

Table Grape Seminar

Wednesday, February 21, 2001 Visalia Convention Center 303 East Acequia, Visalia

Registration information and program enclosed.

Energy and Cost Required to Lift or Pressurize Water

Power Requirements to Lift Water

It takes a lot of power to lift water. To appreciate how much, consider the following example:

Example: A pump is discharging 452.5 gallons per minute. How much water is discharged in 12 hours and what is the weight of the water pumped during this period? One gallon weighs 8.3 pounds. The answers are: 325,851 gallons which happens to equal one acre-foot, and 2,719,226 pounds or 1,359 tons, which is the weight of one acre-foot of water.

Calculated as follows:

1) 452.5 gallons per minute $\mathbf{x} 60$ minutes per hour $\mathbf{x} 12$ hours $=325,851$ gallons
2) 325,851 gallons $\mathbf{x} 8.345$ pounds per gallon $=$ 2,719,226 pounds

A pump discharging 450 gallons per minute is lifting 1.87 tons of water every minute.

The energy requirement increases with every foot the water is lifted. To determine the energy requirement, simply multiply the weight of water in pounds by the lift in feet: this calculates energy in units of foot-pounds (ft-lb).

Example: How much energy does it take to lift an acre-foot of water (325,851 gallons) one foot in elevation? 100 feet in elevation? The answers are: $\mathbf{2 , 7 1 9 , 2 2 6} \mathrm{ft}-\mathrm{lb}$ and 271,922,600 ft-lb.

Calculated as follows:

Equation: energy required $=$ weight of water \boldsymbol{x} feet of lift

Weight of one acre-foot $=325,851$ gallons \boldsymbol{x} 8.345 pounds per gallon $=2,719,226$ pounds

1) Lift = $\mathbf{1}$ foot

Energy required $=2,719,226$ pounds of water x 1 foot of lift $=2,719,226 \mathrm{ft}-\mathrm{lb}$ of energy
2) $\mathbf{L i f t}=\mathbf{1 0 0}$ feet

Energy required $=2,719,226$ pounds of water x 100 feet of lift $=271,922,600 \mathrm{ft}-\mathrm{lb}$

Power or energy, especially electric power, is usually measured in kilowatt-hour (kwhr) rather than ft -lbs. The conversion fromft-lbs to kwhr is simple enough.

> 1 kilowatt-hour $(\mathrm{kwhr})=2,655,220$ foot pounds $(\mathrm{ft}-\mathrm{lb})$

Another example: We calculated that the energy required to lift one-acre foot of water $(325,851$ gallons) one foot is $2,719,226 \mathrm{ft}-\mathrm{lbs}$. What is the energy in kilowatt-hour?

Calculated as follows:

1) Kilowatt-hour $=2,719,226 \mathrm{ft}-\mathrm{lbs} / 2,655,220 \mathrm{ft}-$ lbs per $\mathrm{kwhr}=\underline{\mathbf{1 . 0 2} \mathbf{~ k w h r}}$

Note that this energy requirement assumes 100\% efficiency in the pumping plant.

Pumping plants do not operate at 100% efficiency. Energy is lost in the motor and column shaft, and friction losses occur through the strainer, suction pipe and column. A properly designed and adjusted pumping plant will operate at about 70% efficiency; that is, 70% of the power goes to lifting water, and the rest is used up in the mechanics of the pumping plant. The efficiency can be as low as 40% when the pumping plant is poorly designed, worn, or improperly adjusted.

Table 1 (see page 4) shows the amount of energy in kwhr required to lift an acre-foot of water one foot in elevation over a range of overall pumping plant
efficiencies. Also given is the cost to pump one acrefoot of water one foot in elevation figuring electrical power at $\$ 0.10$ per kwhr. Note that the energy required to lift one-acre foot of water one foot of elevation and assuming 100% efficiency is $\mathbf{1 . 0 2}$ kwhr. This is the value we calculated above.

Power Requirement to Pressurize Water

Drip and sprinkler systems are operated at 20 to 40 pounds per square inch pressure (psi). This requires energy and cost money.

1 psi pressure $=2.31$ feet of water head

The energy required to create a pressure of 43 psi is the same as the energy required to lift water 100 feet.

Next to the last example: You have a drip system and are using ditch water that must be pressurized to 30 psi. A pressure of 30 psi is equal to lifting the water how many feet? How much energy is required to pressurize one acre-foot (325,851 gals) to a pressure of 30 psi and using a pump operating at 70% efficiency? A kwhr cost $\$ 0.10$. The answers are: $\mathbf{3 0} \mathbf{~ p s i}$ is equal to lifting the water 69.3 feet; the energy required to pressurize one acre-foot to $30 \mathbf{p s i}$ is $\mathbf{1 0 0 . 8} \mathbf{k w h r}$; and the cost is $\mathbf{\$ 1 0 . 0 8}$.

Calculated as follows:

1) $30 \mathrm{psi} \times 2.31$ feet per $\mathrm{psi}=69.3$ feet of water head; in other words, pressurizing to 30 psi is equal to lifting the water 69.2 feet.
2) One acre-foot weighs $2,719,226$ pounds (325,851 gallons x 8.345 pounds).
3) Energy required in $\mathrm{ft}-\mathrm{lbs}=$ weight of water x feet of lift. Therefore, 2,719,226 pounds of water x 69.3 feet of lift $=188,442,361 \mathrm{ft}-\mathrm{lbs}$ of energy per acre-foot of water.
4) Next, convert energy units of ft-lbs to units of
kwhr. A kwhr $=2,655,220 \mathrm{ft}-\mathrm{lbs}$; therefore, $188,442,361 \mathrm{ft}-\mathrm{lbs} / 2,655,220 \mathrm{ft}-5)$ The pump is operating at 70% efficiency; therefore, 70.9 $\mathrm{kwhr} / 0.70$ efficiency $=101.4 \mathrm{kwhr}$.
5) The pump is operating at 70% efficiency; therefore, $70.9 \mathrm{kwhr} / 0.70$ efficiency $=101.4$ kwhr.
6) Energy cost $=101.4 \mathrm{kWh} \mathbf{x} \$ 010$ per $\mathrm{kwhr}=$ $\$ 10.07$ per acre-foot (325,851 gallons).

Theenergy necessary to pressurize adrip or sprinkler systemissignificant and often overlooked by farmers when comparing drip and furrow irrigation systems.

Most crops require a minimum of 2 acre-feet per acre during the growing season. The cost to pressurize a drip system operating at 30 psi is $\$ 20.14$ per acre using the above example.

> The costofenergy underscores the importance of designing drip and sprinkler systems that apply water efficiently and at low pressure. Also, keep in mind that the most energy efficient irrigation systems are furrow or flood that are designed and managed to apply water uniformly and efficiently.

Checking Pump Efficiency

The efficiency of your pumping plant can be easily determined with the following information: (1) the volume of water pumped; (2) the lift (including
discharge head); (3) the amount of power used. A water meter indicates the volume of water pumped. The electric meter measures power usage. The total pumping head is measured by the electric power company or your pump dealer.

Last Example: A water meter indicates your pumping plant discharged 80 acre-feet during the irrigation season. During this period the electric meter showed you used $30,720 \mathrm{kwhr}$. The total lift is 150 feet: the lift includes draw-down and pressure head. What is the efficiency of the pumping plant? The answer is 40%.

Calculated as follows:

1) The energy used to lift an acre-foot

$$
\begin{aligned}
150 \text { feet }= & 30,720 \mathrm{kwhr} / 80 \text { acre- } \mathrm{ft} \\
= & 384 \mathrm{kwhr} \text { per acre-foot to lift the } \\
& \text { water } 150 \mathrm{ft} .
\end{aligned}
$$

2) The energy used to lift an acre-foot

1 foot $=384 \mathrm{kwhr} / 150 \mathrm{ft}$
$=2.56 \mathrm{kwhr} /$ foot of lift
Now go to the table below that shows kilowatthours per acre-foot per foot of lift at various pumping plant efficiencies. An energy requirement of 2.56 kwhr per acre foot shows an overall plant efficiency of 40%.

This is very poor efficiency and costing you money. An electric pumping plant should have an energy use efficiency around 70%.

[^0]Table 1. The amount of energy in kilowatt hours (kwhr) required to lift one acre-foot of water ($\mathbf{3 2 5 , 8 5 1}$ gallons) one foot of elevation

Overall plant efficiency $(\%)$	Energy to lift one acre-foot (325,851 gallons) one foot in elevation (kwhr)	Cost to lift one acre-foot one foot in elevation $\mathbf{(\$ 0 . 1 0 / k w h r) ~}$
100	1.02	$\$.102$
75	1.37	.137
70	1.46	.146
65	1.58	.158
60	1.71	.171
55	1.86	.186
50	2.05	.205
45	2.28	.228
40	2.56	.256

In case you do not like to work in ft-lbs or kwhr, here are some more units of energy and power

1 foot-pound (ft-lb)=amount of work required tolift an object weighing one pound a foot inelevation.

1 horsepower (hp) = 550foot-pound persecond
$=746$ watts
$=0.746$ kilowatt (kw)
1 watt $(w)=0.738$ foot-pound per second.

1 kilowatthour (kwhr) = 2,655,220foot-pounds
$=3,600,000$ watts (w)
$=3,600$ kilowatts (kw)
$=$ the amount of energy generated by 1.34 horsepowerover aone-hourperiod

1 calorie $=3.086$ foot-pounds

$$
\begin{aligned}
1 \text { BTU } & =252 \text { calories (BTU stands for British Thermal Unit) } \\
& =777.7 \text { foot-pounds }
\end{aligned}
$$

[^0]: WilliamL.Peacock
 FarmAdvisor, Viticulture
 (559)733-6458

