Primes is in P Manindra Agrawal, Neeraj Kayal and Nitin Saxena

Nicolas Gast

15 février 2005

Plan

Introduction

Contexte Préliminaires

L'algorithme

Détails

Correction : n premier \Rightarrow PRIME

Correction : PRIME $\Rightarrow n$ premier

Complexité

Introduction

Introduction

Contexte Préliminaires

L'algorithme

Détails

Correction : n premier \Rightarrow PRIME Correction : PRIME \Rightarrow n premier

Complexité

Contexte

Test de primalités :

- 1. En $O(\sqrt{n})$
- 2. Problème co-NP, NP (1975)
- 3. Bons algo probabilistes

```
lciO(log(n)^{10.5})
```

Contexte

Test de primalités :

- 1. En $O(\sqrt{n})$
- 2. Problème co-NP, NP (1975)
- 3. Bons algo probabilistes

lci

$$O(\log(n)^{10.5})$$

•0

- a ∈ Z
- ▶ $n \in \mathbb{N}, n \geq 2, GCD(a, n) = 1$

n est premier si et seulement si

$$(X+a)^n = X^n + a \pmod{n} \quad (2.1)$$

Démonstration.

Le coefficient de X^i (0 < i < n) de $(X + a)^n$ est $c = \binom{n}{i} a^{n-i}$

- \triangleright Si *n* est premier : c = 0
- ► Si $q^k || n, q^k \nmid {n \choose a}$, or GCD(n, a) = 1 donc ${n \choose a} \neq 0$

•0

$Id\acute{e}e$

- a ∈ Z
- ▶ $n \in \mathbb{N}, n \ge 2, GCD(a, n) = 1$

n est premier si et seulement si

$$(X+a)^n = X^n + a \pmod{n} \quad (2.1)$$

Démonstration.

Le coefficient de X^i (0 < i < n) de $(X + a)^n$ est $c = \binom{n}{i} a^{n-i}$

- ▶ Si n est premier : c = 0
- ▶ Si $q^k || n, q^k \nmid {n \choose a}$, or GCD(n, a) = 1 donc ${n \choose a} \neq 0$

Préliminaire

$o_r(a)$ (Ordre d'un modulo r)

Plus petit entier k tel que $a^k = 1 \pmod{r}$

$\phi(r)$ (indicateur d'Euler)

nombre d'entier $\leq r$ premiers avec r

LCM(m)

Def: LCM(m) = ppcm des m premiers entier

Theorem

$$LCM(m) \ge 2^m (3.1)$$

Préliminaire

$o_r(a)$ (Ordre d'un modulo r)

Plus petit entier k tel que $a^k = 1 \pmod{r}$

$\phi(r)$ (indicateur d'Euler)

nombre d'entier $\leq r$ premiers avec r

LCM(m)

Def : LCM(m) = ppcm des m premiers entier

Theorem

$$LCM(m) \ge 2^m (3.1)$$

Préliminaire

$o_r(a)$ (Ordre d'un modulo r)

Plus petit entier k tel que $a^k = 1 \pmod{r}$

$\phi(r)$ (indicateur d'Euler)

nombre d'entier $\leq r$ premiers avec r

LCM(m)

Def : LCM(m) = ppcm des m premiers entier

Theorem

$$LCM(m) \geq 2^{m} (3.1)$$

L'algorithme

Introduction

Contexte Préliminaires

L'algorithme

Détails

Correction : n premier \Rightarrow PRIME Correction : PRIME \Rightarrow n premier

Complexité

L'algorithme

Prime(n)

- 1. if $(n = a^b, b > 1)$ output COMPOSITE
- 2. Trouver le plus petit r tel que $o_r(n) > 4 \log^2 n$.
- 3. If $\exists a \leq r$ tel que $1 < \gcd(a, n)$, output COMPOSITE
- 4. If $n \le r$ output PRIME
- 5. For a=1 to $\lfloor 2\sqrt{\phi(r)}\log n\rfloor$ do if $((X+a)^n\neq X^n+a(\mathrm{mod}X^r-1,n))$, output COMPOSITE
- Output PRIME

Analyse de l'algorithme

1. Si n est premier, l'algorithme retourne PRIME

- 2. PRIME $\Rightarrow n$ premier
 - 2.1 Existance d'un $r \leq \lceil 16 \log^5 n \rceil$
 - 2.2 Définition d'un groupe, étude de sa cardinalité : et contradictions
- 3. Complexité
 - 3.1 Basique
 - 3.2 Améliorations

Analyse de l'algorithme

- 1. Si n est premier, l'algorithme retourne PRIME
- 2. PRIME $\Rightarrow n$ premier
 - 2.1 Existance d'un $r \leq \lceil 16 \log^5 n \rceil$
 - 2.2 Définition d'un groupe, étude de sa cardinalité : et contradictions
- Complexité
 - 3.1 Basique
 - 3.2 Améliorations

Analyse de l'algorithme

- 1. Si n est premier, l'algorithme retourne PRIME
- 2. PRIME $\Rightarrow n$ premier
 - 2.1 Existance d'un $r \leq \lceil 16 \log^5 n \rceil$
 - 2.2 Définition d'un groupe, étude de sa cardinalité : et contradictions
- 3. Complexité
 - 3.1 Basique
 - 3.2 Améliorations

Les lignes à étudier :

Ligne 1

if $(n = a^b, b > 1)$ output COMPOSITE

Ligne 3

If $\exists a \leq r \text{ telque } 1 < \gcd(a, n)$, output COMPOSITE

Ligne 5

For a=1 to $\lfloor 2\sqrt{\phi(r)}\log n\rfloor$ do if $((X+a)^n \neq X^n+a(\mathrm{mod}X^r-1,n))$, output COMPOSITE

Les lignes à étudier :

Ligne 1

if $(n = a^b, b > 1)$ output COMPOSITE

Ligne 3

If $\exists a \leq r \text{ telque } 1 < \gcd(a, n)$, output COMPOSITE

Ligne 5

For
$$a=1$$
 to $\lfloor 2\sqrt{\phi(r)}\log n\rfloor$ do if $((X+a)^n \neq X^n+a(\mathrm{mod}X^r-1,n))$, output COMPOSITE

Les lignes à étudier :

Ligne 1

if $(n = a^b, b > 1)$ output COMPOSITE

Ligne 3

If $\exists a \leq r \text{ telque } 1 < \gcd(a, n)$, output COMPOSITE

Ligne 5

For
$$a=1$$
 to $\lfloor 2\sqrt{\phi(r)}\log n\rfloor$ do if $((X+a)^n\neq X^n+a(\text{mod}X^r-1,n))$, output COMPOSITE

Les lignes à étudier :

Ligne 1

if $(n = a^b, b > 1)$ output COMPOSITE

Ligne 3

If $\exists a \leq r \text{ telque } 1 < \gcd(a, n)$, output COMPOSITE

Ligne 5

For
$$a=1$$
 to $\lfloor 2\sqrt{\phi(r)}\log n\rfloor$ do if $((X+a)^n\neq X^n+a(\mathrm{mod}X^r-1,n))$, output COMPOSITE

Existance d'un $r \leq \lceil 16 \log^5 n \rceil$

Lemma

Il existe un $r \leq \lceil 16 \log^5 n \rceil$ tel que $o_r(n) > 4 \log^2 n$

Démonstration.

soit $r_1,r-2,r_t$ les nombres tels que $o_{r_i} < 4\log^2 n$. Chaque r_i divise le produit

$$\prod_{i=1}^{4 \log^2 n} (n^i - 1) < n^{16 \log^4 n} \le 2^{16 \log^5 n}$$

Par le lemme 3.1 (LCM), on a donc un des $r_i \leq \lceil 16 \log^5 n \rceil$

Existance d'un $r \leq \lceil 16 \log^5 n \rceil$

Lemma

Il existe un $r \leq \lceil 16 \log^5 n \rceil$ tel que $o_r(n) > 4 \log^2 n$

Démonstration.

soit $r_1, r-2, r_t$ les nombres tels que $o_{r_i} < 4 \log^2 n$. Chaque r_i divise le produit

$$\prod_{i=1}^{\lceil 4 \log^2 n \rceil} (n^i - 1) < n^{16 \log^4 n} \le 2^{16 \log^5 n}$$

Par le lemme 3.1 (LCM), on a donc un des $r_i \leq \lceil 16 \log^5 n \rceil$

- Soit p un diviseur de n
- Soit $I = \{n^i.p^j | i, j \ge 0\}$

Définition : G

- ▶ G est l'ensemble des restes de l modulo r
- G est un sous-groupe de \mathbb{Z}_r^* car gcd(n,r)=1
- ► G est engendré par n et p
- On pose t = |G|, $t \ge o_r(n) > 4 \log^2 n$

- Soit p un diviseur de n
- Soit $I = \{n^i.p^j | i, j \ge 0\}$

Définition : G

- G est l'ensemble des restes de l modulo r
- G est un sous-groupe de \mathbb{Z}_r^* car gcd(n,r)=1
- ▶ G est engendré par n et p
- On pose t = |G|, $t \ge o_r(n) > 4 \log^2 n$

Définition

Soit h(X) un facteur irréductible de $Q_r(X)$ dans F_p , le $r^{i \text{ème}}$ polynôme cyclotomique. Il a degré $o_r(p)$

 \mathscr{G} est l'ensemble des polynôme de P dont le reste modulo h(X) et p est non nul.

 \mathscr{G} est généré par $X+1,X+2,\ldots,X+l$ dans $F_p[X]/(h(X))$

Définition

Soit h(X) un facteur irréductible de $Q_r(X)$ dans F_p , le $r^{i em}$ polynôme cyclotomique. Il a degré $o_r(p)$

\mathscr{G}

 \mathscr{G} est l'ensemble des polynôme de P dont le reste modulo h(X) et p est non nul.

 \mathscr{G} est généré par $X+1,X+2,\ldots,X+I$ dans $F_p[X]/(h(X))$

Étude de la taille de G

Lemma

$$|\mathscr{G}| \ge {t+l-2 \choose t-1} \qquad (4.7)$$

Lemma

Si n n'est pas une puissance de p :

$$|\mathcal{G}| < \frac{1}{2}n^{2\sqrt{t}} \qquad (4.8)$$

Étude de la taille de G

Lemma

$$|\mathcal{G}| \ge {t+l-2 \choose t-1} \qquad (4.7)$$

Lemma

Si n n'est pas une puissance de p :

$$|\mathcal{G}| < \frac{1}{2}n^{2\sqrt{t}} \quad (4.8)$$

Étude de la taille de G

La contradiction

D'après le lemme 4.7, en prenant t = |G| et $I = \lceil 2\sqrt{\phi(r)}\log n \rceil$:

$$|\mathcal{G}| \geq {t+l-2 \choose t-1}$$

$$\geq \dots$$

$$\geq \frac{1}{2}n^{2\sqrt{t}}$$

- Or d'après le lemme 4.8 : Si n n'est pas une puissance de p : $|\mathscr{G}| < \frac{1}{2} n^{2\sqrt{t}}$
- donc n est une puissance de p
- ightharpoonup donc n=p

Étude de la complexité

Analyse

- 1. if $(n = a^b, b > 1) \dots$
- 2. Trouver r, $o_r(n) > 4 \log^2 n \dots$
- 3. If $\exists a \leq r \text{ tq } \gcd(a, n) \dots$
- 4. If n < r ...
- 5. For a = 1 to $\lfloor 2\sqrt{\phi(r)} \log n \rfloor$ if $((X + a)^n \neq X^n + a(\text{mod}X^r 1, n))$

- 1. $O(\log^3(n))$
- 2. recherche "exhaustive" : $O(\log^7(n))$
- 3. $O(\log^6)$
- 4. $O(\log n)$
- 5. $\lfloor 2\sqrt{\phi(r)}\log n \rfloor \cdot \log^2 n = O(\log^{10.5})n$

 $\mathbf{D'où}: O(\log^{10.5} n)$

- Un algorithme polynomial pour la primalité
- Moins performant en pratique
- Utile pour les utilisations critiques
- ► Améliorations :
 - Lemme sur la taille de $r : O(\log^{7.5} n)$
 - Conjecture: si r est premier ne divisant pas n, alors $(X+1)^n = X^n \pmod{X^r-1}$, n) ssi n est premier ou $n^2 = 1 \pmod{r}$

- Un algorithme polynomial pour la primalité
- ► Moins performant en pratique
- Utile pour les utilisations critiques
- ► Améliorations :
 - Lemme sur la taille de $r : O(\log^{7.5} n)$
 - Conjecture: si r est premier ne divisant pas n, alors $(X+1)^n = X^n \pmod{X^r-1}$, n) ssi n est premier ou $n^2 = 1 \pmod{r}$

- Un algorithme polynomial pour la primalité
- Moins performant en pratique
- Utile pour les utilisations critiques
- Améliorations :
 - Lemme sur la taille de $r : O(\log^{7.5} n)$
 - Conjecture: si r est premier ne divisant pas n, alors $(X+1)^n = X^n (\operatorname{mod} X^r 1, n)$ ssi n est premier ou $n^2 = 1 (\operatorname{mod} r)$

- Un algorithme polynomial pour la primalité
- Moins performant en pratique
- Utile pour les utilisations critiques
- Améliorations :
 - Lemme sur la taille de $r: O(\log^{7.5} n)$
 - Conjecture: si r est premier ne divisant pas n, alors $(X+1)^n = X^n \pmod{X^r-1}$, n) ssi n est premier ou $n^2 = 1 \pmod{r}$