(z) = \frac{-1}{(z-1)(z-2)}$$

$$X \subseteq n \end{bmatrix}$$

$$= \frac{1}{2\pi i} \int_{C} [X(z) z^{n}] dz$$

$$= \frac{h}{2\pi i} \operatorname{Res} \left([X(z) z^{n}], \bar{z}_{0} \right)$$


$$X(z) = \frac{-1}{(z-1)(z-1)}$$


$$X(z) z^{n} = \frac{-1}{(z-1)(z-1)} z^{n}$$

$$\operatorname{Res} \left([X(z) z^{n}], 1 \right) = (2\pi) \frac{-1}{(z-1)(z-1)} z^{n} \int_{z-1}^{z-1} z^{n}$$

$$\operatorname{Res} \left([X(z) z^{n}], 2 \right) = (z-1) \frac{-1}{(z-1)(z-1)} z^{n} \int_{z-2}^{z-1} - 2^{n-1}$$

$$X(z) = (z-2)^{n-1}$$

	$f(z) = \sum_{n=0}^{\infty} \alpha_n^{\{n\}} (z - z_m)^n$
	$f(z) = \sum_{m=n}^{\infty} a_n z^n \qquad z_m = o \qquad a_n^{\{o\}} \Rightarrow a_n$
	Laurent Series at z=0
	$f(z) = \cdots + \alpha_2 z^2 + \alpha_1 z^1 + \alpha_0 z^0 + \alpha_1 z^1 + \alpha_2 z^2 + \alpha_3 z^3 + \cdots$
	Z-transform
b	
Bi-causal	$X(\mathbf{z}) = \cdots + X[\mathbf{z}]\mathbf{z} + \mathbf{z}[\mathbf{z}]\mathbf{z} + \mathbf{z}[\mathbf{z}]\mathbf{z} + \mathbf{z}[\mathbf{z}]\mathbf{z} + \mathbf{z}[\mathbf{z}]\mathbf{z}^{+} + \mathbf{z}[\mathbf{z}]$
Causal	$X(\mathbf{z}) = (\mathbf{z}) + \mathbf{z} [\mathbf{z}] \mathbf{z} + \mathbf{z} [\mathbf{z}] \mathbf{z}' + \mathbf{z} [\mathbf{z} [\mathbf{z}] \mathbf{z}' + \mathbf{z} [\mathbf{z}] \mathbf{z}' + \mathbf{z} [\mathbf{z} [\mathbf{z}] \mathbf{z}' + \mathbf{z} [\mathbf{z}] \mathbf{z}' + \mathbf{z} [\mathbf{z} [\mathbf{z}] \mathbf{z} + \mathbf{z} [\mathbf{z} [\mathbf{z}] \mathbf{z}' + \mathbf{z} [\mathbf{z} [\mathbf{z}] \mathbf{z} + \mathbf{z} [\mathbf$
6	
Anti-causal	$X(5) = \cdots + X[-1]\frac{2}{5} + x[-1]\frac{2}{5} + x[-1]\frac{2}{5}$
	$a_n \leftrightarrow \pi_{-n}$
	$a_n \leftrightarrow \pi(m)$
	ν_η <u>·</u> · · · · · · · · · · · · · · · · · ·

$$f(z) = \sum_{n=n}^{\infty} a_n^{(n)} (z - z_m)^n$$

$$a_n^{(n)} = \frac{1}{2\pi \ell} \oint_C \frac{f(z)}{(z - z_m)^{n/2}} dz'$$

$$= \sum_{k} Res \left(\frac{f(z)}{(z - z_m)^{n/2}}, z_k\right)$$

$$analytic at z_m$$

$$n \ge 0 \qquad Taylor Series$$

$$general n, z_m = 0 \qquad MacLawrin Series$$

$$singular at z_m$$

$$general n, Lawrent Series$$

$$general n, z_m = 0 \qquad z - Transform$$

$$f(z) = \sum_{n=n}^{\infty} a_n^{(n)} (z - z_m)^n$$

$$a_n^{(m)} = \frac{1}{2\pi i} \oint_c \frac{f(z')}{(z' - z_m)^{n+1}} dz'$$

$$= \sum_{\mathbf{k}} \operatorname{Res}\left(\frac{f(z)}{(z - z_m)^{n+1}}, z_n\right)$$

$$z_m = 0 \qquad a_{-n}^{(0)} = h(n) \qquad n \to -n$$

$$H(z) = \sum_{n=-\infty}^{\infty} h(-n) z^n \qquad H(z) = \sum_{n=-\infty}^{\infty} h(n) z^{-n}$$

$$h(n) = \frac{1}{2\pi i} \oint_{c} \frac{H(z')}{z'^{n+1}} dz' \qquad h(n) = \frac{1}{2\pi i} \oint_{c} H(z') z'^{n-1} dz'$$
$$= \sum_{k} \operatorname{Res}\left(\frac{H(z)}{z^{n+1}}, z_{k}\right) \qquad = \sum_{k} \operatorname{Res}\left(H(z) z^{n-1}, z_{k}\right)$$

C is in the same region of analyticity of f(z) typically a circle centered on Zm Z_k within C: Singularities of $\frac{f(z)}{(z-z_m)^{n+1}}$ C is in the same region of analyticity of H(z) typically a circle centered on Zm generally a circle centered on the origin may enclose any on all singularities of H(2) often the unit circle Zk within C : Singularities of H(z) zn-1

$$H(z) = \sum_{n=1}^{\infty} \hat{K}(n) z^{-n} \quad \vec{z} \in R, Q, C$$

$$R(n) = \frac{1}{2\pi i} \oint_{C} H(z) z^{n-i} dz^{i} \quad C \text{ in } R, Q, C,$$

$$= \sum_{k} Res(H(z) z^{n-i}, \tilde{z}_{k})$$

$$(1) \quad a \text{ power series representation}$$

$$of a function f(z) of a complex variable \vec{z}$$

$$(2) \quad a \text{ transform } H(z) \text{ of } a \text{ segmence of } 1$$

$$X(z) = \frac{z}{z - \frac{z}{2}} \qquad p_0 y_{-z_0} = \frac{1}{2}$$

$$X(z) = \frac{z}{z - \frac{z}{2}} \qquad p_0 y_{-z_0} = \frac{1}{2}$$

$$X(z) = kes \left(X(z) z^{n_1}, z_0\right) = kes \left(\frac{z}{z - \frac{z}{2}} z^{n_1}, \frac{1}{2}\right)$$

$$= kes \left(\frac{z^n}{z - \frac{z}{2}}, \frac{1}{2}\right) = \lim_{z \to \frac{z}{2}} \left(z - \frac{z}{2}\right) \frac{z^n}{z - \frac{z}{2}} = \left(\frac{1}{2}\right)^n$$

$$X(z) = \frac{1}{2n} \qquad n \ge 0$$

$$\left(\frac{1}{2}\right)^n z^n + \left(\frac{1}{2}\right)^n z^{-2} + \left(\frac{1}{2}\right)^n z^{-3} + \dots = \frac{1}{1 - \left(\frac{1}{2}z^n\right)}$$

$$= \frac{z}{z - \frac{1}{2}}$$