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Abstract. We construct prime-representing functions. In particular we show

that there exist real numbers α > 1 such that
⌊
α2n⌋

is prime for all n ∈ N. Indeed

the set consisting of such numbers α has the cardinality of the continuum.

1. Introduction

A well-known question is whether there exist simple functions whose all
values are distinct primes. Having such an explicit and easily calculable func-
tion would give us an infinite reserve of prime numbers. However, given the
irregularity of the distribution of primes, it is hard to believe that such a
function exists.

Prime-representing functions, that is functions whose all values are
primes, have got some attention in the past, and there are some neat but
non-practical examples. They typically include an unknown parameter α
that depends on the prime sequence which the function represents. One can-
not determine which values of α lead to prime-representing functions but it
is possible to show that there exist such numbers.

Mills [5] showed in 1947 that there exists α > 1 such that

(1) bα3nc
is prime for all n ∈ N. Later Niven [6] showed that 3 in the exponent could
be replaced by any real number

c >
8
3

=
1

1− 5/8
.

Here 5/8 comes from Ingham’s [3] result that, for some C > 0, the interval[
x, x + Cx5/8

]
contains primes for every sufficiently large x. Ingham’s result
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has been improved several times since, the best one being the following result
by Baker, Harman and Pintz [2]. There and later we write π(x) for the
number of primes below x.

Lemma 1. There exists a positive constant d0 such that

π
(
x + x21/40

) − π(x) = d0
x21/40

log x

for every sufficiently large x.
Niven’s argument then gives that (1) still holds if 3 is replaced by any

exponent

c = 1
1− 21/40

=
40
19
≈ 2.1053.

This was quite recently noticed by Alkauskas and Dubickas in [1], where
they, among other theorems, showed essentially the following [1, Theorem 1].

Theorem 2. Let ci = 2.1053 for every i ∈ N and let Cn = c1 · · · cn. Then
there exists α > 1 such that the sequence

⌊
αCn

⌋
contains only prime numbers.

If, in addition, lim supn→∞ cn = ∞, then α can be chosen to be transcenden-
tal.

We notice two refinements to Niven’s result. Firstly this shows that,
under a certain condition, there is a transcendental α which leads to a prime-
representing sequence. Secondly this shows that the exponent function cn

can be replaced by a more general product c1 · · · cn.
These two observation were already implicitly present fifty years earlier

in Wright’s paper [10] that developed the theory of representing functions.
Wright showed that the set of possible numbers α has the cardinality of the
continuum, is nowhere dense and has measure zero. The cardinality claim
naturally already implies that there are transcendental choices for α even
without assuming the condition on lim sup.

In this paper we follow the lines of Wright and prove the following theo-
rem which extends the admissible range for ci to ci = 2.

Theorem 3. Let ci = 2 for every i ∈ N and let Cn = c1 · · · cn. Then there
exists α > 2 such that the sequence

⌊
αCn

⌋
contains only prime numbers. The

set of such numbers α has the cardinality of the continuum, is nowhere dense
and has measure zero.

Taking ci = 2 for every i ∈ N, this implies the following corollary.
Corollary 4. There exists α > 2 such that the sequence

⌊
α2n⌋

contains
only prime numbers. The set of such numbers α has the cardinality of the
continuum, is nowhere dense and has measure zero.

The main new ingredient in this paper is the author’s result in [4] on
sums of differences between consecutive primes. We will need to redo some
of Wright’s work to be able to use that result.
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2. φ-sequences

Let λn(x) = xcn . Let further φ0(x) = x and φn(x) be the composed func-
tion

φn(x) = λn ◦ · · · ◦ λ1(x) = xCn

for n ∈ N.
We say that a sequence (an) of positive integers is a φ-sequence if, for

some fixed α > 1, an =
⌊
φn(α)

⌋
for every n ∈ N.

In [10] these notions are defined for more general functions λn(x). Our
choice of functions λn(x) satisfies conditions there, and so we can apply
results from [10] to this special case. The following lemma (which is [10,
Theorem 2]) gives a sufficient condition for a sequence to be a φ-sequence.

Lemma 5. Assume that a0 > 2,

λn+1(an) 5 an+1 5 λn+1(an + 1)− 1

for all n ∈ N and
an+1 < λn+1(an + 1)− 1

for infinitely many n ∈ N. Then the sequence (an) is a φ-sequence.
What we need to do is to show that there is a prime sequence an which

satisfies the conditions of this lemma.
More generally, we let B to be an infinite set of positive integers and

c = 2. We write Ec(φ,B) for the set of all α = c such that bφn(α)c ∈ B for
all n ∈ N. We combine a series of results from Wright [10] into one lemma.
The inequality

(2) λn(m) < k < λn(m + 1)− 1

will occur repeatedly.
Lemma 6. Let c = 2.
(i) If, for every n = 1 and every m = φn−1(c), there exists k ∈ B such

that (2) holds, then Ec(φ,B) 6= ∅.
(ii) Assume that the condition in (i) is satisfied. If there are infinitely

many integers n = 1 such that, for every integer m = φn−1(c), there are at
least two distinct k, k′ ∈ B for which (2) holds, then Ec(φ,B) has the cardi-
nality of the continuum.

(iii) If there are infinitely many integers n such that, for every integer
m = φn−1(c), there is at least one integer k 6∈ B for which (2) holds, then the
set Ec(φ,B) is nowhere dense.

(iv) Assume that φn(x) is convex for every n ∈ N and that there exists an
integer r such that out of every r consecutive positive integers at least one is
not in B. Then Ec(φ,B) is of zero measure.
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Proof. These are [10, Theorems 4–7]. The proof of (i) follows from
Lemma 5 by taking any a0 = c and then choosing numbers an ∈ B for n = 1
recursively so that the conditions of Lemma 5 are satisfied. This is possible
by using (2) at each stage with m = an−1.

Claim (ii) follows in the same way noticing that, for infinitely many n,
we have at least two choices for an, so that there are 2ℵ0 possible sequences
(an). Each of these must correspond to different α, so the set Ec(φ,B) has
the cardinality of the continuum.

For proofs of (iii) and (iv), see [10, Theorems 6 and 7]. ¤
Using Lemma 1, one can now conclude the result of Alkauskas and Du-

bickas (Theorem 2) from Lemma 6 with B the set of prime numbers P and c
a sufficiently large positive constant.

3. Representing primes

Assumptions in parts (iii) and (iv) of Lemma 6 hold whenever cn > 1 for
every n ∈ N. Hence we already know that the set of possible numbers α in
Theorem 3 is nowhere dense and has measure zero. In order to show that it
is non-empty (and indeed has the cardinality of the continuum), we need a
result from the author’s paper [4], where she proved that

(3)
∑

pn+1−pn>x1/2

x5pn52x

(pn+1 − pn) ¿ x2/3,

where pn is the nth prime number.
Actually the proof of this implies the following stronger result (see [4,

Lemma 1.2 and its proof] which show how the sum in (3) is attacked).
Lemma 7. There exist positive constants d′ < 1 and D′ such that, for

every sufficiently large x, the interval [x, 2x] contains at most D′x1/6 disjoint
intervals

[
n, n + n1/2

]
for which

π
(
n + n1/2

) − π(n) 5 d′n1/2

log n
.

Remark 8. This can be compared with Lemma 1 which told us that
the number of primes in every interval [x, x + xγ ] is of the expected order of
magnitude when γ = 21/40. Assuming the Riemann hypothesis, the admis-
sible range can be extended to γ = 1/2 + ε. Lemma 7 says unconditionally
that, for γ = 1/2 there are very few exceptional intervals. We will later ex-
tend this for γ = 1/2 (Lemma 9 below) and also mention a result for shorter
intervals (Lemma 10 below).
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We use Lemma 7 to prove Corollary 4. We prove the corollary before
turning to Theorem 3, since details are neater in this special case, so the idea
can be seen more clearly.

Proof of Corollary 4. We use Lemma 7 to construct a sequence
(an) consisting of primes satisfying conditions of Lemma 5 with λn(x) = x2.
A prime sequence (an) clearly satisfies the conditions of Lemma 5 if

a0 = 4 and an+1 ∈
[
a2

n, a2
n + an

]
.

Next we construct such a sequence recursively.
Let d′ and D′ be as in Lemma 7. Let a0 be a large prime number such

that the interval A1 = [a2
0, a

2
0 + a0] contains at least d′a0/(2 log a0) primes.

Such a0 can be found by the prime number theorem.
Now we proceed by induction. Let k = 0. We assume that we have chosen

prime numbers a0, , ak such that each interval

Aj+1 =
[
a2

j , a
2
j + aj

]
, j = 0, . . . , k

contains at least d′aj/(2 log aj) primes and

aj ∈ Aj for j = 1, . . . , k.

We want to find a prime ak+1 ∈ Ak+1 such that the interval
[
a2

k+1, a
2
k+1 +

ak+1

]
contains at least d′ak+1/(2 log ak+1) primes.

Let Pk+1 = Ak+1 ∩ P. For p ∈ Pk+1, the intervals [p2, p2 + p] are disjoint
and contained in

[
a4

k, 2a4
k

]
. By Lemma 7 at most D′a2/3

k of them contains
less than d′p/(2 log p) primes. But

(4) D′a2/3
k < d′ak/(2 log ak) 5 |Pk+1|

if a0 is large enough.
Hence we can choose ak+1 ∈ Pk+1 such that the interval

[
a2

k+1, a
2
k+1 +

ak+1

]
contains at least d′ak+1/(2 log ak+1) primes and the induction is fin-

ished.
Lemma 5 implies that there exists α such that an = bα2nc. Since we had

multiple choices for ai at each stage, the set of possible α has the cardinality
of the continuum. ¤

Before proving Theorem 3, we extend Lemma 7 to longer intervals.
Lemma 9. There exist positive constants d < 1 and D such that, for every

sufficiently large x and every γ ∈ [1/2,1], the interval [x,2x] contains at most
Dx2/3−γ disjoint intervals [n, n + nγ ] for which

(5) π(n + nγ)− π(n) 5 dnγ

log n
.
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Proof. Take d = d′/8 and D = 8D′, where d′ and D′ are the constants
in Lemma 7. Consider a set of Dx2/3−γ disjoint intervals [n,n+nγ ] j [x,2x].
They contain at least 4D′x1/6 disjoint subintervals [n,n+n1/2]. By Lemma 7
at least 3D′x1/6 of these contain more than d′n1/2/ log n primes. Therefore
the union of the original intervals contains more than

3D′x1/6 d′x1/2

log x
=

3d′D′x2/3

log x

primes, so at least one of them contains more than

3d′D′xγ

D log x
>

dnγ

log n

primes. This implies the claim. ¤
Proof of Theorem 3. The proof is similar to that of Corollary 4 and

so we only sketch it here. We let d and D be as in Lemma 9 and will choose
prime numbers a0, a1, a2, . . . such that each interval

Aj+1 = [acj+1

j , a
cj+1

j + a
cj+1−1
j ], j = 0, 1, 2, . . .

contains at least da
cj+1−1
j /(cj+1 log aj) primes and aj ∈ Aj for each j ∈ N.

In the induction step we again let Pk+1 = Ak+1 ∩ P. For p ∈ Pk+1, the
intervals [

pck+2 , pck+2 + pck+2−1
]

are disjoint and contained in
[
a

ck+1ck+2

k , 2a
ck+1ck+2

k

]
. By Lemma 9 at most

Da
ck+1ck+2

(
2
3
− (ck+2−1)

ck+2

)
k = Da

ck+1−ck+1ck+2/3
k

of them contains less than dpck+2−1/(ck+2 log p) primes. But cj = 2 for every
j ∈ N, so that

(6) Da
ck+1−ck+1ck+2/3
k <

da
ck+1−1
k

ck+1 log ak
5 |Pk+1|

if a0 is large enough. Now the proof can be finished as that of Corollary 4.
¤

Acta Mathematica Hungarica 128, 2010



PRIME-REPRESENTING FUNCTIONS 313

Taking into account the strictness of the inequality (6) (or (4)), it seems
that there should be a way to push the method further to get a result with
a looser requirement than ci = 2. The reason we are stuck with the bound 2
at the moment is that Lemma 9 and all the work in [4] concerns intervals[
n, n + n1/2

]
.

However there is a companion sum to (3) which deals with shorter inter-
vals. Indeed Peck [7] has shown that

(7)
∑

x5pn52x

(pn+1 − pn)2 ¿ x5/4+ε.

His method gives the following correspondence to Lemma 9.
Lemma 10. There exist positive constants d < 1 and D such that, for

every sufficiently large x and every γ ∈ (0, 1], the interval [x, 2x] contains at
most Dx5/4−2γ+ε disjoint intervals [n, n + nγ ] for which

π(n + nγ)− π(n) 5 c2n
γ

log n
.

Unfortunately, for intervals of length γ 5 1/2, this is too weak for our
purposes. Using this instead of Lemma 9, we would only get Theorem 3 with
the requirement ci = 2 + ε.

Peck [7] used Heath-Brown’s identity when he proved Lemma 10. With
the same method, he proved the bound (3) with 2/3 replaced by 25/36 (This
also appeared in [8].) The current author managed to improve 25/36 to 2/3
in [4] using Harman’s sieve method instead of Heath-Brown’s identity. It
is reasonable to expect that this change of sieve method would also let one
improve the exponent in (7) or at least improve Lemma 10 when γ is just
below 1/2. This in turn would lead to a looser requirement for ci.

Assuming the Riemann hypothesis the exponent 5/4 in Lemma 10 can be
replaced by 1 by the work of Selberg [9]. This implies that, assuming the Rie-
mann hypothesis, Theorem 3 holds with the requirement ci =

(
1 +

√
5

)
/2.
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