
Fast Backtracking Principles Applied to Find New

Cages

Brendan McKay

Australian National University

bdm@cs.anu.edu.au

Wendy Myrvold �

University of Victoria

wendym@csr.UVic.ca

Jacqueline Nadon

Sandwell Construction

July 7, 1997

Abstract

We describe how standard backtracking rules of thumb were successfully applied

to the problem of characterizing (3; g)-cages, the minimum order 3-regular graphs of

girth g. It took just 5 days of cpu time (compared to 259 days for previous authors)

to verify the (3; 9)-cages, and we were able to con�rm that (3; 11)-cages have order

112 for the �rst time ever. The lower bound for a (3; 13)-cage is improved from 196

to 202 using the same approach. Also, we determined that a (3; 14)-cage has order

at least 258.

1 Cages

In this paper, we consider �nite undirected graphs. Any unde�ned notation follows Bondy

and Murty [7]. The girth of a graph is the size of a smallest cycle. A (r; g)-cage is an

�Supported by NSERC.

1



r-regular graph of minimum order with girth g. It is known that (r; g)-cages always exist

[11]. Some nice pictures of small cages are given in [9, pp. 54-58].

The classi�cation of the cages has attracted much interest amongst the graph theory

community, and many of these have special names. Our interest in cages arose from the

problem of determining the structure of the most reliable networks under the all-terminal

model (see [10] for a survey of network reliability, and [6] for an introduction to the synthesis

question). We suspect that large girth is a critical factor in maximizing the reliability when

edges are very reliable (the situation most often occurring in practical applications) and

give evidence to support this for the 3-regular case [15, 16].

We concentrate on the 3-regular cages; a complete history of the results for this and

other cases can be found in [20]. We summarize the status of the problem for girths three

through twelve in the following table. The lower bound (LB) on the order is more fully

explained in Section 3. The order of the cage equals the lower bound plus the number of

extra vertices (Extra). Often cages were found (Found) but only later was it con�rmed that

they had minimum order (Opt.). The number of cages up to isomorphism is indicated in

the last column (Cages).

Girth LB Extra Found Opt. Cages

3 4 0 [18] K4 [18]

4 6 0 [18] K3;3 [18]

5 10 0 [18] Petersen graph [18]

6 14 0 [18] Heawood graph [18]

7 22 2 [12] McGee graph [19]

8 30 0 [18] Tutte-Coexter graph [18]

9 46 12 [22, 5] [8] 18 [8]

10 62 8 [1] [17] 3 [21]

11 94 18 [2] NEW

12 126 0 [3] [3]

For girth 13, Brinkmann, McKay, and Saager [8] indicated a lower bound of 196 vertices.

We used our program to verify that at least 202 vertices are required. We also determined

2



that at least 258 vertices are required for a (3; 14)-cage (four more than the lower bound).

Our program took about �ve days to verify the eighteen cages of girth nine whereas the

program maus [8] required 259 days on the same scale of time/mixture of machine types

(both experiments were run by McKay ensuring consistency). The maus program took

2.5 years of cpu time to determine that there are no girth 11 cages with 104 vertices. Our

approach con�rmed this in 25.6 hours. This extra speed made it feasible to complete the

search for girth 11 in 6.7 years of cpu time (run in a few weeks on a mixture of machines),

so one of our new results is that (3; 11)-cages have order 112. Con�rming that a (3; 13)-cage

of order 200 does not exist required 2.3 cpu years. For girth 14, we ruled out 256 vertices

in 18.8 hours of cpu time. Faster techniques are likely required to �nish the work for girths

thirteen and fourteen.

2 Backtracking Rules of Thumb

In this section we present some basic principles for designing fast exponential backtracking

algorithms. The algorithms we consider are exhaustive backtracks designed to provide a

particular con�guration (such as a graph, a combinatorial design, or a structure in a graph

such as a Hamiltonian cycle) when it exists. The exhaustive nature of the search guarantees

that if termination occurs without �nding the desired con�guration, then none exists.

1. Start with what you know. Incorporating the \obvious" assumptions that a

person makes when starting work on a problem can vastly decrease the backtracking

time.

2. Do strong redundancy checks near the root of the search tree, but only

fast checks in other places. Elimination of branches that are provably redundant

(not leading to solutions inequivalent to those found elsewhere) can be extremely

successful in reducing the size of the search tree but can greatly increase the work

done for each node. A good compromise is to perform strong redundancy tests near

the root of the tree (where there are usually few nodes) but only simple fast tests at

other places.

3



3. If there are choices to be made, select a decision with a minimum number

of options. The savings in backtracking time can often be worth the e�ort of

computing if necessary the decision with the smallest number of options, particularly

near the root of the computation tree.

4. Abort early if possible. This goes hand in hand with the previous recommendation.

Often although a con�guration is not maximal, it is possible to detect that it never

can be completed. If we detect this without an exhaustive search of all the maximal

completions, we can avoid a lot of work.

5. Do as little as possible at each recursive call. Since there are generally

an exponential number of recursive calls, excessive overhead at each can make the

running time impractical.

6. Keep it simple if you can. Be prepared to sacri�ce a small decrease in e�ciency

for considerable gains in simplicity. Complexity in the algorithm can make it much

harder to establish correctness of the code, especially for unsuccessful searches.

7. Distribute work by sending branches of the computation tree to various

machines. If the algorithm requires more time than you have available on one

machine, it may still be feasible if you can utilize several machines. Due to the

independence of disjoint subtrees, these backtracking algorithms are very easy to

parallelize. However, the sizes of subtrees and the availability of machines in a non-

dedicated cluster are impossible to predict in advance. Our advice is to break the

tree into signi�cantly more pieces than the number of processors, then to farm the

pieces out to processors as they become available. Often it is enough to cut the tree

across some convenient level.

3 Application: Finding New Cages

We now describe how the principles in the previous section were very e�ectively applied to

�nd new 3-regular cages. Recall that 3-regular graphs have an even number of vertices due

4



to the elementary observation that a graph must have an even number of vertices of odd

degree.

1. What we know. An obvious lower bound (given for example in [4]) on the order

of a (3; g)-cage is

�(g) =

8><
>:

2(g+2)=2 � 2; if g is even; and

3 � 2(g�1)=2 � 2; if g is odd.

This is because a breadth �rst search tree truncated to height b(g � 1)=2c, rooted at

a vertex in the odd case and an edge in the even case, yields a tree whose vertices

excepting the leaves all have degree three. Adding edges elsewhere instead would

create a cycle smaller than g. If there is a cage meeting the lower bound, it is

possible to add edges between the leaves to create it. To search for cages of order 2k

greater than the lower bound, we start with this tree plus 2k isolated vertices.

2. Redundancy screening.

The following ideas were used to eliminate obvious equivalences and were applied at

all levels:

(a) Isolated points. Let x0; :::xk denote the set of points in the graph constructed

so far which have degree zero. Adding edge (v; x0) is obviously isomorphic to

adding (v; xi), i = 1; :::; k.

(b) Leaves. We number of the leaves of the BFS tree that we start with from

left to right starting with 1 (with the tree pictured in the standard way). A

vertex is touched if it is incident to an edge which is not one of the edges of

the original BFS tree. We only add an edge incident to an untouched vertex if

it has the smallest label amongst the isomorphic untouched alternatives. The

isomorphic alternatives to vertex x are numbered sequentially starting with x

and terminating at a precomputed vertex number end iso[x]. For example, if

the desired girth is seven, the values of end iso are as pictured in Figure 1.

5



End_iso[x]

1 2 3 4 5 6 7 8 9 10 11 12

12 2 4 4 12 6 8 8 12 10 12 12

x

Figure 1: End iso for the leaf vertices for girth 7

Nauty [14], a general program for graph isomorphism, was used to aid in the detection

and elimination near the root of search tree of branches which would not result in

new cages. The ideas we applied are more generally applicable so we describe our

technique in more detail.

Each branch at level k of the search tree is associated with a graph consisting of the

initial tree as described in point 1 plus k extra edges. The children are ordered and

each is associated with a graph having one additional edge. The path from the root

of the computation tree to a particular node can be indicated by listing in sequence

the child to select at each level, and we label the node with this sequence.

We maintain the property that the search rooted at a particular node enumerates

all cages which contain the associated graph as a subgraph which have not been

enumerated by a (lexicographically) earlier portion of the search tree. This is the

same as insisting that we only ignore branches if the resulting cages would have been

enumerated earlier assuming the code is executed on a single machine. When only a

small number of extra edges have been added, it is su�cient to check whether any

of the graphs arising from adding each subset of the extra edges is isomorphic to the

graph associated with an earlier branch of the search tree. The situation becomes

more complicated as more edges are added as there can be more than one way to

6



select the initial tree structure described in point 1.

3. A minimum choice decision.

The decision to be made is which edge should be added to the current graph. For

each vertex of degree less than three, there are a �xed number of legal options for

adding another edge without creating a cycle that is too small. We compute the

number of choices for each, and add one additional edge incident to the one with a

minimum number of options. This simple idea is one of the factors contributing to

the signi�cant speedup over the previous approach [8].

4. Early abortion. Although it may still be possible to add edges to the graph we

have created so far, if we have a vertex of degree 3�k with fewer than k legal choices

for an incident edge, it is clear that the graph cannot be completed to a cage.

5. Do as little as possible at each recursive call. We maintain a distance matrix

indexed by the vertices of degree less than three and this is used to determine the

edges which may be added without violating the girth. We need this information to

make our minimum choice decision. This data structure has the attractive property

of decreasing in size at the deeper levels of the computation tree.

A trick we use to avoid considering equivalent con�gurations is to mark invalid edges

whose distance is at least g � 1 with the value g � 2. With an appropriate distance

\algebra", we can prove this has the desired e�ect.

6. Keeping it simple. Our data structures in particular are very simple (as described

above). Further, the data structure maintenance is completed in a straightforward

manner.

7. Work distribution. For girth 9, the program was fast enough to be run on a

single computer. For larger girth, subproblems were automatically distributed using

autoson [13]. Hence we were able to obtain several years of computer time in just a

couple of weeks.

7



4 Conclusions and Future Research

Computer validation of mathematical results is still a relatively new phenomenon. Unlike

a traditional proof, it is not possible to check the results with pencil and paper. Many

stages of the research are subject to error: errors in the theory, the program, the machine

computation, and the compiler can all invalidate the results.

If we instead view the process as an experimental science, we can focus on providing

the information required for the experiment to be successfully reproduced rather than the

mathematical conclusions. In this case, it is critical to describe experiments that can be

reproduced with a limited amount of computation so that scientists without access to

enormous computing resources will be capable of validating the results. In this regard,

our work improves over the previous approach in being both faster and simpler. Further,

the ideas illustrated should prove helpful to researchers creating backtrack algorithms for

similar problems.

References

[1] A. T. Balaban. A trivalent graph of girth ten. J. Combinatorial Theory, Ser. B,

12:1{5, 1972.

[2] A. T. Balaban. Trivalent graphs of girth nine and eleven and relationships among

cages. Rev. Roumaine Math., 18:1033{1043, 1973.

[3] C. T. Benson. Minimal regular graphs of girths eight and twelve. Canadian J. of

Math., 18:1091{1094, 1966.

[4] N. L. Biggs. Cubic graphs with large girth. Ann. New York Acad. Sci., 555:56{62,

1989.

[5] N. L. Biggs and M. J. Hoare. A trivalent graph with 58 vertices and girth 9. Disc.

Math., 30:299{301, 1980.

8



[6] F. T. Boesch. On unreliability polynomials and graph connectivity in reliable network

synthesis. J. Graph Theory, 10(3):339{352, 1986.

[7] J. A. Bondy and U. S. R. Murty. Graph Theory with Applications. North-Holland,

New York, 1980.

[8] G. Brinkmann, B. D. McKay, and C. Saager. The smallest cubic graphs of girth 9.

Combinatorics, Probability, and Computing, 4:317{330, 1995.

[9] M. Capobianco and J. C. Molluzzo. Examples and counterexamples in graph theory.

North Holland, New York, 1978.

[10] C. J. Colbourn. The combinatorics of network reliablity. Oxford University Press, New

York, 1987.

[11] P. Erdos and H. Sachs. Regulare graphen gegebener taillenweitemit minimaler knoten-

zahl. Wiss. Z. Uni. Halle (Math. Nat.), 12:251{257, 1963.

[12] W. F. McGee. A minimal cubic graph of girth 7. Canad. Math. Bull., 3:149{152, 1960.

[13] B. D. Mckay. Autoson| a distributed batch system for UNIX workstation networks

(version 1.3). Technical Report TR-CS-96-03, Austral. Nat. Univ., Dept. of Computer

Science, 1966.

[14] B. D. McKay. Practical graph isomorphism. Proc. Tenth Manitoba Conf. Numerical

Math. and Computing, Cong. Num., 30:45{87, 1981.

[15] J. Nadon. Beyond super-�: counting 4-edge cutsets in 3-regular graphs. Master's

thesis, Department of Computer Science, University of Victoria, Victoria, B.C., 1994.

[16] J. Nadon, W. Myrvold, and C. von Schellwitz. Circulants are the worst. In preparation,

1997.

[17] M. O'Keefe and P. K. Wong. A smallest graph of girth 10 and valency 3. J. Combi-

natorial Theory, Ser. B, 29:91{105, 1980.

9



[18] W. T. Tutte. A family of cubical graphs. Proc. Camb. Philos. Soc., pages 459{474,

1947.

[19] W. T. Tutte. Connectivity in graphs. Univ. Toronto Press, Toronto, 1966.

[20] P. K. Wong. Cages| a survey. J. Graph Theory, 6:1{22, 1982.

[21] P. K. Wong. On the smallest graphs of girth 10 and valency 3. Disc. Math., 43:119{124,

1983.

[22] P. K. Wong. A note on the problem of �nding a (3,9)-cage. Int. J. Math. and Math.

Sci., 8(4):817{820, 1985.

10


