
Philosophy of Computer Science

William J. Rapaport

Department of Computer Science and Engineering,
Department of Philosophy, Department of Linguistics,

and Center for Cognitive Science
University at Buffalo, The State University of New York,

Buffalo, NY 14260-2500
rapaport@buffalo.edu

http://www.cse.buffalo.edu/∼rapaport/

DRAFT c© 2004–2020 by William J. Rapaport

January 27, 2020

2

Figure 1: http://www.gocomics.com/calvinandhobbes/2015/3/5, c©1995 Watterson

3

4

Contents

Preface 23

I Philosophy and Computer Science 27

1 What Is Philosophy of Computer Science? 31
1.1 Readings . 32
1.2 What This Book Is About . 33
1.3 What This Book Is Not About . 35

2 What Is Philosophy? 37
2.1 Readings . 38
2.2 Introduction . 39
2.3 A Definition of ‘Philosophy’ . 39
2.4 What Is Truth? . 42

2.4.1 The Correspondence Theory of Truth 42
2.4.2 The Coherence Theory of Truth 43
2.4.3 Correspondence vs. Coherence 43

2.5 On Searching for the Truth vs. Finding It 45
2.5.1 Asking “Why?” . 46
2.5.2 Can There Be Progress in Philosophy? 47
2.5.3 Skepticism . 49

2.6 What Is “Rational”? . 51
2.6.1 Kinds of Rationality . 51

2.6.1.1 Deductive Rationality 51
2.6.1.2 Inductive Logical Rationality 53
2.6.1.3 Abductive Logical Rationality 54
2.6.1.4 Non-Monotonic Logical Rationality 54
2.6.1.5 Computational Rationality 55

2.6.2 Science and Philosophy . 55
2.6.2.1 Is Science Philosophy? 56
2.6.2.2 Is Philosophy a Science? 56

2.6.3 Is It Always Rational to Be Rational? 57
2.7 What Is the Import of “Personal Search”? 58

5

6 CONTENTS

2.8 What Is the Import of “In Any Field”? 59
2.9 Philosophy and Computer Science 65
2.10 Appendix: Argument Analysis and Evaluation 68

2.10.1 Introduction . 68
2.10.2 A Question-Answer Game 68
2.10.3 Missing Premises . 71
2.10.4 When Is an Argument a “Good” Argument? 75
2.10.5 Examples of Good and Bad Arguments 79
2.10.6 Summary . 81

II Computer Science, Computation, and Computers 83

3 What Is Computer Science? 87
3.1 Readings . 88
3.2 Introduction . 90
3.3 Preliminary Questions . 90

3.3.1 Naming the Discipline . 90
3.3.2 Why Ask What CS Is? . 92

3.3.2.1 Academic Motivations 92
3.3.2.1.1 Academic Politics. 92
3.3.2.1.2 Academic Pedagogy. 93
3.3.2.1.3 Academic Publicity. 94

3.3.2.2 Intellectual or Philosophical Motivations 94
3.3.3 What Does It Mean to Ask What Something Is? 95

3.3.3.1 Determining Boundaries 95
3.3.3.2 Three Other Controversial Terms 98

3.3.3.2.1 What Is a Planet? 98
3.3.3.2.2 What Is Computation? 99
3.3.3.2.3 What Is Thinking? 100

3.4 Two Kinds of Definition . 100
3.4.1 An Extensional Definition of CS 101
3.4.2 Intensional Definitions of CS 103

3.5 CS Is the Science of Computers . 104
3.5.1 Objection to the First Premise 105
3.5.2 Objection: Computers Are Tools, not Phenomena 106
3.5.3 Digression: The Once-upon-a-Time Science of Microscopy . 108
3.5.4 Objection: Computer Science Is Just a Branch of 111
3.5.5 Objection: What about Algorithms? 112

3.6 CS Studies Algorithms . 112
3.6.1 Only Algorithms? . 113
3.6.2 Or Computers, Too? . 116

3.7 Physical Computers vs. Abstract Algorithms 117
3.8 CS Studies Information . 119
3.9 CS Is a Science . 122

3.9.1 Computer Science Is a Formal (Mathematical) Science 122

CONTENTS 7

3.9.2 CS Is the Science of Intellectual Processes 126
3.9.3 CS Is a Natural Science (of Procedures) 127
3.9.4 CS Is a Natural Science of the Artificial 129
3.9.5 Computer Science Is an Empirical Study 130

3.10 CS Is Engineering . 133
3.11 Science xor Engineering? . 136
3.12 CS as “Both” . 137
3.13 CS as “More” . 139

3.13.1 CS Is a New Kind of Engineering 139
3.13.1.1 CS Is a Kind of Engineering 139
3.13.1.2 CS Is a New Kind of Engineering 141

3.13.2 CS Is a New Kind of Science 142
3.14 CS as “Neither” . 146

3.14.1 CS Has Its Own Paradigm 146
3.14.2 CS Is Art . 147
3.14.3 CS Is the Study of Complexity 149
3.14.4 CS Is the Philosophy(!) of Procedures 150
3.14.5 CS Is Computational Thinking 152
3.14.6 CS Is AI . 155
3.14.7 Is CS Magic? . 156

3.15 So, What Is Computer Science? . 161
3.15.1 Computer Science and Elephants 161
3.15.2 Five Central Questions of CS 163

3.15.2.1 Computability . 163
3.15.2.1.1 What Can Be Computed? 163
3.15.2.1.2 How Is It Computable? 165

3.15.2.2 Efficient Computability 167
3.15.2.3 Practical Computability 168
3.15.2.4 Physical Computability 169
3.15.2.5 Ethical Computability 169

3.15.3 Wing’s Five Questions . 170
3.15.4 Conclusion . 172

3.16 A Look Ahead . 172
3.17 Questions for the Reader . 174

4 What Is Science? 179
4.1 Readings . 180
4.2 Introduction . 181
4.3 Science and Non-Science . 181
4.4 Early Modern Science . 183
4.5 The Goals of Science . 184

4.5.1 Description as the Goal of Science 184
4.5.2 Explanation as the Goal of Science 185
4.5.3 Prediction as the Goal of Science 186

4.6 Instrumentalism vs. Realism . 187
4.7 What Is a Scientific Theory? . 190

8 CONTENTS

4.8 “The” Scientific Method . 191
4.9 Alternatives to “The Scientific Method” 193

4.9.1 Falsifiability . 193
4.9.1.1 Science as Conjectures and Refutations 193
4.9.1.2 The Logic of Falsifiability 195
4.9.1.3 Problems with Falsifiability 196

4.9.2 Scientific Revolutions . 197
4.9.3 Other Alternatives . 198

4.10 CS and Science . 199
4.10.1 Is CS a Science? . 199
4.10.2 What Kind of Science Might CS Be? 200

4.11 Questions to Think About . 202

5 What Is Engineering? 205
5.1 Readings . 206
5.2 Can We Define ‘Engineering’? . 207
5.3 Could Engineering Be Science? . 209
5.4 A Brief History of Engineering . 211
5.5 Conceptions of Engineering . 212
5.6 What Do Engineers Do? . 213

5.6.1 Engineering as Design . 213
5.6.2 Engineering as Building . 214

5.7 The Engineering Method . 214
5.8 Software Engineering . 217
5.9 Closing Remarks . 218
5.10 Questions to Think About . 220

6 What Is a Computer?
A Historical Perspective 223
6.1 Readings . 224
6.2 Introduction . 225
6.3 Would You Like to Be a Computer?

Some Terminology . 226
6.4 Two Histories of Computers . 227
6.5 The Engineering History . 228

6.5.1 Ancient Greece . 228
6.5.2 17th-Century Adding Machines 229
6.5.3 Babbage’s Machines . 229
6.5.4 Electronic Computers . 232
6.5.5 Modern Computers . 233

6.6 The Scientific, Mathematical, Logical History 236
6.7 The Histories Converge . 240
6.8 What Is a Computer? . 242

6.8.1 What Is a Computer, Given the Engineering History? 242
6.8.2 What Is a Computer, Given the Logical History? 244

CONTENTS 9

7 What Is an Algorithm? 245
7.1 Readings . 246
7.2 Introduction . 247
7.3 What Is ‘Computation’? . 247

7.3.1 ‘compute’ . 247
7.3.2 ‘reckon’ . 248
7.3.3 ‘count’, ‘calculate’, ‘figure’ 248
7.3.4 ‘computation’ . 249

7.4 What Is Computation? . 249
7.4.1 What Is a Function? . 249

7.4.1.1 Two Meanings . 249
7.4.1.2 Functions Described Extensionally 250
7.4.1.3 Interlude: Functions Described as Machines 253
7.4.1.4 Functions Described Intensionally 254
7.4.1.5 Computable Functions 257

7.5 ‘Algorithm’ Made Precise . 259
7.5.1 Ancient Algorithms . 259
7.5.2 “Effectiveness” . 260
7.5.3 Three Attempts at Precision 262

7.5.3.1 Markov . 262
7.5.3.2 Kleene . 263
7.5.3.3 Knuth . 264
7.5.3.4 Summary . 269

7.6 Five Great Insights of CS . 270
7.6.1 Bacon’s, Leibniz’s, Morse’s, Boole’s, Ramsey’s, Turing’s, and

Shannon’s Representational Insight 270
7.6.2 Turing’s Processing Insight 272
7.6.3 Böhm & Jacopini’s Structural Insight 274
7.6.4 Structured Programming (I) 274
7.6.5 Digression—Recursive Definitions 276
7.6.6 Structured Programming (II) 277
7.6.7 The Church-Turing Computability Thesis 280
7.6.8 Turing’s, Kay’s, Denning’s, and Piccinini’s Implementation In-

sight . 284
7.7 Structured Programming and Recursive Functions 285

7.7.1 Structured Programming . 285
7.7.1.1 Structured Programs 285
7.7.1.2 Two Kinds of Structured Programs 288

7.7.2 Recursive Functions . 289
7.7.2.1 A Recursive Definition of Natural Numbers 289
7.7.2.2 Recursive Definitions of Recursive Functions 291
7.7.2.3 Classification of Recursive Functions 295

7.8 The Halting Problem . 297
7.8.1 Introduction . 297
7.8.2 Proof Sketch that H Is Not Computable 301

7.8.2.1 Step 1 . 301

10 CONTENTS

7.8.2.2 Step 2 . 302
7.8.2.3 Step 3 . 302
7.8.2.4 Step 4 . 303
7.8.2.5 Final Result . 303

7.8.3 Other Non-Computable Functions 304
7.8.3.1 Hilbert’s 10th Problem 304
7.8.3.2 The Busy Beaver Problem 305

7.9 Summary . 305
7.10 Questions for the Reader . 306

8 Turing’s Analysis of Computation 309
8.1 Required Reading . 310
8.2 Introduction . 311
8.3 Slow and Active Reading . 312
8.4 Title: “The Entscheidungsproblem” 312
8.5 Paragraph 1 . 313

8.5.1 Paragraph 1, Sentence 1 . 313
8.5.1.1 “Computable” . 313
8.5.1.2 Real Numbers . 313
8.5.1.3 Finitely Calculable 314

8.5.2 Paragraph 1, Last Sentence 314
8.6 Paragraph 2 . 315

8.6.1 Paragraph 2, Sentence 1 . 315
8.6.2 Paragraph 2, Last Sentence 315

8.7 Section 1, Paragraph 1: “Computing Machines” 316
8.8 Section 9:

“The Extent of the Computable Numbers” 317
8.8.1 Section 9, Paragraphs 1 and 2 317
8.8.2 Section 9, Subsection I . 318

8.8.2.1 Section 9, Subsection I, Paragraph 1 318
8.8.2.1.1 Is It True? 318
8.8.2.1.2 What About the Paper? 318
8.8.2.1.3 What About the Symbols? 320

8.8.2.2 Section 9, Subsection I, Paragraph 2: States of Mind 322
8.8.2.3 Section 9, Subsection I, Paragraph 3: Operations . . 323
8.8.2.4 Section 9, Subsection I, Paragraph 4: Operations . . 324
8.8.2.5 Section 9, Subsection I, Paragraph 5: More Operations325
8.8.2.6 Section 9, Subsection I, Paragraph 6: Summary of

Operations . 326
8.8.2.7 Section 9, Subsection I, Paragraph 7 326

8.8.2.7.1 Conditions. 326
8.8.2.7.2 States of Mind Clarified. 327

8.8.2.8 Section 9, Subsection I, Paragraph 8 328
8.8.2.8.1 The Turing Machine. 328
8.8.2.8.2 Turing’s (Computability) Thesis. 329
8.8.2.8.3 Turing Machines as AI Programs. 330

CONTENTS 11

8.9 Section 1, continued . 332
8.9.1 Section 1, Paragraph 2 . 332
8.9.2 Section 1, Paragraph 3 . 337

8.10 Section 2: “Definitions” . 337
8.10.1 “Automatic Machines” . 337
8.10.2 “Computing Machines” . 338

8.10.2.1 Paragraph 1 . 338
8.10.2.2 Paragraph 2 . 339

8.10.3 “Circular and Circle-Free Machines” 340
8.10.3.1 Paragraph 1 . 340
8.10.3.2 Paragraph 2 . 341
8.10.3.3 Coda: A Possible Explanation of ‘Circular’ 342

8.10.4 “Computable Sequences and Numbers” 343
8.11 Section 3: “Examples of Computing Machines” 344

8.11.1 Section 3, Example I . 344
8.11.1.1 Section 3, Example I, Paragraph 1 344
8.11.1.2 Section 3, Example I, Paragraph 2 348

8.11.2 Section 3, Example II . 350
8.11.2.1 Section 3, Example II, Paragraph 1 350
8.11.2.2 Section 3, Example II, Paragraph 2 355

8.12 Section 4: “Abbreviated Tables” . 358
8.13 Section 5:

“Enumeration of Computable Sequences” 359
8.14 Section 6: “The Universal Computing Machine” 365
8.15 The Rest of Turing’s Paper . 368
8.16 Further Sources of Information . 369

9 What Is a Computer?
A Philosophical Perspective 373
9.1 Readings . 374
9.2 Introduction . 375
9.3 Informal Definitions . 377

9.3.1 Reference-Book Definitions 377
9.3.2 Von Neumann’s Definition 378
9.3.3 Samuel’s Definition . 379
9.3.4 Davis’s Characterization . 380
9.3.5 Discussion . 380

9.4 Computers, Turing Machines, and Universal Turing Machines 383
9.4.1 Computers as Turing Machines 383
9.4.2 Stored Program vs. Programmable 385

9.5 John Searle: Anything Is a Computer 388
9.5.1 Searle’s Argument . 388
9.5.2 Computers Are Described in Terms of 0s and 1s 389
9.5.3 Being a Computer Is a Syntactic Property 390
9.5.4 Being a Computer Is Not an Intrinsic Property

of Physical Objects . 392

12 CONTENTS

9.5.5 We Can Ascribe the Property of Being a Computer
to Any Object . 396

9.5.6 Everything Is a Computer 396
9.5.7 Other Views in the Vicinity of Searle’s 399

9.6 Patrick Hayes: Computers as Magic Paper 400
9.7 Gualtiero Piccinini:

Computers as Digital String Manipulators 404
9.7.1 Definition P1 . 405
9.7.2 Definition P2 . 406

9.8 What Else Might Be a Computer? 407
9.8.1 Is a Brain a Computer? . 408
9.8.2 Is the Universe a Computer? 412

9.8.2.1 Wolfram’s Argument 414
9.8.2.2 Lloyd’s Argument 415

9.9 Conclusion . 417
9.10 Questions for the Reader . 419

III The Church-Turing Computability Thesis 423

10 What Is a Procedure? 427
10.1 Required Readings . 428
10.2 Introduction . 429

10.2.1 The Church-Turing Computability Thesis 430
10.3 What Is a Procedure? . 435
10.4 Two Challenges to the Computability Thesis 437

10.4.1 Carol Cleland:
Some Effective Procedures Are Not Turing Machines 437

10.4.2 Beth Preston: Recipes, Algorithms, and Specifications 443
10.5 Discussion . 447

11 What Is Hypercomputation? 449
11.1 Required Readings . 450
11.2 Introduction . 451
11.3 Hypercomputation . 452

11.3.1 Copeland’s Theory . 452
11.3.2 Questions to Think About 455
11.3.3 Objections to Hypercomputation 455

11.4 Kinds of Hypercomputation and Hypercomputers 456
11.4.1 “Newer Physics” Hypercomputers 456
11.4.2 Analog Recurrent Neural Networks 459
11.4.3 Interactive Computation . 460

11.4.3.1 Can a Program Have Zero Inputs? 460
11.4.3.2 Batch vs. Online Processing 460
11.4.3.3 Peter Wegner: Interaction Is Not Turing-Computable 462

CONTENTS 13

11.4.3.4 Can Interaction Be Simulated by a Non-Interactive
Turing Machine? 465

11.4.3.4.1 The Power of Interaction. 465
11.4.3.4.2 Simulating a Halting Interaction Machine. 466
11.4.3.4.3 Simulating a Non-Halting Interaction Ma-

chine. 468
11.4.3.4.4 Concurrent Computation. 470

11.4.4 Oracle Computation . 472
11.4.5 Trial-and-Error Computation 477

11.4.5.1 Introduction . 477
11.4.5.2 Does “Intelligence” Require Trial-and-Error Machines?481
11.4.5.3 Inductive Inference 486

11.5 Summary . 488
11.6 Questions for the Reader . 491

IV What Is a Computer Program? 493

12 Algorithms, Programs, Software, and Hardware 497
12.1 Required Readings . 498
12.2 What Is a Computer Program? . 499
12.3 What Is a Program and Its Relation to Algorithms? 500
12.4 What Is Software and Its Relation to Programs and to Hardware? . . . 502

12.4.1 Etymology of ‘Software’ . 502
12.4.2 Software and Music . 503
12.4.3 The Dual Nature of Programs 504
12.4.4 Three Theories of Software 505

12.4.4.1 Moor’s Theory of the Nature of Software 505
12.4.4.1.1 Levels of Understanding. 505
12.4.4.1.2 Moor’s Definition of ‘Program’ 507

12.4.4.1.2.1 Instructions. 508
12.4.4.1.2.2 “Following Instructions”. 509

12.4.4.1.3 Moor’s Definitions of Software and Hard-
ware. 510

12.4.5 Suber’s Theory of the Nature of Software 513
12.4.6 Colburn’s Theory of the Nature of Software 516

12.5 Summary . 520
12.6 Questions for the Reader . 521

13 Copyright vs. Patent 523
13.1 Readings: . 524
13.2 Introduction . 525
13.3 Preliminary Considerations . 528
13.4 Copyright . 531
13.5 Patent . 535
13.6 Virtual Machines . 537

14 CONTENTS

13.7 Samuelson’s Analysis . 538
13.8 Allen Newell’s Analysis . 545

14 What Is Implementation? 549
14.1 Readings: . 550
14.2 Introduction . 551

14.2.1 Implementation vs. Abstraction 552
14.2.2 Implementations as Role Players 553
14.2.3 Abstract Data Types . 554
14.2.4 The Structure of Implementation 555

14.3 Implementation as Semantic Interpretation 556
14.3.1 What Kind of Relation Is Implementation? 556
14.3.2 What Is Semantic Interpretation? 558

14.3.2.1 Formal Systems 558
14.3.2.2 Syntax . 559
14.3.2.3 Semantic Interpretation 560

14.3.3 Two Modes of Understanding 564
14.4 Chalmers’s Theory of Implementation 568

14.4.1 Introduction . 568
14.4.2 An Analysis of Chalmers’s Theory 569
14.4.3 Rescorla’s Analysis of Chalmers’s Theory 573

15 Are Programs Theories? 579
15.1 Readings: . 580
15.2 Introduction . 581
15.3 Simulations, Theories, and Models 581

15.3.1 Simulations . 581
15.3.1.1 Simulation vs. Emulation 581
15.3.1.2 Simulation vs. Imitation 583

15.3.2 Theories . 584
15.3.3 Models . 585

15.4 Computer Programs as Theories . 586
15.4.1 Introduction . 586
15.4.2 Simon & Newell’s Argument from Analogies 589
15.4.3 Simon’s Argument from Prediction 591
15.4.4 Daubert vs. Merrell-Dow . 592

15.5 Computer Programs Aren’t Theories 595
15.5.1 Moor’s Objections . 595
15.5.2 Thagard’s Objections . 597

15.6 Questions for the Reader . 600

16 Can Computer Programs Be Verified? 601
16.1 Readings: . 602
16.2 Introduction . 604
16.3 Theorem Verification . 608

16.3.1 Theorems and Proofs . 608

CONTENTS 15

16.3.1.1 Syntax . 608
16.3.1.2 Semantics . 609

16.3.2 Programs and Proofs . 610
16.3.3 Programs, Proofs, and Formal Systems 612

16.4 Program Verification . 614
16.4.1 Introduction and Some History 614
16.4.2 Program Verification by Pre- and Post-Conditions 615
16.4.3 The Value of Program Verification 616

16.5 The Fetzer Controversy . 618
16.5.1 Fetzer’s Argument against Program Verification 618
16.5.2 The Controversy . 621
16.5.3 Barwise’s Attempt at Mediation 622

16.6 Summary . 623

17 How Do Programs Relate to the World? 629
17.1 Readings: . 630
17.2 Introduction . 632
17.3 Program Verification, Models, and the World 633

17.3.1 “Being Correct” vs. “Doing What’s Intended” 633
17.3.2 Models: Putting the World into Computers 634

17.3.2.1 Creating a Model of the World 634
17.3.2.2 Creating a Computer Representation of the Model . 635
17.3.2.3 Model vs. World 637

17.4 Internal vs. External Behavior: Some Examples 641
17.4.1 Successful Internal Behavior

but Unsuccesful External Behavior 641
17.4.1.1 The Blocks-World Robot 641
17.4.1.2 Cleland’s Recipe for Hollandaise Sauce 641

17.4.2 Same Internal Behavior but Different External Behavior . . . 641
17.4.2.1 Fodor’s Chess and War Programs 641
17.4.2.2 Rescorla’s GCD Computers 643
17.4.2.3 AND-Gates or OR-Gates? 643

17.5 Two Views of Computation . 645
17.6 Inputs, Turing Machines, and Outputs 647

17.6.1 Introduction . 647
17.6.2 The Turing-Machine Tape as Input-Output Device 647
17.6.3 Are Inputs Needed? . 648
17.6.4 Are Outputs Needed? . 649
17.6.5 When Are Inputs and Outputs Needed? 650
17.6.6 Must Inputs and Outputs Be Interpreted Alike? 650
17.6.7 Linking the Tape to the External World 653

17.7 Are Programs Intentional? . 653
17.7.1 What Is an Algorithm? . 654
17.7.2 Do Algorithms Need a Purpose? 654
17.7.3 Marr’s Analysis of an Algorithm’s Purpose 655
17.7.4 Are Purposes Eliminable? 656

16 CONTENTS

17.7.5 Can Algorithms Have More than One Purpose? 659
17.7.6 What If G and A Come Apart? 660

17.8 Do We Compute with Symbols
or with Their Meanings? . 662
17.8.1 What Is This Turing Machine Doing? 662
17.8.2 Syntactic Semantics . 665

17.8.2.1 Syntax vs. Semantics 665
17.8.2.2 Syntactic Semantics 666
17.8.2.3 Syntactic Semantics and Procedural Abstraction . . 667
17.8.2.4 Internalization . 669

17.9 Content and Computation . 671
17.9.1 Introduction . 671
17.9.2 Symbols: Marks vs. Meanings 674
17.9.3 Shagrir’s “Master Argument” 678

17.10Summary . 680
17.11Questions for the Reader . 682

V Computer Ethics and Artificial Intelligence 683

18 Computer Ethics I: Decisions 687
18.1 Readings: . 688
18.2 Introduction . 689
18.3 What Is a Decision? . 689
18.4 Do Computers Make Decisions? . 690
18.5 Are Computer Decisions Rational? 692
18.6 Should Computers Make Decisions for Us? 693
18.7 Should Computers Make Decisions with Us? 693
18.8 Should We Trust Decisions Computers Make? 695

18.8.1 The Bias Problem . 697
18.8.2 The Black-Box Problem . 698

18.9 Are There Decisions Computers Must Make for Us? 701
18.10Are There Decisions Computers Shouldn’t Make? 702
18.11Discussion Questions for the Reader 704

19 Philosophy of AI 707
19.1 Required Readings: . 708
19.2 Introduction . 709
19.3 What Is AI? . 709

19.3.1 Definitions and Goals of AI 709
19.3.2 Artificial Intelligence as Computational Cognition 710

19.4 The Turing Test . 712
19.4.1 How Computers Can Think 712
19.4.2 The Imitation Game . 713
19.4.3 Thinking vs. “Thinking” . 716

19.5 Two Digressions . 722

CONTENTS 17

19.5.1 The “Lovelace Objection” 722
19.5.2 Turing on Intelligent Machinery 724

19.6 The Chinese Room Argument . 725
19.6.1 Two Chinese Room Arguments 727
19.6.2 The Argument from Biology 727

19.6.2.1 Causal Powers . 727
19.6.2.2 The Implementation Counterargument 729

19.6.3 The Argument from Semantics 730
19.6.3.1 The Premises . 730
19.6.3.2 Which Premise Is at Fault? 731
19.6.3.3 Semiotics . 732
19.6.3.4 Points of View . 736
19.6.3.5 A Recursive Theory of Understanding 739

19.7 Leibniz’s Mill and Turing’s “Strange Inversion” 740
19.8 A Better Way . 748
19.9 Questions for Discussion . 751

20 Computer Ethics II: AI 753
20.1 Readings: . 754
20.2 Introduction . 755
20.3 Is AI Possible in Principle? . 756
20.4 What Is a Person? . 758
20.5 Rights . 763
20.6 Responsibilities . 764
20.7 Personal AIs and Morality . 766
20.8 Are We Personal AIs? . 767

VI Closing Remarks 773

21 Summary 775
21.1 Recommended Readings: . 776
21.2 What Is Philosophy? . 777
21.3 What Is Computer Science? . 777

21.3.1 . . . What Is CS? . 777
21.3.2 Is CS Science or Engineering? 778

21.3.2.1 What Is Science? 778
21.3.2.2 What Is Engineering? 779

21.3.3 A Definition of CS . 779
21.4 What Does CS Study? . 780

21.4.1 What Is a Computer? Historical Answer 780
21.4.2 What Is an Algorithm? Mathematical Answer 780
21.4.3 What Is a Computer? Philosophical Answer 781
21.4.4 What Is an Algorithm? Philosophical Answer 781

21.4.4.1 What Is a Procedure? 781
21.4.4.2 What Is Hypercomputation? 782

18 CONTENTS

21.4.4.3 What Is a Computer Program? 782
21.4.4.3.1 What Is Software? 782
21.4.4.3.2 Can (Should) Software Be Patented, or Copy-

righted? 782
21.4.4.3.3 What Is Implementation? 782
21.4.4.3.4 Are Programs Scientific Theories? 783
21.4.4.3.5 Can Programs Be Verified? 783
21.4.4.3.6 What Is the Relation of Programs to the

World? 783
21.5 Philosophy of AI . 784
21.6 Computer Ethics . 784

21.6.1 Are There Decisions Computers Should Never Make? 784
21.6.2 Should We Build an Artificial Intelligence? 785

21.7 A Final Comment? . 785

VII Appendices 787

A Position-Paper Assignments 789
A.1 Introduction . 789
A.2 Position Paper #1: What Is Computer Science? 790

A.2.1 Assignment . 790
A.2.1.1 Introduction . 790
A.2.1.2 The Argument . 790
A.2.1.3 Argument Analysis 791
A.2.1.4 Ground Rules: . 792

A.2.2 Suggestions and Guidelines for Peer-Group Editing 793
A.3 Position Paper #2: What Is Computation? 795

A.3.1 Assignment . 795
A.3.1.1 The Argument . 795
A.3.1.2 Argument Analysis 796
A.3.1.3 Ground Rules . 797

A.3.2 Suggestions and Guidelines for Peer-Group Editing 798
A.4 Position Paper #3: Is the Brain a Computer? 800

A.4.1 Assignment . 800
A.4.1.1 The Argument . 800
A.4.1.2 Argument Analysis 800
A.4.1.3 Ground Rules . 801

A.4.2 Suggestions and Guidelines for Peer-Group Editing 802
A.5 Position Paper #4: What Is a Computer Program? 804

A.5.1 Assignment . 804
A.5.1.1 The Argument . 804
A.5.1.2 Argument Analysis 804
A.5.1.3 Ground Rules . 805
A.5.1.4 Thinksheet for Position Paper #4: What Is a Com-

puter Program? 806

CONTENTS 19

A.5.2 Suggestions and Guidelines for Peer-Group Editing 807
A.6 Position Paper #5: Can Computers Think? 809

A.6.1 Assignment . 809
A.6.1.1 A Debate . 809
A.6.1.2 Argument Analysis 810
A.6.1.3 Ground Rules . 810

A.6.2 Suggestions and Guidelines for Peer-Group Editing 812
A.6.3 Suggested Grading Rubric for Position Paper #5 814

A.7 Optional Position Paper: A Competition 817

B Term Paper 819
B.1 Possible Term-Paper Topics . 819
B.2 Ground Rules . 820

C Final Exam 821

D Instructor’s Manual 825
D.1 Introduction . 825
D.2 Position Papers . 825

D.2.1 Scheduling . 825
D.2.2 Peer Editing . 826

D.3 Grading . 826
D.3.1 The Quantum-Triage Philosophy of Grading 826
D.3.2 Grading Position Paper #1: Sample Grading Rubric 828
D.3.3 Grading Position Paper #2 830

D.3.3.1 Position Paper #2: Sample Analysis 830
D.3.3.2 Position Paper #2: Sample Grading Rubric 832

D.3.4 Grading Position Paper #3 835
D.3.4.1 Position Paper #3: Comments on Determining Validity835
D.3.4.2 Position Paper #3: Suggested Grading Rubric . . . 838

D.3.5 Grading Position Paper #4 839
D.3.5.1 Position Paper #4: Sample Analysis 839
D.3.5.2 Position Paper #4: Suggested Grading Rubric . . . 840

D.3.6 Grading Position Paper #5 842
D.3.6.1 Position Paper #5: Sample Analysis 842
D.3.6.2 Position Paper #5: Suggested Grading Rubric . . . 843

D.4 Cognitive Development and the Final Exam 844

Bibliography 849

20 CONTENTS

If you begin with Computer Science, you will end with Philosophy.1

1“Clicking on the first link in the main text of a Wikipedia article, and then repeating the process for
subsequent articles, usually eventually gets you to the Philosophy article. As of May 26, 2011, 94.52% of
all articles in Wikipedia lead eventually to the article Philosophy.”
(“Wikipedia:Getting to Philosophy”, http://en.wikipedia.org/wiki/Wikipedia:Getting to Philosophy).

If you begin with “Computer Science”, you will end with “Philosophy” (in 12 links).

21

22 CONTENTS

Preface

Version of 26 January 2020; DRAFT c© 2004–2020 by William J. Rapaport

To readers who have found this document through Brian Leiter’s Leiter Reports blog2

or through the FreeTechBooks website3 (with which I have no affiliation): Welcome!
This document is a continually-being-revised draft of a textbook on the philosophy of
computer science, based on a course I created for the Department of Computer Science
and Engineering and the Department of Philosophy at the University at Buffalo, The
State University of New York.

The syllabus, readings, assignments, and website for the last version of the course
are online at: http://www.cse.buffalo.edu/∼rapaport/584/

The course is described in:

Rapaport, William J. (2005), “Philosophy of Computer Science:
An Introductory Course”, Teaching Philosophy 28(4): 319–341,
http://www.cse.buffalo.edu/∼rapaport/Papers/rapaport phics.pdf

A video of my Herbert Simon Keynote Address at NACAP-2006 describing the
course can be downloaded from:

http://www.hass.rpi.edu/streaming/conferences/cap2006/nacp 8 11 2006 9 1010.asx
The current draft of the book is just that: a draft of a work in progress. Comments,

suggestions, etc., are welcome! I can be reached by email at: rapaport@buffalo.edu
A note on Web addresses (URLs): URLs were accurate at the time of writing. Some

will change or disappear. Documents that have disappeared can sometimes be found
at the Internet Archive’s Wayback Machine, https://archive.org/web/ Some documents
with no public URLs may eventually gain them. When in doubt, try a Google (or other)
search for the document. Articles can often be found by using a search string consisting
of: the author(s) last name(s), followed by: the title of the document enclosed in quo-
tation marks. (For example, to find Rapaport 2005c, search for “rapaport "philosophy
of computer science"”.)

2http://leiterreports.typepad.com/blog/2013/10/a-philosophy-of-computer-science-textbook.html
3https://www.freetechbooks.com/philosophy-of-computer-science-t1045.html

23

24 CONTENTS

Latest Versions of Each Chapter

Chapter Last Update
This Preface 10 January 2020 (minor changes)
Ch. 1 20 January 2020 (minor changes)
Ch. 2 20 January 2020 (minor changes)
Ch. 3 7 January 2020 (minor changes)
Ch. 4 20 January 2020 (major changes)
Ch. 5 31 December 2019 (minor changes)
Ch. 6 31 December 2019 (minor changes)
Ch. 7 20 January 2020 (minor changes)
Ch. 8 7 January 2020 (minor changes)
Ch. 9 20 January 2020 (major changes)
Introduction to Part III 20 January 2020 (major changes)
Ch. 10 7 January 2020 (minor changes)
Ch. 11 7 January 2020 (major changes)
Ch. 12 20 January 2020 (major changes
Ch. 13 20 January 2020 (major changes)
Ch. 14 21 January 2020 (major changes)
Ch. 15 22 January 2020 (major changes)
Ch. 16 23 January 2020 (major changes)
Ch. 17 7 January 2020 (minor changes)
Ch. 18 7 January 2020 (minor changes)
Ch. 19 7 January 2020 (minor changes)
Ch. 20 8 November 2019
Ch. 21 29 November 2019
Appendix A 17 December 2019
Appendix B 17 December 2019
Appendix C 17 December 2019
Appendix D 7 January 2020 (minor changes)
Bibliography 26 January 2020 (major changes)

CONTENTS 25

Acknowledgments
For comments on, suggestions for, or corrections to this draft or its ancestors, thanks
especially to:

Peter Boltuc, Selmer Bringsjord, Jin-Yi Cai, Timothy Daly, Edgar Day-
light, Peter Denning, Eric Dietrich, William D. Duncan, Frank Fedele, Al-
bert Goldfain, Carl Hewitt, Robin K. Hill, Johan Lammens, Nelson Pole,
Thomas M. Powers, Michael I. Rapaport, Stuart C. Shapiro, Aaron Slo-
man, and Matti Tedre;

as well as to:

Russ Abbott, Khaled Alshammari, S.V. Anbazhagan, S. Champailler, Ar-
naud Debec, Roger Derham, Gabriel Dulac-Arnold, Pablo Godoy, David
Miguel Gray, Nurbay Irmak, Patrick McComb, Cristina Murta, Alexander
Oblovatnyi, Richard M. Rubin, Seth David Schoen, Stephen Selesnick,
Mark Staples, Dean Waters, Nick Wiggershaus, and Sen Zhang.

26 CONTENTS

Part I

Philosophy
and Computer Science

27

29

Part I introduces both philosophy and the philosophy of computer science.

Figure 2: https://www.gocomics.com/bloomcounty/1984/04/08
c© 8 April 1984 by Berkeley Breathed

30

Chapter 1

What Is Philosophy of
Computer Science?

Version of 20 January 2020; DRAFT c© 2004–2020 by William J. Rapaport

Many people “know about modern electronics in general and computers in partic-
ular. They know about code and the compilation process that turns source code
into binary executable code. Computation theory is something different. It is an
area of mathematics that overlaps with philosophy.”
—“PolR” (2009, my italics)

There is no way of telling upstream how great an impact any specific bit of research
will have. . . . Who would have guessed that the arcane research done by the small
set of mathematicians and philosophers working on formal logic a century ago
would lead to the development of computing, and ultimately to completely new
industries, and to the reconfiguring of work and life across the globe?
—Onora O’Neill (2013, p. 8, my italics)

There is no such thing as philosophy-free science, just science that has been con-
ducted without any consideration of its underlying philosophical assumptions.
—Daniel C. Dennett (2013a, p. 20)

31

32 CHAPTER 1. WHAT IS PHILOSOPHY OF COMPUTER SCIENCE?

1.1 Readings
1. Strongly Recommended:

• Scheutz, Matthias (2002), “Computation, Philosophical Issues about”,
Encyclopedia of Cognitive Science (London: Macmillan): 604–610,
https://pdfs.semanticscholar.org/5a83/113ac2d781ea672f42a77de28ba23a127c1d.pdf

2. Recommended:

• Simon, Herbert A. (1977), “What Computers Mean for Man and Society”, Science
195 (4283, 18 March): 1186–1191,
https://pdfs.semanticscholar.org/a9e7/33e25ee8f67d5e670b3b7dc4b8c3e00849ae.pdf

• Turner, Raymond; & Eden, Amnon H. (2011), “The Philosophy of Computer Sci-
ence”, in Edward N. Zalta (ed.), Stanford Encyclopedia of Computer Science (Stan-
ford University: Metaphysics Research Lab),
https://plato.stanford.edu/archives/win2011/entries/computer-science/

• Turner, Raymond; Angius, Nicola; & Primiero, Giuseppe (2019), “The Philosophy
of Computer Science”, in Edward N. Zalta (ed.), Stanford Encyclopedia of Philos-
ophy (Stanford University: Metaphysics Research Lab),
https://plato.stanford.edu/entries/computer-science/

1.2. WHAT THIS BOOK IS ABOUT 33

1.2 What This Book Is About

My mind does not simply receive impressions. It talks back to the authors, even
the wisest of them, a response I’m sure they would warmly welcome. It is not
possible, after all, to accept passively everything even the greatest minds have pro-
posed. One naturally has profound respect for Socrates, Plato, Pascal, Augustine,
Descartes, Newton, Locke, Voltaire, Paine, and other heroes of the pantheon of
Western culture; but each made statements flatly contradicted by views of the oth-
ers. So I see the literary and philosophical tradition of our culture not so much
as a storehouse of facts and ideas but rather as a hopefully endless Great Debate
at which one may be not only a privileged listener but even a modest participant.
—Steve Allen (1989, p. 2), as cited in Madigan 2014, p. 46.

As [the logician] Harvey Friedman has suggested, every morning one should wake
up and reflect on the conceptual and foundational significance of one’s work.
—Robert Soare (1999, p. 25, my bracketed interpolation)1

This book looks at some of the central issues in the philosophy of computer science.
It is not designed to answer all (or even any) of the philosophical questions that can
be raised about the nature of computing, computers, and computer science. Rather, it
is designed to “bring you up to speed” on a conversation about these issues—to give
you some background knowledge—so that you can read the literature for yourself and
perhaps become part of the conversation by contributing your own views.

This book is intended for readers who might know some philosophy but no com-
puter science, readers who might know some computer science but no philosophy, and
readers who know little or nothing about both! So, although most of the book will be
concerned with what computer science is, we will begin by asking: What is philos-
ophy? And, in particular: What is “the philosophy of X?” (where X = things like:
science, psychology, history, etc., and, of course, computer science).

Then we will begin our inquiry into the philosophy of computer science by asking:
What is computer science? To answer this, we will need to consider a series of
questions, each of which leads to another: Is computer science a science, a branch of
engineering, some combination of them, or something else altogether? And to answer
those questions, we will need to ask what science is and what engineering is.

Whether science or engineering, computer science is surely2 scientific, so we next
ask: What is computer science a (scientific) study of? Computers? If so, then what
is a computer? Or is computer science a study of computation? If so, then what
is computation? Computations are said to be algorithms, so what is an algorithm?
Algorithms are said to be procedures, or recipes, so what is a procedure? What is
a recipe? What is the Church-Turing Computability Thesis? This is the proposal
that our intuitive notion of computation is completely captured by the formal notion of

1Elaborations or comments added to a direct quotation are standardly indicated by placing them in brack-
ets. So all such bracketed interpolations are mine, as are any bracketed footnotes within quotations. But
passages by the original author that I have put into bracketed interpolations are surrounded by quotation
marks.

2A word that any philosopher should surely(?) take with a grain of salt! (Dennett, 2013a, Ch. 10)

34 CHAPTER 1. WHAT IS PHILOSOPHY OF COMPUTER SCIENCE?

Turing Machine computation. And what is a Turing Machine? What is “hypercom-
putation” (i.e., the claim that the intuitive notion of computation goes beyond Turing
Machine computation)?

Computations are expressed in computer programs, which are executed by com-
puters, so what is a computer program? Are computer programs “implementations”
of algorithms? If so, then what is an implementation? Programs typically have real-
world effects, so how are programs and computation related to the world? Some
programs, especially in the sciences, are designed to model or simulate or explain some
real-world phenomenon, so can programs be considered to be (scientific) theories?
Programs are usually considered to be “software”, and computers are usually consid-
ered to be “hardware”, but what is the difference between software and hardware?
Programs are texts written in a (programming) language, and linguistic texts are legally
copyrightable. But some programs are engraved on CDs and, when installed in a com-
puter, turn the computer into a (special-purpose) machine, which is legally patentable.
Yet, legally, nothing can be both copyrightable and patentable, so are programs copy-
rightable texts, or are they patentable machines? Computer programs are notorious
for having “bugs”, which are often only found after the program has been tested, but
can computer programs be logically verified before testing?

Next, we turn to some of the issues in the philosophy of artificial intelligence
What is artificial intelligence (AI)? What is the relation of computation to cognition?
Can computers think? What are the Turing Test and the Chinese Room Argument?
Very briefly: The Turing Test is a test proposed by one of the creators of the field of
computation to determine whether a computer can think. The Chinese Room Argument
is a thought experiment devised by a philosopher, which is designed to show that the
Turing Test won’t work.

Finally, we consider two questions in computer ethics, which, at the turn of the
century, were not much discussed, but are now at the forefront of computational ethical
debates: (1) Should we trust decisions made by computers? (Moor, 1979)—a question
made urgent by the advent of automated vehicles and by “deep learning” algorithms
that might be biased. And (2) should we build “intelligent” computers? Do we have
moral obligations towards robots? Can or should they have moral obligations towards
us?

Along the way, we will look at how philosophers reason and evaluate logical argu-
ments, and there will be some suggested writing assignments designed to help focus
your thinking about these issues.

Computer science students take note:
Computer Science Curricula 2013 covers precisely these sorts of argument-analysis techniques
under the headings of Discrete Structures [DS]/Basic Logic, DS/Proof Techniques, Social Issues
and Professional Practice [SP] (in general), and SP/Analytical Tools (in particular). Many other
CS2013 topics also overlap those in the philosophy of computer science. See http://ai.stanford.
edu/users/sahami/CS2013/

1.3. WHAT THIS BOOK IS NOT ABOUT 35

1.3 What This Book Is Not About

Have I left anything out? Most certainly! I do not claim that the questions raised
above and discussed in this book exhaust the philosophy of computer science. They
are merely a series of questions that arise naturally from our first question: What is
computer science?

But there are many other issues in the philosophy of computer science. Some
are included in a topic sometimes called philosophy of computing. Here are some
examples: Consider the ubiquity of computing—your smartphone is a computer; your
car has a computer in it; perhaps someday your refrigerator or toaster or bedroom wall
will contain (or even be) a computer. How will our notion of computing change because
of this ubiquity? Will this be a good or a bad thing? Another topic is the role of the
Internet. For instance, Tim Berners-Lee, who created the World Wide Web, has argued
that “Web science” should be its own discipline (Berners-Lee et al., 2006; Lohr, 2006).
And there are many issues surrounding the social implications of computers in general
and of social media on the Internet (and the World Wide Web) in particular.

Further Reading:
On social implications, see, especially, Weizenbaum 1976 and Simon 1977, the penultimate
section of which (“Man’s View of Man”) can be viewed as a response to Weizenbaum. See also
Dembart 1977 for a summary and general discussion. For a discusson of social implications of
the use of computers and the Internet, be sure to read E.M. Forster’s classic short story “The
Machine Stops”, http://archive.ncsa.illinois.edu/prajlich/forster.html:

It is a chilling . . . masterpiece about the role of technology in our lives. Written in
1909, it’s as relevant today as the day it was published. Forster has several prescient
notions including instant messages (email!) and cinematophotes (machines that
project visual images). (Paul Rajlich, from the above-cited website)

Other issues in the philosophy of computer science more properly fall under the
heading of the philosophy of AI. As noted, we will look at some of these in this book,
but there are many others that we won’t cover, even though the philosophy of AI is a
proper subset of the philosophy of computer science.

Another active field of investigation is the philosophy of information. As we’ll see
in §3.8, computer science is sometimes defined as the study of how to process infor-
mation, so the philosophy of information is clearly a close cousin of the philosophy of
computer science. But I don’t think that either is included in the other; they merely
have a non-empty intersection. If this is a topic you wish to explore, take a look at
some of the books and essays cited in at the end of §3.8.

Finally, there are a number of philosophers and computer scientists who have dis-
cussed topics related to what I am calling the philosophy of computer science whom
we will not deal with at all (such as the philosophers Martin Heidegger and Hubert L.
Dreyfus (Dreyfus and Dreyfus, 1980; Dreyfus, 2001), and the computer scientist Terry
Winograd (Winograd and Flores, 1987). An Internet search (for example: “Heideg-
ger "computer science"”) will help you track down information on these thinkers and
others not mentioned in this book.

36 CHAPTER 1. WHAT IS PHILOSOPHY OF COMPUTER SCIENCE?

Digression:
One philosopher of computer science (personal communication) calls them the “Dark Side
philosophers”, because they tend not to be sympathetic to computational views of the world.

But I think that our questions above will keep us busy for a while, as well as prepare
you for examining some of these other issues. Think of this book as an extended
“infomercial” to bring you up to speed on the computer-science–related aspects of a
philosophical conversation that has been going on for over 2500 years, to enable you
to join in the conversation.

So, let’s begin . . .

Further Reading:
In 2006, responding to a talk that I gave on the philosophy of computer science, Selmer
Bringsjord (a philosopher and cognitive scientist who has written extensively on the philosophy
of computer science) said, “Philosophy of Computer Science . . . is in its infancy” (Bringsjord,
2006). This may be true as a discipline so called, but there have been philosophical investigations
of computer science and computing since at least Turing 1936 (which we’ll examine in detail in
Chapter 8), and the philosopher James H. Moor’s work goes back to the 1970s (we’ll discuss
some of his writings in Chapters 12 and 18.

For more on the philosophy of computer science, there are several anthologies (Burkholder,
1992; Longo, 1999; Bynum and Moor, 2000; Moor and Bynum, 2002; Floridi, 2004a; Magnani,
2006; Turner and Eden, 2007a, 2008; Eden and Turner, 2011); monographs (that is, single-
topic books) (Sloman, 1978; Smith, 1996; Floridi, 1999; Colburn, 2000; Piccinini, 2015; Tedre,
2015; Turner, 2018); essays (Pylyshyn, 1992; Smith, 2002; Rapaport, 2005c; Colburn, 2006;
Tedre, 2007a; Dodig-Crnkovic, 2006; Bynum, 2010); and websites (Eden and Turner 2007a;
Price 2007; Tedre 2007b; Brey and Søraker 2008; Aaronson 2011a; the Philosophy of Com-
puting and Informatics Network (https://web.archive.org/web/20170322051522/http://www.idt.
mdh.se/∼gdc/pi-network.htm); and the Commission for the History and Philosophy of Comput-
ing (http://www.hapoc.org/)).

Chapter 2

What Is Philosophy?

Version of 25 January 2020; DRAFT c© 2004–2020 by William J. Rapaport

“Two years!” said Dantès. “Do you think I could learn all this in two years?”
“In their application, no; but the principles, yes. Learning does not make one

learned: there are those who have knowledge and those who have understanding.
The first requires memory, the second philosophy.”

“But can’t one learn philosophy?”
“Philosophy cannot be taught. Philosophy is the union of all acquired knowl-

edge and the genius that applies it . . . ”
—Alexandre Dumas (1844, The Count of Monte Cristo, Ch. 17, pp. 168–169)

Philosophy is the microscope of thought.
—Victor Hugo (1862, Les Misérables, Vol. 5, Book Two, Ch. II, p. 1262)

Philosophy . . . works against confusion
—John Cleese (2012), “Twenty-First Century”,

http://www.publicphilosophy.org/resources.html#cleese

Consider majoring in philosophy. I did. . . . [I]t taught me how to break apart
arguments, how to ask the right questions
—NPR reporter Scott Simon, quoted in Keith 2014

To the person with the right turn of mind, . . . all thought becomes philosophy.
—Eric Schwitzgebel (2012).

Philosophy can be any damn thing you want!
—John Kearns (personal communication, 7 November 2013)

37

38 CHAPTER 2. WHAT IS PHILOSOPHY?

Figure 2.1: https://www.comicskingdom.com/pros-cons/archive,
c© 1 March 2012, King Features Syndicate

2.1 Readings
1. Very Strongly Recommended:

• Audi, Robert (1981), “Philosophy: A Brief Guide for Undergraduates”
(Newark, DE: American Philosophical Assocation),
http://www.apaonline.org/?undergraduates

2. Strongly Recommended:

• Plato, The Apology (various versions are online: search for “Plato Apology”)

– Plato’s explanation of what Socrates thought that philosophy was all about;
a good introduction to the skeptical, questioning nature of philosophy.

3. Recommended:

• Colburn, Timothy R. (2000), Philosophy and Computer Science
(Armonk, NY: M.E. Sharpe):

(a) Ch. 3: “AI and the History of Philosophy” (pp. 19–40)
(b) Ch. 4: “AI and the Rise of Contemporary Science and Philosophy”

(pp. 41–50)

– Some of the material may be online at the Google Books website for this book:
http://tinyurl.com/Colburn00

2.2. INTRODUCTION 39

2.2 Introduction
[W]e’re all doing philosophy all the time. We cant escape the question of what
matters and why: the way we’re living is itself our implicit answer to that question.
A large part of a philosophical training is to make those implicit answers explicit,
and then to examine them rigorously. Philosophical reflection, once you get started
in it, can seem endlessly demanding. But if we can’t avoid living philosophically,
it seems sensible to learn to do it well.
—David Egan (2019)

“What is philosophy?” is a question that is not a proper part of the philosophy of com-
puter science. But, because many readers may not be familiar with philosophy, I want
to begin our exploration with a brief introduction to how I think of philosophy, and
how I would like non-philosophical readers who are primarily interested in computer
science to think of it.

So, in this chapter, I will give you my definition of ‘philosophy’. We will also
examine the principal methodology of philosophy: the evaluation of logical arguments
(see §§2.6.1 and 2.10).

A Note on Quotation Marks:
Many philosophers have adopted a convention that single quotes are used to form the name of a

word or expression. So, when I write this:
‘philosophy’

I am not talking about philosophy! Rather, I am talking about the 10-letter word spelled
p-h-i-l-o-s-o-p-h-y. This use of single quotes enables us to distinguish between a thing that
we are talking about and the name or description that we use to talk about the thing. This is
the difference between a number (a thing that mathematicians talk about) and a numeral (a word
or symbol that we use to talk about numbers). It is the difference between Paris (the capital of
France) and ‘Paris’ (a 5-letter word). The technical term for this is the ‘use-mention distinction’
(http://en.wikipedia.org/wiki/Use-mention distinction): We use ‘Paris’ to mention Paris. (For a
real-life example, see §7.3.4.)

I will use double quotes when I am directly quoting someone. I will also sometimes use double
quotes as “scare quotes”, to indicate that I am using an expression in a special or perhaps un-
usual way (as I just did). And I will use double quotes to indicate the meaning of a word or other
expression.

2.3 A Definition of ‘Philosophy’
The word ‘philosophy’ has a few different meanings. When it is used informally, in
everyday conversation, it can mean an “outlook”, as when someone asks you what
your “philosophy of life” is. The word ‘philosophical’ can also mean something like
“calm”, as when we say that someone takes bad news “very philosophically” (that is,
very calmly).

But, in this chapter, I want to explicate the technical sense of modern, analytic,
Western philosophy—a kind of philosophy that has been done since at least the time of

40 CHAPTER 2. WHAT IS PHILOSOPHY?

Socrates. ‘Modern philosophy’ is itself a technical term that usually refers to the kind
of philosophy that has been done since René Descartes, who lived from 1596 to 1650,
almost 400 years ago (Nagel, 2016). It is “analytic” in the sense that it is primarily
concerned with the logical analysis of concepts (rather than literary, poetic, or specula-
tive approaches). And it is “Western” in the sense that it has been done by philosophers
working primarily in Europe (especially in Great Britain) and North America—though,
of course, there are very many philosophers who do analytic philosophy in other areas
of the world (and there are many other kinds of philosophy).

Further Reading:
On different styles of philosophy, see the University of Michigan Department of Philoso-
phy’s website at https://web.archive.org/web/20190617023651/http://lsa.umich.edu/philosophy/
undergraduates/graduate-work/styles-of-philosophy.html and commentary on it at https://
leiterreports.typepad.com/blog/2007/04/styles of philo.html

On non-Western philosophy, consider this observation:

. . . there are good reasons to doubt that Greece, India, and China were the only
societies that practiced philosophy, indeed to doubt that philosophy needed to be
born or “invented” in the first place. Why not assume that philosophy is just a
universal aspet of human culture? To explore this hypothesis, we need some idea
of what it means for thoughts to be “philosophical.” This is a notoriously diffi-
cult question to answer, though most people probably feel that philosophy is like
pornography: we know it when we see it. Provisionally, we might agree to apply
the term to all abstract reflection on deep questions concering ethics, knowledge,
being, language, and so on. If that is what we are looking for, then perhaps we will
find philosophy just about everywhere. (Adamson, 2019).

Western philosophy began in ancient Greece. Socrates (470–399 B.C.E.,1 that is,
around 2500 years ago) was opposed to the Sophists, a group of teachers who can be
caricaturized as an ancient Greek version of “ambulance-chasing” lawyers, “purveyors
of rhetorical tricks” (McGinn, 2012b). The Sophists were willing to teach anything
(whether it was true or not) to anyone, or to argue anyone’s cause (whether their cause
was just or not), for a fee.

Like the Sophists, Socrates also wanted to teach and argue, but only to seek wis-
dom: truth in any field. In fact, the word ‘philosophy’ comes from Greek roots meaning
“love of [philo] wisdom [sophia]”. The reason that Socrates only sought wisdom rather
than claiming that he had it (like the Sophists did) was that he believed that he didn’t
have it: He claimed that he knew that he didn’t know anything (and that, therefore, he
was actually wiser than those who claimed that they did know things but who really
didn’t). As Victor Hugo put it, “the wise one knows that he is ignorant” (“Le savant sait
qu’il ignore”; cited in O’Toole 2016), or, as the contemporary philosopher Kwame An-
thony Appiah said, in reply to the question “How do you think Socrates would conduct
himself at a panel discussion in Manhattan in 2019?”:

1‘B.C.E.’ is the abbreviation for ‘before the common era’; that is, B.C.E. years are the “negative” years
before the year 1, which is known as the year 1 C.E. (for “common era”).

2.3. A DEFINITION OF ‘PHILOSOPHY’ 41

Figure 2.2: http://www.gocomics.com/pickles/2016/10/27; c©2016 Brian Crane

You wouldn’t be able to get him to make an opening statement, because he would
say, “I don’t know anything.” But as soon as anybody started saying anything,
he’d be asking you to make your arguments clearer—he’d be challenging your
assumptions. He’d want us to see that the standard stories we tell ourselves aren’t
good enough. (Libbey and Appiah, 2019)

Socrates’s student Plato (430–347 B.C.E.), in his dialogue Apology, describes Socrates
as playing the role of a “gadfly”, constantly questioning (and annoying!) people about
the justifications for, and consistency among, their beliefs, in an effort to find out the
truth for himself from those who considered themselves to be wise (but who really
weren’t). (For a humorous take on this, see Figure 2.2.)

Plato defined ‘philosopher’ (and, by extension, ‘philosophy’) in Book V of his
Republic (line 475c):

The one who feels no distaste in sampling every study, and who attacks the task of
learning gladly and cannot get enough of it, we shall justly pronounce the lover of
wisdom, the philosopher. (Plato, 1961b, p. 714, my emphasis).

Adapting this, I define ‘philosophy’ as:

the personal search for truth, in any field, by rational means.

This raises several questions:

1. Why only “personal”? (Why not “universal”?)

2. Why is philosophy only the search for truth? (Can’t we succeed in our search?)

3. What is “truth”?

4. What does ‘any field’ mean?
(Is philosophy really the study of anything and everything?)

5. What counts as being “rational”?

Let’s look at each of these, beginning with the second.

42 CHAPTER 2. WHAT IS PHILOSOPHY?

2.4 What Is Truth?

The study of the nature of truth is one of the “Big Questions” of philosophy, along with
things like: What is the meaning of life? What is good? What is beauty? and so on.

I cannot hope to do justice to it here, but there are two theories of truth that will
prove useful to keep in mind on our journey through the philosophy of computer sci-
ence: the correspondence theory of truth and the coherence theory of truth.

Further Reading:
On “the Big Questions”, see §2.8, below, and Gabriel Segal’s response to the question “What
is it that is unique to philosophy that distinguishes it from other disciplines?”, http://www.
askphilosophers.org/question/5017.

2.4.1 The Correspondence Theory of Truth

The correspondence theory states that a belief is true if and only if that belief corre-
sponds to the facts. . . . It captures the idea that truth depends on objective reality—
not on us. The problem the correspondence theory has concerns more technical
issues such as what a fact is and what the correspondence relation amounts to.
—Colin McGinn (2015a, pp. 148–149)

The word ‘true’ originally meant “faithful”. Such faithfulness requires two things A and
B such that A is faithful to B. According to the correspondence theory (see David 2009),
truth is faithfulness of (A) a description of some part of reality to (B) the reality that it
is a description of. On the one hand, there are beliefs (or propositions, or sentences);
on the other hand, there is “reality”: A belief (or a proposition, or a sentence) is true if
and only if (“iff”) it corresponds to reality, that is, iff it is faithful to, or “matches”, or
accurately characterizes or describes reality.

Terminological Digression and Further Reading:
A “belief”, as I am using that term here, is a mental entity, “implemented” (in humans) by
certain neuron firings. A “sentence” is a grammatical string of words in some language. And a
“proposition” is the meaning of a sentence. These are all rough-and-ready characterizations; each
of these terms has been the subject of much philosophical analysis. For further discussion, see
Schwitzgebel 2015 on belief, https://en.wikipedia.org/wiki/Sentence (linguistics) on sentences,
and King 2016 on propositions.

To take a classic example, the three-word English sentence ‘Snow is white.’ is
true iff the stuff in the real world that precipitates in certain winter weather (that is,
snow) has the same color as milk (that is, iff it is white). Put somewhat paradoxically
(but correctly—recall the use-mention distinction!), ‘Snow is white.’ is true iff snow is
white.

2.4. WHAT IS TRUTH? 43

Further Reading:
The standard logical presentation of a correspondence theory of truth is due to Alfred Tarski.
See Hodges 2018 for an overview and further references, and Tarski 1969 for a version aimed at
a general audience.

How do we determine whether a sentence (or a belief, or a proposition) is true?
On the correspondence theory, in principle, we would have to compare the parts of
the sentence (its words plus its grammatical structure, and maybe even the context in
which it is thought, uttered, or written) with parts of reality, to see if they correspond.
But how do we access “reality”? How can we do the “pattern matching” between our
beliefs and reality?

One answer is by sense perception (perhaps together with our beliefs about what we
perceive). But sense perception is notoriously unreliable (think about optical illusions,
for instance). And one of the issues in deciding whether our beliefs are true is deciding
whether our perceptions are accurate (that is, whether they match reality).

So we seem to be back to square one, which gives rise to the coherence theory.

2.4.2 The Coherence Theory of Truth

The coherence theory states that a proposition is true if and only if that proposition
coheres with the other propositions that one believes. . . . The problem with the
coherence theory is that a belief could be consistent with my other beliefs and yet
the whole lot could be false.
—Colin McGinn (2015a, p. 148)

According to the coherence theory of truth (see Young 2018), a set of propositions (or
beliefs, or sentences) is true iff:

1. they are mutually consistent, and

2. they are supported by, or consistent with, all available evidence;

that is, they “cohere” with each other and with all evidence.
Note that observation statements (that is, descriptions of what we observe in the

world around us) are among the claims that must be mutually consistent, so this is
not (necessarily) a “pie-in-the-sky” theory that doesn’t have to relate to the way things
really are. It just says that we don’t have to have independent access to “reality” in
order to determine truth.

2.4.3 Correspondence vs. Coherence

Which theory is correct? Well, for one thing, there are more than two theories: There
are several versions of each kind of theory, and there are other theories of truth that
don’t fall under either category. The most important of the other theories is the “prag-
matic” theory of truth (see Glanzberg 2016, §3; Misak and Talisse 2019). Here is one
version:

44 CHAPTER 2. WHAT IS PHILOSOPHY?

[T]he pragmatic theory of truth . . . is that a proposition is true if and only
[if] it is useful [that is, “pragmatic”, or practical] to believe that proposi-
tion. (McGinn, 2015a, p. 148)

Another version states that a belief, proposition, or sentence is true iff it continues to
be accepted at the limit of inquiry:

Truth is that to which a belief would tend were it to tend indefinitely to a fixed
belief. (Edwin Martin, Jr., paraphrasing C.S. Peirce; lectures on the theory of
knowledge, Indiana University, Spring 1973; for more on Peirce, see §2.6.1.3,
below.)

However, “I could have a belief about something that is useful to me but that belief is
false” (McGinn, 2015a, p. 149). Similarly, a “fixed” belief that remains “at the limit of
inquiry” might still be false.

Fortunately, the answer to which kind of theory is correct (that is, which kind of
theory is, if you will excuse the expression, true) is beyond our present scope! But
note that the propositions that a correspondence theory says are true must be mutually
consistent (if “reality” is consistent!), and they must be supported by all available evi-
dence; that is, a correspondence theory must “cohere”. Moreover, if you include both
propositions and “reality” in one large, highly interconnected network, that network
must also “cohere”, so the propositions that are true according to a coherence theory
of truth should “correspond to” (that is, cohere with) reality.

Let’s return to the question raised in §2.4.1, above: How can we decide whether
a statement is true? One way that we can determine its truth is syntactically (that is,
in terms of its grammatical structure only, not in terms of what it means), by trying to
prove it from axioms via rules of inference. It is important to keep in mind that, when
you prove a statement this way, you are not proving that it is true! You are simply
proving that it follows logically from certain other statements, that is, that it “coheres”
in a certain way with those statements. But, if the starting statements—the axioms—
are true (note that I said “if they are true”; I haven’t told you how to determine their
truth value yet), and if the rules of inference “preserve truth”, then the statement that
you prove by means of them—the “theorem”—will also be true. (Briefly, rules of
inference—which tell you how to infer a statement from other statements—are truth-
preserving if the inferred statement cannot be false as long as the statements from
which it is inferred are true.)

Further Reading:
I’ll say more about what axioms and rules of inference are in §§6.6, 7.6.5, 14.3.2.1, and 16.2.
For now, just think of proving theorems in geometry or logic.

Another way we can determine whether a statement is true is semantically (that is,
in terms of what it means). This, by the way, is the only way to determine whether
an axiom is true, since, by definition, an axiom cannot be inferred from any other
statements. (If it could be so inferred, then it would be those other statements that
would be the real axioms.)

2.5. ON SEARCHING FOR THE TRUTH VS. FINDING IT 45

But to determine the truth of a statement semantically is also to use syntax: We
semantically determine the truth value of a complex proposition by syntactic manip-
ulation (truth tables) of its atomic constituents. (We can use truth tables to determine
that axioms are true.) (For more on the nature of, and relation between, syntax and
semantics, see §19.6.3.3.) How do we determine the truth value of an atomic proposi-
tion? By seeing if it corresponds to reality. But how do we do that? By comparing the
proposition with reality, that is, by seeing if the proposition coheres with reality.

2.5 On Searching for the Truth vs. Finding It
Thinking is, or ought to be, a coolness and a calmness
—Herman Melville (1851, Moby-Dick, Ch. 135, p. 419)

Thinking is the hardest work there is, which is the probable reason why so few
engage in it.
—Henry (Ford, 1928, p. 481)

Thinking does not guarantee that you will not make mistakes.
But not thinking guarantees that you will.
—Leslie Lamport (2015, p. 41)

How does one go about searching for the truth, for answering questions? As we’ll see
below, there are basically two complementary methods: (1) thinking hard and (2) em-
pirical investigation. We’ll look at the second of these in §2.6. In the present section,
we’ll focus on thinking hard.

Some people have claimed that philosophy is just thinking really hard about things
(see some of the quotes in Popova 2012). Such hard thinking requires “rethinking
explicitly what we already believe implicitly” (Baars, 1997, p. 187). In other words, it’s
more than just expressing one’s opinion unthinkingly. It’s also different from empirical
investigation:

Philosophy is thinking hard about the most difficult problems that there are. And
you might think scientists do that too, but there’s a certain kind of question whose
difficulty can’t be resolved by getting more empirical evidence. It requires an
untangling of presuppositions: figuring out that our thinking is being driven by
ideas we didn’t even realize that we had. And that’s what philosophy is. (David
Papineau, quoted in Edmonds and Warburton 2010, p. xx)

Can we find the truth? Not necessarily.
For one thing, we may not be able to find it. The philosopher Colin McGinn (1989,

1993) discusses the possibility that limitations of our (present) cognitive abilities may
make it as impossible for us to understand the truth about certain things (such as the
mind-body problem or the nature of consciousness) in the same way that, say, an ant’s
cognitive limitations make it impossible for it to understand calculus.

But I also believe that finding it is not necessary; that is, we may not have to find
it: Philosophy is the search for truth. Albert Einstein said that “the search for truth is
more precious than its possession” (Einstein, 1940, p. 492, quoting G.E. Lessing). In
a similar vein, the mathematician Carl Friedrich Gauss said, “It is not knowledge, but

46 CHAPTER 2. WHAT IS PHILOSOPHY?

the act of learning, not possession but the act of getting there, which grants the greatest
enjoyment.”

Further Reading:
Here is Lessing’s (1778) original version of the Einstein quote:

The true value of a man [sic] is not determined by his possession, supposed or real,
of Truth, but rather by his sincere exertion to get to the Truth. It is not possession
of the Truth, but rather the pursuit of Truth by which he extends his powers

The Gauss quote is from his “Letter to Bolyai”, 1808, http://blog.gaiam.com/quotes/authors/
karl-friedrich-gauss/21863

For more on the importance of search over success, see my website on William Perry’s the-
ory of intellectual development, http://www.cse.buffalo.edu/∼rapaport/perry-positions.html and
Rapaport 1982. Perry’s theory is also discussed briefly in §2.7, below, and at more length in §C.

Digression:
The annotation ‘[sic]’ (which is Latin for “thus” or “so”) is used when an apparent error or odd
usage of a word or phrase is to be blamed on the original author and not on the person (in this
case, me!) who is quoting the author. For example, here I want to indicate that it is Lessing who
said “the true value of a man”, where I would have said “the true value of a person”.

2.5.1 Asking “Why?”
Questions, questions. That’s the trouble with philosophy: you try and fix a problem
to make your theory work, and a whole host of others then come along that you
have to fix as well. —Helen Beebee (2017)

One reason that this search will never end (which is different from saying that it will not
succeed) is that you can always ask “Why?”; that is, you can always continue inquiring.
This is

the way philosophy—and philosophers—are[:] Questions beget questions, and
those questions beget another whole generation of questions. It’s questions all
the way down. (Cathcart and Klein, 2007, p. 4)

You can even ask why “Why?” is the most important question (Everett, 2012, p. 38)!
“The main concern of philosophy is to question and understand very common ideas
that all of us use every day without thinking about them” (Nagel, 1987, p. 5). This
is why, perhaps, the questions that children often ask (especially, “Why?”) are often
deeply philosophical questions.

In fact, as the physicist John Wheeler has pointed out, the more questions you
answer, the more questions you can ask: “We live on an island surrounded by a sea
of ignorance. As our island of knowledge grows, so does the shore of our ignorance”
(https://en.wikiquote.org/wiki/John Archibald Wheeler). And “Philosophy patrols the
. . . [shore], trying to understand how we got there and to conceptualize our next move”
(Soames, 2016). The US economist and social philosopher Thorstein Veblen said, “The

2.5. ON SEARCHING FOR THE TRUTH VS. FINDING IT 47

outcome of any serious research can only be to make two questions grow where only
one grew before” (Veblen, 1908, p. 396).

Asking “Why?” is part—perhaps the principal part—of philosophy’s “general role
of critically evaluating beliefs” (Colburn, 2000, p. 6) and “refusing to accept any plati-
tudes or accepted wisdom without examining it” (Donna Dickenson, in Popova 2012).
Critical thinking in general, and philosophy in particular, “look . . . for crack[s] in the
wall of doctrinaire [beliefs]—some area of surprise, uncertainty, that might then lead
to thought” (Acocella, 2009, p. 71). Or, as the humorist George Carlin put it:

[It’s] not important to get children to read. Children who wanna read are gonna
read. Kids who want to learn to read [are] going to learn to read. [It’s] much more
important to teach children to QUESTION what they read. Children should be
taught to question everything. (http://www.georgecarlin.net/boguslist.html#question)

Whenever you have a question, either because you do not understand something
or because you are surprised by it or unsure of it, you should begin to think carefully
about it. And one of the best ways to do this is to ask “Why?”: Why did the author
say that? Why does the author believe it? Why should I believe it? (We can call this
“looking backward” towards reasons.) And a related set of questions are these: What
are its implications? What else must be true if that were true? And should I believe
those implications? (Call this “looking forward” to consequences.) Because we can
always ask these backward- and forward-looking questions, we can understand why
. . .

. . . Plato is the philosopher who teaches us that we should never rest assured that
our view, no matter how well argued and reasoned, amounts to the final word on
any matter. (Goldstein, 2014, p. 396)

This is why philosophy must be argumentative. It proceeds by way of arguments,
and the arguments are argued over. Everything is aired in the bracing dialectic
wind stirred by many clashing viewpoints. Only in this way can intuitions that
have their source in societal or personal idiosyncrasies be exposed and questioned.
(Goldstein, 2014, p. 39)

The arguments are argued over, typically, by challenging their assumptions. It is
rare that a philosophical argument will be found to be invalid. The most interesting
arguments are valid ones, so that the only concern is over the truth of its premises. An
argument that is found to be invalid is usually a source of disappointment—unless the
invalidity points to a missing premise or reveals a flaw in the very nature of logic itself
(an even rarer, but not unknown, occurrence).

2.5.2 Can There Be Progress in Philosophy?
If the philosophical search for truth is a never-ending process, can we ever make any
progress in philosophy? Mathematics and science, for example, are disciplines that
not only search for the truth, but seem to find it; they seem to make progress in the
sense that we know more mathematics and more science now than we did in the past.
We have well-confirmed scientific theories, and we have well-established mathematical
proofs of theorems. (The extent to which this may or may not be exactly the right way
to look at things will be considered in Chapter 4.) But philosophy doesn’t seem to

48 CHAPTER 2. WHAT IS PHILOSOPHY?

be able to empirically confirm its theories or prove any theorems. So, is there any
sense of “progress” in philosophy? Or are the problems that philosophers investigate
unsolvable?

I think there can be, and is, progress in philosophy. Solutions to problems are never
as neat as they seem to be in mathematics. In fact, they’re not even that neat in mathe-
matics! This is because solutions to problems are always conditional; they are based on
certain assumptions. Most mathematical theorems are expressed as conditional state-
ments: If certain assumptions are made, or if certain conditions are satisfied, then
such-and-such will be the case. In mathematics, those assumptions include axioms,
but axioms can be challenged and modified: Consider the history of non-Euclidean
geometry, which began by challenging and modifying the Euclidean axiom known as
the Parallel Postulate.

Further Reading:
One version of the Parallel Postulate is this: For any line L, and for any point P not on L,
there is only one line L′ such that (1) P is on L′, and (2) L′ is parallel to L. For some of the
history of non-Euclidean geometries, see http://mathworld.wolfram.com/ParallelPostulate.html
and http://en.wikipedia.org/wiki/Parallel postulate

So, solutions are really parts of larger theories, which include the assumptions that the
solution depends on, as well as other principles that follow from the solution. Progress
can be made in philosophy (as in other disciplines), not only by following out the
implications of your beliefs (“forward-looking” progress), but also by becoming aware
of the assumptions that underlie your beliefs (“backward-looking” progress) (Rapaport,
1982):

Progress in philosophy consists, at least in part, in constantly bringing to light the
covert presumptions that burrow their way deep down into our thinking, too deep
down for us to even be aware of them. . . . But whatever the source of these pre-
sumptions of which we are oblivious, they must be brought to light and subjected
to questioning. Such bringing to light is what philosophical progress often consists
of (Goldstein, 2014, p. 38)

Philosophy is a “watchdog” (Colburn, 2000, p. 6). This zoological metaphor is
related to Socrates’s view of the philosopher as “gadfly”, investigating the founda-
tions of, or reasons for, beliefs and for the way things are, always asking “What is
X?” and “Why?”. Of course, this got him in trouble: His claims to be ignorant were
thought (probably correctly) to be somewhat disingenuous. As a result, he was tried,
condemned to death, and executed. (For the details, read Plato’s Apology.)

One moral is that philosophy can be dangerous:

Thinking about the Big Questions is serious, difficult business. I tell my philoso-
phy students: “If you like sweets and easy living and fun times and happiness, drop
this course now. Philosophers are the hazmat handlers of the intellectual world. It
is we who stare into the abyss, frequently going down into it to great depths. This
isn’t a job for people who scare easily or even have a tendency to get nervous.”
(Eric Dietrich, personal communication, 5 October 2006.)

2.5. ON SEARCHING FOR THE TRUTH VS. FINDING IT 49

And what is it, according to Plato, that philosophy is supposed to do? Nothing
less than to render violence to our sense of ourselves and our world, our sense of
ourselves in the world. (Goldstein, 2014, p. 40)

It is violent to have one’s assumptions challenged:

[P]hilosophy is difficult because the questions are hard, and the answers are
not obvious. We can only arrive at satisfactory answers by thinking as rigorously
as we can with the strongest logical and analytical tools at our disposal.

. . . I want . . . [my students] to care more about things like truth, clear and
rigorous thinking, and distinguishing the truly valuable from the specious.

The way to accomplish these goals is not by indoctrination. Indoctrination
teaches you what to think; education teaches you how to think. Further, the only
way to teach people how to think is to challenge them with new and often unsettling
ideas and arguments.

. . . Some people fear that raising such questions and prompting students to
think about them is a dangerous thing. They are right. As Socrates noted, once you
start asking questions and arguing out the answers, you must follow the argument
wherever it leads, and it might lead to answers that disturb people or contradict
their ideology. (K.M. Parsons 2015)

So, the whole point of Western philosophy since Socrates has been to get people to
think about their beliefs, to question and challenge them. It is not (necessarily) to come
up with answers to difficult questions.

Further Reading:
Very similar comments have been made about science: “The best science often depends on
asking the most basic questions, which are often the hardest to ask because they risk exposing
fundamental limitations in our knowledge” (Mithen, 2016, p. 42).

For more on whether there can be progress in philosophy, see Rapaport 1982, 1984a; Rescher
1985; Moody 1986; Chalmers 2015; Frances 2017; as well as the answers to “Have philosophers
ever produced anything in the way that scientists have?” and “How is ‘philosophical progress’
made, assuming it is made at all?”, at http://www.askphilosophers.org/question/2249 and http:
//www.askphilosophers.org/question/4523, respectively.

2.5.3 Skepticism
Sceptics2 do not always really intend to prove to us that we cannot know any of the
things we naı̈vely think we know; sometimes they merely wish to demonstrate to
us that we are too naı̈ve about how we know them. . . . [S]ceptics have an uncanny
eye for fundamental principles
—Jerrold J. Katz (1978, pp. 191–192)

If you can always ask “Why?”—if you can challenge any claims—then you can be
skeptical about everything. Does philosophy lead to skepticism?3

2That’s the British spelling.
3See http://www.askphilosophers.org/questions/5572

50 CHAPTER 2. WHAT IS PHILOSOPHY?

Figure 2.3: https://www.comicskingdom.com/rhymes-with-orange/2020-01-14;
c©2020, RWO Studios

Skepticism is often denigrated as being irrational. But there are advantages to al-
ways asking questions and being skeptical: “A skeptical approach to life leads to ad-
vances in all areas of the human condition; while a willingness to accept that which
does not fit into the laws of our world represents a departure from the search for knowl-
edge” (Dunning, 2007). Being skeptical doesn’t necessarily mean refraining from hav-
ing any opinions or beliefs. But it does mean being willing to question anything and
everything that you read or hear (or think!). Here is another way of putting this: In
philosophy, the jury is always out!—see Polger 2011, p. 21. But, as we saw above, this
does not mean that there can be no progress in philosophy.

Why would you want to question anything and everything? (See Figure 2.3.)
So that you can find reasons for (or against) believing what you read or hear (or

think)! And why is it important to have these reasons? For one thing, it can make you
feel more confident about your beliefs and the beliefs of others. For another, it can help
you try to convince others about your beliefs—not necessarily to convince them that
they should believe what you believe, but to help them understand why you believe
what you do.

I do not pretend that I can refute these two views; but I can challenge
them (Popper, 1978, §4, p. 148)

This is the heart of philosophy: not (necessarily) coming up with answers, but chal-
lenging assumptions and forcing you to think about alternatives. My father’s favorite
admonition was: Never make assumptions. That is, never assume that something is the
case or that someone is going to do something; rather, try to find out if it is the case,
or ask the person. In other words, challenge all assumptions. Philosophers, as James
Baldwin (1962) said about artists, “cannot and must not take anything for granted, but
must drive to the heart of every answer and expose the question the answer hides.”

This is one way that progress can be made in philosophy: It may be backward-
looking progress, because, instead of looking “forward” to implications of your as-
sumptions, you look “backward” to see where those assumptions might have come
from.

Besides these two directions of progress, there can be a third, which is orthogonal
to these two: “Sideway” progress can be made by considering other issues that might

2.6. WHAT IS “RATIONAL”? 51

not underlie (“backward”) or follow from (“forward”) the one that you are considering,
but that are “inspired” or “suggested” by it.

2.6 What Is “Rational”?
Active, persistent, and careful consideration of any belief or supposed form of
knowledge in the light of the grounds that support it, and the further conclusions
to which it tends, constitutes reflective thought.
—John Dewey (1910, p. 6)

Mere statements (that is, opinions) by themselves are not rational. Rather, arguments—
reasoned or supported statements—are capable of being rational. As the American
philosopher John Dewey suggested, it’s not enough to merely think something; you
must also consider reasons for believing it (looking “backward”), and you must also
consider the consequences of believing it (looking “forward”). That is, being rational
requires logic.

But there are lots of different (kinds of) logics, so there are lots of different kinds of
rationality. And there is another kind of rationality, which depends on logics of various
kinds, but goes beyond them in at least one way: empirical, or scientific, rationality.
Let’s look at these two kinds of rationality.

2.6.1 Kinds of Rationality
Philosophy: the ungainly attempt to tackle questions that come naturally to chil-
dren, using methods that come naturally to lawyers.
—David Hills (2007, http://www.stanford.edu/∼dhills/cv.html)

There are (at least) two basic kinds of logical rationality: deductive (or absolutely
certain) rationality and scientific (or probabilistic) rationality. There is also, I think, a
third kind, which I’ll call “psychological” or maybe “economic”, and which is at the
heart of knowledge representation and reasoning in AI.

2.6.1.1 Deductive Rationality

“Deductive” logic is the main kind of logical rationality. Reasons P1, . . . ,Pn deductively
support (or “yield”, or “entail”, or “imply”) a conclusion C iff C must be true if all of
the Pi are true. The technical term for this is ‘validity’: A deductive argument is said to
be valid iff it is impossible for the conclusion to be false while all of the premises are
true. This can be said in a variety of ways: A deductive argument is valid iff, whenever
all of its premises are true, its conclusion cannot be false. Or: A deductive argument is
valid iff, whenever all of its premises are true, its conclusion must also be true. Or: A
deductive argument is valid iff the rules of inference that lead from its premises to its
conclusion preserve truth.

For example, the rule of inference called “Modus Ponens” says that, from P and
‘if P, then C’, you may deductively infer C. Using the symbol ‘`D’ to represent this

52 CHAPTER 2. WHAT IS PHILOSOPHY?

truth-preserving relation between reasons (usually called ‘premises’) and a conclusion
that is deductively supported by them, the logical notation for Modus Ponens is:

P, (P→C) `D C

For example, let P = “Today is Wednesday.” and let C = “We are studying philosophy.”
So the inference becomes: “Today is Wednesday. If today is Wednesday, then we are
studying philosophy. Therefore (deductively), we are studying philosophy.” (For more
on Modus Ponens, see §2.10.4.)

There are three somewhat surprising things about validity (or deductive rationality)
that must be pointed out:

1. Any or all of the premises Pi of a valid argument can be false! In the second
version of the characterization of validity above, note that the conditional term
‘whenever’ allows for the possibility that one or more premises are false. So, any
or all of the premises of a deductively valid argument can be false, as long as, if
they were to be true, then the conclusion would also have to be true.

2. The conclusion C of a valid argument can be false! How can a “truth pre-
serving” rule lead to a false conclusion? By the principal familiar to computer
programmers known as “garbage in, garbage out”: If one of the Pi is false, even
truth-preserving rules of inference can lead to a false C.

As is the case with any sentence, the conclusion of an argument can, of
course, be true or false, (or, more leniently, you can agree with it or not). But,
besides being “absolutely” or “independently” true or false (or agreeable or dis-
agreeable), a conclusion can also be relatively true. More precisely: a conclusion
can be true relative to the truth of its premises. What this means is that you can
have a situation in which a sentence is, let’s say, “absolutely” or “independently”
false (or you disagree with it), but it could also be true relative to some premises.

How could that be? Easy: If the world is such that, whenever it makes
the premises true, then it also makes the conclusion true, then we can say that
the conclusion is true relative to the premises. But note that this is a condi-
tional statement: “Whenever the world makes the premises true, then . . . ”. The
premises provide a background “context” in which to evaluate the conclusion.
The conclusion C only has to be true relative to the premises (that is, true rela-
tive to its context). In other words, C would be true if all of the Pi were true. But
sometimes the world might not make the premises true. And then we can’t say
anything about the truth of the conclusion. When a conclusion is true relative to
its premises, then the argument is said to be valid.

So, when can we be sure that the conclusion C of a valid argument is really
true (and not just “relatively” true)? The answer is that C is true iff (1) all of the
Pi are true, and (2) the rules of inference that lead from the Pi to C “preserve”
truth. Such a deductive argument is said to be “sound”, that is, it is valid and all
of its premises are, in fact, true.

3. The premises Pi of a valid argument can be irrelevant to the conclusion C!
But that’s not a good idea, because it wouldn’t be a convincing argument. The

2.6. WHAT IS “RATIONAL”? 53

classic example of this is that anything follows deductively from a contradiction:
From the two contradictory propositions ‘2+ 2 = 4’ and ‘2+ 2 6= 4’, it can be
deductively inferred that the philosopher Bertrand Russell (a noted atheist) is the
Pope.

Proof and Further Reading:
Let P and ¬P be the two premises, and let C be the conclusion. From P, we can deductively infer
(P∨C), by the truth-preserving rule of Addition (a form of ∨-introduction). Then, from (P∨C)

and ¬P, we can deductively infer C, by the truth-preserving rule of Disjunctive Syllogism (a
form of ∨-elimination). So, in the “Pope Russell” argument, from ‘2+2 = 4’, we can infer that
either 2+2 = 4 or Russell is the Pope (or both). That is, we can infer that at least one of those
two propositions is true. But we have also assumed that one of them is false: 2+ 2 6= 4. So it
must be the other one that is true: Therefore, Russell must be the Pope! (But remember point 2,
above: It doesn’t follow from this argument that Russell is the Pope. All that follows is that
Russell would be the Pope (and so would you!) if 2+2 both does and does not equal 4.)

“Relevance” logics are one way of dealing with this problem; see Anderson and Belnap 1975;
Anderson et al. 1992. For applications of relevance logic to AI, see Shapiro and Wand 1976;
Martins and Shapiro 1988.

We’ll say a lot more about this in the Appendix to this chapter (§2.10).

2.6.1.2 Inductive Logical Rationality

“Inductive” logic is one of the two main kinds of scientific rationality. The other is
“abductive” logic (to be discussed in the next section). Deductive rationality, which
is more characteristic of mathematics than of the experimental sciences, is, however,
certainly part of science.

In inductive logic, P1, . . . , Pn `I C iff C is probably true if all of the Pi are true.
For example, suppose that you have an urn containing over a million ping-pong balls,
and suppose that you remove one of them at random and observe that it is red. What
do you think the chances are that the next ball will also be red? They are probably not
very high. But suppose that the second ball that you examine is also red. And the third.
. . . And the 999,999th. Now how likely do you think it is that the next ball will also be
red? The chances are probably very high, so:

Red(ball1), . . . , Red(ball999,999) `I Red(ball1,000,000).

Unlike deductive inferences, however, inductive ones do not guarantee the truth
of their conclusion. Although it is not likely, it is quite possible that the millionth
ping-pong ball will be, say, the only blue one in the urn.

54 CHAPTER 2. WHAT IS PHILOSOPHY?

2.6.1.3 Abductive Logical Rationality

Adding a new hypothesis or axiom to a theory for the purpose of explaining already
known facts is a process known as “abduction”.
—Aaron Sloman (2010, slide 56)

“Abductive” logic, sometimes also known as “inference to the best explanation”, is also
scientific: From observation O made at time t1, and from a theory T that deductively or
inductively entails O, one can abductively infer that T must have been the case at earlier
time t0. In other words, T is an explanation of why you have observed O. Of course,
it is not necessarily a good, much less the best, explanation, but the more observations
that T explains, the better a theory it is. (But what is a “theory”? We’ll delve into that
in §4.7. For now, you can think of a theory as just a set of statements that describe,
explain, or predict some phenomenon.)

Abductive arguments are deductively invalid; they have the form (A):

(A) O, (T → O) 0D T

Argument (A) is called the fallacy of affirming the consequent.

Digression on Affirming the Consequent:
O is the “consequent” of the conditional statement (T → O). “Affirming” O as a premise thus
“affirms the consequent”. (We will come back to this in §4.9.1.1.) But if O is true and T is false,
then both premises are true, yet the conclusion (T) is not.

In another form of abduction, from observation O1 made at time t1, and from obser-
vation O2 made at a later time t2, one can abductively infer that O1 might have caused
or logically entailed O2. This, too, is deductively invalid: Just because two observa-
tions are correlated does not imply that the first causes the second, because the second
might have caused the first, or both might have been caused by a third thing.

Like inductive inferences, abductive ones are not deductively valid and do not guar-
antee the truth of their conclusion. But abductive inferences are at the heart of the sci-
entific method for developing and confirming theories. And they are used in the law,
where they are known as “circumstantial evidence”.

Further Reading:
For the origin of the term in the writings of the American philosopher Charles Sanders Peirce
(who pronounced his name like the word ‘purse’), see http://www.helsinki.fi/science/commens/
terms/abduction.html. For more on abductive logic, see Harman 1965; Lipton 2004; Campos
2011.

2.6.1.4 Non-Monotonic Logical Rationality

“Non-monotonic” reasoning is more “psychologically real” than any of the others. It
also underlies what the economist and AI researcher Herbert Simon called “satisficing”
(or being satisfied with something that suffices to answer your question rather than
having an optimal answer), for which he won the Nobel Prize in Economics.

2.6. WHAT IS “RATIONAL”? 55

In monotonic logics (such as deductive logics), once you have proven that a conclu-
sion C follows from a premise P, then you can be assured that it will always so follow.
But in non-monotonic logic, you might infer conclusion C from premise P at time t0,
but, at later time t1, you might learn that it is not the case that C. In that case, you must
revise your beliefs. For example, you might believe that birds fly and that Tweety is
a bird, from which you might conclude that Tweety flies. But if you then learn that
Tweety is a penguin, you will need to revise your beliefs.

Further Reading:
For a history of satisficing, see Brown 2004. We’ll return to this topic in §§3.15.2.3, 5.7,
and 11.4.5.2. A great deal of work on non-monotonic logics has been done by researchers in
the branch of AI called “knowledge representation”; see the bibliography at http://www.cse.
buffalo.edu/∼rapaport/663/F08/nonmono.html

2.6.1.5 Computational Rationality

In addition to logical rationality and scientific rationality, the astronomer Kevin Heng
argues that,

a third, modern way of testing and establishing scientific truth—in addition to
theory and experiment—is via simulations, the use of (often large) computers to
mimic nature. It is a synthetic universe in a computer. . . . If all of the relevant
physical laws are faithfully captured [in the computer program] then one ends up
with an emulation—a perfect, The Matrix-like replication of the physical world in
virtual reality. (Heng, 2014, p. 174)

One consideration that this raises is whether this is really a third way, or just a version
of logical rationality, perhaps extended to include computation as a kind of “logic”.
(We’ll discuss computer programs and computational simulations in Chapter 15, and
we’ll return to The Matrix in §20.8.)

However, all of the above kinds of rationality seem to have one thing in common:
They are all “declarative”. That is, they are all concerned with statements (or propo-
sitions) that are true or false. But the philosopher Gilbert Ryle (1945, especially p. 9)
has argued that there is another kind of rationality, one that is “procedural” in nature:
It has been summarized as “knowing how” (to do something), rather than “knowing
that” (something is the case). We will explore this kind of rationality in more detail in
§§3.6.1 and 3.14.4.

2.6.2 Science and Philosophy

If philosophy is a search for truth by rational means, what is the difference between
philosophy and science? After all, science is also a search for truth by rational means!
Is philosophy worth doing? Or can science answer all of our questions?

56 CHAPTER 2. WHAT IS PHILOSOPHY?

2.6.2.1 Is Science Philosophy?

Is the experimental or empirical methodology of science “rational”? It is not (entirely)
deductive. But it yields highly likely conclusions, and is often the best we can get.

I would say that science is philosophy, as long as experiments and empirical meth-
ods are considered to be “rational” and yield truth. Physics and psychology, in fact,
used to be branches of philosophy: Isaac Newton’s Principia—the book that founded
modern physics—was subtitled “Mathematical Principles of Natural Philosophy” (ital-
ics added), not “Mathematical Principles of Physics”, and psychology split off from
philosophy only at the turn of the 20th century. The philosophers Aristotle (384–
322 BCE, around 2400 years ago) and Kant (1724–1804, around 250 years ago) wrote
physics books. The physicists Einstein and Mach wrote philosophy. And the “philoso-
phy naturalized” movement in contemporary philosophy (championed by the philoso-
pher Willard Van Orman Quine) sees philosophy as being on a continuum with science.
(See §2.6.2.2; we’ll come back to this in §2.8.)

But, if experiments don’t count as being rational, and only logic counts, then sci-
ence is not philosophy. And science is also not philosophy, if philosophy is considered
to be the search for universal or necessary truths, that is, things that would be true no
matter what results science came up with or what fundamental assumptions we made.

There might be conflicting world views (for example, creationism vs. evolution,
perhaps). Therefore, the best theory is one that is (1) consistent, (2) as complete as
possible (that is, that explains as much as possible), and (3) best-supported by good
evidence.

You can’t refute a theory. You can only point out problems with it and then offer
a better theory. Suppose that you infer a prediction P from a theory T together with a
hypothesis H, and then suppose that P doesn’t come true (your experiment fails; that is,
the experimental evidence is that P is not the case). Then, logically, either H is not the
case or T is not the case (or both!). And, since T is probably a complex conjunction of
claims A1, . . . ,An, then, if T is not the case, then at least one of the Ai is not the case.
In other words, you need not give up a theory; you only need to revise it. That is, if P
has been falsified, then you only need to give up one of the Ai or H, not necessarily the
whole theory T .

However, sometimes you should give up an entire theory. This is what happens in
the case of “scientific revolutions”, such as (most famously) when Copernicus’s theory
that the Earth revolves around the Sun (and not vice versa) replaced the Ptolemaic
theory, small revisions to which were making it overly complex without significantly
improving it. (We’ll say more about this in §4.9.2.)

2.6.2.2 Is Philosophy a Science?

Could philosophy be more scientific (that is, experimental) than it is? Should it be? The
philosopher Colin McGinn (2012a) takes philosophy to be a science (“a systematically
organized body of knowledge”), in particular, what he dubs ‘ontical science’: “the
subject consists of the search for the essences of things by means of a priori methods”
(McGinn, 2012b). In a later paper, he argues that philosophy is a science just like
physics or mathematics. More precisely, he says that it is the logical science of concepts

2.6. WHAT IS “RATIONAL”? 57

(McGinn, 2015b, pp. 87–88).
There is a relatively recent movement (with some older antecedents) to have philoso-

phers do scientific (mostly psychological) experiments in order to find out, among other
things, what “ordinary” people (for example, people who are not professional philoso-
phers) believe about certain philosophical topics.

Further Reading:
For more information on this movement, sometimes called ‘X-Phi’, see Nahmias et al. 2006;
Appiah 2007, 2008; Knobe 2009; Beebe 2011; Nichols 2011; Roberts and Knobe 2016. For an
argument against experimental philosophy, see Deutsch 2009. Whether or not X-Phi is really
philosophy, it is certainly an interesting and valuable branch of cognitive science.

But there is another way that philosophy can be part of a scientific worldview.
This can be done by philosophy being continuous with science, that is, by being aware
of, and making philosophical use of, scientific results. Rather than being a passive,
“armchair” discipline that merely analyzes what others say and do, philosophy can—
and probably should—be a more active discipline, even helping to contribute to science
(and other disciplines that it thinks about).

Further Reading:
For a useful discussion of this, which is sometimes called “naturalistic philosophy”, see Thagard
2012. Williamson (2007) argues that there’s nothing wrong with “armchair” philosophy.

Philosophers can also be more “practical” in the public sphere: “The philosophers
have only interpreted the world in various ways; the point is to change it” (Marx, 1845).
But an opposing point of view considers that “philosophers . . . are ordained as priests
to keep alive the sacred fires in the altar of impartial truth” (“Philonous”, 1919, p. 19)!
(For more on this, see §5.7.)

Further Reading:
For a debate on science vs. philosophy, read Linker 2014; Powell 2014; Pigliucci 2014, in that
order. For a discussion of whether philosophy or science is “harder”, see Papineau 2017.

2.6.3 Is It Always Rational to Be Rational?
Is there anything to be said in favor of not being rational?

Suppose that you are having trouble deciding between two apparently equal choices.
This is similar to a problem from mediaeval philosophy known as “Buridan’s Ass”
(see Zupko 2011): According to one version, an ass (that is, a donkey) was placed
equidistant between two equally tempting bales of hay but died of starvation because
it couldn’t decide between the two of them. My favorite way out of such a quandary is
to imagine tossing a coin and seeing how you feel about how it lands: If it lands heads
up, say, but you get a sinking feeling when you see that, because you would rather that
it had landed tails up, then you know what you would have preferred, even if you had
“rationally” decided that both choices were perfectly equally balanced.

58 CHAPTER 2. WHAT IS PHILOSOPHY?

Further Reading:
Look up Andrew N. Carpenter’s response to the question “To what extent do philosophers/does
philosophy allow for instinct, or gut feelings?” on the AskPhilosophers website (http://www.
askphilosophers.org/question/2992). An interesting discussion of the role—and limits—of ratio-
nality in AI research is S. Russell 1995.

2.7 What Is the Import of “Personal Search”?
. . . I’m not trying to change anyone’s mind on this question. I gave that up long
ago. I’m simply trying to say what I think is true.
—Galen Strawson (2012, p. 146)

And among the philosophers, there are too many Platos to enumerate. All that I
can do is try to give you mine.
—Rebecca Newberger Goldstein (2014, p. 396)

[M]y purpose is to put my own intellectual home in order
—Hilary Putnam (2015)

“The philosophy of every thinker is the more or less unconscious autobiography of
its author,” Nietzsche observed —Clancy Martin (2015)

The philosopher Hector-Neri Castañeda used to say that philosophy should be done “in
the first person, for the first person” (Rapaport, 2005a). So, philosophy is whatever I
am interested in, as long as I study it in a rational manner and aim at truth (or, at least,
aim at the best theory).

There is another way in which philosophy must be a personal search for truth. As
one introductory book puts it, “the object here is not to give answers . . . but to intro-
duce you to the problems in a very preliminary way so that you can worry about them
yourself ” (Nagel, 1987, pp. 6–7, my italics). The point is not to hope that someone
else will tell you the answers to your questions. That would be nice, of course; but
why should you believe them? The point, rather, is for you to figure out answers for
yourself.

It may be objected that your first-person view on some topic, no matter how well
thought out, is, after all, just your view. “Such an analysis can be of only parochial
interest” (Strevens, 2019) or might be seriously misleading (Dennett, 2017, pp. 364–
370). Another philosopher, Hilary Kornblith, agrees:

I believe that the first-person perspective is just one perspective among many, and
it is wholly undeserving of the special place which these philosophers would give
it. More than this, this perspective is one which fundamentally distorts our view
of crucial features of our epistemic situation. Far from lauding the first-person
perspective, we should seek to overcome its defects. (Kornblith, 2013, p. 126)

But there is another important feature of philosophy, as I mentioned in §1.3: It is a
conversation. And if you want to contribute to that conversation, you will have to take
others’ views into account, and you will have to allow others to make you think harder
about your own views.

2.8. WHAT IS THE IMPORT OF “IN ANY FIELD”? 59

The desire for an “Authority” to answer all questions for you has been called the
“Dualistic” stance towards knowledge. But the Dualist soon realizes that not all ques-
tions have answers that everyone agrees with, and some questions don’t seem to have
answers at all (at least, not yet).

Rather than stagnating in a middle stance of “Multiplism” (a position that says that,
because not all questions have answers, multiple opinions—proposed answers—are
all equally good), a further stance is that of “Contextual Relativism”: All proposed
answers or opinions can (should!) be considered—and evaluated!—relative to and in
the context of assumptions, reasons, or evidence that can support them.

Eventually, you “Commit” to one of these answers, and you become responsible
for defending your commitment against “Challenges”. But that is (just) more thinking
and analysis—more philosophizing. Moreover, the commitment that you make is a
personal one (one that you are responsible for). As the computer scientist Richard W.
Hamming warned, “In science and mathematics we do not appeal to authority, but
rather you are responsible for what you believe” (Hamming, 1998, p. 650).

Further Reading:
The double-quoted and capitalized terms come from William Perry (see §2.5, above). For more
on Perry’s theory, see Perry 1970, 1981; §C, below; and http://www.cse.buffalo.edu/∼rapaport/
perry.positions.html. See also the answer to a question about deciding which of your own opin-
ions to really believe, at http://www.askphilosophers.org/question/5563.

It is in this way that philosophy is done “in the first person, for the first person”, as
Castañeda said.

2.8 What Is the Import of “In Any Field”?
One of the things about philosophy is that you don’t have to give up on any other
field. Whatever field there is, there’s a corresponding field of philosophy. Phi-
losophy of language, philosophy of politics, philosophy of math. All the things I
wanted to know about I could still study within a philosophical framework.
—Rebecca Newberger Goldstein, cited in Reese 2014b

[He] is a philosopher, so he’s interested in everything
—David Chalmers (describing the philosopher Andy Clark), as cited in Cane 2014.

It is not really possible to regret being a philosopher if you have a theoretical (rather
than practical or experiential) orientation to the world, because there are no bound-
aries to the theoretical scope of philosophy. For all X, there is a philosophy of X,
which involves the theoretical investigation into the nature of X. There is philoso-
phy of mind, philosophy of literature, of sport, of race, of ethics, of mathematics,
of science in general, of specific sciences such as physics, chemistry and biology;
there is logic and ethics and aesthetics and philosophy of history and history of
philosophy. I can read Plato and Aristotle and Galileo and Newton and Leibniz
and Darwin and Einstein and John Bell and just be doing my job. I could get fed
up with all that and read Eco and Foucault and Aristophanes and Shakespeare for

60 CHAPTER 2. WHAT IS PHILOSOPHY?

Figure 2.4: c©Hilary B. Price, http://rhymeswithorange.com/comics/august-31-2007/

a change and still do perfectly good philosophy.
—Tim Maudlin, cited in Horgan 2018

Philosophy also studies things that are not studied by any single discipline; these are
sometimes called “the Big Questions”: What is truth? What is beauty? What is good
(or just, or moral, or right)? What is the meaning of life? What is the nature of mind?
(For a humorous take on this, see Fig. 2.4.) Or, as the philosopher Jim Holt put it:
“Broadly speaking, philosophy has three concerns: how the world hangs together, how
our beliefs can be justified, and how to live” (Holt, 2009). The first of these is meta-
physics, the second is epistemology, and the third is ethics. (Similar remarks have been
made by Flanagan 2012, p. B4; Schwitzgebel 2012; Weatherson 2012.)

But the main branches of philosophy go beyond these “big three”:

1. Metaphysics tries to “understand the nature of reality in the broadest sense: what
kinds of things and facts ultimately constitute everything there is” (Nagel, 2016,
p. 77). It tries to answer the question “What is there?” (and also the question
“Why is there anything at all?”). Some of the things that there might be include:
physical objects, properties, relations, individuals, time, God, actions, events,
minds, bodies, etc. There are major philosophical issues surrounding each of
these. Here are just a few examples:

• Which physical objects “really” exist? Do rocks and people exist? Or are
they “merely” collections of molecules? But molecules are constituted by
atoms; and atoms by electrons, protons, and neutrons. And, according to
the “standard model”, the only really elementary particles are quarks, lep-
tons (which include electrons), and gauge bosons; so maybe those are the
only “really existing” physical objects. Here is a computationally relevant
version of this kind of question: Do computer programs that deal with, say,
student records model students? Or are they just dealing with 0s and 1s?
(We’ll discuss this in §14.3.3.) And, on perhaps a more fanciful level, could
a computer program model students so well that the “virtual” students in
the program believe that they are real? (If this sounds like the film The
Matrix, see §20.8.)

• Do “socially constructed” things like money, universities, governments,

2.8. WHAT IS THE IMPORT OF “IN ANY FIELD”? 61

etc., really exist (in the same way that people or rocks do)? (This prob-
lem is discussed in Searle 1995.)

• Do properties really exist? Or are they just collections of similar (physi-
cal) objects. In other words, is there a property—“Redness”—in addition
to the class of individual red things? Sometimes, this is expressed as the
problem of whether properties are “intensional” (like Redness) or “exten-
sional” (like the set of individual red things). (See §3.4 for more about this
distinction.)

• Are there any important differences between “accidental” properties (such
as my property of being a professor of computer science rather than my
being a professor of philosophy) and “essential” properties (such as my
property of being a human rather than being a laurel tree)?4

• Do “non-existents” (such as Santa Claus, unicorns, Sherlock Holmes, etc.)
exist in some sense? After all, we can and do think and talk about them.
Therefore, whether or not they “exist” in the real world, they do need to be
dealt with.

• Ontology is the branch of metaphysics that is concerned with the objects
and kinds of objects that exist according to one’s metaphysical (or even
physical) theory, their properties, and their relations to each other (such as
whether some of them are “sub-kinds” of others, inheriting their properties
and relations from their “super-kinds”). For example, the modern ontology
of physics recognizes the existence only of fermions (quarks, leptons, etc.)
and bosons (photons, gluons, etc.); everything else is composed of things
(like atoms) that are, in turn, composed of these.5 Ontology is studied
both by philosophers and by computer scientists. In software engineering,
“object-oriented” programming languages are more focused on the kinds
of objects that a program must deal with than with the instructions that
describe their behavior. In AI, ontology is a branch of knowledge represen-
tation that tries to categorize the objects that a knowledge-representation
theory is concerned with.

Further Reading:
For a computational approach to the question “What is there?”, see http://www.cse.buffalo.edu/
∼rapaport/663/F06/course-summary.html. For an interesting take on what “really” exists, see
Unger 1979a,b. On non-existence, see Quine 1948. For a survey of the AI approach to non-
existence, see Hirst 1991. And for some papers on a fully intensional AI approach to these issues,
see Maida and Shapiro 1982; Rapaport 1986a; Wiebe and Rapaport 1986; Shapiro and Rapaport
1987, 1991; Rapaport et al. 1997. For more information on ontology, see http://www.cse.buffalo.
edu/∼rapaport/563S05/ontology.html. For the AI version of ontology, see http://aitopics.org/
topic/ontologies and http://ontology.buffalo.edu/.

And so on. As William James said:
4http://www.theoi.com/Nymphe/NympheDaphne.html
5https://en.wikipedia.org/wiki/Elementary particle

62 CHAPTER 2. WHAT IS PHILOSOPHY?

Metaphysics means only an unusually obstinate attempt to think clearly and
consistently. . . . A geologist’s purposes fall short of understanding Time it-
self. A mechanist need not know how action and reaction are possible at all.
A psychologist has enough to do without asking how both he [sic] and the
mind which he studies are able to take cognizance of the same outer world.
But it is obvious that problems irrelevant from one standpoint may be essen-
tial for another. And as soon as one’s purpose is the attainment of the maxi-
mum of possible insight into the world as a whole, the metaphysical puzzles
become the most urgent ones of all. (James, 1892, “Epilogue: Psychology
and Philosophy”, p. 427; my italics)

2. Epistemology is the study of knowledge and belief:

Epistemology is concerned with the question of how, since we live, so to
speak, inside our heads, we acquire knowledge of what there is outside our
heads. (Simon, 1996a, p. 162)

How do we know what there is? How do we know that there is anything? What
is knowledge? Is it justified, true belief (as Plato thought)? Or are there coun-
terexamples to that analysis? That is, can you be logically justified in believing
something that is in fact true, and yet not know it? (See Gettier 1963.) Are there
other kinds of knowledge, such as knowing how to do something (see §3.14.4),
knowing a person by acquaintance, or knowing who someone is by description?
What is belief, and how does it relate to knowledge? Can a computer (or a robot)
be said to have beliefs or knowledge? In fact, the branch of AI called “knowledge
representation” applies philosophical results in epistemology to issues in AI and
computer science in general, and it has contributed many results to philosophy
as well.

Further Reading:
On knowledge representation, see Buchanan 2006; Shoham 2016; and the bibliography at http:
//www.cse.buffalo.edu/∼rapaport/663/F08/krresources.html.

3. Ethics tries to answer “What is good?”, “What ought we to do?”. We’ll look at
some ethical issues arising from computer science in Chapters 18 and 20.

4. Ethics is closely related to both social and political philosophy and to the phi-
losophy of law, which try to answer “What are societies?”, “What are the rela-
tions between societies and the individuals who constitute them?”, “What is the
nature of law?”.

5. Aesthetics (or the philosophy of art) tries to answer “What is beauty?”, “What
is art?”. (On whether computer programs, like mathematical theorems or proofs,
can be “beautiful”, see §3.14.2.)

6. Logic is the study of good reasoning: What is truth? What is rationality? Which
arguments are good ones? Can logic be computationally automated? (Recall our
discussion in §2.6.)

2.8. WHAT IS THE IMPORT OF “IN ANY FIELD”? 63

7. Philosophy is one of the few disciplines (history is another) in which the history
of itself is one of its branches: The history of philosophy looks at what famous
philosophers of the past believed, and tries to reinterpret their views in the light
of contemporary thinking.

8. And of central interest for the philosophy of computer science, there are numer-
ous “philosophies of”:

• Philosophy of language tries to answer “What is language?”, “What is
meaning?”. It has large overlaps with linguistics and with cognitive science
(including AI and computational linguistics).

• Philosophy of mathematics tries to answer “What is mathematics?”, “Is
math about numbers, numerals, sets, structures?”, “What are numbers?”,
“Why is mathematics so applicable to the real world?”.

Further Reading:
On the philosophy of mathematics, see Benacerraf and Putnam 1984; Pincock 2011; Horsten
2015.

• Philosophy of mind tries to answer “What is ‘the’ mind?”, “How is the
mind related to the brain?” (this is known as the “mind-body” problem),
Are minds and bodies two different kinds of substances? (This is known
as “dualism”, initially made famous by Descartes.) Or are they two differ-
ent aspects of some one, underlying substance? (This is a position made
famous by the 17th-century Dutch philosopher Baruch Spinoza.) Or are
there no minds at all, but only brains? (This is known as “materialism”
or “physicalism”; it is the position of most contemporary philosophers and
scientists.) Or are there no independently existing physical objects, but
only ideas in our minds? (This is known as “idealism”, made famous by
the 18th-century Irish philosopher George Berkeley.) (In §12.4.6, we’ll
say more about the mind-body problem and its relation to the software-
hardware distinction.) The philosophy of mind also investigates whether
computers can think (or be said to think), and it has close ties with cogni-
tive science and AI, issues that we will take up in Chapter 19.

• Philosophy of science tries to answer “What is science?”, “What is a sci-
entific theory?”, “What is a scientific explanation?”. The philosophy of
computer science is part of the philosophy of science. The philosopher
Daniel C. Dennett has written that there was a “reform that turned philos-
ophy of science from an armchair fantasy field into a serious partnership
with actual science. There came a time when philosophers of science de-
cided that they really had to know a lot of current science from the inside”
(Dennett, 2012, p. 12). Although you do not need to know a lot about com-
puter science (or philosophy, for that matter) to learn something from the
present book, clearly the more you know about each topic, the more you
will be able both to understand what others are saying and to contribute to
the conversation. (We will look at the philosophy of science in Chapter 4.)

64 CHAPTER 2. WHAT IS PHILOSOPHY?

• In general, for any X, there can be a philosophy of X: the philosophi-
cal investigation of the fundamental assumptions, methods, and goals of
X (including metaphysical, epistemological, and ethical issues), where X
could be: biology, education, history, law, physics, psychology, religion,
etc., including, of course, AI and computer science. The possibility of a
philosophy of X for any X is the main reason why philosophy is the ratio-
nal search for truth in any field. “Philosophy is 99 per cent about critical
reflection on anything you care to be interested in” (Richard Bradley, in
Popova 2012). Philosophy in general, and especially the philosophy of X ,
is a “meta-discipline”: In a discipline X , you think about X (in the disci-
pline of mathematics, you think about mathematics); but in the philosophy
of X , you think about thinking about X. Even those subjects that might be
purely philosophical (metaphysics, epistemology, and ethics) have strong
links to disciplines like physics, psychology, and political science, among
others.

X , by the way, could also be . . . philosophy! The philosophy of philos-
ophy, also known as “metaphilosophy”, is exemplfied by this very chapter,
which is an investigation into what philosophy is and how it can be done.
Some people might think that the philosophy of philosophy is the height
of “gazing at your navel”, but it’s really what’s involved when you think
about thinking, and, after all, isn’t AI just computational thinking about
thinking?

Philosophy, besides being interested in any specific topic, also has an overarching
or topic-spanning function: It asks questions that don’t fall under the aegis of specific
topics and that span multiple topics: The philosopher Wilfrid Sellars said, “The aim of
philosophy, abstractly formulated, is to understand how things in the broadest possible
sense of the term hang together in the broadest possible sense of the term” (Sellars,
1963, p. 1). So, for instance, while it is primarily (but not only) mathematicians who
are interested in mathematics per se and primarily (but not only) scientists who are in-
terested in science per se, it is primarily (but not only) philosophers who are interested
in how and why mathematics is so useful for science (see P. Smith 2010).

Are there any topics that philosophy doesn’t touch on? I’m sure that there are some
topics that philosophy hasn’t touched on. But I’m equally sure that there are no topics
that philosophy couldn’t touch on.

2.9. PHILOSOPHY AND COMPUTER SCIENCE 65

Further Reading:
Standard reference works in philosophy include the Encyclopedia of Philosophy (Edwards,
1967), the Routledge Encyclopedia of Philosophy (Craig, 1998), and—online and continu-
ally being brought up to date—the Internet Encyclopedia of Philosophy (Fieser and Dow-
den, 1995, http://www.iep.utm.edu/) and the Stanford Encyclopedia of Philosophy (Zalta, 2019,
http://plato.stanford.edu/). My favorite introduction to philosophy is Nagel 1987; my second fa-
vorite is Russell 1912. For general introductions to philosophical writing and informal argument
analysis, see Chudnoff 2007; Woodhouse 2013; Martinich 2016.

Russell 1946 explains why studying philosophy is important for everyone, not just profes-
sional philosophers. McGinn 2003 is a brief autobiography of how a well-known contemporary
philosopher got into the field.

The website AskPhilosophers (http://www.askphilosophers.org/) has suggested answers to some
relevant questions:

1. What do people mean when they speak of “doing” philosophy?,
http://www.askphilosophers.org/question/2915

2. Why are philosophers so dodgy when asked a question?
http://www.askphilosophers.org/question/2941

3. Are there false or illegitimate philosophies, and if so, who’s to say which ones are valid
and which are invalid? http://www.askphilosophers.org/question/2994

4. What does it take to be a philosopher? http://www.askphilosophers.org/question/4609

2.9 Philosophy and Computer Science

[I]f there remain any philosophers who are not familiar with some of the main de-
velopments in artificial intelligence, it will be fair to accuse them of professional
incompetence, and that to teach courses in philosophy of mind, epistemology, aes-
thetics, philosophy of science, philosophy of language, ethics, metaphysics, and
other main areas of philosophy, without discussing the relevant aspects of artificial
intelligence will be as irresponsible as giving a degree course in physics which
includes no quantum theory.
—Aaron Sloman (1978, §1.2, p. 3)

Philosophy and computer science overlap not only in some topics of common interest
(logic, philosophy of mind, philosophy of language, etc.), but also in methodology:
the ability to find counterexamples; refining problems into smaller, more manageable
ones; seeing implications; methods of formal logic; and so on.

For example here’s an application of predicate logic to artificial intelligence (AI):
In the late 1950s, one of the founders of AI, John McCarthy, proposed a computer pro-
gram to be called “The Advice Taker”, as part of a project that he called “programs with
common sense”. The idea behind The Advice Taker was that problems to be solved
would be expressed in a predicate-logic language (only a little bit more expressive than
first-order logic), a set of premises or assumptions describing required background in-
formation would be given, and then the problem would be solved by logically deducing
an answer from the assumptions.

66 CHAPTER 2. WHAT IS PHILOSOPHY?

He gave an example: getting from his desk at home to the airport. It begins with
premises like

at(I,desk)

meaning “I am at my desk”, and rules like

∀x∀y∀z[at(x,y) ∧ at(y,z) → at(x,z)],

which expresses the transitivity of the “at” predicate (for any three things x,y, and z, if
x is at y, and y is at z, then x is at z), along with slightly more complicated rules (which
go slightly beyond the expressive power of first-order logic) such as:

∀x∀y∀z[walkable(x) ∧ at(y,x) ∧ at(z,x) ∧ at(I,y) → can(I,go(y,z,walking))]

(that is, if x is walkable, and if y and z are at x, and if I am at y, then I can go from y to
z by walking).

The proposition to be proved from these (plus lots of others) is:

want(at(I,airport))

(that is, we want it to be the case that I am at the airport).

Further Reading:
To see how to get to the airport, take a look at McCarthy 1959. McCarthy is famous
for at least the following things: He came up with the name ‘artificial intelligence’, he in-
vented the programming language Lisp, and he helped develop time sharing. For more
information on him, see http://en.wikipedia.org/wiki/John McCarthy (computer scientist) and
http://aitopics.org/search/site/John%20McCarthy.

I have mentioned a few different kinds of logic: Propositional logic is the logic of sentences,
treating them “atomically” as simply being either true or false, and as not having any “parts”.
First-order predicate logic can be thought of as a kind of “sub-atomic” logic, treating sentences
as being composed of terms standing in relations. But there are also second-order logics, modal
logics, relevance logics, and many more (not to mention varieties of each). Is one of them the
“right” logic? Tharp 1975 asks that question, which can be expressed as a “thesis” analogous
to the Church-Turing Computability Thesis: Where the Computability Thesis asks if the for-
mal theory of Turing Machine computability entirely captures the informal, pre-theoretic notion
of computability, Tharp asks if there is a formal logic that entirely captures the informal, pre-
theoretic notion of logic. We’ll return to some of these issues in Chapter 11.

For further discussion of the value of philosophy for computer science (and vice versa!), see
Arner and Slein 1984, especially pp. 76–77.

In the next chapter, we’ll begin our philosophical investigation into computer science.

2.9. PHILOSOPHY AND COMPUTER SCIENCE 67

A Philosophical Round

I sat upon a chair . . .

(but was it there?
and what is ‘I’?
and is ‘I’ me?)
. . . and had some thoughts on
PHILOSOPHY
(where ‘had’ means ‘do’?
and ‘thoughts’: insights, or recall?
and the ‘Big P’ too:
defined by others, or by me?
or some view
overall?)
And I wondered:
Is it always best when plainly told? . . .
(but best for what? for whom?
and ‘it’ means all, or some?
‘plainly’ means clear, or dry?
‘told’ means typed? orated?
how confidently stated?
and who should have this say?)
. . . Or have fictional forms a part to play?
(but ‘fiction’: poetry? theatre?
music? art? prose?
comedy? tragedy? adventure?
long? short? episodic?
concise? verbose?
literal, or metaphoric?
epistolic? dialectic? parabolic . . . ?)
WAIT!
This has become more abstruse than Zen.
I think I’d better start again:
I sat upon a chair . . .

—Daryn Green (2014a)

68 CHAPTER 2. WHAT IS PHILOSOPHY?

2.10 Appendix: Argument Analysis and Evaluation

Figure 2.5: http://www.sciencecartoonsplus.com/gallery/math/index.php#
From American Scientist 73(1) (January-February), p. 19; c©Sidney Harris

2.10.1 Introduction
In §2.3, I said that the methodology of philosophy involved “rational means” for seek-
ing truth, and in §2.6, we looked at different kinds of rational methods. In this appendix,
we’ll look more closely at one of those methods—argument analysis and evaluation—
which you will be able to practice when you do the exercises in Appendix A. Perhaps
more importantly for some readers, argument analysis is a topic in two of the knowl-
edge areas (Discrete Structures, and Social Issues and Professional Practice/Analytical
Tools) of Computer Science Curricula 2013 (https://ieeecs-media.computer.org/assets/
pdf/CS2013-final-report.pdf).

Unless you are gullible—willing to believe everything you read or anything that an
authority figure tells you—you should want to know why you should believe something
that you read or something that you are told. If someone tells you that some proposition
C is true because some other propositions P1 and P2 are true, you might then consider,
first, whether those reasons (P1 and P2) really do support the conclusion C and, second,
whether you believe the reasons.

Let’s consider how you might go about doing this.

2.10.2 A Question-Answer Game
Consider two players, Q and A, in a question-answer game:

Step 1 Q asks whether C is true.

Step 2 A responds: “C, because P1 and P2.”

2.10. APPENDIX: ARGUMENT ANALYSIS AND EVALUATION 69

• That is, A gives an argument for conclusion C with reasons (also called
‘premises’) P1 and P2.

• Note, by the way, that this use of the word ‘argument’ has nothing directly
to do with the kind of fighting argument that you might have with your
roommate; rather, it’s more like the legal arguments that lawyers present to
a jury.

• Also, for the sake of simplicity, I’m assuming that A gives only two reasons
for believing C. In a real case, there might be only one reason (for example:
Fred is a computer scientist; therefore, someone is a computer scientist),
or there might be more than two reasons (for examples, see any of the
arguments for analysis and evaluation in Appendix A.)

Step 3 In order to be rational, Q should analyze or “verify” A’s arguments. Q can do
this by asking three questions:

(a) Do I believe P1? (That is, do I agree with it?)

(b) Do I believe P2? (That is, do I agree with it?)

(c) Does C follow validly from P1 and P2?

There are a few comments to make about Step 3:

• Strictly speaking, when you’re analyzing an argument, you need to say, for
each premise, whether it is or is not true. But sometimes you don’t know;
after all, truth is not a matter of logic, but of correspondence with reality
(as we discussed in §2.4.1): A sentence is true if and only if it correctly
describes some part of the world. (And it’s false otherwise.) Whether or
not you know the truth-value of a statement (whether it’s a premise or a
conclusion), you usually have some idea of whether you believe it or not.
Because you can’t always or easily tell whether a sentence is true, we can
relax this a bit and say that sentences can be such that either you agree with
them or you don’t. So, when analyzing an argument, you can say either:
“This statement is true (or false)”, or (more cautiously) “I think that this
statement is true (or false)”, or “I believe (or don’t believe) this statement”,
or “I agree (or don’t agree) with it”. (Of course, you should also say why
you do or don’t agree!)

• Steps 3(a) and 3(b) are “recursive” (see §2.10.4): That is, for each reason
Pi, Q could play another instance of the game, asking A (or someone else!)
whether Pi is true. A (or the other person) could then give an argument
for conclusion Pi with new premises P3 and P4. Clearly, this process could
continue. (This is what toddlers do when they continually ask their parents
“Why?”. Recall our discussion of this in §2.5.1.) It is an interesting philo-
sophical question, but fortunately beyond our present scope, to consider
where, if at all, this process might stop.

• To ask whether C follows “validly” from the premises is to assume that
A’s argument is a deductive one. For the sake of simplicity, all (or at least

70 CHAPTER 2. WHAT IS PHILOSOPHY?

most) of the arguments at the ends of some of the chapters are deductive.
But, in real life, most arguments are not completely deductive, or not even
deductive at all. So, more generally, in Step 3(c), Q should ask whether
C follows rationally from the premises: If it does not follow deductively,
does it follow inductively? Abductively? And so on.

• Unlike Steps 3(a) and 3(b) for considering the truth value of the premises,
Step 3(c)—determining whether the relation between the premises of an
argument and its conclusion is a rational one—is not similarly recursive,
on pain of infinite regress.

Further Reading:
The classical source of this observation is due to Lewis Carroll (of “Alice in Wonderland” fame).
(Though the books are more properly known as Alice’s Adventures in Wonderland and Through
the Looking Glass.) Carroll was a logician by profession, and wrote a classic philosophy essay
on this topic, involving Achilles and the Tortoise (Carroll, 1895).

• Finally, it should be pointed out that the order of doing these steps is ir-
relevant. Q could first analyze the validity (or rationality) of the argument
and then analyze the truth value of the premises (that is, decide whether to
agree with them), rather than the other way round.

Step 4 Having analyzed A’s argument, Q now has to evaluate it, by reasoning in one
of the following ways;

• If I agree with P1,
and if I agree with P2,
and if C follows validly (or rationally) from P1 and P2,
then I logically must agree with C (that is, I ought to believe C).

– But what if I really don’t agree with C?
In that case, I must reconsider my having agreed with P1, or with P2,
or with the logic of the inference from P1&P2 to C.

• If I agree with P1,
and if I agree with P2,
but the argument is invalid, is there a missing premise—an extra reason—

that would validate the argument and that I would agree with?
(See §2.10.3, below.)

– If so, then I can accept C,
else I should not yet reject C,

but I do need a new argument for C
(that is, a new set of reasons for believing C).

• If I disagree with P1 or with P2 (or both),
then—even if C follows validly from them—

this argument is not a reason for me to believe C
so, I need a new argument for C.

(Recall our discussion of “first-person philosophy” in §2.7.)

2.10. APPENDIX: ARGUMENT ANALYSIS AND EVALUATION 71

– There is one other option for Q in this case: Q might want to go back
and reconsider the premises. Maybe Q was too hasty in rejecting them.

• What if Q cannot find a good argument for believing C? Then it might
be time to consider whether C is false. In that case, Q needs to find an
argument for C’s negation: Not-C (sometimes symbolized ‘¬C’).

This process of argument analysis and evaluation is summarized in the flowchart in
Figure 2.6.

2.10.3 Missing Premises
One of the trickiest parts of argument analysis can be identifying missing premises.
Often, this is tricky because the missing premise seems so “obvious” that you’re not
even aware that it’s missing. But, equally often, it’s the missing premise that can make
or break an argument.

Here’s an example from the “Textual Entailment Challenge”, a competition for
computational-linguistics researchers interested in knowledge representation and in-
formation extraction. (For some real-life examples, see §§3.5, 3.13.1.2 and 5.6.2.) In a
typical challenge, a system is given one or two premises and a conclusion (to use our
terminology) and asked to determine whether the conclusion follows from the premise.
And “follows” is taken fairly liberally to include all kinds of non-deductive inference.

Further Reading:
For more information on “textual entailment” in general, and the Challenge in particular, see
Dagan et al. 2006; Bar-Haim et al. 2006; Giampiccolo et al. 2007.

Here is an example:

Premise 1 (P):
Bountiful arrived after war’s end, sailing into San Francisco Bay 21 August 1945.

Premise 2:
Bountiful was then assigned as hospital ship at Yokosuka, Japan, departing San
Francisco 1 November 1945.

Conclusion (C): Bountiful reached San Francisco in August 1945.

The idea is that the two premises might be sentences from a news article, and the con-
clusion is something that a typical reader of the article might be expected to understand
from reading it.

I hope you can agree that this conclusion does, indeed, follow from these premises.
In fact, it follows from Premise 1 alone. In this case, Premise 2 is a “distractor”.

But what logical rule of inference allows us to infer C from P?

• P talks of “arrival” and “sailing into”, but C talks only of “reaching”.

• P talks of “San Franciso Bay”, but C talks only of “San Francisco”.

72 CHAPTER 2. WHAT IS PHILOSOPHY?

Figure 2.6: How to evaluate an argument from premises P1 and P2 to conclusion C.
(The symbol ‘∃’ should be read: “Does there exist”.)

2.10. APPENDIX: ARGUMENT ANALYSIS AND EVALUATION 73

There are no logical rules that connect these concepts.
Most people, I suspect, would think that no such rules would be needed. After all,

isn’t it “obvious” that, if you arrive somewhere, then you have reached it? And isn’t it
“obvious” that San Francisco Bay must be in San Francisco?

Well, maybe. But, whereas people might know these things, computers won’t,
unless we tell them. In other words, computers need some lexical knowledge and some
simple geographical knowledge. (If you don’t like the word ‘knowledge’ here, you
can substitute ‘information’. Instead of telling the computer these additional facts, we
might tell the computer how to find them; we’ll discuss these two options in §3.6.1.)

So, we need to supply some extra premises that link P with C more closely. These
are the “missing premises”. The argument from P to C is called an ‘enthymeme’,
because the missing premises are “in” (Greek ‘en-’) the arguer’s “mind” (Greek ‘thy-
mos’).

We might flesh out the argument as follows (there are other ways to do it; this is
one that comes to my mind):

(P) Bountiful arrived after war’s end, sailing into San Francisco Bay
21 August 1945.

(Pa) If something sails into a place, then it arrives at that place.
(C1) ∴ Bountiful arrived at San Francisco Bay 21 August 1945.

In this first step, I’ve added a missing premise, Pa, and derived an intermediate conclu-
sion C1. Hopefully, you agree that C1 follows validly (or at least logically in some way,
that is, rationally) from P and Pa.

We have no way of knowing whether P is true, and must, for the sake of the argu-
ment, simply assume that it is true. (Well, we could look it up, I suppose; but we’re
not investigating whether the argument is “sound” (see §2.10.4, below), only if it is
“valid”: Does C follow from P?)

Pa, on the other hand, doesn’t have to be accepted at all; after all, we are imposing
it on the (unknown) author of the argument. So, we had better impose something that
is likely to be true. Pa is offered as part of the meaning of “sail into”. I won’t defend
its truth any further here, but if you think that it’s not true, then you should either reject
the argument or else find a better missing premise.

We might have chosen another missing premise:

(Pb) If something arrives in a place named ‘X Bay’,
then it arrives at a place named ’X’.

(C2) ∴ Bountiful arrived at San Francisco 21 August 1945.

C2 will follow from C1 and Pb, but is Pb true? Can you think of any bays named ‘X
Bay’ that are not located in a place named ‘X’? If you can, then we can’t use Pb. Let’s
assume the worst: Then we’ll need something more specific, such as:

(Pc) If something arrives in San Francisco Bay,
then it arrives at San Francisco.

C2 will follow from C1 and Pc, and we can easily check the likely truth of Pc by looking
at a map.

74 CHAPTER 2. WHAT IS PHILOSOPHY?

So far, so good. We’ve now got Bountiful arriving at San Francisco on 21 August
1945. But what we need is Bountiful “reaching” San Francisco in August 1945. So
let’s add:

(Pd) If something arrives somewhere, then it reaches that place.

Again, this is proposed as an explication of part of the meaning of ‘arrive’, and, in
particular, of that part of its meaning that connects it to C.

From Pd and C2, we can infer:

(C3) Bountiful reached San Francisco 21 August 1945.

Are we done? Does C3 = C? Look at them:

(C3) Bountiful reached San Francisco 21 August 1945.
(C) Bountiful reached San Francisco in August 1945.

Think like a computer! C3 6= C. But does C3 imply C? It will, if we supply one more
missing premise:

(Pe) If something occurs (on) DATE MONTH YEAR,
then it occurs in MONTH YEAR.

And that’s true by virtue of the way (some) people talk. So, from Pe and C3, we can
infer C.

So, the simple argument that we started with, ignoring its irrelevant premise, be-
comes this rather more elaborate one:

(P) Bountiful arrived after war’s end, sailing into San Francisco Bay
21 August 1945.

(Pa) If something sails into a place, then it arrives at that place.
(C1) ∴ Bountiful arrived at San Francisco Bay 21 August 1945.
(Pb) If something arrives in a place named ‘X Bay’,

then it arrives at a place named ‘X’.
(or (Pc) If something arrives in San Francisco Bay,

then it arrives at San Francisco.)
(C2) ∴ Bountiful arrived at San Francisco 21 August 1945.
(Pd) If something arrives somewhere, then it reaches that place.
(C3) ∴ Bountiful reached San Francisco 21 August 1945.
(Pe) If something occurs (on) DATE MONTH YEAR,

then it occurs in MONTH YEAR.
(C) ∴ Bountiful reached San Francisco in August 1945.

2.10. APPENDIX: ARGUMENT ANALYSIS AND EVALUATION 75

2.10.4 When Is an Argument a “Good” Argument?
As we have seen, Q needs to do two things to analyze and evaluate an argument:

1. decide whether the premises are true (that is, decide whether to agree with, or
believe, the premises), and

2. decide whether the inference (that is, the reasoning) from the premises to the
conclusion is a valid one.

That is, there are two separate conditions for the “goodness” of an argument:

1. factual goodness: Are the premises true? (Or do you believe them?)

2. logical goodness: Is the inference valid? (Or at least rational in some way?)

Factual goodness—truth—is beyond the scope of logic, although it is definitely not
beyond the scope of deciding whether to accept the conclusion of an argument. As
we saw in §2.4, there are several ways of defining ‘truth’ and of determining whether
a premise is true. Two of the most obvious (though not the simplest to apply!) are
(a) constructing a (good!) argument for a premise whose truth value is in question
and (b) making an empirical investigation to determine its truth value (for instance,
performing some scientific experiments or doing some kind of scholarly research).

Logical goodness (for deductive arguments) is called ‘validity’. I will define this
in a moment. But, for now, note that these two conditions must both obtain for an
argument to be “really good”: A “really good” argument is said to be “sound”:

An argument is sound if and only if it is both valid and “factually good”,
that is, if and only if it is both valid and all of its premises really are true.

Just to drive this point home: If the premises of an argument are all true (or if you
believe all of them)—and even if the conclusion is also true—that by itself does not
make the argument sound (“really good”). For one thing, your belief in the truth of the
premises might be mistaken. But, more importantly, the argument might not be valid.

And, if an argument is valid—even if you have doubts about some of the premises—
that by itself does not make the argument sound (“really good”). All of its premises
also need to be true; that is, it needs to be factually good.

So, what does it mean for a (deductive) argument to be “valid”?

An argument is valid if and only if it is necessarily “truth-preserving”.

Here’s another way to put it:

An argument is valid
if and only if

whenever all of its premises are true, then its conclusion must also be true.

And here’s still another way to say the same thing:

An argument is valid
if and only if

it is impossible that:
all of its premises are simultaneously true while its conclusion is false.

76 CHAPTER 2. WHAT IS PHILOSOPHY?

Note that this has nothing to do with whether any of the premises actually are true or
false; it’s a “what if” kind of situation. Validity only requires that, if the premises were
to be true, then the conclusion would preserve that truth—it would “inherit” that truth
from the premises—and so it would also (have to) be true.

So you can have an argument with false premises and a false conclusion that is
invalid, and you can have one with false premises and a false conclusion that is valid.
Here’s a valid one:

All cats are fish.
All fish can fly.
∴ All cats can fly.

Here, everything’s false, but the argument is valid, because it has the form:

All Ps are Qs.
All Qs are Rs.
∴ All Ps are Rs.

and there’s no way for a P to be a Q, and a Q to be an R, without having the P be an R.
That is, it’s impossible that the premises are true while the conclusion is false.

Here’s an invalid one, also with false premises and conclusion:

All cats are fish.
All cats can fly.
∴ All fish can fly.

Again, everything’s false. However, the argument is invalid, because it has the form:

All Ps are Qs.
All Ps are Rs.
∴ All Qs are Rs.

and arguments of this form can have true premises with false conclusions. Here is an
example:

All cats are mammals.
All cats purr.
∴ All mammals purr.

So, it’s possible for an argument of this form to have true premises and a false conclu-
sion; hence, it’s not valid.

To repeat: Validity has nothing to do with the actual truth or falsity of the premises
or conclusion. It only has to do with the relationship of the conclusion to the premises.

Recall that an argument is sound iff it is valid and all of its premises are true.
Therefore, an argument is unsound iff either it is invalid or at least one premise is false
(or both). An unsound argument can be valid!

One more point: An argument with inconsistent premises (that is, premises that
contradict each other) is always valid(!), because it’s impossible for it to have all true
premises with a false conclusion, and that’s because it’s impossible for it to have all

2.10. APPENDIX: ARGUMENT ANALYSIS AND EVALUATION 77

true premises, period. Of course, such an argument cannot be sound. (The argument
that Bertrand Russell is the Pope that we saw in §2.6.1.1 is an example of this.)

All of this is fine as far as it goes, but it really isn’t very helpful in deciding whether
an argument really is valid. How can you tell if an argument is truth-preserving? There
is a simple, recursive definition, but, to state it, we’ll need to be a bit more precise in
how we define an argument.

Definition 1:
An argument from propositions P1, . . . ,Pn to conclusion C isdef

6 a sequence of
propositions 〈P1, . . . ,Pn,C〉, where C is alleged to follow logically from the Pi.

Definition 2:
An argument 〈P1, . . . ,Pn,C〉 is valid if and only if each proposition Pi and con-
clusion C is either:

(a) a tautology

(b) a premise

(c) or follows validly from previous propositions in the sequence by one or
more truth-preserving “rules of inference”.

This needs some commenting! (a) First, a tautology is a proposition that must
always be true. How can that be? Most tautologies are (uninformative) “logical truths”,
such as ‘Either P or not-P’, or ‘If P, then P’. Note that, if P is true (or, if you believe
P), then ‘Either P or not-P’ has to be true (or, you are logically obligated to also believe
‘Either P or not-P’), and, if P is false, then not-P is true, and so ‘Either P or not-P’
still has to be true (or, you are logically obligated to also believe ‘Either P or not-P’.
So, in either case, the disjunction has to be true (or, you are logically obligated to
believe it). Similar considerations hold for ‘If P, then P’. Sometimes, statements of
mathematics are also considered to be tautologies (whether they are “informative” or
not is an interesting philosophical puzzle; see Wittgenstein 1921).

(b) Second, a premise is one of the initial reasons given for C, or one of the missing
premises added later. Premises, of course, need not be true, but, when evaluating an
argument for validity, we must assume that they are true “for the sake of the argument”.
Of course, if a premise is false, then the argument is unsound.

Third, clause (c) of Definition 2 might look circular, but it isn’t; rather, it’s recur-
sive. A “recursive” definition begins with “base” cases that give explicit examples of
the concept being defined and then “recursive” cases that define new occurrences of
the concept in terms of previously defined ones. (We’ll say a lot more about recursion
in Chapter 7.)

In fact, this entire definition is recursive. The base cases of the recursion are the first
two clauses: Tautologies must be true, and premises are assumed to be true. The re-
cursive case consists of “rules of inference”, which are argument forms that are clearly
valid (truth-preserving) when analyzed by means of truth tables.

So, what are these “primitive” valid argument forms known as ‘rules of inference’?
The most famous is called ‘Modus Ponens’ (recall §2.6.1.1):

6This symbol means “is by definition”.

78 CHAPTER 2. WHAT IS PHILOSOPHY?

From P
and ‘If P, then C’,
you may validly infer C.

Why may you validly infer C? Consider the truth table for ‘If P, then C’:

P C If P, then C
true true true
true false false
false true true
false false true

It says that that conditional proposition is false in only one circumstance: when its
“antecedent” (P) is true and its “consequent” (C) is false. In all other circumstances,
the conditional proposition is true. So, if the antecedent of a conditional is true, and the
conditional itself is true, then its consequent must also be true. (Look at the first line of
the truth table.) Modus Ponens preserves truth.

Another important rule of inference is called ‘Universal Elimination’ (or ‘Universal
Instantiation’):

From ‘For all x, F(x)’ (that is, for all x, x has property F),
you may validly infer F(a), for any individual a in the “domain of dis-
course” (that is, in the set of things that you are talking about).

A truth-table analysis won’t help here, because this is a rule of inference from “first-
order predicate logic”, not from “propositional logic”. The formal definition of truth
for first-order predicate logic is beyond our scope, but it should be pretty obvious that,
if it is true that everything in the domain of discourse has some property F , then it must
also be true that any particular thing in the domain (say, a) has that property. (For more
rules of inference and for the formal definition of truth in first-order predicate logic, see
any good introductory logic text or the Further Reading on the correspondence theory
of truth, in §2.4.1, above.)

There are, however, a few terminological points to keep in mind:

• Sentences can only be true or false
(or you can agree or disagree with them).

• Arguments (which are sequences of sentences) can be valid or invalid, and they
can be sound or unsound.

• Conclusions of arguments (which are sentences) can follow validly or not follow
validly from the premises of an argument.

Therefore:

• Sentences (including premises and conclusions) cannot be valid, invalid, sound,
or unsound
(because they are not arguments).

• Arguments cannot be true or false
(because they are not sentences).

2.10. APPENDIX: ARGUMENT ANALYSIS AND EVALUATION 79

2.10.5 Examples of Good and Bad Arguments

There is only one way to have a sound argument: It must be valid and have only true
premises. But there are lots of ways to have invalid arguments! (For an example of
one, see Figure 2.5.) More importantly, it is possible to have an invalid argument whose
conclusion is true! Here’s an example:

All birds fly. (true)
Tweety the canary flies. (true)
Therefore, Tweety is a bird. (true)

This is invalid, despite the fact that both of the premises as well as the conclusion are
all true (but see §19.4.3!): It is invalid, because an argument with the same form can
have true premises and a false conclusion. Here is the form of that argument:

∀x[B(x) → F(x)]
C(a) ∧ F(a)
∴ B(a)

In English, this argument’s form is:

For all x, if x has property B, then x has property F .
a has property C, and a has property F .
∴ a has property B.

That is,

For all x, if x is a bird, then x flies.
Tweety is a canary, and Tweety flies.
Therefore, Tweety is a bird.

Here’s a counterexample, that is, an argument with this form that has true premises but
a false conclusion:

All birds fly. (true)
Bob the bat flies. (true)
Therefore, Bob is a bird. (false)

Just having a true conclusion doesn’t make an argument valid. And such an argument
doesn’t prove its conclusion (even though the conclusion is true).

Here is a collection of valid (V), invalid (I), sound (S), and unsound (U) arguments
with different combinations of true (T) and false (F) premises and conclusions. Make
sure that you understand why each argument below is valid, invalid, sound, or unsound.

80 CHAPTER 2. WHAT IS PHILOSOPHY?

A (1) All pianists are musicians. T
(2) Lang Lang is a pianist. T V S
(3) ∴ Lang Lang is a musician. T

B (1) All pianists are musicians. T
(2) Lang Lang is a musician. T I U
(3) ∴ Lang Lang is a pianist. T

C (1) All musicians are pianists. F
(2) The violinist Itzhak Perlman is a musician. T V U
(3) ∴ Itzhak Perlman is a pianist. F

D (1) All musicians are pianists. F
(2) Itzhak Perlman is a violinist. T I U
(3) ∴ Itzhak Perlman is a pianist. F

E (1) All cats are dogs. F
(2) All dogs are mammals. T V U
(3) ∴ All cats are mammals. T

F (1) All cats are dogs. F
(2) All cats are mammals. T I U
(3) ∴ All dogs are mammals. T

G (1) All cats are dogs. F
(2) Snoopy is a cat. F V U
(3) ∴ Snoopy is a dog. T

H (1) All cats are birds. F
(2) Snoopy is a cat. F I U
(3) ∴ Snoopy is a dog. T

I (1) All cats are birds. F
(2) All birds are dogs. F V U
(3) ∴ All cats are dogs. F

J (1) All cats are birds. F
(2) All dogs are birds. F I U
(3) ∴ All cats are dogs. F

K (1) All cats are mammals. T
(2) All dogs are mammals. T I U
(3) ∴ All cats are dogs. F

2.10. APPENDIX: ARGUMENT ANALYSIS AND EVALUATION 81

2.10.6 Summary

So, to analyze an argument, you must identify its premises and conclusion, and supply
any missing premises to help make it valid. To evaluate the argument, you should then
determine whether it is valid (that is, truth preserving), and decide whether you agree
with its premises.

If you agree with the premises of a valid argument, then you are logically obligated
to believe its conclusion. If you don’t believe its conclusion, even after your analysis
and evaluation, then you need to revisit both your evaluation of its validity (maybe
you erred in determining its validity) as well as your agreement with its premises: If
you really disagree with the conclusion of a valid argument, then you must (logically)
disagree with at least one of its premises.

You should be sure to use the technical terms correctly: You need to distinguish be-
tween premises—which can be true or false (but cannot be “valid”, “invalid”, “sound”,
or “unsound”)—and arguments—which can be valid (if its conclusion must be true
whenever its premises are true), invalid (that is, not valid; its conclusion could be false
even if its premises are true), sound (if it’s valid and all of its premises are true) or un-
sound (that is, not sound: either invalid or else valid-with-at-least-one-false-premise)
(but cannot be “true” or “false”).

And you should avoid using such non-technical (hence ambiguous) terms as ‘cor-
rect’, ‘incorrect’, ‘right’, or ‘wrong’. You also have to be careful about calling a con-
clusion “valid”, because that’s ambiguous between meaning that you think it’s true
(and are misusing the word ‘valid’) and meaning that you think that it follows validly
from the premises.

You should try your hand at analyzing and evaluating the much more complex
arguments in Appendix A!

82 CHAPTER 2. WHAT IS PHILOSOPHY?

Figure 2.7: https://www.gocomics.com/nonsequitur/2009/06/11,
c©2009 Wiley Ink Inc.

Digression: Can any proposition (or its negation) be proved?:
That is, given a proposition P, we know that either P is true or else P is false (that is, that ¬P is
true). So, whichever one is true should be provable. Is it? Not necessarily!

First, there are propositions whose truth value we don’t know yet. For example, no one knows
(yet) if Goldbach’s Conjecture is true. Goldbach’s Conjecture says that all positive even integers
are the sum of 2 primes; for example, 28 = 5+ 23. For another example, no one knows (yet)
if the Twin Prime Conjecture is true. The Twin Prime Conjecture says that there are an infinite
number of “twin” primes, that is, primes m,n such that n = m+2; for example, 2 and 3, 3 and 5,
5 and 7, 9 and 11, 11 and 13, etc.

Second—and much more astounding than our mere inability so far to prove or disprove any of
these conjectures—there are propositions whose truth value is known to be true, but which we
can prove that we cannot prove! This is the essence of Gödel’s Incompleteness Theorem. Stated
informally, it asks us to consider this proposition, which is a slight variation on the Liar Paradox
(that is the proposition “This proposition is false”: If it’s false, then it’s true; if it’s true then it’s
false):

(G) This proposition (G) is true but unprovable.

We can assume that (G) is either true or else false. So, suppose that it is false. Then it was wrong
when it said that it was unprovable; so, it is provable. But any provable proposition has to be
true (because valid proofs are truth-preserving). That’s a contradiction, so our assumption that is
false was wrong: It isn’t false. But, if it isn’t false, then it must be true. But if it’s true, then—as
it says—it’s unprovable. End of story; no paradox!

So, (G) (more precisely, its formal counterpart) is an example of a true proposition that cannot
be proved. Moreover, the logician Kurt Gödel showed that some of them are propositions that
are true in the mathematical system consisting of first-order predicate logic plus Peano’s axioms
for the natural numbers (which we’ll discuss in §7.7.2.1); that is, they are true propositions of
arithmetic! For more information on Gödel and his proof, see Nagel et al. 2001; Hofstadter 1979;
Franzén 2005; Goldstein 2006.

We’ll return to this question, also known as the “Decision Problem”, beginning in §6.6.

Part II

Computer Science,
Computation, and Computers

83

85

Part II begins our exploration of the philosophy of computer science by asking
what computer science is (Chapter 3). For computer science to be considered either
as a science or as a branch of engineering, we need to know what science is (Chapter 4)
and what engineering is (Chapter 5). If computer science is a study of computers, then
we need to know what a computer is (Chapters 6 and 9). And if computer science is a
study of computation, then we need to know what an algorithm is (Chapters 7 and 8).

86

Chapter 3

What Is Computer Science?

Version of 7 January 2020; DRAFT c© 2004–2020 by William J. Rapaport1

Thanks to those of you who [gave their own] faculty introductions [to the new grad-
uate students]. For those who [weren’t able to attend], I described your work and
courses myself, and then explained via the Reductionist Thesis how it all comes
down to strings and Turing machines operating on them.
— Kenneth Regan, email to University at Buffalo Computer Science &

Engineering faculty (27 August 2004); italics added.

The Holy Grail of computer science is to capture the messy complexity of the
natural world and express it algorithmically.
— Teresa Marrin Nakra, quoted in Davidson 2006, p. 66.

Figure 3.1: https://www.gocomics.com/bloomcounty/1984/04/02,
c©1984, Washington Post Co.

1An earlier version of this chapter appears as Rapaport 2017c.

87

88 CHAPTER 3. WHAT IS COMPUTER SCIENCE?

3.1 Readings
1. Required:

(a) Newell, Allen; Perlis, Alan J.; & Simon, Herbert A. (1967), “Computer Science”,
Science 157(3795) (22 September): 1373–1374.

(b) Knuth, Donald (1974), “Computer Science and Its Relation to Mathematics”,
American Mathematical Monthly 81(4) (April): 323–343.

• required: §§1–3
• very strongly recommended: §4
• strongly recommended: readers who are more mathematically inclined may

wish to read the whole essay.

(c) Newell, Allen; & Simon, Herbert A. (1976),
“Computer Science as Empirical Inquiry: Symbols and Search”,
Communications of the ACM 19(3) (March): 113–126.

i. For the purposes of this chapter, concentrate especially on what Newell &
Simon have to say about what CS is:
• read the “Introduction” (pp. 113–114)
• read from “§I. Symbols and Physical Symbol Systems” to the end of the

subsection “Physical Symbol Systems” (pp. 114–117)
• read the “Conclusion” (pp. 125–126)

ii. For a detailed follow-up, see:
Newell, Allen (1980), “Physical Symbol Systems”, Cognitive Science 4: 135–
183, http://repository.cmu.edu/cgi/viewcontent.cgi?article=3504&context=compsci

(d) Hartmanis, Juris, & Lin, Herbert (1992), “What Is Computer Science and Engi-
neering?”, in Juris Hartmanis & Herbert Lin (eds.), Computing the Future: A
Broader Agenda for Computer Science and Engineering (Washington, DC: Na-
tional Academy Press), Ch. 6, pp. 163–216.

• required: “Computer Science & Engineering”, pp. 163–168.
• required: “Abstractions in Computer Systems”, pp. 168–174.
• very strongly recommended: skim the rest.
• The book containing this essay was the subject of a petition, sponsored by

Bob Boyer, John McCarthy, Jack Minker, John Mitchell, and Nils Nilsson,
to withdraw it from publication “because we consider it misleading and even
harmful as an agenda for future research” (http://www-formal.stanford.edu/
jmc/petition/whysign/whysign.html). Commentaries on it appeared in Kling
et al. 1993.

(e) Brooks, Frederick P., Jr. (1996), “The Computer Scientist as Toolsmith II”,
Communications of the ACM 39(3) (March): 61–68,
http://www.cs.unc.edu/∼brooks/Toolsmith-CACM.pdf

• required: pp. 61–64.
• very strongly recommended: skim the rest.

(f) Shapiro, Stuart C. (2001), “Computer Science: The Study of Procedures”,
http://www.cse.buffalo.edu/∼shapiro/Papers/whatiscs.pdf

3.1. READINGS 89

2. Recommended (arranged in chronological order):

(a) Arden, Bruce W. (1980), “COSERS Overview”, in Bruce W. Arden (ed.), What Can
Be Automated? The Computer Science and Engineering Research Study (COSERS)
(Cambridge, MA: MIT Press), Ch. 1, pp. 1–31.

(b) Krantz, Steven G. (1984), Letter to the Editor about the relation of computer science
to mathematics, American Mathematical Monthly 91(9) (November): 598–600.

(c) Denning, Peter J. (1985), “What Is Computer Science?”, American Scientist 73
(January-February): 16–19.

(d) Loui, Michael C. (1987), “Computer Science Is an Engineering Discipline”, Engi-
neering Education 78(3) (December): 175–178.

(e) Bajcsy, Ruzena K.; Borodin, Allan B.; Liskov, Barbara H.; & Ullman, Jeffrey D.
(1992), “Computer Science Statewide Review” (unpublished report), http://www.
cse.buffalo.edu/∼rapaport/Papers/Papers.by.Others/bajcsyetal92.pdf

(f) Gal-Ezer, Judith, & Harel, David (1998), “What (Else) Should CS Educators Know?”,
Communications of the ACM 41(9) (September): 77–84.

• contains a section titled “What Is CS?”
• contains a “Bibliography for ‘What Is CS?’ ”

(g) Hartmanis, Juris (1993), “Some Observations about the Nature of Computer Sci-
ence”, in Rudrapatna Shyamasundar (ed.), Foundations of Software Technology and
Theoretical Computer Science, Lecture Notes in Computer Science 761 (Berlin:
Springer): 1–12,
https://www.researchgate.net/publication/221583809 Some Observations About the
Nature of Computer Science

(h) Hartmanis, Juris (1995), “On Computational Complexity and the Nature of Com-
puter Science”, ACM Computing Surveys 27(1) (March): 7–16.

(i) Shagrir, Oron (1999), “What Is Computer Science About?”, The Monist 82(1):
131–149.

• Despite its title, this paper is more about what computers are and what compu-
tation is; Shagrir assumes that computer science is the science of computers.

90 CHAPTER 3. WHAT IS COMPUTER SCIENCE?

3.2 Introduction
The fundamental question of this book is:

What is computer science?

Almost all of the other questions we will be considering flow from this one. (Is it
a science? Is it the science of computers? What is science? What is a computer?
And so on.) In this chapter, we will look at several definitions of the term ‘computer
science’. Each definition raises issues that we will examine in more detail later, so a
final answer (if there is one!) will have to await the end of the book. However, at the
end of this chapter, I will give a summary characterization of computer science that,
I think, combines important aspects of the various definitions, with the details to be
filled in as we go along.

3.3 Preliminary Questions
Before we try to answer the question, it’s worth asking some preliminary questions:

What should this discipline be called?
Why should we even bother seeking a definition?
What does it mean to give a definition?

3.3.1 Naming the Discipline
When our discipline was newborn, there was the usual perplexity as to its proper
name.
—Frederick P. (Brooks, 1996, p. 61)

Should we call the discipline ‘computer science’ (which seems to assume that it is
the science of a certain kind of machine), or ‘computer engineering’ (which seems to
assume that it is not a science, but a branch of engineering), or ‘computing science’
(which seems to assume that it is the science of what those machines do), or ‘informat-
ics’ (a name more common in Europe), or something else altogether?

Michael Mahoney (a historian of computer science) asks if wondering whether
computer science is a science, given its name, is “laboring under a misapprehension
rooted in the English use of ‘computer science’ to denote a subject other languages refer
to as ‘informatics’ ” (Mahoney, 2011, p. 195): ‘Informatics’ is a term that suggests that
the discipline is the mathematical study of information. But he then goes on to point
out that textbooks and courses from “informatics” departments cover exactly the same
material as textbooks and courses from “computer science” departments:

So I must wonder, as Shakespeare’s Juliet once did, “What’s in a name?” Here too
the rose smells the same. (Mahoney, 2011, p. 195)

In this book—but only for convenience—I will call it ‘computer science’. However,
by doing so, I do not mean to presuppose that it is the science of computers. Worse, it is

3.3. PRELIMINARY QUESTIONS 91

a standard joke in academe that any discipline that feels the need to call itself a science
(such as political science, library science, exercise science, and others) is therefore not
one.

Digression:
This joke has been attributed to the philosopher John Searle, whom we will meet again many
times in this book; see http://duncan.hull.name/2011/07/01/but-is-it-science/. We’ll return to the
joke in §4.11, question 3.

Nor do I mean to exclude the other parts of the discipline, such as engineering or the
role of information.

So, until we have an answer to our question, think of the subject as being called
by a 15-letter word ‘computerscience’ that may have as little to do with computers or
science as ‘cattle’ has to do with cats. Or, to save space and to suppress presuppositions,
I’ll often just refer to it as “CS”.

Further Reading:
Ceruzzi 1988, esp. pp. 265–270, contains a history of the phrase ‘computer science’. In a re-
sponse to a letter that appeared in one of the earliest issues of Communications of the ACM,
an editor (possibly Alan J. Perlis, whom we will meet again below) listed several, admittedly
“facetious”, names, including ‘turingineering’, ‘turology’, ‘applied meta-mathematics’, and ‘ap-
plied epistemology’ (DATA-LINK, 1958, p. 6). (The first two are puns on the name of Alan
Turing, arguably the founder of the discipline, whom we will discuss in Chapter 8. We’ll come
back to “applied epistemology” in §3.14.4, below.) In 1966, Peter Naur (a winner of the Turing
Award) suggested ‘datalogy’ (Naur, 2007, p. 86). A useful discussion of these terms can be
found in Arden 1980, pp. 5–7, “About Names and Labels”. Abrahams 1987, p. 473, says: “My
personal definition of the field and its name would be ‘computology: the study of computational
processes and the means by which they may be realized.’ But alas, the name ‘computer science,’
like OS/360 Job Control Language, will probably persist until the sun grows cold.”

The A.M. Turing Award, given annually by the Association for Computing Machinery, is
considered to be the “Nobel Prize” of computer science. See http://amturing.acm.org/, https:
//en.wikipedia.org/wiki/Turing Award, and Vardi 2017.

92 CHAPTER 3. WHAT IS COMPUTER SCIENCE?

3.3.2 Why Ask What CS Is?
With the question of its name put aside, we can now turn to the question of why we
might want a definition. There are at least two kinds of motivations for doing so,
academic (or political) ones and intellectual (or philosophical) ones.

3.3.2.1 Academic Motivations

Among the academic motivations, there are political, pedagogical, and publicity moti-
vations.

3.3.2.1.1 Academic Politics. Here is an academic political reason for asking what
CS is:

Where should a “computer science” department be adminstratively
housed?

Intellectually, this might not matter: After all, a small school might not even have
academic departments, merely teachers of various subjects. But deciding where to
place a CS department can have political repercussions:

In a purely intellectual sense such jurisdictional questions are sterile and a waste
of time. On the other hand, they have great importance within the framework of
institutionalized science—e.g., the organization of universities and of the granting
arms of foundations and the Federal Government. (Forsythe, 1967b, p. 455)

Sometimes, a department is housed in a particular school or college2 only because it
is hoped that it will get better treatment there (more funding, more resources), or only
because it is forced to be there by the administration. It may have very little, if any,
academic or intellectual reason for being housed where it is. Some possible locations
for CS include:

• a college or school of arts and sciences

– which typically includes other departments in the humanities, social sci-
ences, and natural sciences

• a college or school of engineering

– which typically includes disciplines such as chemical engineering, electri-
cal engineering, mechanical engineering, etc.

• a college or school of informatics

– which might also include disciplines such as communications, library sci-
ence, etc.

2In the US, colleges and universities are usually administratively divided into smaller units, variously
known as ‘schools’, ‘colleges’, ‘faculties’, ‘divisions’, etc., each typically headed by a “dean” and divided
into still smaller units, called ‘departments’.

3.3. PRELIMINARY QUESTIONS 93

Another possibility is that CS should not be (merely) a department, but an entire school
or college itself, with its own dean, and perhaps with its own departments. For example,
the School of Computer Science at Carnegie-Mellon University includes a Department
of Computer Science, a Department of Computational Biology, and a Department of
Machine Learning, among others.

There are examples of each of these, even within a single university system: (1) My
own university (State University of New York at Buffalo) currently has a Department
of Computer Science and Engineering within a School of Engineering and Applied
Sciences. However, when I joined the university, there were both a Department of
Computer Science in a Faculty of Natural Sciences and Mathematics and a separate
Department of Electrical and Computer Engineering in a Faculty of Engineering and
Applied Sciences.3

(2) At its sibling institution, State University of New York at Albany, the Depart-
ment of Computer Science was in the College of Computing and Information in 2012;
however, now (2016) there is a Department of Computer Science, a Department of
Information Studies, a Department of Informatics, and a Department of Computer En-
gineering in a College of Engineering and Applied Science.

(3) And, at my former college, State University of New York College at Fredonia,
CS courses were once taught only in the Department of Mathematics; now, there is a
Department of Computer and Information Sciences in the College of Liberal Arts and
Sciences.

3.3.2.1.2 Academic Pedagogy. Perhaps a more important academic purpose for
asking what CS is concerns pedagogy:

What should be taught in an introductory CS course?

• Should it be a programming course?
(That is, is CS the study of programming?)

– Or, worse, should students be led to think that that’s what it is? I don’t know
any computer scientists who think that CS is just the study of programming
(Denning et al., 2017), but the typical introductory course tends to lead
students (and the general public) to think so.

• Should it be a computer literacy course?
(That is, is CS all about how to use computers?)

• Should it be a course in the mathematical theory of computation?
(That is, is CS the study of computation?)

• Should it be a course that introduces students to several different branches of CS,
including, perhaps, some of its history?

And so on.
3The view of CS as the natural sciences of procedures, which we will look at in §3.9.3, was motivated by

our department’s move into the engineering school (S.C. Shapiro, letter to Adam Olszewski, 10 May 2018).

94 CHAPTER 3. WHAT IS COMPUTER SCIENCE?

3.3.2.1.3 Academic Publicity. A related part of the academic purpose for asking
the question concerns publicity for prospective students and the general public:

• How should a CS department advertise itself so as to attract good students?

• How should the discipline of CS advertise itself so as to encourage primary-
or secondary-school students to consider it as something to study in college or
to consider it as an occupation? (For more motivations along these lines, see
Denning 2013b, p. 35.)

• How should the discipline advertise itself so as to attract more women and mi-
norities to the field?

• How should it advertise itself to the public at large, so that ordinary citizens
might have a better understanding of what CS is?

Exercise for the Reader:
Many of the definitions of CS that you can find on various academic websites are designed
with one or more of these purposes in mind. Link to the websites for various CS departments
(including your own school’s!), and make a list of the different definitions or characterizations
of CS that you find. See if you can figure out whether they were designed with any of these
purposes in mind.

3.3.2.2 Intellectual or Philosophical Motivations

Perhaps the academic (and especially political) motivations for asking what CS is are
ultimately of little more than practical interest. But there are deep intellectual or philo-
sophical issues that underlie those questions, and this will be the focus of our investi-
gation:

• What is CS “really”?

– Is it like some other academic discipline?

(For instance, is it like physics, or mathematics, or engineering?)

– Or is it “sui generis”?

Digression:
‘Sui generis’ is a Latin phrase meaning “own kind”. Here is a simple analogy: A poodle and a pit
bull are both kinds of dogs. But a wolf is not a dog; it is its own kind of animal (“sui generis”).
Some biologists believe that dogs are actually a kind of wolf, but others believe that dogs are sui
generis.

To illustrate this difference, consider two very different comments by two Turing-
award–winning computer scientists (as cited in Gal-Ezer and Harel 1998, p. 79): Mar-
vin Minsky, a co-founder of artificial intelligence, once said:

3.3. PRELIMINARY QUESTIONS 95

Computer science has such intimate relations with so many other subjects that it is
hard to see it as a thing in itself. (Minsky, 1979, my italics)

This echoes an earlier statement by another computer scientist: “Probably a department
of computer science belongs in the school of letters and sciences, because of its close
ties with departments of mathematics, philosophy, and psychology. But its relations
with engineering departments . . . should be close” (Forsythe, 1967a, p. 6).

On the other hand, Juris Hartmanis, a founder of computational complexity theory,
has said:

Computer science differs from the known sciences so deeply that it has to be
viewed as a new species among the sciences. (Hartmanis 1993, p. 1; my italics;
see also Hartmanis 1995a, p. 10)

Further Reading:
Hartmanis 1995a covers much of the same ground, and in many of the same words, as Hartmanis
1993, but is more easily accessible, having been published in a major journal that is widely
available online, rather than in a harder-to-find conference proceedings. Moreover, Hartmanis
1995a contains commentaries (including Denning 1995; Loui 1995; Plaice 1995; Stewart 1995;
Wulf 1995) and a reply by the author (Hartmanis, 1995b).

So, is CS like something “old”, or is it something “new”? But we have yet another
preliminary question to consider . . .

3.3.3 What Does It Mean to Ask What Something Is?
It does not make much difference how you divide the Sciences, for they are one
continuous body, like the ocean.
—Gottfried Wilhelm Leibniz (1685, p. 220)

We will not try to give a few-line definition of computer science since no such
definition can capture the richness of this new and dynamic intellectual process,
nor can this be done very well for any other science.
—Juris Hartmanis (1993, p. 5; my italics)

3.3.3.1 Determining Boundaries

We should quell our desire to draw lines. We don’t need to draw lines.
—Daniel C. Dennett (2013a, p. 241)

[O]ne of Darwin’s most important contributions to thought was his denial of essen-
tialism, the ancient philosophical doctrine that claimed that for each type of thing,
each natural kind, there is an essence, a set of necessary and sufficient properties
for being that kind of thing. Darwin showed that different species are historically
connected by a chain of variations that differed so gradually that there was simply
no principled way of drawing a line and saying (for instance) dinosaurs to the left,
birds to the right.
—Daniel C. Dennett (2017, pp. 138–139)

96 CHAPTER 3. WHAT IS COMPUTER SCIENCE?

There is a fundamental principle that should be kept in mind whenever you ask what
something is, or what kind of thing something is: There are no sharp boundaries in
nature; there are only continua.

A “continuum” (plural = ‘continua’) is like a line with no gaps in it, hence no
natural places to divide it up. The real-number line is the best example.

Mathematical Digression:
The natural numbers (1, 2, 3, . . .) clearly have gaps, because there are non-natural (for example,
rational) numbers that separate 1 from 2 (that is, that are between 1 and 2), and so on. The ratio-
nal numbers are “dense”; that is, between any two rationals, there is another rational number (for
example, their average). Nevertheless, there are gaps: irrational numbers (real numbers, such
as
√

2 or π) separating any two rationals. (In fact, this separation property underlies Dedekind’s
definition of real numbers in terms of “cuts”. See https://en.wikipedia.org/wiki/Dedekind cut for
an informal presentation and Rudin 1964, pp. 3–10, for a more rigorous treatment.)

Another is the color spectrum: Although we can identify the colors red, orange, yellow,
green, blue, and so on, there are no sharp (or non-arbitrary) boundaries where red ends
and orange begins; in fact, one culture’s “blue” might be another’s “green” (Berlin and
Kay, 1969; Grey, 2016). Yet a third example is the problem of assigning letter grades to
numerical scores. If many of the numerical scores are equally close to each other, there
is often no natural (or non-arbitrary) reason why a score of (say) 75 should be assigned
a letter grade of (say) ‘B−’ while a 74 is a ‘C+’. (For a history and philosophy of
grading, see Rapaport 2011a.)

An apparent counterexample to the lack of sharp boundaries in nature might be
biological species: Dogs are clearly different from cats, and there are no “intermediary”
animals—ones that are not clearly either dogs or else cats. But both dogs and cats
evolved from earlier carnivores (it is thought that both evolved from a common ancestor
some 42 million years ago).

Further Reading:
See the GreenAnswers.com webpage, http://greenanswers.com/q/95599/animals-wildlife/pets/
what-common-ancestor-cats-and-dogs (which cites the Wikipedia articles “Feliformia” (http:
//en.wikipedia.org/wiki/Feliformia) and “Carnivora” (http://en.wikipedia.org/wiki/Carnivora)).
Also see the gather.com webpage “Miacids”, http://www.gather.com/viewArticle.action?
articleId=281474977041872. (A Ziggy cartoon (http://www.gocomics.com/ziggy/2013/02/19),
however, jokingly suggests that a platypus could be considered as an intermediary animal be-
tween birds and mammals!

If we traveled back in time, we would not be able to say whether one of those ancestors
was a cat or a dog; in fact, the question wouldn’t even make sense. It is also very
difficult to give a definition of a “natural kind” (say, dog).

Moreover, although logicians and mathematicians like to define categories in terms
of “necessary and sufficient conditions” for membership, this only works for abstract,
formal categories. For example, we can define a circle of radius r and center c as the
set of all and only those points that are r units distant from c.

3.3. PRELIMINARY QUESTIONS 97

Philosophical Digression:
“All” such points is the “sufficient condition” for being a circle; “only” such points is the “nec-
essary condition”: C is a circle of radius r at center c if and only if C = {p : p is a point that is
r units distant from c}. That is, p is r units from c only if p is a point on C (that is, if p is r units
from c, then p is a point on C); so, being a point that is r units from c is a sufficient condition
for being on C. And if p is a point on C, then p is r units from c; so, being a point that is r units
from c is a necessary condition for being on C.

However, as philosophers, psychologists, and cognitive scientists have pointed out,
non-abstract, non-formal (“real”) categories usually don’t have such precise, defining
characteristics. The most famous example is the philosopher Ludwig Wittgenstein’s
unmet challenge to give necessary and sufficient defining characteristics for some-
thing’s being a game (Wittgenstein, 1958, §66ff). Instead, he suggested that games
(such as solitaire, basketball, chess, etc.) all share a “family resemblance”: The mem-
bers of a family don’t necessarily all have the same features in common (having blue
eyes, being tall, etc.), but instead resemble each other (mother and son, but not father
and son, might have blue eyes; father and son, but not mother and son, might both be
tall, and so on). And the psychologist Eleanor Rosch has pointed out that even precisely
definable, mathematical categories can have “blurry” edges: Most people consider 3 to
be a “better” example of a prime number than, say, 251, or a robin to be a “better”
example of a bird than an ostrich is.

Further Reading:
On Wittngenstein’s notion of “game”, see Hoyningen-Huene 2015. On categorization, see Rosch
and Mervis 1975; Rosch 1978; Mervis and Rosch 1981; Lakoff 1987; and Hofstadter and Sander
2013, especially Ch. 7.

In his dialogue Phaedrus, Plato suggested that a good definition should “carve
nature at its joints” (Plato, 1961a, lines 265e–266a). But, if “nature” is a continuum,
then there are no “joints”. Hence, we do not “carve nature at its joints”; rather, we
“carve nature” at “joints” that are usually of our own devising: We impose our own
categories on nature.

But I would not be a good philosopher if I did not immediately point out that, just
as Plato’s claim is controversial, so is this counter-claim! After all, isn’t the point of
science to describe and explain a reality that exists independently of us and of our
concepts and categories—that is, independently of the “joints” that we “carve” into
nature? (We’ll return to the topic of the goal of science in §4.5.) And aren’t there
“natural kinds”? Dogs and cats, after all, do seem to be kinds of things that are there in
nature, independently of us, no matter how hard it might be to define them.

Is CS similar to such a “natural kind”? Here, I think the answer is that it pretty
clearly is not. There would be no academic discipline of CS without humans, and there
probably wouldn’t even be any computers without us, either (though we’ll see some
reasons to think otherwise, in Chapter 9).

98 CHAPTER 3. WHAT IS COMPUTER SCIENCE?

Exercise for the Reader:
Take the list of definitions of CS that you found from the exercise at the end of §3.3.2.1.3. Do
you agree with them? Do they agree with each other? Are any of them so different from others
that you wonder if they are really trying to describe the same discipline?

Perhaps advertising blurbs like the ones you find in this exercise should not be taken
too seriously. But the authors of several published essays that try to define ‘computer
science’—all of whom are well-respected computer scientists—presumably put a lot
of thought into them. They are worth taking seriously, which is the main purpose of
this chapter.

Before turning to those, let’s consider a few examples of other familiar terms whose
definitions are controversial.

3.3.3.2 Three Other Controversial Terms

When sharp formulations are offered for concepts that had been vague, they some-
times result in bizarre rulings along the edges, bizarre but harmless.
—Willard van Orman Quine (1987, p. 217)

3.3.3.2.1 What Is a Planet? Consider the case of poor Pluto—not Mickey Mouse’s
dog, but the satellite of the Sun: It used to be considered a planet, but now it’s not,
because it’s too small. I don’t mean that it is now not a planet because of its size.
Rather, I mean that now it is no longer considered to be a planet because of its size.

Moreover, if it were to continue being categorized as a planet, then we would have
to count as planets many other small bodies that orbit the Sun, eventually having to
consider all (non-human-made) objects in orbit around the Sun as planets, which almost
makes the term useless, because it would no longer single out some things (but not
others) as being of special interest.

Further Reading and Philosophical Digression:
On Pluto, see, for example, Lemonick 2015. This is an example of a “slippery-slope” argument:
Once you decide to categorize a certain object O in a certain way, you find that you are committed
to also categorizing objects that differ only very insignificantly from O in that way, and so on,
eventually categorizing all objects that way, thus “sliding down a slippery slope”. The classic
example is ‘heap’: A pile of, say, 106 grains of sand is surely a heap of sand; So, presumably,
are a pile of 106− 1 grains, a pile of 106− 2 grains, and a pile of 106− 3 grains. In general, if
you have a “heap” H of sand, surely removing 1 grain will not change H from being a heap to
no longer being a heap. But removing 1 grain at a time will eventually leave you with a pile of
3 grains, a pile of 2 grains, and a pile of 1 grain. And, clearly, 1 grain of sand is not a “heap” of
sand! Although not all slippery-slope arguments are unsound, they tend to point out a problem
with the term being used, usually that the term is vague.

To make matters even worse, the Moon was once considered to be a planet! When
it was realized that it did not orbit the Sun directly, it was “demoted”. But, curiously,
under a proposed new definition of ‘planet’ (as having an “orbit-clearing mass”), it
might turn out to be (considered as) a planet once more! (Battersby, 2015)

3.3. PRELIMINARY QUESTIONS 99

Note that, in either case, the universe has not changed; only our descriptions of it
have:

Exact definitions are undoubtedly necessary but are rarely perfect reflections of
reality. Any classification or categorization of reality imposes arbitrary separations
on spectra of experience or objects. (Craver, 2007)

So, depending on how we define ‘planet’, either something that we have always
considered to be one (Pluto) might turn out not to be one, or something that we have
(usually) not considered to be one (the Moon) might turn out to be one! Typically, when
trying to define or “formalize” an informal notion, one finds that one has excluded some
“old” things (that is, things that were informally considered to fall under the notion),
and one finds that one has included some “new” things (that is, things that one hadn’t
previously considered to fall under the notion). Philosopher Ned Block has called
the former kind of position “chauvinism” and the latter position “liberalism” (Block,
1978, pp. 263, 265–266, 277). When this happens, we can then either reformulate
the definition, or else bite the bullet about the inclusions and exclusions. One attitude
towards exclusions is often that of sour grapes: Our intuitions were wrong; those things
really weren’t Xs after all. The attitude towards inclusions is sometimes: Wow! That’s
right! Those things really are Xs! Alternatively, a proposed definition or formalization
might be rejected because of its chauvinism or its liberalism.

Here is an observation about this point:

In mathematics, tentative proofs are sometimes ‘refuted’ not by logical contradic-
tion . . . , but instead by a logically-sound consequence . . . that is unexpected and
unwanted Lakatos [1976] argues that in such situations mathematicians should
not just implicitly reject the unwelcome result (‘monster barring’), but should in-
stead either change their acceptance of the result (‘concept stretching’ . . .), or
change the statement of the conjecture either by explicitly incorporating a con-
dition that disallows the unwanted consequence (‘lemma incorporation’ . . .), or by
inventing a wholly new conjecture. (Staples, 2015, §3.1)

3.3.3.2.2 What Is Computation? The next two cases will be briefer, because we
will discuss them in more detail later in the book. The first is the very notion of ‘com-
putation’ itself: According to the Church-Turing Computability Thesis, a function is
computable if and only if it is computable by a Turing Machine. This is neither a
definition of ‘computable’ nor a mathematical theorem; it is a suggestion about what
the informal notion of “computability” should mean. But some philosophers and com-
puter scientists believe that there are functions that are informally computable but not
computable by a Turing Machine. (We’ll discuss these in Chapter 11.)

100 CHAPTER 3. WHAT IS COMPUTER SCIENCE?

Terminological Digression:
If you don’t yet know what these terms are, be patient; we will begin discussing them in Chap-
ter 7.

Should ‘machine’ be capitalized in ‘Turing Machine’? Not capitalizing it suggests that a Turing
Machine is a machine of some kind. But machines are typically physical objects, whereas a
Turing Machine is an abstract mathematical notion. Capitalizing ‘machine’ turns it into a proper
name, allowing us to ask whether a Turing Machine is or is not a machine without begging any
questions. So I will capitalize ‘Turing Machine’ except in direct quotations.

3.3.3.2.3 What Is Thinking? Our final case is the term ‘thinking’: If thinking is
categorized as any process of the kind that cognitive scientists study—including such
things as believing, consciousness, emotion, language, learning, memory, perception,
planning, problem solving, reasoning, representation, sensation, etc. (Rapaport, 2012b,
p. 34)—then it is (perhaps!) capable of being carried out by a computer. Some philoso-
phers and computer scientists accept this way of thinking about thinking, and therefore
believe that computers will eventually be able to think (even if they do not yet do so).
Others believe that if computers can be said to think when you accept this categoriza-
tion, then there must be something wrong with the categorization. (We’ll expore this
topic in Chapter 19: “Philosophy of Artificial Intelligence”.)

Further Reading:
Related to ‘thinking’ is ‘cognition’. On the difficulty of defining that term (as well as general
remarks on defining controversial terms, see Allen 2017.

Another example is the definition of ‘life’ (Machery 2012, Allen 2017, p. 4239). We’ll come
back to this example in §10.2, and in our discussion of what Daniel Dennett has called “Turing’s
Strange Inversion” (§19.7).

Angere 2017 is another case study, which shows how even ‘square’ and ‘circle’ may have coun-
terintuitive definitions, allowing for the (mathematical) existence of square circles (or round
squares)!

3.4 Two Kinds of Definition
An “extensional” definition of a term t is given by presenting the set of items that are
considered to be ts. For example, the (current) extensional definition of ‘US President’
is {Washington, Adams, Jefferson, . . . , Obama, Trump}. For another example, we once
might have said that x is a planet (of the Sun) iff x ∈ {Mercury, Venus, Earth, Mars,
Jupiter, Saturn, Uranus, Neptune, Pluto}. Now, however, we say that x is a planet (of
the Sun) iff x∈ {Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune}. Note
that these two extensional definitions of ‘planet’ are different.

An “intensional” definition can be given in terms of necessary and sufficient con-
ditions or in terms of a family resemblance. For example, an intensional definition of
‘US President’ might be given by citing Article II of the US Constitution: Roughly, x
is US President iff x has been vested with the executive power of the US. Note that this

3.4. TWO KINDS OF DEFINITION 101

intensional definition holds even if an extensional definition changes (such as the exten-
sional definitions in the previous paragraph of ‘US President’, which change roughly
every 4 or 8 years).

Two concepts can be said to be “extensionally equivalent” if exactly the same sets
of things fall under each concept. Importantly, two extensionally equivalent concepts
can be (and usually are) “intensionally distinct”; that is, they really are different con-
cepts. Here is an important example from computability theory (which we’ll look at in
detail in Chapter 7): Recursive function theory and the theory of Turing Machines are
extensionally equivalent but intensionally distinct. They are extensionally equivalent
because it is mathematically provable that all functions that are recursive are Turing
computable, and vice versa. But they are intensionally distinct because the former is
concerned with a certain way of defining mathematical functions, while the latter is
concerned with algorithms and computation. From the point of view of what facts can
be proved about functions, it doesn’t matter which formalism is used, because they
are extensionally equivalent. Their intensional distinctness comes into play when one
formalism might be easier or more illuminating to use in a given situation. We’ll come
back to this in §3.7.

Further Reading: For more on extensions and intensions, see Rapaport 2012a.

3.4.1 An Extensional Definition of CS

To the extent that it is we who impose our categories on nature, there may be no good
answer to the question “What is CS?” beyond something like: “Computer science” is
what computer scientists do. In a similar vein, Paul Abrahams (1987, p. 472) says
“computer science is that which is taught by computer science departments”. Perhaps
intended more seriously, the computer scientist Peter J. Denning (2000, p. 1) defines
“The discipline of computer science . . . [as] the body of knowledge and practices used
by computing professionals in their work.” But then we can ask: What is it that com-
puter scientists do? Of course, one can beg that last question—that is, argue in a
circle—by saying that computer scientists do computer science! Turing Award winner
Richard W. Hamming (1968, p. 4) suggests something like this, citing the (humorous)
“definition” of mathematics as “what mathematicians do”, but he goes on to point out
that “there is often no clear, sharp definition of . . . [a] field”.

Further Reading:
Bringsjord 2006, my emphasis argues that “any answer . . . that includes some such notion as
‘Whatever computer scientists actually do.’ is unacceptable.” I would replace ‘includes’ by ‘is
limited to’; surely, ‘includes’ has to be included.

102 CHAPTER 3. WHAT IS COMPUTER SCIENCE?

Philosophical Digression:
‘To beg the question’ is a slightly archaic term of art in philosophy and debating. The phrase does
not mean: “to ask a question”—that is, to “beg” in the sense of “to raise or invite” a question. In
debating, a “question” is the topic being debated. ‘To beg the question’ means: “to request (that
is, “to beg”) that the topic being debated (that is, the “question”) be granted as an assumption in
the debate”. That is, it means “to assume as a premise (“to beg”) the conclusion (“the question”)
that you are arguing for”. A modern synonymous phrase for ‘beg the question’ is: ‘argue in a
circle’.

As with most non-mathematical concepts, there are probably no necessary and suf-
ficient conditions for being CS. At best, the various branches of the discipline share
only a family resemblance. If no intensional definition can be given in terms of nec-
essary and sufficient conditions, perhaps an extensional one can: “Computing has no
nature. It is what it is because people have made it so” (Mahoney, 2011, p. 109). This is
not exactly of the form “CS is what computer scientists do”, though it bears a superfi-
cial resemblance. But I think Mahoney’s point is more subtle: Unlike the other natural
sciences (for example, physics, chemistry, biology, and so on), CS only came into exis-
tence when its two histories (logical-mathematical and engineering) began to intersect
in the 1940s, so its “nature” only came to be what those logicians, mathematicians, and
engineers were doing. (We’ll look into those twin histories in Chapter 6.)

Nevertheless, it’s worth looking briefly at what computer scientists do. It has been
said that CS is “a sort of spectrum . . . with ‘science’ on the one end and ‘engineering’
on the other” (Parlante, 2005, p. 24), perhaps something like this:

abstract, mathematical theory of computations
abstract, mathematical theory of computational complexity
abstract, mathematical theory of program development
software engineering
. . .
operating systems
. . .
AI
. . .
computer architecture
. . .
VLSI
networks
social uses of computing, etc.

But this is less than satisfactory as a definition.

3.4. TWO KINDS OF DEFINITION 103

3.4.2 Intensional Definitions of CS
Instead of providing necessary and sufficient conditions, we can try to give an inten-
sional definition by splitting the question of what CS is into two parts:

1. What is its object? (What does it study or investigate?)

2. What is its methodology? (How does it go about studying those objects?)

We’ll begin with the second.
Is the methodology of CS the same as that of some other discipline? Or does it have

its own, distinctive methodology. If the latter, is its methodology not only unique, but
also something brand new? As for methodology, CS has been said to be (among many
other things):

• an art form
(Knuth 1974a, p. 670, has said that programs can be beautiful),

• an art and science
(“Science is knowledge which we understand so well that we can teach it to a
computer; and if we don’t fully understand something, it is an art to deal with it.
. . . [T]he process of going from an art to a science means that we learn how to
automate something” (Knuth, 1974a, p. 668)),

• a liberal art (Perlis, 1962; Lindell, 2001, p. 210)
(along the lines of the classical liberal arts of logic, math, or astronomy),

• a branch of mathematics (Dijkstra, 1974),

• a natural science (McCarthy, 1963; Newell et al., 1967; Shapiro, 2001),

• an empirical study of the artificial (Simon, 1996b),

• a combination of science and engineering
(Hartmanis, 1993, 1995a; Loui, 1995),

• just engineering (Brooks, 1996),

• or—generically—a “study”

But a study (or a science, or an engineering, or an art, or . . .) of what? Is its
object the same as that of some other discipline? (Does it study exactly what science, or
engineering, or math, or—for that matter—psychology or philosophy studies?) Or does
it have its own, distinctive object of study (computers? algorithms? information?) Or
does it study something that has never been studied before? The logician Jon Barwise
(1989a) suggested that we can understand what CS is in terms of what it “traffics” in
So here’s an alphabetical list of some of the objects that it traffics in:

104 CHAPTER 3. WHAT IS COMPUTER SCIENCE?

algorithms
automation
complexity
computers
information
intelligence
numbers (and other mathematical objects)
problem solving
procedures
processes
programming
symbol strings

This is, of course, only a very partial list. One can use computational methods to study
pretty much any x. (For some examples of this, see the interview with the computer
scientist Mehran Sahami in Reese 2014a).

It is now time to look at some answers to our question in more detail.

3.5 CS Is the Science of Computers
The first such answer that we will look at comes from three Turing Award winners:
Allen Newell, Alan Perlis, and Herbert Simon.

Historical Digression:
Newell and Simon were also cognitive scientists: Along with J.C. Shaw, they created one of the
first AI programs, the Logic Theorist (Newell et al., 1958). And Simon was a winner of the
Nobel prize in economics, in part for his work on “bounded rationality”, which we’ll look at
briefly in §3.15.2.3.

Here is their definition, presented as the conclusion of an argument:

Wherever there are phenomena, there can be a science to describe and explain those
phenomena. . . . There are computers. Ergo,4 computer science is the study of
computers. (Newell et al., 1967, p. 1373, my emphasis)

This argument is actually missing two premises (recall our discusson of this phe-
nomenon in §2.10.3). Their first two premises only imply that there can be a science of
computers. They do not, by themselves, imply that there is such a science or that that
science is CS rather than some other discipline. So, the missing premises are:

A. There is a science of computers.

B. There is no other discipline that is the science of computers besides CS.

4‘Ergo’ is Latin for “therefore”.

3.5. CS IS THE SCIENCE OF COMPUTERS 105

3.5.1 Objection to the First Premise
Newell, Perlis, & Simon’s first premise is that, for any phenomenon5 p, there can be
a science of p. An objection to this that they consider is that this premise holds, not
for any phenomenon, but only when p is a natural phenomenon. For example, the
computer engineer Michael Loui (1987, p. 175) notes that there are toasters, but no
science of toasters.

The objection goes on to point out that computers aren’t natural; they are artifacts.
So, it doesn’t follow that there can be (much less that there is) a science of comput-
ers. (It might still be the case that there is some other kind of discipline that studies
computers (and toasters!), such as engineering.)

For example, computer scientist Bruce W. Arden (1980, p. 6) argues that neither
math nor CS are sciences, because their objects are not natural phenomena He says that
the object of math is “human-produced systems . . . concerned with the development of
deductive structures”. (We’ll return to the relationship between CS and math in §3.9.1.)
And he says that the object of CS is “man-made” [sic]. But what is the object? Com-
puters? Yes, they’re clearly human-made, and this leads us back to Newell, Perlis, &
Simon’s arguments. Algorithms? They’re only human-made in whatever sense mathe-
matical structures are. But, in §3.9.3, we’ll look at a claim that algorithms are a special
case of a natural entity (“procedures”).

Mahoney (2011, pp. 159–161) discusses the objection that CS is not a natural sci-
ence because “the computer is an artifact, not a natural phenomenon, and science is
about natural phenomena”. Mahoney rejects this, but not because he thinks that com-
puters are natural phenomena. Rather, he rejects it because he thinks that there is
no sharp dividing line “between nature and artifact” for two reasons: (1) because we
use artifacts to study nature—“[w]e know about nature through the models we build
of it”—and (2) because “[a]rtifacts work by the laws of nature, and by working re-
veal those laws”. In other words, artifacts are part of nature. Philosopher Timothy
Williamson makes a similar point about scientific instruments: “The scientific investi-
gation of [a] physical quantity widens to include the scientific investigation of its in-
teraction with our experimental equipment. After all, our apparatus is part of the same
natural world as the primary topic of our inquiry” (Williamson, 2007, p. 43). The same
could be said about computers and computation: We use computers and computational
methods to study both computers and computation themselves. Mahoney even goes on
to suggest that nature itself might be ultimately computational in nature (so to speak).
(We will explore that idea in Chapter 9, when we consider whether the universe might
be a computer.)

Newell, Perlis, & Simon’s reply to the objection is to deny the premise that the phe-
nomenon that a science studies must be natural. They point out that there are sciences
of artifacts; for example, botanists study hybrid corn.6 In fact, in 1969, Simon wrote
a book called The Sciences of the Artificial (Simon, 1996b), and computer scientist
Donald Knuth has called CS “an unnatural science [because] [c]omputer science deals
with artificial things, not bound by the constraints of nature” (Knuth, 2001, p. 167).

5By the way, ‘phenomenon’ is the correct singular term. If you have two or more of them, you have two
or more phenomena.

6Curiously, they say that it is zoologists who study hybrid corn!

106 CHAPTER 3. WHAT IS COMPUTER SCIENCE?

The objector might respond that the fact that Simon had to write an entire book to
argue that there could be sciences of artifacts shows that the premise—that science only
studies natural phenomena—is not obviously false. Moreover, botanists study mostly
natural plants: Hybrid corn is not only not studied by all botanists, it is certainly not the
only thing that botanists study (that is, botany is not defined as the science of hybrid
corn). Are there any natural phenomena that computer scientists study? As I have
already hinted, we will see a positive answer to this question in §3.9.3.

But let’s not be unfair. There certainly are sciences that study artifacts in addition to
natural phenomena: Ornithologists study both birds (which are natural) and their nests
(which are artifacts); apiologists study both bees (natural) and their hives (artifacts). On
the other hand, one might argue (a) that beehives and birds’ nests are not human-made
phenomena, and (b) that ‘artifact’ should be used to refer, not to any manufactured
thing (as opposed to living things), but only to things that are manufactured by humans,
that is, to things that are not “found in nature”, so to speak. The obvious objection to
this claim is that it unreasonably singles out humans as being apart from nature. (For a
commentary on this, see the Abstruse Goose cartoon in Figure 3.2.)

Further Reading:
On the nature of artifacts in general, see Dipert 1993; Hilpinen 2011. On artifacts in CS, see
Mizoguchi and Kitamura 2009.

3.5.2 Objection: Computers Are Tools, not Phenomena
A related objection has to do with the observation that it is wrong to define a subject
by its tools: Fellows and Parberry (1993) say that CS is not about computers, because
“Science is not about tools; it is about how we use them and what we find out when
we do”. And, as Hammond (2003) notes, “Theoretical Computer Science doesn’t even
use computers, just pencil and paper”.

The debate over the appropriate place of computing in grade schools and high
schools echoes the debate in universities decades ago, when computers and soft-
ware were initially seen as mere plumbing. And certainly not something worthy of
study in its own right. A department of computer science? Why not a department
of slide rules? (Lohr, 2008)

Newell, Perlis, & Simon also say that astronomy is the science of stars (Newell
et al., 1967, p. 1373). And, of course, telescopes are used to study the stars. But, as
the computer scientist Edsger W. Dijkstra is alleged to have said, “Computer Science is
no more about computers than astronomy is about telescopes.”7 Dikjstra (1987, cited
in Tedre & Sutinen 2008) also said that calling the discipline ‘computer science’ “is
like referring to surgery as ‘knife science’.” This may be true, but the problem, of
course, is that the closest term that computer scientists have corresponding to ‘surgery’
is probably ‘computing’, and defining ‘computer science’ as the science of computing
may be legitimate but not very clarifying (at least, not without a further description of

7https://en.wikiquote.org/wiki/Computer science#Disputed

3.5. CS IS THE SCIENCE OF COMPUTERS 107

Figure 3.2: http://abstrusegoose.com/215

108 CHAPTER 3. WHAT IS COMPUTER SCIENCE?

computing, preferably not in terms of computers!). Newell, Perlis, & Simon address
this in their Objection 4: “The computer is such a novel and complex instrument that
its behavior is subsumed under no other science” (Newell et al., 1967, p. 1374). (We’ll
look at this issue in §3.14.1.) This is also a reply to one of the missing premises.

But it is also wrong to define a subject without saying what its tools enable. Even
if what Newell, Perlis, & Simon say about the novelty of computers is true, it can
be argued that a new tool can open up a new science or, at least, a new scientific
paradigm (see §4.9.2): “Paradigm shifts have often been preceded by ‘a technological
or conceptual invention that gave us a novel ability to see things that could not be seen
before’ ” (Mertens 2004, p. 196, quoting Robertson 2003). Although CS may not be
about computers any more than astronomy is about telescopes, “The computer is to
the naked mind what the telescope is to the naked eye, and it may well be that future
generations will consider all precomputer science to be as primitive as pretelescopic
astronomy” (Mertens, 2004, p. 196).

But there once was a science that only studied a particular artifact, a particular
tool—microscopes! (Another “science” of an artifact might be bicycle science (Wilson
and Papadopoulos, 2004). But it’s really not clear if this is a science or a branch of
engineering.) It is worth a short digression to look at “microscopy”.8

3.5.3 Digression: The Once-upon-a-Time Science of Microscopy
. . . Marcello Malpighi (1628–1694), was a great scientist whose work had no dog-
matic unity.9 He was one of the first of a new breed of explorers who defined
their mission neither by the doctrine of their master nor by the subject that they
studied. They were no longer ‘Aristotelians’ or ‘Galenists.’ Their eponym, their
mechanical godparent, was some device that extended their senses and widened
their vistas. What gave his researches coherence was a new instrument. Malpighi
was to be a ‘microscopist,’ and his science was ‘microscopy’ His scientific
career was held together not by what he was trying to confirm or to prove, but by
the vehicle which carried him on his voyages of observation.
—Daniel Boorstin (1983, p. 376)

In a similar fashion, surely computers are “device[s] that [have] extended [our] senses
and widened [our] vistas”, and the science of computer scientists is, well, computer
science. After all, one of the two principal professional associations is the Association
for Computing Machinery (ACM). What “holds” computer scientists “together . . . [is]
the vehicle which carrie[s them] on [their] voyages of observation”.

But this is not necessarily a positive analogy.

The applications of computers to a discipline should be considered properly a part
of the natural evolution of the discipline. . . . The mass spectrometer has permit-
ted significant advances in chemistry, but there is no ‘mass spectrometry science’
devoted to the study of this instrument. (Loui, 1987, p. 177)

8Thanks to Stuart C. Shapiro for suggesting this.
9That is, Malpighi did not study any single, natural phenomenon; rather, he studied all phenomena that

are only visible with a microscope.

3.5. CS IS THE SCIENCE OF COMPUTERS 109

Similarly, the microscope has permitted significant advances in biology (and many
other disciplines) but, arguably, microscopy no longer exists as an independent science
devoted to the study of that instrument.

Now, if you search for ‘Department of Microscopy’ on the World Wide Web, you
will, indeed, find that there are some universities and museums that have one. But, if
you look closer, you will see that they are really departments of microbiology. Non-
biologists who use microscopes (such as some geologists or even jewelers) are not
found in departments of microscopy today. What has happened, apparently, is that the
use of this artifact by scientists studying widely different phenomena was not sufficient
to keep them in the same academic discipline. The academic discipline of microscopy
splintered into those who use microscopes to study biology, those who use it to study
geology, and so on, as well as those who build new kinds of microscopes (who might
be found in an engineering or an optics department).

For over a hundred years, there was a Quarterly Journal of Microscopical Science
(1853–1965), affiliated with “the Microscopical Society of London”. Its inaugural
Preface said:

Recent improvements in the Microscope having rendered that instrument in-
creasingly available for scientific research, and having created a large class of ob-
servers who devote themselves to whatever department of science may be investi-
gated by its aid, it has been thought that the time is come when a Journal devoted
entirely to objects connected with the use of the Microscope would contribute to
the advancement of science, and secure the co-operation of all interested in its
various applications.

The object of this Journal will be the diffusion of information relating to all
improvements in the construction of the Microscope, and to record the most re-
cent and important researches made by its aid in different departments of science,
whether in this country or on the continent. . . .

It is, perhaps, hardly necessary to apologise for the title of the Journal, as the
term “Microscopical,” however objectionable in its origin, has acquired a conven-
tional meaning by its application to Societies having the cultivation of the use of
the Microscope in view, and so fully expresses the objects of the Journal, that it
immediately occurred as the best understood word to employ. It will undoubtedly
be a Journal of Microscopy and Histology; but the first is a term but recently in-
troduced into our language, and the last would give but a contracted view of the
objects to which the Journal will be devoted. (Anonymous, 1853a)

If you replace ‘microscope’ with ‘computer’ (along with their cognates), and ‘histol-
ogy’ with something like ‘mathematical calculations’ (or ‘algorithms’!), then this reads
like a manifesto for the ACM.

The first issue of the journal included, besides many articles on what we now call
microbiology, a paper on “Hints on the Subject of Collecting Objects for Microscopical
Examination” and a review of a book titled The Microscopist; or a Complete Manual
on the Use of the Microscope.

Here is a passage from that review:

As cutting with a sharp instrument is better than tearing with the nails, so vision
with the microscope is better than with the naked eye. Its use [that is, the micro-

110 CHAPTER 3. WHAT IS COMPUTER SCIENCE?

scope’s use] is, therefore, as extensive as that of the organ which it assists, and it
cannot be regarded as the property of one branch of science more than another.
(Anonymous, 1853b, p. 52, my italics)

And here is a paraphrase:

As vision with the microscope is better than with the naked eye, so thinking with
the computer is better than with the mind alone. Its use [that is, the computer’s
use] is, therefore, as extensive as that of the organ which it assists, and it cannot be
regarded as the property of one branch of science more than another.

This is reminiscent of the philosopher Daniel Dennett’s arguments for the computer as
a “prosthesis” for the mind (Dennett, 1982), that is, as a tool to help us think better.

But, based on the nature of many of their articles, the March 1962 issue of the
journal announced a change in focus from microscopy to cytology, thus apparently
changing their interest from the tool to what can be studied with it. The change of-
ficially occurred in 1966, when the journal changed its name to the Journal of Cell
Science (and restarted its volume numbers at 1).

Terminological Digression:
On the (subtle) “Differences between Histology and Cytology”, see http://www.
differencebetween.com/differences-between-histology-and-vs-cytology

Could the same thing happen to computer science that happened to microscope
science? If so, what would fall under the heading of the things that can be studied
with computers? A dean who oversaw the Department of Computer Science at my
university once predicted that the same thing would happen to our department: The
computer-theory researchers would move into the math department; the AI researchers
would find homes in psychology, linguistics, or philosophy; those who built new kinds
of computers would move (back) into electrical engineering; and so on. This hasn’t
happened yet (although McBride 2007 suggests that it is already happening, while
Mander 2007 disagrees). Nor do I forsee it happening in the near future, if at all. After
all, as the computer scientist George Forsythe pointed out, in order to teach “nontechni-
cal students” about computers and computational thinking, and to teach “specialists in
other technical fields” about how to use computers as a tool (alongside “mathematics,
English, statistics”), and to teach “computer science specialists” about how to “lead the
future development of the subject”,

The first major step . . . is to create a department of computer science . . . Without
a department, a university may well acquire a number of computer scientists, but
they will be scattered and relatively ineffective in dealing with computer science
as a whole. (Forsythe, 1967a, p. 5)

But the break-up of CS into component disciplines is something to ponder.

3.5. CS IS THE SCIENCE OF COMPUTERS 111

3.5.4 Objection: Computer Science Is Just a Branch of . . .
The microscopy story is, in fact, close to an objection to one of the missing premises
that Newell, Perlis, & Simon consider, that the science of computers is not CS but some
other subject: electrical engineering, or math, or, perhaps, psychology.

For example, computer historian Paul Ceruzzi (1988, p. 257) doesn’t explicitly
say that CS is identical to electrical (more precisely, electronic) engineering, but he
comes close. First, “Electronics emerged as the ‘technology of choice’ [over those that
were used in mechanical calculators or even early electric-relay-based computers] for
implementing the concept of a computing machine This activity led to the study of
‘computing’ independently of the technology out of which ‘computers’ were built. In
other words, it led to the creation of a new science: ‘Computer Science’.” Second, “As
computer science matured, it repaid its debt to electronics by offering that engineering
discipline a body of theory which served to unify it above the level of the physics of
the devices themselves. In short, computer science provided electrical engineering a
paradigm, which I call the ‘digital approach,’ which came to define the daily activities
of electrical engineers in circuits and systems design” (Ceruzzi, 1988, p. 258).

One problem with trying to conclude from this that CS is (nothing but) electrical
engineering is that there are now other technologies that are beginning to come into
use, such as quantum computing and DNA computing. Assuming that those methods
achieve some success, then it becomes clear that (and how) CS goes beyond any par-
ticular implementation technique or technology, and becomes a more abstract science
(or study, or whatever) in its own right. And Ceruzzi himself declares, “The two did
not become synonymous” (Ceruzzi, 1988, p. 273).

Further Reading:
On quantum computing, see Hayes 1995, 2014b; Grover 1999; Aaronson 2008; Monroe and
Wineland 2008; Bacon 2010; Bacon and van Dam 2010; Aaronson 2011b, 2014. On the relation
of quantum computing to “hypercomputation”, see the discussion in §11.4.1 and the Further
Reading box on p. 458.

On DNA and other forms of biological computing, see Adleman 1998; Shapiro and Benenson
2006; Qian and Winfree 2011; Lu and Purcell 2016.

Newell, Perlis, & Simon reply that, although CS does intersect electrical engi-
neering, math, psychology, etc., there is no other, single discipline that subsumes all
computer-related phenomena. (This is the missing premise.) This, however, assumes
that CS is a single discipline, a cohesive whole. Is it? I began my professional univer-
sity career in a philosophy department; although certain branches of philosophy were
not my specialty (ethics and history of philosophy, for instance), I was expected to, and
was able to, participate in philosophical discussions on these topics. But my colleagues
in CS often do not, nor are expected to, understand the details of those branches of CS
that are far removed from their own. As a computer scientist specializing in AI, I have
far more in common with colleagues in the philosophy, psychology, and linguistics de-
partments than I do with my computer-science colleagues down the hall who specialize
in, say, computer networks or computer security. (And this is not just an autobiograph-
ical confession on my part; my colleagues in computer networks and computer security

112 CHAPTER 3. WHAT IS COMPUTER SCIENCE?

would be the first to agree that they have more in common with some of their former
colleagues in electrical engineering than they do with me.) So, perhaps CS is not a
coherent whole. (For another take on this, see Question 10 at the end of this chapter.)

3.5.5 Objection: What about Algorithms?
The most interesting—and telling—objection to Newell, Perlis, & Simon’s view is that
CS is really the study, not (just) of computers, but (also) of algorithms: very roughly,
the programs and rules that tell computers what to do. (We’ll devote a great deal of
time, beginning with Chapter 7, looking at what algorithms and programs are, so, at
this point, I will just assume that you already have an idea of what they are and won’t
try to define them further.) For example, Bajcsy et al. (1992, p. 1, my italics) explicitly
mention “the (incorrect) assumption that . . . [CS] is based solely on the study of a
device . . . ”.

What is interesting about this objection is how Newell, Perlis, & Simon respond:
They agree with the objection! They now say:

In the definition [of CS as the science of computers], ‘computers’ means . . . the
hardware, their programs or algorithms, and all that goes along with them. Com-
puter science is the study of the phenomena surrounding computers”.
(Newell et al., 1967, p. 1374, my italics and my boldface)

At the end, they even allow that the study of computers may also be an engineering
discipline (Newell et al., 1967, p. 1374). So, they ultimately water down their definition
to something like this: Computer science is the science and engineering of computers,
algorithms, and other related phenomena.

Readers would be forgiven if they objected that the authors have changed their
definition! But, instead of making that objection, let’s turn to an interestingly different,
yet similar, definition due to another celebrated computer scientist.

3.6 CS Studies Algorithms
Donald Knuth gave an apparently different answer to the question of what CS is:

[C]omputer science is . . . the study of algorithms.
(Knuth, 1974b, p. 323; my boldface, Knuth’s italics)

Historical Digression:
Knuth is the Turing Award-winning author of a major, multi-volume work on algorithms (The Art
of Computer Programming (Knuth, 1973)), as well as developer of the TEX computer typesetting
system that this book’s manuscript was prepared in. For an interview with Knuth, see Roberts
2018.

3.6. CS STUDIES ALGORITHMS 113

3.6.1 Only Algorithms?
He cited, approvingly, a statement by Forsythe (1968) that the central question of CS
is: What can be automated? Presumably, a process can be automated—that is, done
automatically, by a machine, without human intervention—if it can be expressed as an
algorithm. (We’ll return to this in §3.15.2.1.1.)

Further Reading: For a book-length discussion of this, see Arden 1980.

Knuth (1974b, p. 324) even noted that the name ‘computing science’ might be bet-
ter than ‘computer science’, because the former sounds like the discipline is the science
of computing (what you do with computers) as opposed to the science of computers
(the tools themselves). Others have made similar observations: Foley (2002) says that
“computing includes computer science” but goes beyond it. Denning (2013b, p. 35)
says: “I have encountered less skepticism to the claim that ‘computing is science’ than
to ‘computer science is science’.”

As Knuth pointed out,

a person does not really understand something until he [sic] teaches it to someone
else. Actually a person does not really understand something until he can teach it
to a computer, that is, express it as an algorithm. (Knuth, 1974b, p. 327)

The celebrated cellist Janos Starker once said something similar: “When you have to
explain what you are doing, you discover what you are really doing” (Fox, 2013).

Further Reading:
Schagrin et al. 1985, p. xiii, and Rapaport and Kibby 2010, §2.4.2, also discuss this idea.

And expressing something as an algorithm requires “real” understanding, because ev-
ery step must be spelled out in excruciating detail:

It is a commonplace that a computer can do anything for which precise and unam-
biguous instructions can be given. (Mahoney, 2011, p. 80)

That is, a computer can do anything for which an algorithm can be given (for, after
all, isn’t an algorithm merely “precise and unambiguous instructions”?). Thought of
this way, the comment is almost trivial. But consider that to give such instructions (to
give an algorithm) is to be able to explicitly teach the computer (or the executor, more
generally) how to do that thing. (For a humorous commentary on this, see Figure 3.3.)

But there is a potential limitation to Knuth’s theory that we teach computers how
to do something—more specifically, to the theory that, insofar as CS is the study of
what tasks are computable, it is the study of what tasks are teachable. The potential
limitation is that teaching is “propositional”, in the sense that it requires sentences
(propositions) of a language. Hence, it is explicit or conscious. It is what psychologist
and Nobel laureate Daniel Kahneman has called a “System 2” task:

System 2 allocates attention to the effortful mental activities that demand it, includ-
ing complex computations. The operations of System 2 are often associated with

114 CHAPTER 3. WHAT IS COMPUTER SCIENCE?

Figure 3.3: http://xkcd.com/894/

the subjective experience of agency, choice, and concentration. (Kahneman, 2011,
p. 21)

But there is another algorithmic way of getting a computer to do something: by
training it, either via a connectionist, neural-network algorithm, or via a statistical,
machine-learning algorithm. ‘Learning’, in this sense of ‘machine learning’, is differ-
ent from being (propositionally) taught. Such training is implicit or unconscious. It is
“System 1” thinking:

System 1 operates automatically and quickly, with little or no effort and no sense
of voluntary control. (Kahneman, 2011, p. 20)

We, as external, third-person observers, don’t consciously or explicitly know how to
do a System-1 task. Knowing how is not necessarily the same as knowing that.

3.6. CS STUDIES ALGORITHMS 115

Further Reading:
The knowing-how/knowing-that distinction was first discussed in Ryle 1945. Stanley and
Williamson 2001 argue that knowing how is a form of knowing that; Pavese 2015 takes up
their view in the context of computer programs. For a survey of current work on the distinction,
see Cath 2019.

The two “systems” or “types” of thinking are discussed in much greater detail in Evans and
Stanovich 2013. There, “Type 1” (or “intuitive”) processing is characterized as indepen-
dent of working memory (which is a kind of short-term, conscious memory) and as “au-
tonomous”. And “Type 2” (or “reflective”) processing is characterized as “requir[ing] work-
ing memory” and involving “cognitive decoupling” and “mental simulation”. (Cognitive de-
coupling is, roughly, the ability to mentally represent a mental representation, so that the
second-order representation can be thought about separately from the original representa-
tion. For more on the two “systems” of thinking, and on unconscious cognition more gen-
erally, see http://en.wikipedia.org/wiki/Dual process theory#Systems and the bibliography at:
http://www.cse.buffalo.edu/∼rapaport/575/rules-connections.html#uncs-cognition. We’ll return
to these ideas in §12.4.4.1.2.2, when we discuss the difference between following rules and be-
having in accordance with them, and again in §18.4, when we discuss whether computers can
make decisions. On the difference between classical symbolic programming (where the pro-
grammer “teaches” the computer how to do something) and machine-learning systems (where
the computer “learns” how to do something without being explicitly taught), see Seabrook 2019.

Here is an example that might help to explain the difference: Consider the game of
tic-tac-toe. A computer (or a human player) might be programmed—that is, explicitly
“taught”—to play winning tic-tac-toe by using a “conscious” or “System 2” algorithm
that it explicitly follows. Most older children and adults have been taught a version of
this algorithm (Zobrist, 2000):

For player X to win or draw (that is, to not lose), do:
begin

if there are 2 Xs in a row, then make 3 Xs in a row
else if there are 2 Os in a row, then block with an X
else if 2 rows intersect with an empty square

such that each row contains 1 X, no Os,
then place X at the intersection

else if 2 rows intersect with an empty square
such that each row contains 1 O, no Xs,
then place X at the intersection

else if there is a vacant corner square, then put X there
else place X on any vacant square.

end

Alternatively, a computer can be programmed to learn how to play winning tic-tac-toe
in a “System 1” manner, without expressing (or being able to express) that strategy
propositionally, that is, in a “System 2” manner. Such a learning mechanism can be
found in Michie 1961. Briefly, the computer is “rewarded” for each random move that

116 CHAPTER 3. WHAT IS COMPUTER SCIENCE?

leads to a win or draw, and such moves are thus caused to be made more frequently in
future games.

Further Reading:
There are at least two implementations of Michie’s method online:

1. “MENACE: Machine Educable Noughts and Crosses Engine”,
http://www.mscroggs.co.uk/blog/19

2. “MENACE 2, an Artificial Intelligence Made of Wooden Drawers and Coloured Beads”,
http://we-make-money-not-art.com/menace-2-an-artificial-intelligence-made-of-wooden-drawers-
and-coloured-beads/

An algorithm in the form of a System-1–style artificial neural network is akin to
building in to the computer the ability, as if “innate”, to do that thing. Such a computer
could not necessarily tell us how it was doing it; it would not necessarily have any
“conscious” access to its algorithm. An algorithm in the form of an explicit machine-
learning program that would enable the computer to learn how to do that thing is some-
where in the middle; it would be conscious of its ability to learn, but not necessarily
of how to do the thing; it might not necessarily be able to teach someone or something
else how to do it, unless it could observe itself doing it and develop a theory of how to
do it (which theory would be expressed in a System-2–style, explicit algorithm). (We’ll
return to these issues in §§3.9.5 and 3.14.4.)

Let’s say for now that something is computable just in case “precise and unam-
biguous instructions can be given” for it. (We’ll be more precise and unambiguous(!)
in Chapter 7.) So, the question becomes: What tasks are amenable to “precise and
unambiguous instructions”? Presumably, chess is computable in this sense, because
there are explicit rules for how to play chess. (Playing winning chess is a different
matter!) But vision would seem not to be thus computable. After all, one cannot give
“precise and unambiguous instructions” that would enable someone to see. Yet there
are computer-vision systems (see http://aitopics.org/topic/vision for an overview), so
vision does seem to be computable in a different sense: A behavior is computable if it
can be described in terms of such instructions. The entity that exhibits that behavior
naturally might not use, or be able to use, those instructions in order to behave that way.
But we might be able to give those instructions to another system that could use them to
exhibit that behavior. So, for instance, the human brain might not literally compute in
the sense of executing an algorithm in order to see, but a computer using that algorithm
might be able to exhibit visual behavior. (Whether it “sees”, phenomenologically, is a
philosophical question!) Similarly, the solar system might not be executing Kepler’s
laws, but an artificial solar system might. (We’ll look into this issue in §9.8.2.)

3.6.2 Or Computers, Too?
Knuth goes on to point out, however, that you need computers in order to properly study
algorithms, because “human beings are not precise enough nor fast enough to carry out
any but the simplest procedures” (Knuth, 1974b, p. 323). Indeed, he explicitly copies
Newell, Perlis, & Simon’s strategy, revising his initial definition to include computers,
that is, the phenomena “surrounding” algorithms:

3.7. PHYSICAL COMPUTERS VS. ABSTRACT ALGORITHMS 117

When I say that computer science is the study of algorithms, I am singling out
only one of the “phenomena surrounding computers,” so computer science actually
includes more. (Knuth, 1974b, p. 324)

Are computers really necessary? If they are, does that mean that CS is (as Newell,
Perlis, & Simon claim) the study of computers? Let’s consider some similar questions
for other disciplines: Do you need a compass and straightedge to study geometry (or
can you study it just by proving theorems about points, lines, and angles)? After all,
the mathematician David Hilbert wrote a completely axiomatic treatment of geometry
without any mention of compass or straightedge (Hilbert, 1899). Do you need a micro-
scope to study biology? I doubt that Watson and Crick used one when they discovered
the structure of DNA. Do you need a calculator (or a computer!) to study physics or
mathematics (or do they just help you perform calculations more quickly and easily)?
Even if you do need these tools, does that make geometry the study of compasses and
straightedges, or physics and math the study of calculators, or biology the study of
microscopes? I think most people would say that these disciplines are not studies of
those tools. On the other hand, “deep learning” algorithms do seem to need computers
in order to determine if they will really do what they are intended to do, and do so in
real time (Lewis-Kraus, 2016). (We’ll return to this in §3.12.)

About ten years later, Knuth (1985, pp. 170–171) backed off from the “related
phenomena” definition, more emphatically defining CS as “primarily the study of al-
gorithms”, because he “think[s] of algorithms as encompassing the whole range of
concepts dealing with well-defined processes, including the structure of data that is be-
ing acted upon as well as the structure of the sequence of operations being performed”,
preferring the name ‘algorithmics’ for the discipline. (Gal-Ezer and Harel 1998, p. 80
say that the “heart and basis” of the field is “algorithmics” even though this does not
“cover the full scope of CS”.) Knuth also suggests that what computer scientists have
in common (and that differentiates them from people in other disciplines) is that they
are all “algorithmic thinkers” (Knuth, 1985, p. 172). (We will see what it means to
“think algorithmically” in §3.14.5, below, and in Chapter 7.)

Further Reading:
Chazelle 2006 and Easton 2006 discuss the nature of CS as the study of algorithms.

3.7 Physical Computers vs. Abstract Algorithms
So far, it may seem that we have two very different definitions of CS—as the study of
computers or as the study of algorithms. But, just as Newell, Perlis, & Simon said that
CS is the study of computers and related phenomena such as algorithms, Knuth says
that it is the study of algorithms and related phenomena such as computers! Stated a
bit more bluntly, Newell, Perlis, & Simon’s definition comes down to this: Computer
science is the science of computers and algorithms. Knuth’s definition comes down to
this: Computer science is the study of algorithms and computers.

Ignoring for now the subtle difference between “science” and “study”, what we
have here are extensionally equivalent, but intensionally distinct, definitions. They

118 CHAPTER 3. WHAT IS COMPUTER SCIENCE?

may approach the discipline from different viewpoints (one from the viewpoint of a
physical tool, one from the viewpoint of an abstract procedure), but the “bottom line”
is the same—only the emphasis is different.

Here’s a more mundane example of a similar phenomenon: Large supermarkets
these days not only carry groceries, but also pharmaceuticals, greeting cards, hardware,
etc. Large drugstores these days not only carry pharmaceuticals, but also groceries,
greeting cards, hardware, etc. And large “general stores” also carry pretty much the
same mix of products. Each kind of store “approaches” merchandising “from different
viewpoints”: We tend to think of Walgreens as a drugstore, Wegmans as a supermarket,
and Walmart as a general store. A philosophical term for this is to say that they are
“intensionally distinct”. But, because they sell the same mix of products, we can say
that they are “extensionally equivalent”: Their (“extensional”) “bottom line” is the
same; only their (“intensional”) emphasis is different.

On the other hand, Arden (1980, p. 9) claims that “the study of algorithms and
the phenomena related to computers are not coextensive, since there are important
organizational, policy, and nondeterministic aspects of computing that do not fit the
algorithmic mold”. But I don’t think that either (Newell et al., 1967) or (Knuth, 1974b)
had those things in mind. And if “phenomena related to computers” is taken as widely
as Arden does, then it encompasses pretty much everything, thus making any definition
based on such a wide notion virtually useless. The classical sciences (physics, chem-
istry, biology, etc.) also have “important organizational, policy, and nondeterministic
aspects”, but those aren’t used in trying to define what those sciences are about.

So, we now have two (only slightly different) definitions:

1. Computer science is the study of computers (and related phenomena such as the
algorithms that they execute).

2. Computer science is the study of algorithms (and related phenomena such as the
computers that execute them).

Nearly 50 years ago, Licklider and Taylor (1968) fairly accurately predicted what
computers would look like, and how they would be used, today. What they were writing
about is clearly part of “computer science”, yet equally clearly not (directly) part of the
abstract, mathematical theory of computation. This strongly suggests that it would be
wrong to treat CS as being primarily about algorithms or primarily about computers.
It is about both. We’ll see this more clearly in Chapter 6 when we trace the parallel
histories of computers (as calculating machines) and computing (as it evolved from the
search for a foundation for mathematics).

3.8. CS STUDIES INFORMATION 119

3.8 CS Studies Information
The mechanical brain[10] does not secrete thought “as the liver does bile,” as the
earlier materialist claimed,[11] nor does it put it out in the form of energy, as the
muscle puts out its activity. Information is information, not matter or energy. No
materialism which does not admit this can survive at the present day.
—Norbert Wiener (1961, p. 132)

Others who have offered definitions of ‘computer science’ say “A plague on both your
houses”:12 CS is not the study of computers or of algorithms, but of information.

For example, Forsythe said:

I consider computer science, in general, to be the art and science of representing
and processing information and, in particular, processing information with the log-
ical engines called automatic digital computers. (Forsythe, 1967a, p. 3, my italics)

Denning (1985, p. 16, my italics) defined it as “the body of knowledge dealing
with the design, analysis, implementation, efficiency, and application of processes that
transform information” (see also Denning et al. 1989, p. 16).

Barwise (see §3.4.2, above) said that computers are best thought of as “informa-
tion processors”, rather than as numerical “calculators” or as “devices which traffic in
formal strings . . . of meaningless symbols” (Barwise, 1989a, pp. 386–387). Barwise’s
principal reason seems to be that “the . . . view of computers as informational engines
. . . makes sense of the battle for computational resources” and enables us to “think
about them so as to make the best decisions about their acquisition and use”. And why
is that? One reason is that this view enables us to understand the impact of comput-
ers along the same lines as we understand the impact of “books and printing [and] . . .
movable type [C]omputers are not just super calculators. They make available a
new informational medium . . . just as with printing.” Although this may seem obvi-
ous to us now, Barwise was writing in 1989, way before the general use of the World
Wide Web or the advent of Kindles and iPads, and his prediction certainly seems to be
coming true.

But why does he say that information processing is the key, rather than, say, sym-
bol manipulation? Arguably, information processing is nothing but symbol manipu-
lation: After all, information has to be expressed in physical symbols. But symbols
can be manipulated independently of their meaning (we’ll go into this in more detail
in §§17.9.2 and 19.6.3.3), whereas information processing is interpreted symbol ma-
nipulation. Moreover, not all symbol manipulation is necessarily information in some
sense. So, perhaps, although computers may be nothing but symbol manipulators (this
will become clearer when we look at Turing Machines, in Chapter 8), it is as informa-
tion processors that they have an impact.

However, Shannon’s (1948) theory of information is purely “syntactic”; it is not
concerned with the semantic meaning of the information. And Tenenbaum and Augen-
stein (1981, p. 6), claim that information in a computer has no meaning:

10That is, a computer.
11Or as John Searle has suggested; we will see what he has to say in §19.6.2.2.
12Shakespeare, Romeo and Juliet, Act III, scene 1.

120 CHAPTER 3. WHAT IS COMPUTER SCIENCE?

[I]nformation itself has no meaning. Any meaning can be assigned to a particular
bit pattern as long as it is done consistently. It is the interpretation of a bit pattern
that gives it meaning.

(We’ll return to their view in §14.3.3.)
Similarly, Bajcsy et al. (1992, p. 1, my italics) say that CS is “a broad-based quan-

titative and qualitative study of how information is represented, organized, algorith-
mically transformed, and used.” Bajcsy et al. also say that “Computer science is the
discipline that deals with representation, implementation, manipulation, and commu-
nication of information” (Bajcsy et al., 1992, p. 2). I think this second characterization
is too broad: Other disciplines (including journalism) also deal with these four aspects
of information. But their first definition contains a crucial adverb—‘algorithmically’.
If that’s what makes CS unique, then this just brings us back to algorithms as the object
of study.

Indeed, Hartmanis and Lin (1992, p. 164) say that “The key intellectual themes in
CS&E [computer science and engineering] are algorithmic thinking, the representation
of information, and computer programs.” But the “representation of information”—
although an important branch of CS (in data structures, knowledge representation in
AI, and database theory)—is also studied by logicians. And “computer programs”—
although clearly another important branch of CS (in software engineering and program
verification)—is, arguably, “merely” the implementation of algorithms. So, once again,
it is algorithms that come to the fore, not information.

As a final example, Hartmanis and Lin (1992, p. 164) define CS this way:

What is the object of study [of computer science and engineering]? For the physi-
cist, the object of study may be an atom or a star. For the biologist, it may be a
cell or a plant. But computer scientists and engineers focus on information, on the
ways of representing and processing information, and on the machines and systems
that perform these tasks.

Presumably, those who study “the ways of representing and processing” are the sci-
entists, and those who study “the machines and systems” are the engineers. And, of
course, it is not just information that is studied; there are the usual “related phenom-
ena”: Computer science studies how to represent and (algorithmically) process infor-
mation, as well as the machines and systems that do this.

Question for the Reader:
Should humans be included among these “machines and systems”? After all, we represent and
process information, too!

But why constrain the algorithmic processes to be only those that concern “infor-
mation”? This may seem to be overly narrow: After all, the algorithmic processes that
undoubtedly underlie your use of Facebook on your laptop, tablet, or smartphone may
not seem to be related to “information” in any technical sense.

One answer might be found in an earlier (1963) statement by Forsythe (an expres-
sion of one of the “Great Insights” of CS that we will look at in §3.15.2.1.2 and in more
detail in Chapter 7):

3.8. CS STUDIES INFORMATION 121

Machine-held strings of binary digits can simulate a great many kinds of things, of
which numbers are just one kind. For example, they can simulate automobiles on
a freeway, chess pieces, electrons in a box, musical notes, Russian words, patterns
on a paper, human cells, colors, electrical circuits, and so on. (Forsythe, quoted in
Knuth 1972b, p. 722.)

Further Reading:
For similar observations, see Shannon 1953, esp. p. 1235; Hamming 1980b, pp. 7–8.

What’s common to all of the items on Forsythe’s list, encoded as (and thus simulated
by) bit strings, is the information contained in them.

Simon takes an interesting position on the importance of computers as information
processors (Simon, 1977, p. 1186): He discusses two “revolutions”: The first was the
Industrial Revolution, which “substitut[ed] . . . mechanical energy for the energy of
man [sic] and animal”. The second was the Information Revolution,, itself consisting
of three mini-revolutions, beginning with “written language”, then “the printed book”,
and now the computer. He then points out that “The computer is a device endowed with
powers of utmost generality for processing symbols.” So, in contrast to what Barwise
said, Simon claims that the computer is an information processor because information
is encoded in symbols.

But here the crucial question is: What is information? The term ‘information’ as
many people use it informally has many meanings: It could refer to Claude Shannon’s
mathematical theory of information (Shannon, 1948); or to Fred Dretske’s or Kenneth
Sayre’s philosophical theories of information (Dretske, 1981; Sayre, 1986); or to sev-
eral others.

But, if ‘information’ isn’t intended to refer to some specific theory, then it seems to
be merely a vague synonym for ‘data’ (which is, itself, a vague term!). As the philoso-
pher Michael Rescorla observes, “Lacking clarification [of the term ‘information’], the
description [of “computation as ‘information processing’ ”] is little more than an empty
slogan” (Rescorla, 2017, §6.1).

Further Reading:
For a survey of various senses of ‘information’ as it applies to computing, see Piccinini 2015,
Ch. 14. On the difficulty of defining ‘information’, see Allen 2017, p. 4239. And on how
Shannon’s definition differs from the novelist Jane Austen’s, see Sloman 2019a.

And the philosopher of computer science Gualtiero Piccinini has made the stronger
claim that computation is distinct from information processing in any sense of ‘infor-
mation’. He argues, for example, that semantic information requires representation,
but computation does not; so, computation is distinct from semantic information pro-
cessing (Piccinini, 2015, Ch. 14, §3).

It is important to decide what information is, but that would take us too far afield.
As I noted in §1.3, the philosophy of information is really a separate topic from (but
closely related to!) the philosophy of computer science.

122 CHAPTER 3. WHAT IS COMPUTER SCIENCE?

Question for the Reader:
Are there any kinds of algorithmic processes that manipulate something other than information?
If there aren’t, does that make this use of the term ‘information’ rather meaningless (as simply
applying to everything that computers manipulate)? On the other hand, if there are, does that
mean that defining CS as the study of information is incorrect? (In Chapter 10, we’ll look at
some algorithms that apparently manipulate something other than information, namely, recipes
that manipulate food.)

Further Reading:
Lots of work has been done on the nature of information and its relationship to CS, and on
the philosophy of information. See, especially, Machlup and Mansfield 1983; Pylyshyn 1992;
Denning 1995; Floridi 2002, 2003, 2004b,a, 2010, 2011; Dunn 2008, 2013; Allo 2010; Bajcsy
2010; Rosenbloom 2010; Scarantino and Piccinini 2010; Gleick 2011; Hilbert and López 2011;
Piccinini and Scarantino 2011; Denning and Bell 2012; Primiero 2016; and Dennett 2017, Ch. 6,
pp. 105–136, “What Is Information?”.

In particular, Dunn 2008 is a very readable survey of the nature of information and its role in
computer science, covering many of the same topics and issues as this book.

3.9 CS Is a Science
As we enter life, we all struggle to understand the world. Some of us continue this
struggle with dogged determination. These are the scientists. Some of them realize
that computation provides a privileged perspective to understand the world outside
and the one within. These are the computer scientists.
—Silvio Micali (2015, p. 52).

As we saw in §3.5, Newell, Perlis, & Simon argue that CS is a natural science (of
the phenomena surrounding computers). Others agree that it is a science, but with
interesting differences.

3.9.1 Computer Science Is a Formal (Mathematical) Science
Turing was born in 1912, and his undergraduate work at Cambridge during 1931–
1934 was primarily mathematical. Turing machines were judged as a mathemat-
ical interpretation of computational problem solving; and computing was inter-
preted as an entirely mathematical discipline.
—Peter Wegner (2010, p. 2, my italics)

The concept of computation is arguably the most dramatic advance in mathemati-
cal thinking of the past century.
—Dennis J. Frailey (2010, p. 2, my italics)

Before we investigate whether CS is a mathematical science, let’s ask another question:
Is mathematics even a science at all? As we saw in §2.6, sometimes a distinction is

3.9. CS IS A SCIENCE 123

made between, on the one hand, experimental disciplines that investigate the physical
world and, on the other, purely rational disciplines like mathematics. Let’s assume, for
the sake of argument, that mathematics is at least a special kind of science—a “rational”
or “formal” science—and let’s consider whether CS might be more like mathematics
than like empirical sciences.

Dijkstra (1974, p. 608) argues that “programming [i]s a mathematical activity”. He
doesn’t explicitly say that (all) of CS is a branch of mathematics, but it is quite clear
that large portions of CS—not only programming—can be considered to be branches
of math. As computer scientist Ray Turner puts it:

That computer science is somehow a mathematical activity was a view held by
many of the pioneers of the subject, especially those who were concerned with its
foundations. At face value it might mean that the actual activity of programming
is a mathematical one. . . . We explore the claim that programming languages are
(semantically) mathematical theories. (Turner, 2010, p. 1706)

And the theories of computability and of computational complexity are also clearly
mathematical—and no doubt other aspects of CS, too.

Here is Dijkstra’s argument for programming to be considered mathematical (Di-
jkstra, 1974, p. 608):

1. A discipline D is a mathematical discipline iff D’s assertions are:

(a) “unusually precise”,

(b) “general in the sense that they are applicable to a large (often infinite) class
of instances”, and

(c) capable of being reasoned about “with an unusually high confidence level”.

2. Programming satisfies “characteristics” (1a)–(1c).

3. ∴ Programming is a mathematical discipline.

Dijkstra does not argue for premise (1). He takes the “only if” half (mathematical
disciplines satisfy (1a)–(1c)) as something that “most of us can agree upon”. And he
implicitly justifies the “if” half (disciplines that satisfy (1a)–(1c) are mathematical) on
the grounds that the objects of mathematical investigation need not be restricted to such
usual suspects as sets, numbers, functions, shapes, etc., because what matters is how
objects are studied, not what they are. But the question of what math is (and whether
it is a science) are beyond our scope. (For more on the nature of mathematics, see the
references cited in §2.8.)

He argues for characteristic (a) of premise 2 (that programming is unusually pre-
cise) on the grounds that programming clearly requires extraordinary precision, that
programs can accept a wide range of inputs (and thus are general), and that contem-
porary program-verification techniques are based on logical reasoning. I can’t imagine
anyone seriously disagreeing with this! And we will look into program-verification
techniques in Chapter 16, so let’s assume that programming satisfies (1a) and (1c) for
now.

124 CHAPTER 3. WHAT IS COMPUTER SCIENCE?

That leaves characteristic (1b): Are programs really general in the same way that
mathematical assertions are? A typical general mathematical assertion might be some-
thing like this: For any triangle, the sum of its angles is 180 degrees. In other words,
the generality of mathematical assertions comes from their being universally quantified
(“for any x . . . ”). Is that the kind of generality that programs exhibit? A program (as
we will see more clearly in Chapter 7) computes a (mathematical) function. So, insofar
as mathematical functions are “general”, so are programs. Consider a simple mathe-
matical function: f (x) = 2x. If we universally quantify this, we get: ∀x[f (x) = 2x].
This is general in the same way that our assertion about triangles was. An algorithm
for computing f might look like this:13

Let x be of type integer;
begin

input(x);
f := 2∗ x;
output(f)

end.

The “preamble”, which specifies the type of input, plays the role of the universal quan-
tifier.14 Thus, the program does seem to be general in the same way that a mathematical
assertion is. So I think we can agree with Dijkstra about programming being mathe-
matical.

Further Reading:
For more of Dijskstra’s observations on mathematics and computer science, see Dijkstra 1986.
For a brief biography of him, see Markoff 2002.

Knuth, on the other hand, is quite clear that he does not view CS as a branch of
math, or vice versa (Knuth, 1974b, §2), primarily because math allows for infinite
searches and infinite sets, whereas CS presumably does not. But there is no reason in
principle why one couldn’t write an algorithm to perform such an infinite search. The
algorithm would never halt, but that is a physical limitation, not a theoretical one.

Mathematician Steven G. Krantz wrote that “Computer scientists, physicists, and
engineers frequently do not realize that the technical problems with which they strug-
gle on a daily basis are mathematics, pure and simple” (Krantz, 1984, p. 599). As a
premise for an argument to the conclusion that CS is nothing but mathematics, this is
obviously weak: After all, one could also conclude from it that physics and engineering
are nothing but mathematics, a conclusion that I doubt Krantz would accept and that I
am certain that no physcist or engineer would accept. (Krantz, 1984) offers a sketch of
an argument to the effect that CS is (just) a branch of mathematics. He doesn’t really
say that; rather, his concern is that CS as an academic discipline is young and unlikely
to last as long as math: “Computer Science did not exist twenty-five years ago [that is,
in 1959]; will it exist twenty-five years from now? [That is, in 2009]” (Krantz, 1984,

13The notation ‘x := y’ means “assign the value y to variable (or storage unit) x”.
14Technically, it is a “restricted” universal quantifier, because it specifies the type of the variable. See, for

example, https://www.encyclopediaofmath.org/index.php/Restricted quantifier

3.9. CS IS A SCIENCE 125

p. 600). Now, as an academic department in a university, CS probably did not exist in
1959, although, arguably, it did two years later (Knuth, 1972b, p. 722); it certainly con-
tinued to exist, quite strongly, in 2009. So, if anything, CS is becoming much stronger
as an academic discipline, not weaker. (But recall the history of microscopy!)

Let’s see if we can strengthen Krantz’s premise: Suppose that all of the problems
that a discipline D1 (such as CS) is concerned with come from discipline D2 (such as
math). Does it follow that D1 is nothing but D2? (Does it follow that CS is nothing but
math?) Here’s an analogy: Suppose that you want to express some literary idea; you
could write a story or a poem. Does it follow that prose fiction and poetry are the same
thing? Probably not; rather, prose and poetry are two different ways of solving the same
problem (in our example, the problem of expressing a certain literary idea). Similarly,
even if both CS and mathematics study the same problems, they do so in different
ways: Mathematicians prove (declarative) theorems; computer scientists express their
solutions algorithmically.

So, perhaps a better contrast between CS and mathematics is that mathematics
makes declarative assertions, whereas CS is concerned with procedural statements.
Loui (1987, p. 177) makes a similar point (quoting Abelson & Sussman’s introduc-
tory CS text) in arguing that CS is not mathematics. Knuth (1974a, §3) also sug-
gests this. (We’ll come back to this, including the quote from Abelson & Sussman, in
§3.14.4.) But is that distinction enough to show that CS is not math? After all, Eu-
clidean geometry—which is clearly math—is procedural, not declarative. (We discuss
this in further detail in §3.14.4.)

There is yet another way to think about the relationship between math and CS:

I think it is generally agreed that mathematicians have somewhat different thought
processes from physicists, who have somewhat different thought processes from
chemists, who have somewhat different thought processes from biologists. Sim-
ilarly, the respective “mentalities” of lawyers, poets, playwrights, historians, lin-
guists, farmers, and so on, seem to be unique. Each of these groups can probably
recognize that other types of people have a different approach to knowledge; and
it seems likely that a person gravitates to a particular kind of occupation according
to the mode of thought that he or she grew up with, whenever a choice is possible.
C.P. Snow wrote a famous book about “two cultures,” scientific vs. humanistic, but
in fact there seem to be many more than two. (Knuth, 1985, p. 171)

There is a saying that, to a hammer, everything looks like a nail.15 This can be taken
two ways: as a warning not to look at things from only one point of view, or as an
observation to the effect that everyone has their own point of view. I take Knuth’s
remarks along the latter lines. And, of course, his eventual observation is going to be
that computer scientists look at the world algorithmically. Given the wide range of
different points of view that he mentions, one conclusion could be that, just as students
are encouraged to study many of those subjects, so as to see the world from those
points of view, so we should add algorithmic thinking—computer science—to the mix,
because of its unique point of view.

15http://en.wikipedia.org/wiki/Law of the instrument

126 CHAPTER 3. WHAT IS COMPUTER SCIENCE?

Comparing mathematical thinking to algorithmic thinking, Knuth (1985, p. 181)
reveals several areas of overlap and two areas that differentiate the latter from the for-
mer. The areas of overlap include manipulating formulas, representing reality, problem
solving by reduction to simpler problems (a form of recursion, which, as we’ll see in
later chapters, is at the heart of CS), abstract reasoning, dealing with information struc-
tures, and, of course, dealing with algorithms (presumably in a narrower sense). The
two areas unique to algorithmic thinking are the “notion of ‘complexity’ or economy of
operation . . . ” (presumably, what is studied under the heading of “computational com-
plexity” (Loui, 1996; Aaronson, 2013b)) and—of most significance—“the dynamic
notion of the state of a process: ‘How did I get here? What is true now? What should
happen next if I’m going to get to the end?’ Changing states of affairs, or snapshots of
a computation, seem to be intimately related to algorithms and algorithmic thinking”.
But exactly what constitutes “algorithmic thinking” will be discussed in more detail in
§3.14.5, below.

Further Reading:
Rosenbloom 2010 offers an interesting twist on the relationship of math to CS: Arguing that
“computing amounts to a great scientific domain, on par with the physical, life, and social sci-
ences”, he “subsum[es] mathematics within computing” (p. 2). In other words, instead of CS
being a branch of math or being a mathematical science, Rosenbloom sees math as being a
branch of CS!

3.9.2 CS Is the Science of Intellectual Processes
One of the founders of AI, John McCarthy, said:

Computation is sure to become one of the most important of the sciences. This
is because it is the science of how machines can be made to carry out intellectual
processes. (McCarthy, 1963, p. 1, my italics)

First, note that he thinks that it is a science, presumably just like other sciences (else
it wouldn’t be destined “to become one of the most important of” them). Second,
the nature of this science is akin to the view that CS is the study of what is com-
putable: “Machines can be made to carry out intellectual processes” if those pro-
cesses are computable. Why “intellectual processes”? Well, surely mathematical
processes are intellectual, and to the extent that other intellectual processes are ex-
pressible mathematically—for example, by being codable into symbolic notation (and,
ultimately, into binary notation)—those other intellectual processes are mathematical,
hence potentially computable. Why is it a science? McCarthy doesn’t say, but I would
guess that it is a science in the same sense that mathematics is.

3.9. CS IS A SCIENCE 127

3.9.3 CS Is a Natural Science (of Procedures)
So does nature compute, and does computation actually predate its invention, or
rather discovery, by human beings? If it is the case, then this would actually lend
credence to the claim that Computer Science is actually a science and not just and
only a branch of engineering.
—Erol Gelenbe (2011, p. 1)

Then there are those who agree that CS is a natural science, but of neither computers,
algorithms, nor information: Stuart C. Shapiro agrees with Newell, Perlis, & Simon
that CS is a science, but he differs on what it is a science of, siding more with Knuth,
but not quite:

Computer Science is a natural science that studies procedures.
(Shapiro, 2001, my boldface)

The computational linguist Martin Kay agrees: “[C]omputational linguists . . . look
to computer science for insight into their problems. If communication is . . . about
building structures by remote control in the heads of others, then it is all about process,
and computer science is the science of process, conceived in its most fundamental
and abstract way” (Kay, 2010, p. 2; italics in original; my boldface).

For Shapiro, CS is a science, which, like any science, has both theoreticians (who
study the limitations on, and kinds of, possible procedures) as well as experimental-
ists. And, as Newell and Simon (1976) suggest in their discussion of empirical results
(see §3.9.5, below), there are “fundamental principles” of CS as a science. Newell
& Simon cite two: (1) the Physical Symbol System Hypothesis (their theory about
the nature of symbols in the context of computers) and (2) Heuristic Search (which
is a problem-solving method). Shapiro cites two others: (3) the Church-Turing Com-
putability Thesis to the effect that any algorithm can be expressed as a Turing Machine
program and (4) the Böhm-Jacopini Theorem that codifies “structured programming”.
(We will discuss these in Chapters 7, 8, and 10.)

And, although procedures are not natural objects, they are measurable natural phe-
nomena, in the same way that events are not (natural) “objects” but are (natural) “phe-
nomena”. Several people have noted the existence of procedures in nature. Dennett
has . . .

. . . argued that natural selection is an algorithmic process, a collection of sort-
ing algorithms that are themselves composed of generate-and-test algorithms that
exploit randomness . . . in the generation phase, and some sort of mindless quality-
control testing phase, with the winners advancing in the tournament by having
more offspring. (Dennett 2017, p. 43; see also Dennett 1995; Gelenbe 2011, p. 4)

And Denning observed that “Computer science . . . is the science of information pro-
cesses and their interactions with the world”, adding that “There are many natural
information processes” (Denning, 2005, p. 27, my emphasis). Denning (2007) cites
examples of the “discovery” of “information processes in the deep structures of many
fields”: biology, quantum physics, economics, management science, and even the arts
and humanities, concluding that “computing is now a natural science”, not (or no

128 CHAPTER 3. WHAT IS COMPUTER SCIENCE?

longer?) “a science of the artificial”. For example, there can be algorithmic (that is,
computational) theories or models of biological phenomena such as cells, plants, and
evolution.

Further Reading:
On evolution as an algorithm, see Dennett 1995, especially Ch. 1, §§4–5 (and §17.7.2 later in
this book). For more on natural computation, see Easton 2006; Gelenbe 2011; Mitchell 2011;
Denning 2013b, p. 37; Pollan 2013, pp. 104–105; Covert 2014; Gordon 2016; Livnat and Pa-
padimitriou 2016.

For Shapiro, procedures include, but are not limited to, algorithms. Whereas algo-
rithms are typically considered to be precise, to halt, and to produce correct solutions,
the more general notion allows for variations on these themes:

(1) Procedures (as opposed to algorithms) may be imprecise, such as in a recipe.
Does computer science really study things like recipes? According to Shapiro (personal
communication), the answer is ‘yes’: An education in CS should help you write a better
cookbook, because it will help you understand the nature of procedures better!

Further Reading:
However, Denning (2017, p. 38) says, “There is no evidence to support this claim.” Sheraton
1981 discusses the difficulties of writing recipes; Moskin 2018 notes that it was the cookbook
writer Fannie Farmer who was “the first . . . to insist that scientific methods and precise measure-
ments” should be used. We’ll return to recipes many times again in this book.

(2) Procedures need not halt: A procedure might go into an infinite loop either by
accident or, more importantly, on purpose, as in an operating system or a program that
computes the infinite decimal expansion of π.

(3) Nor do they have to produce a correct solution: A chess procedure does not
always play optimally. (We will return to these issues in §3.15.2.3, below, and in Chap-
ters 7 and 11.)

Moreover, Shapiro says that computer science is not just concerned with procedures
that manipulate abstract information, but also with procedures that are linked to sensors
and effectors that allow computers to “sense and operate on the world and objects in it”
(p. 3). The philosopher and AI researcher Aaron Sloman makes a similar point when
he says that one of the “primary features” of computers (and of brains) is “Coupling
to environment via physical transducers” (Sloman, 2002, §5, #F6, pp. 17–18). This
allows for “perceptual processes that control or modify actions” and “is how internal
information manipulation often leads to external behaviour”. (We’ll return to this idea
when we discuss interactive computation (§11.4.3) and the relation of computers to the
world (§17.6.1).)

Procedures are, or could be, carried out in the real world by physical agents, which
could be biological, mechanical, electronic, etc. Where do computers come in? Ac-
cording to Shapiro, a computer is simply “a general-purpose procedure-following ma-
chine”. (But does a computer “follow” a procedure, or merely “execute” it? For some
discussion of this, see Dennett 2017, p. 70; we’ll come back to this in §12.4.4.1.2.2.)

3.9. CS IS A SCIENCE 129

So, Shapiro’s view seems to be a combination of Knuth’s and Newell, Perlis, &
Simon’s: CS is the natural science of procedures and surrounding phenomena such as
computers.

Further Reading:
For another view of computer science as the study of processes, see Frailey 2010, especially
p. 4.

3.9.4 CS Is a Natural Science of the Artificial
In 1967, Simon joined with Newell and Perlis to argue that CS was the science of (the
phenomena surrounding) computers. Two years later, in his classic book The Sciences
of the Artificial, he said that it was a natural science of the artificial (Simon, 1996b, 3rd
edition, esp. Ch. 1 (“Understanding the Natural and Artificial Worlds”), pp. 1–24).

Here is Simon’s argument that CS is a science of the artificial:

1. “A natural science is a body of knowledge about some class of things . . . in the
world” (Simon, 1996b, p. 1).

• Presumably, a natural science of X is a body of knowledge about Xs in the
world. Note that he does not say that the Xs need to be “natural”! This
premise is closely related to Newell, Perlis, & Simon’s first premise, which
we discussed in §3.5.1.

2. “The central task of a natural science is . . . to show that complexity, correctly
viewed, is only a mask for simplicity; to find pattern hidden in apparent chaos”
(Simon, 1996b, p. 1)16

3. “The world we live in today is much more a[n] . . . artificial world than it is
a natural world. Almost every element in our environment shows evidence of
human artifice” (Simon, 1996b, p. 2).

• Again, this allows artifacts to be among the values of X . His justification
for this premise consists of examples: the use of artificial heating and air-
conditioning to maintain temperature, “[a] forest may be a phenomenon of
nature; a farm certainly is not. . . . A plowed field is no more part of nature
than an asphalted street—and no less”, etc. (Simon, 1996b, pp. 2–3, my
emphasis). All artifacts, he also notes, are subject to natural laws (gravity,
etc.) (Simon, 1996b, p. 2).

Now, Simon doesn’t, in his first chapter, explicitly draw the conclusion that there can be
sciences of artifacts or, more to the point, that CS is an “artificial science” of computers
because computers are symbol systems (Simon, 1996b, pp. 17ff) (see also (Newell
and Simon, 1976)) and symbols are “strings of artifacts” (Simon, 1996b, p. 2). For
one thing, that’s what his whole book is designed to argue. But he doesn’t have to
draw that conclusion explicitly: Even if it doesn’t follow from the first premise that

16Compare the opening epigraph for this chapter by Nakra.

130 CHAPTER 3. WHAT IS COMPUTER SCIENCE?

CS can be considered a natural science, it does follows from these premises that any
artifacts that impinge upon, or are produced by, nature or natural objects can be studied
scientifically (in the manner of the second premise). It’s almost as if he really wants to
say that artificial sciences are natural sciences.

3.9.5 Computer Science Is an Empirical Study

A few years after the first edition of his book, Simon, along with Newell, gave yet an-
other characterization. In a classic paper from 1976, Newell and Simon updated their
earlier characterization. Instead of saying that CS is the science of computers and al-
gorithms, they now said that it is the “empirical” “study of the phenomena surrounding
computers”, “not just the hardware, but the programmed, living machine” (Newell and
Simon, 1976, pp. 113, 114; my italics).

The reason that they say that CS is not an “experimental” science is that it doesn’t
always strictly follow the scientific (or “experimental”) method. (In §4.8, we’ll talk
more about what that method is. For an opposing view that CS is an experimental
science, see Plaice 1995.) CS is, like experimental sciences, empirical—because pro-
grams running on computers are experiments, though not necessarily like experiments
in other experimental sciences. For example, often just one experiment will suffice
to answer a question in CS, whereas in other sciences, numerous experiments have to
be run. Another difference between computer “science” and other experimental sci-
ences is that, in CS, the chief objects of study (the computers and the progams) are not
“black boxes” (Newell and Simon, 1976, p. 114); that is, most natural phenomena are
things whose internal workings we cannot see directly but must infer from experiments
we perform on them. But we know exactly how and why computer programs behave
as they do (they are “glass boxes”, so to speak), because we (not nature) designed and
built the computers and the programs. We can understand them in a way that we cannot
understand more “natural” things.

However, although this is the case for “classical” computer programs, it is not the
case for artificial-neural-network programs: “A neural network, however, was a black
box” (Lewis-Kraus, 2016, §4). (We’ll return to this in §§3.12 and 18.8.2.)

3.9. CS IS A SCIENCE 131

Further Reading:
Rosenblueth and Wiener 1945, pp. 318–319, talk about “closed-box” and “open-box” problems,
surely an early version of the notion of “black” and “glass” “boxes”. For more on the history of
these terms, see https://en.wikipedia.org/wiki/Black box.

On black boxes, programs as experiments, and their relationship to knowing-how and knowing-
that in the context of neural-network algorithms, see Knight 2017; Metz 2017; Mukherjee 2017,
2018:

Here is the strange rub of such a deep learning system: It learns, but it cannot
tell us why it has learned; it assigns probabilities, but it cannot easily express the
reasoning behind the assignment. Like a child who learns to ride a bicycle by
trial and error and, asked to articulate the rules that enable bicycle riding, simply
shrugs her shoulders and sails away, the algorithm looks vacantly at us when we
ask, “Why?” It is, like death, another black box. (Mukherjee, 2018)

The computer scientist Joseph Weizenbaum (1976, pp. 40–41) considered this to be a fatal flaw:

Indeed, we are often quite distressed when a repairman returns a machine to us
with the words, “I don’t know what was wrong with it. I just jiggled it, and now
it’s working fine.” He [sic] has confessed that he failed to come to understand the
law of the broken machine and we infer that he cannot now know, and neither can
we or anyone, the law of the “repaired” machine. If we depend on that machine,
we have become servants of a law we cannot know, hence of a capricious law. And
that is the source of our distress.

Recent work in cognitive neuroscience suggests that “recording from neurons at the highest stage
of the visual system . . . [shows] that there’s no black box”, and that this might apply to compu-
tational neural networks (Wade, 2017).

Neural-network CS has been likened to something other than “real” science, namely, alchemy!
See a debate on this at https://www.reddit.com/r/MachineLearning/comments/7i1uer/n yann
lecun response to ali rahimis nips lecture/. For discussion of this, see Fortnow 2018a, which
includes the following joke:

Q: Why did the neural net cross the road?
A: Who cares as long as it got to the other side.

For discussions of attempts to get such systems to be able to “account” for themselves, see Lipton
2016; Kuang 2017; Metz 2018.

Sometimes, a distinction is made between a program and a process: A program
might be a static piece of text or the static way that a computer is hardwired—a tex-
tual or physical implementation of an algorithm. A process is a dynamic entity—the
program in the “process” of actually being executed by the computer.

Further Reading:
We’ll look at some of these distinctions in more detail in Chapter 12. On the program-process
distinction, see Eden and Turner 2007b, §2.2; Denning 2010, p. 4; and Frailey 2010, p. 2.
Manovich 2013, p. B11, uses the term ‘performance’ instead of ‘process’, “because what we
are experiencing is constructed by software in real time. . . . we are engaging with the dynamic
outputs of computation.”

132 CHAPTER 3. WHAT IS COMPUTER SCIENCE?

By “programmed, living machines”, Newell & Simon meant computers that are
actually running programs—not just the static machines sitting there waiting for some-
one to use them, nor the static programs just sitting there on a piece of paper waiting
for someone to load them into the computer, nor the algorithms just sitting there in
someone’s mind waiting for someone to express them in a programming language—
but “processes” that are actually running on a computer.

To study “programmed living machines”, we certainly do need to study the algo-
rithms that they are executing. After all, we need to know what they are doing; that
is, it seems to be necessary to know what algorithm a computer is executing. On the
other hand, in order to study an algorithm, it does not seem to be necessary to have
a computer around that can execute it or to study the computer that is running it. It
can be helpful and valuable to study the computer and to study the algorithm actually
being run on the computer, but the mathematical study of algorithms and their compu-
tational complexity doesn’t need the computer. That is, the algorithm can be studied
as a mathematical object, using only mathematical techniques, without necessarily ex-
ecuting it. It may be very much more convenient, and even useful, to have a computer
handy, as Knuth notes, but it does not seem to be necessary. If that’s so, then it would
seem that algorithms are really the essential object of study of CS: Both views require
algorithms, but only one requires computers.

But is it really the case that you cannot study computers without studying algo-
rithms? Compare the study of computers with neuroscience: the study of brains and
the nervous system. Although neuroscience studies both the anatomy of the brain (its
static, physical structure) and its physiology (its dynamic activity), it generally treats
the brain as a “black box”: Its parts are typically named or described, not in terms of
what they do (their function), but in terms of where they are located (their structure).

Further Reading: On the function-structure distinction, see Bechtel and Abrahamsen 2005, §3.

For example, the “frontal lobe” is so-called because it is in the front of the brain; its
functions include memory, planning, and motivation. The “temporal lobe” is so-called
because it is near the temples on your head; its functions include processing sensory
input. And the “occipital lobe” is so-called because it is near the occipital bone (itself
so-called because it is “against” (ob-) the head (caput)); its functions include visual
processing.

It is as if a person from the 19th century found what we know to be a laptop com-
puter lying in the desert and tried to figure out what it was, how it worked, and what it
did, with no documentation.

Further Reading:
See Weizenbaum 1976, Ch. 5, for the source of this kind of thought experiment. “. . . Stone-
henge, the world’s largest undocumented computer” (Brooks, 1975, p. 163) and the Antikythera
Mechanism (§6.5.1) are real-life examples.

They might identify certain physical features: a keyboard, a screen, internal wiring
(and, if they were from the 19th century, they might describe these as buttons, glass,

3.10. CS IS ENGINEERING 133

and strings), and so on. More likely, they would describe the device as we do the brain,
in terms of the locations of the parts: an array of button-like objects on the lower half,
a glass rectangle on the upper half, and so on.

But without knowledge of what the entire system and each of its parts was sup-
posed to do—what their functions were—they would be stymied. Yet this seems to be
what neuroscientists study. Of course, modern neuroscience, especially modern cog-
nitive neuroscience, well understands that it cannot fully understand the brain without
understanding its processing (its algorithms, if indeed it executes algorithms) (Dennett,
2017, p. 341). Only recently have new maps of the brain begun to identify its regions
functionally, that is, in terms of what the regions do, rather than where they are located
(Zimmer, 2016). But this is a topic for another branch of philosophy: the philosophy
of cognitive science.

Further Reading:
On the philosophy of cognitive science, relevant readings include Fodor 1968; Gazzaniga 2010;
Piccinini 2010a; Rapaport 2012b.

So it seems to be necessary to study algorithms in order to fully understand computers.

Further Reading on Whether CS Is a Science or Not:
Kukla 1989 argues that at least one branch of CS—Artificial Intelligence—is not an empirical
science, but an a priori science or discipline like mathematics. For the opposite point of view,
see Burkholder 1999. Cerf 2012b argues that, even if CS might once have focused on computing
machines, it should now be more focused on “predict[ing] likely outcomes based on models[,
which] is fundamental to the most central notions of the scientific method”. Hsu 2013 argues
that “there are no clear boundaries” between branches of knowledge. Tedre and Moisseinen
2014 is a survey of the nature of experiments in science, and whether CS is experimental in
nature. Tedre 2015 is an investigation of the philosophical issues around the nature and history
of computer science, examining whether it is a science, and, if so, what kind of science it might
be. See also Denning 1980; Naur 1995; Feitelson 2007; Abrahams and Lee 2013; Ensmenger
2011b

3.10 CS Is Engineering

We have a number of open questions: Insofar as CS studies either algorithms or com-
puters (or both), we need to look further into what, exactly, algorithms are (and how
they are related to the more general notion of “procedure”), what kinds of things they
manipulate (information? symbols? real-world entities?), what computers are, and
how computers and algorithms are related to each other. All of this in due time. (These
questions are, after all, the focus of the rest of this book!)

Another question that we still need to explore more closely is whether CS is a
science or not. Don’t forget, we are calling the subject ‘computer science’ only for
convenience; it is not a tautology to say that computer science is a science nor is it
a self-contradiction to say that computer science is not a science. We won’t be able

134 CHAPTER 3. WHAT IS COMPUTER SCIENCE?

to reach a final answer to this question at least until Chapter 4, where we look more
closely at what science is.

We have just looked at some reasons for classifying CS as a science—either a
natural science, an “empirical” inquiry (a “science of the artificial”), or a formal science
(akin to math). An alternative is that CS is not a science at all, but a kind of engineering.
For now, we will assume that engineering is, strictly speaking, something different from
science. Again, a final answer to this will have to wait until Chapter 5, where we look
more closely at what engineering is.

Frederick P. Brooks, Jr.—another Turing Award winner, perhaps best known as
a software engineer—says that CS isn’t science because, according to him, it is not
concerned with the “discovery of facts and laws” (Brooks, 1996). Rather, he argues, CS
is “an engineering discipline”: Computer scientists are “toolmakers”, “concerned with
making things”: with physical tools such as computers and with abstract tools such as
algorithms, programs, and software systems for others to use. He uses J.R.R. Tolkien’s
phrase the “gift of subcreation” to describe this concern. CS, he says, is concerned with
the usefulness and efficiency of the tools it makes; it is not, he says, concerned with
newness for its own sake (as scientists are). And the purpose of the tools is to enable
us to manage complexity. So, “the discipline we call ‘computer science’ ” is really
the “synthetic”—that is, the engineering—discipline that is concerned with computers,
whereas science is “analytic”. (I’ll explain this “analytic-synthetic” distinction in a
moment.)

Here is Brooks’s argument:

1. “[A] science is concerned with the discovery of facts and laws.”
(Brooks, 1996, p. 61, col. 2)

2. “[T]he scientist builds in order to study; the engineer studies in order to build.
(Brooks, 1996, p. 62, col. 1)17

3. The purpose of engineering is to build things.

4. Computer scientists “are concerned with making things, be they computers,
algorithms, or software systems”. (Brooks, 1996, p. 62, col. 1)

5. ∴ “the discipline we call ‘computer science’ is in fact not a science but a
synthetic, an engineering, discipline.” (Brooks, 1996, p. 62, col. 1)

The accuracy of the first premise’s notion of what science is will be our concern in
Chapter 4. By itself, however, Brooks’s first premise doesn’t necessarily rule out CS as
a science. First, computer scientists who study the mathematical theory of computation
certainly seem to be studying scientific laws. Second, computer scientists like Newell,
Simon, and Shapiro have pointed out that Heuristic Search, the Physical Symbol Sys-
tem Hypothesis, the Computability Thesis, or the Böhm-Jacopini theorem certainly
seem to be scientific theories, facts, or laws. And “Computer programming is an exact
science in that all the properties of a program and all the consequences of executing it
in any given environment can, in principle, be found out from the text of the program

17Petroski 2008a argues that all scientists are sometimes engineers and all engineers are sometimes scien-
tists.

3.10. CS IS ENGINEERING 135

itself by means of purely deductive reasoning” (Hoare, 1969, p. 576, my italics). (We’ll
look into this claim in more detail in Chapter 16.) So, it certainly seems that at least
part of CS is a science. (We’ll return to this in §3.13.) We’ll assume the truth of the
first premise for the sake of the argument (revisiting it in the next chapter).

The point of the second premise is this: If a scientist’s goal is to discover facts and
laws—that is, to study rather than to build—then anything built by the scientist is only
built for that ultimate purpose. But building is the ultimate goal of engineering, and
any studying (or discovery of facts and laws) that an engineer does along the way to
building something is merely done for that ultimate purpose. For science, building is
a side-effect of studying; for engineering, studying is a side-effect of building. Both
scientists and engineers, according to Brooks, build and study, but each focuses more
on one than the other. (Does this remind you of the algorithms-vs.-computers dispute
earlier?) Kay (see §3.9.3, above) considers computational linguistics to be scientific,
whereas natural-language processing is engineering: “scientists try to understand their
subject mainly for its own sake, though they are gratified when some of what they do
proves useful. Engineers seek only the understanding needed to reach practical ends”
(Kay, 2010, p. 1).

The second premise supports the next premise, which Brooks does not explicitly
state. It defines engineering as a discipline whose goal is to build things, that is, a
“synthetic”—as opposed to an “analytic”—discipline. To analyze is to pull apart; to
synthesize is to put together. “We speak of engineering as concerned with ‘synthesis,’
while science is concerned with ‘analysis’ ” (Simon, 1996b, p. 4). “Where physical
science is commonly regarded as an analytic discipline that aims to find laws that gen-
erate or explain observed phenomena, CS is predominantly (though not exclusively)
synthetic, in that formalisms and algorithms are created in order to support specific
desired behaviors” (Hendler et al., 2008, p. 63). Similarly, Arden (1980, pp. 6–7) ar-
gues that engineering is concerned with “implementation, rather than understanding”,
which “is the best distinction” between engineering and science. And implementation
is surely on the “building” side of the spectrum (as we’ll see in more detail in Chap-
ter 14). Because of multiple implementations of a single theory, questions of efficiency
come to the fore in engineering, and “much of computer science is concerned with
. . . efficiency”. But surely computational-complexity theory—the area of CS that is
concerned with mathematical analyses of computational efficiency—is on the mathe-
matical or scientific side of the border between science and engineering. Whether or
not Brooks’s notion of engineering is accurate will be our focus in Chapter 5. So, let’s
assume the truth of the second and third premises for the sake of the argument.

Clearly, if the fourth premise is true, then the conclusion will follow validly (or,
at least, it will follow that computer scientists belong on the engineering side of the
science–engineering, or studying–building, spectrum). So, is it the case that computer
scientists are (only? principally?) concerned with building or “making things”? And,
if so, what kind of things?

Interestingly, Brooks seems to suggest that computer scientists don’t build com-
puters, even if that’s what he says in the conclusion of his argument! Here’s why:
He says that “Even when we build a computer the computer scientist designs only the
abstract properties—its architecture and implementation. Electrical, mechanical, and
refrigeration engineers design the realization” (Brooks, 1996, p. 62, col. 1). I think this

136 CHAPTER 3. WHAT IS COMPUTER SCIENCE?

passage is a bit confused,18 but it makes an interesting point: Brooks seems to be say-
ing that computer scientists only design abstractions, whereas other (real?) engineers
implement them in reality. This is reminiscent of the distinction between the relatively
abstract specifications for an algorithm (which typically lack detail) and its relatively
concrete (and highly detailed) implementation in a computer program (we’ll look into
this in Chapter 10). Brooks (following Zemanek 1971) calls CS “the engineering of
abstract objects”: If engineering is a discipline that builds, then what CS-considered-as-
engineering builds is implemented abstractions (see Chapter 14 for further discussion).

In 1977, when he first wrote these words (see Brooks 1996, p. 61, col. 1, very few
people other than scientists, engineers, business people, and a few eduational institu-
tions had access to computing machines (typically, large mainframes or only slightly
smaller “minicomputers”)—certainly, there were no personal computers (sometimes
these used to be called “microcomputers”), or laptops, tablets, or smartphones. So,
for Brooks, what computer scientists build, unlike what other engineers build, are not
things for direct human benefit but, rather, things that in turn can be used to build such
directly beneficial things. Put more simply, his answer to the question “What is a com-
puter?” seems to be: A computer is a tool (and a computer scientist, who makes such
tools, is a “toolsmith”) (Brooks, 1996, p. 62, col. 1).

But much of what he says against CS being considered a science smacks of a dif-
ferent battle, one between science and engineering, with scientists belittling engineers.
Brooks takes the opposite position: “as we honor the more mathematical, abstract, and
‘scientific’ parts of our subject more, and the practical parts less, we misdirect young
and brilliant minds away from a body of challenging and important problems that are
our peculiar domain, depriving the problems of the powerful attacks they deserve”
(Brooks, 1996, p. 62, col. 2).

(We’ll come back to these issues in §5.10, question 2.)

3.11 Science xor Engineering?
So, is CS a science of some kind (natural or otherwise), or is it not a science at all,
but some kind of engineering? The term ‘xor’ in the title of this section refers to the
“exclusive-or” of propositional logic: So, the title of this section means “science or
engineering, but not both?”. Here, we would be wise to listen to two skeptics about the
exclusivity of this choice:

Let’s remember that there is only one nature—the division into science and engi-
neering, and subdivision into physics, chemistry, civil and electrical, is a human
imposition, not a natural one. Indeed, the division is a human failure; it reflects our
limited capacity to comprehend the whole. That failure impedes our progress; it
builds walls just where the most interesting nuggets of knowledge may lie. (Wulf,
1995, p. 56; my italics)

Debates about whether [CS is] science or engineering can . . . be counterproduc-
tive, since we clearly are both, neither, and more (Freeman, 1995, p. 27, my
italics)

18You’ll understand why I say that when we look into the notion of implementation, in Ch. 14. Briefly,
I think the “abstract properties” are the design for the realization; the electrical (etc.) engineers build the
realization (they don’t design it).

3.12. CS AS “BOTH” 137

3.12 CS as “Both”
[L]ike electricity, these phenomena [surrounding computers] belong both to engi-
neering and to science.
—Donald E. Knuth (1974b, p. 324)

Computer science is both a scientific discipline and an engineering discipline. . . .
The boundary [between “the division of computer science into theory” (that is,
science) “and practice” (that is, engineering)] is a fuzzy one.
—Paul Abrahams (1987, p. 472)

Could CS be both science and engineering—perhaps the science of computation
and the engineering of computers—that is, the study of the “programmed living ma-
chine”?

It certainly makes no sense to have a computer without a program: “A computer
without a program is just a box with parts in it” (qFiasco, 2018, p. 38). It doesn’t matter
whether the program is hardwired (in the way that a Turing Machine is; see §8.13); that
is, it doesn’t matter whether the computer is a special-purpose machine that can only do
one task. Nor does it matter whether the program is a piece of software (like a program
inscribed on a universal Turing Machine’s tape; see §8.14); that is, it doesn’t matter
whether the computer is a general-purpose machine that can be loaded with different
“apps” allowing the same machine to do many different things.

Without a program, a computer wouldn’t be able to do anything.
But it also makes very little sense to have a program without a computer to run

it on. Yes, you can study the program mathematically; for example, you can try to
verify it (see Chapter 16), and you can study its computational complexity (Loui, 1996;
Aaronson, 2013b):

The ascendancy of logical abstraction over concrete realization has ever since been
a guiding principle in computer science, which has kept itself organizationally
almost entirely separate from electrical engineering. The reason it has been able to
do this is that computation is primarily a logical concept, and only secondarily an
engineering one. To compute is to engage in formal reasoning, according to certain
formal symbolic rules, and it makes no logical difference how the formulas are
physically represented, or how the logical transformations of them are physically
realized. (Robinson, 1994, p. 12, my italics)

But what good would it be (for that matter, what fun would it be) to have, say, a program
for passing the Turing Test that never had an opportunity to pass it? Hamming said:

Without the [computing] machine almost all of what we [computer scientists] do
would become idle speculation, hardly different from that of the notorious Scholas-
tics of the Middle Ages. (Hamming, 1968, p. 5)

So, computers require programs in order for the computer to do anything, and
programs require computers in order for the program to do anything.

138 CHAPTER 3. WHAT IS COMPUTER SCIENCE?

This is reminiscent of Immanuel Kant’s slogan that

Thoughts without content are empty, intuitions without concepts are blind. . . . The
understanding can intuit nothing, the senses can think nothing. Only through their
union can knowledge arise. (Kant, 1781, p. 93 (A51/B75))

Philosophical Digression and Further Reading:
In more modern terms, Kant can be understood as saying that the part of the brain that thinks
doesn’t sense the external world (that is, thoughts have to be thoughts about something; they have
to have “content”), and the part of the brain (or nervous system) that senses (“intuits”) needs or-
ganizing principles (“concepts”) in order to think about what is sensed. “The understanding”
by itself doesn’t sense the external world; the senses by themselves don’t think. Only through
the “union” of rational thought and empirical sensation “can knowledge arise”. This was Kant’s
way of resolving the opposing views of the nature of knowledge due to the rationalist philoso-
phers (Descartes, Leibiniz, and Spinoza) and the empiricist philosophers (Locke, Berkeley, and
Hume). (Recall our discussion in §2.6, of the different kinds of “rationality”.) For an informal
presentation of some of Kant’s ideas, see Cannon 2013. For a more philosophically sophisticated
introduction, see Rohlf 2010 and other articles on Kant in the online Stanford Encyclopedia of
Philosophy at http://plato.stanford.edu/search/searcher.py?query=kant. For more on what Kant
meant by ‘intuition’, see http://www.askphilosophers.org/question/204. We’ll return to Kant in
§§4.5.1 and 17.3.2.3.

Similarly, we can say: “Computers without programs are empty; programs without
computers are blind. Only through the union of a computer with a program can com-
putational processing arise.”

Historical and Literary Digression:
A literary version of ‘computers without programs are empty” is the legend of the Golem, a
purely material statue that comes to life when certain Hebrew words are inscribed on it (https://
www.jewishvirtuallibrary.org/the-golem). As Ted Chiang’s (2002) story “Seventy-Two Letters”
suggests, the linguistic text can be thought of as the computer program for a robot.

A good example of this is the need for computers to test certain “deep learning”
algorithms that Google used in their Translate software: Without enough computing
power, there was no way to prove that their connectionist programs would work as
advertised (Lewis-Kraus, 2016, §2). So, CS must be both a science (that studies algo-
rithms) and an engineering discipline (that builds computers).

But we need not be concerned with the two fighting words ‘science’ and ‘engineer-
ing’, because, fortunately, there are two very convenient terms that encompass both:
‘scientific’ and ‘STEM’. Surely, not only natural science, but also engineering, not
to mention “artificial science”, “empirical studies”, many of the social sciences, and
mathematics are all scientific (as opposed, say, to the arts and humanities). And, lately,
both the National Science Foundation and the popular press have taken to referring to
“STEM” disciplines—science, technology, engineering, and mathematics—precisely

3.13. CS AS “MORE” 139

in order to have a single term to emphasize their similarities and interdependence, and
to avoid having to try to spell out differences among them.19

Turing Award winner Vinton G. Cerf (2012a) says, not that CS is a science, but
that “there really is science to be found in computer science” (my emphasis). And,
presumably, there is engineering to be found in it, and mathematics, too (and maybe
art!). This is a slightly different metaphor from the “spectrum”.

So let’s agree for the moment that CS might be both science and engineering. What
about Freeman’s other two options: neither and more? Let’s begin with “more”.

3.13 CS as “More”
Hartmanis calls CS “a new species among the sciences”20 [I]t would be more
accurate to call computer science a new species of engineering . . .
—Michael C. Loui (1995, p. 31)

Perhaps CS is engineering together with being something else (such as a science), or
perhaps CS is science plus something else, or that CS can be divided into subdisciplines
(such as a science subdiscipline and an engineering subdiscipline). The computer en-
gineer Michael C. Loui takes the first position; the computer scientist Juris Hartmanis
takes the second.

3.13.1 CS Is a New Kind of Engineering
There are two parts to Loui’s argument. Here is the first part:

3.13.1.1 CS Is a Kind of Engineering

The goal of engineering is the production of useful things
[C]omputer science is concerned with producing useful things
Computer science is therefore a . . . kind of engineering.
—Michael C. Loui (1995, p. 31)

Unfortunately, this is invalid! Just because two things share a common property (in this
case, the property of producing useful things), it does not follow that one is subsumed
under the other. For example, just because both cats and dogs are household pets, it
doesn’t follow that cats are a kind of dog (or that dogs are a kind of cat). Loui could
equally well have concluded that engineering was a kind of “computer science”!

Fortunately, there are better arguments for considering CS to be a branch of engi-
neering, as we just saw in our discussion of Brooks (and will look at more closely in
Chapter 5). In fact, Loui himself gave another argument in an earlier article! There,
Loui (1987, p. 175) argued (against Krantz 1984) that CS is a legitimate academic

19Nothing should be read into the ordering of the terms in the acronym: The original acronym was the less
melifluous ‘SMET’! (See https://www.nsf.gov/pubs/1998/nsf98128/nsf98128.pdf.) And educators, perhaps
with a nod to Knuth’s views, have been adding the arts, to create ‘STEAM’ (http://stemtosteam.org/).

20Hartmanis 1995a, quoted in §3.3.2.2, above; but see also Hartmanis 1993, p. 1. We will discuss Hart-
manis in §3.13.2, below.

140 CHAPTER 3. WHAT IS COMPUTER SCIENCE?

discipline (not another discipline, such as math, nor something that will disappear or
dissolve into other disciplines, like microscopy). And he argues (against people like
Newell, Perlis, & Simon) that it is not the study of “the use of computers” (Loui, 1987,
p. 175). But that word ‘use’ is important. What Loui has in mind certainly includes the
study of hardware (Loui, 1987, p. 176); what he is rejecting is that CS, as an academic
discipline, is the study of how to use computers (in the way that driving schools teach
how to drive cars).

His definition is this:

Computer science is the theory, design, and analysis of algorithms for processing
[that is, for storing, transforming, retrieving, and transmitting] information, and
the implementations of these algorithms in hardware and in software.
(Loui, 1987, p. 176)

He then goes on to argue that CS is an engineering discipline (Loui, 1987, p. 176),
because engineering . . .

1. . . . is concerned with what can exist (as opposed to what does exist),

2. “has a scientific basis”,

3. is concerned with “design”,

4. analyzes “trade-offs”, and

5. has “heuristics and techniques” .

“Computer science has all the significant attributes of engineering”; therefore, CS is a
branch of engineering.

Let’s consider each of these “significant attributes”: First, his justification that CS
is not “concerned with . . . what does exist” is related to the claim that CS is not a
natural science, but a science of human-made artifacts. We have already considered
two possible objections to this: First, insofar as procedures are natural entities, CS—as
the study of procedures—can be considered a natural science. Second, insofar as some
artifacts—such as bird’s nests, beehives, etc.—are natural entities, studies of artifacts
can be considered to be natural science.

Next, he says that the “scientific basis” of CS is mathematics. Compare this with the
scientific basis of “traditional engineering disciplines such as mechanical engineering
and electrical engineering”, which is physics. (We’ll come back to this in §3.13.1.2.)

As for design, Forsythe said that

a central theme of computer science is analogous to a central theme of engineer-
ing science—namely, the design of complex systems to optimize the value of re-
sources. (Forsythe, 1967a, p. 3, col. 2).

According to Loui, engineers apply the principles of the scientific base of their engi-
neering discipline to “design” a product: “[A] computer specialist applies the princi-
ples of computation to design a digital system or a program” (Loui, 1987, p. 176). But
not all computer “specialists” design systems or programs; some do purely theoreti-
cal work. And if the scientific basis of CS is mathematics, then why does Loui say

3.13. CS AS “MORE” 141

that computer “specialists” apply “the principles of computation”? Shouldn’t he have
said that they apply the principles of mathematics? Perhaps he sees “computation” as
being a branch of mathematics (but that’s inconsistent with his objections to Krantz;
recall our discussion of CS as math, in §3.9.1.) Or perhaps he doesn’t think that the
abstract mathematical theory of computation is part of CS. However, that seems highly
unlikely, especially in view of his definition of CS as including the theory and analysis
of algorithms. It’s almost as if he sees computer engineering as standing to computer
science in the same way that mechanical or electrical engineering stand to physics. But
then it is not computer science that is a branch of engineering.

Let’s turn briefly to trade-offs: “To implement algorithms efficiently, the designer
of a computer system must continually evaluate trade-offs between resources” such as
time vs. space, etc. (Loui, 1987, p. 177). This is true, but doesn’t support his argument
as well as it might. For one thing, it is not only system designers who evaluate such
trade-offs; so do theoreticians—witness the abstract mathematical theory of complex-
ity. And, as noted above, not all computer scientists design such systems. So, at most,
it is only those who do who are doing a kind of engineering.

Finally, consider heuristics. There are at least two different notions of “heuristics”:
as rough-and-ready “rules of thumb” and as formally precise theories. Loui seems
to have the first kind in mind. (We’ll look at the second kind in §3.15.2.3, below.)
Insofar as engineers rely on such heuristics (see §5.7’s discussion of Koen’s (1988)
definition of ‘engineering’), and insofar as some computer scientists also rely on them,
then those computer scientists are doing something that engineers also do. But so do
many other people: Writers surely rely on such rule-of-thumb heuristics (“write simply
and clearly”); does that make them engineers? This is probably his weakest premise.

Further Reading:
However, see Carey 2010 for an argument to the effect that learning how to write computer
programs can help one become a better writer! (See §A.1, below, for one possible reason why.)
We’ll come back to this in §5.7.

3.13.1.2 CS Is a New Kind of Engineering

The second part of Loui’s argument is to show how CS is a “new” kind of engineering.
Here is his argument for this (Loui, 1995, p. 31):

1. “[E]ngineering disciplines have a scientific basis”.

2. “The scientific fundamentals of computer science . . . are rooted . . . in mathe-
matics.”

3. “Computer science is therefore a new kind of engineering.” (italics added)

This argument can be made valid by adding two missing premises:

A. Mathematics is a branch of science.

B. No other branch of engineering has mathematics as its basis.

142 CHAPTER 3. WHAT IS COMPUTER SCIENCE?

We can assume from the first part of his argument that CS is a kind of engineering.
So, from that and premise (1), we can infer that CS (as an engineering discipline)
must have a scientific basis. We need premise (A) so that we can infer that the basis
of CS (which, by premise (2), is mathematics) is indeed a scientific one. Then, from
premise (B), we can infer that CS must differ from all other branches of engineering.
It is, thus, mathematical engineering.

Abrahams (1987, p. 472) also explicitly makes this claim. And
Halpern et al. 2001 can be read as making a case for CS as being based more on logic
than on mathematics, so—if it is a kind of engineering—perhaps it is logical engineer-
ing? This assumes, of course, that you are willing to consider mathematics (or logic) to
be a natural science, or else that science is not limited to studying natural entities. But
in the latter case, why worry about whether CS is concerned with what can, rather that
what does, exist? (We’ll return to CS as mathematical engineering in §3.13.2, below.)

Towards the end of his essay, Loui says this: “It is impossible to define a reasonable
boundary between the disciplines of computer science and computer engineering. They
are the same discipline” (Loui, 1987, p. 178). But does’t that contradict the title of his
essay (“Computer Science Is an Engineering Discipline”)?

3.13.2 CS Is a New Kind of Science

[C]omputer science differs from the known sciences so deeply that it has to be
viewed as a new species among the sciences.
—Juris Hartmanis (1993, p. 1).

Hartmanis comes down on the side of CS being a science: It is a “new species among
the sciences”.

What does it mean to be a “new species”? Consider biological species. Roughly
speaking, different species are members of the same genus; different genera21 are
grouped into “families”, families into “orders”, orders into “classes”, and classes into
“kingdoms”. Now consider three different species of the animal kingdom: chim-
panzees, lions, and tigers. Lions and tigers are both species within the genus Panthera,
that genus is in the order of carnivores, and carnivores are in the class of mammals.
Chimps, on the other hand, are in the order of primates (not carivores), but they are
also in the class of mammals. So, lions and tigers are more closely related to each
other than either is to chimps, but all three are mammals.

But what does it mean to be “a new species” of science? Is the relation of CS to
other sciences more like the relation of chimps to tigers (relatively distant, only sharing
in being mammals) or lions to tigers (relatively close, sharing in being in Panthera)? A
clue comes in Hartmanis’s next sentence:

This view is justified by observing that theory and experiments in computer science
play a different role and do not follow the classic pattern in physical sciences.
(Hartmanis, 1993, p. 1)

21That’s the plural of ‘genus’.

3.13. CS AS “MORE” 143

This strongly suggests that CS is not a physical science (such as physics or biology),
and Hartmanis confirms this suggestion on p. 5: “computer science, though not a phys-
ical science, is indeed a science” (my italics; see also Hartmanis 1993, p. 6; Hartmanis
1995a, p. 11). The non-physical sciences are typically taken to include both social sci-
ences (such as psychology) and formal sciences (such as mathematics). So, it would
seem that the relation of CS to other sciences is more like that of chimps to tigers:
distantly related species of the same, high-level class. And, moreover, it would seem to
put CS either in the same camp as (either) the social sciences or mathematics, or else
in a brand-new camp of its own, that is, sui generis.

Hartmanis said that he would not define CS (see the epigraph to §3.3.3, above). But
immediately after saying that, he seems to offer a definition:

At the same time, it is clear that the objects of study in computer science are in-
formation and the machines and systems which process and transmit information.
From this alone, we can see that computer science is concerned with the abstract
subject of information, which gains reality only when it has a physical representa-
tion, and the man-made devices which process the representations of information.
The goal of computer science is to endow these information processing devices
with as much intelligent behavior as possible.
(Hartmanis 1993, p. 5, my italics; see also Hartmanis 1995a, p. 10)

Although it may be “clear” to Hartmanis that information, an “abstract subject”, is (one
of) the “objects of study in computer science”, he does not share his reasons for that
clarity. Since, as we have seen, others seem to disagree that CS is the study of infor-
mation (others have said that it is the study of computers or the study of algorithms, for
instance), it seems a bit unfair for Hartmanis not to defend his view. But he cashes out
this promissory note in Hartmanis 1995a, p. 10, my italics, where he says that “what
sets it [that is, CS] apart from the other sciences” is that it studies “processes [such
as information processing] that are not directly governed by physical laws”. And why
are they not so governed? Because “information and its transmission” are “abstract
entities” (Hartmanis, 1995a, p. 8). This makes CS sound very much like mathematics.
That is not unreasonable, given that it was this aspect of CS that led Hartmanis to his
ground-breaking work on computational complexity, an almost purely mathematical
area of CS.

But it’s not just information that is the object of study; it’s also information-pro-
cessing machines, that is, computers. Computers, however, don’t deal directly with
information, because information is abstract, that is, non-physical. For one thing, this
suggests that, insofar as CS is a new species of non-physical science, it is not a species
of social science: Despite its name, the “social” sciences deal with pretty physical
things: societies, people, speech, etc.

(This, by the way, is controversial. After all, one of the main problems of philos-
ophy is the problem of the relation of the mind to the brain. The former seems to be
non-physical, and is studied by the social science of psychology. The latter is clearly
physical, and is studied by the physical sciences of biology and neuroscience. And
philosophers such as John Searle (1995) have investigated the metaphysical nature of
social institutions such as money, which seem to be neither purely abstract (many peo-
ple cash a real weekly paycheck and get real money) nor purely natural or physical

144 CHAPTER 3. WHAT IS COMPUTER SCIENCE?

(money wouldn’t exist if people didn’t exist).)
So, if CS is a science, but is neither physical nor social, then perhaps it is a “formal”

science like mathematics. (We investigated this in §3.9.1.)

Terminological Digression and Further Reading:
This is as good a place as any to discuss the meaning of the word ‘formal’, as it appears in phrases
like ‘formal logic’ or ‘formal science’. In this use, it is not synonymous with words like ‘prim’ or
‘methodical’, and it has nothing directly to do with concepts like “a formal dinner party”. Rather,
it relates to “form”, “shape”, or “structure” (see https://www.merriam-webster.com/dictionary/
formal). On “formal” sciences in general, see http://en.wikipedia.org/wiki/Formal science.

For another thing, to say that computers don’t deal directly with information, but
only with representations of information suggests that CS has a split personality: Part
of it deals directly with something abstract (information), and part of it deals directly
with something real but that is (merely?) a representation of that abstraction (hence
dealing indirectly with information). Such real (physical?) representations are called
“implementations”; we will look at that notion in more detail in Chapter 14, and we
will look at the relation of computers to the real world in Chapter 17.

Finally, although Hartmanis’s description of the goal of CS—“to endow . . . [com-
puters] with . . . intelligent behavior”—sounds like he is talking about AI (and he might
very well be; see §3.14.6, below), another way to think about that goal is this: Histor-
ically, we have “endowed” calculating machines with the ability to do both simple
and complex mathematics. What other abilities can we give to such machines? Or,
phrased a bit differently, what can be automated—what can be computed? (Recall
§3.6.1, above, and see §3.15, below.)

Here is another reason why Hartmanis thinks that CS is not a physical science and
probably also why it is not a social science:

[C]omputer science is concentrating more on the how than the what, which is more
the focal point of physical sciences. In general the how is associated with engineer-
ing, but computer science is not a subfield of engineering. (Hartmanis, 1993, p. 8;
Hartmanis’s italics, my boldface)

But there are two ways to understand “how”: Algorithms are the prime formal entities
that codify how to accomplish some goal. But, as Hartmanis quickly notes, engineer-
ing is the prime discipline that is concerned with how to do things, how to build things.
The first kind of “how” is mathematical and abstract (indeed, it is computational!—see
§§3.14.4 and 3.14.5); the second is more physical. One way to see this as being consis-
tent with Hartmanis’s description of the objects of study of CS is to say that, insofar as
CS studies abstract information, it is concerned with how to process information (that
is, it is concerned with algorithms), and, insofar as CS studies computers, it is con-
cerned with how to process representations (or implementations) of information (that
is, it is concerned with the physical devices).

But that latter task would seem to be part of engineering (perhaps, historically,
electrical engineering; perhaps, in the future, quantum-mechanical or bioinformatic
engineering; certainly computer engineering!). So why does he say that “computer sci-
ence is not a subfield of engineering”? In fact, he seems to regret this strong statement,

3.13. CS AS “MORE” 145

for he next says that “the engineering in our field has different characterizations than
the more classical practice of engineering” (Hartmanis, 1993, p. 8): So, CS certainly
overlaps engineering, but, just as he claims that CS is a new species of science, he also
claims that “it is a new form of engineering” (Hartmanis, 1993, p. 9). In fact, he calls it
“[s]omewhat facetiously . . . the engineering of mathematics” (recall our discussion of
Loui, in §3.13.1.2); however, he also says that “we should not try to draw a sharp line
between computer science and engineering” (Hartmanis, 1993, p. 9).

To sum up so far, Hartmanis views CS as a new species both of science and of
engineering. This is due, in part, to his view that it has two different objects of study:
an abstraction (namely, information) as well as its implementations (that is, the phys-
ical representations of information, typically in strings of symbols). But isn’t it also
reasonable to think that, perhaps, there are really two different (albeit new) disciplines,
namely, a new kind of science and a new kind of engineering? If so, do they interact in
some way more deeply and integratively than, say, chemistry and chemical engineer-
ing, so that it makes sense to say that “they” are really a single discipline?

Hartmanis suggests two examples that show a two-way interaction between these
two disciplines (or two halves of one discipline?): Alan Turing’s interest in the math-
ematical nature of computation led to his development of real computers; and John
von Neumann’s interest in building computers led to his theoretical development of
the structure of computer architecture (Hartmanis, 1993, p. 10). The computational
logician J. Alan Robinson made similar observations:

Turing and von Neumann not only played leading roles in the design and construc-
tion of the first working computers, but were also largely responsible for laying
out the general logical foundations for understanding the computation process, for
developing computing formalisms, and for initiating the methodology of program-
ming: in short, for founding computer science as we now know it. . . .

Of course no one should underestimate the enormous importance of the role
of engineering in the history of the computer. Turing and von Neumann did not.
They themselves had a deep and quite expert interest in the very engineering details
from which they were abstracting, but they knew that the logical role of computer
science is best played in a separate theater. (Robinson, 1994, pp. 5, 12)

Hartmanis explicitly says that CS is a science and is not engineering, but his com-
ments imply that it is both. I don’t think he can have it both ways. Both Loui and
Hartmanis agree that CS is a new kind of something or other; each claims that the sci-
entific and mathematical aspects of it are central; and each claims that the engineering
and machinery aspects of it are also central. But one calls it ‘science’, while the other
calls it ‘engineering’. This is reminiscent of the dialogue between Newell, Perlis, &
Simon on the one hand, and Knuth on the other. Again, it seems to be a matter of point
of view.

A very similar argument (that does not give credit to Hartmanis!) that CS is a new
kind of science can be found in Denning and Rosenbloom 2009. We’ll look at some of
what they have to say in §3.14.1.

146 CHAPTER 3. WHAT IS COMPUTER SCIENCE?

3.14 CS as “Neither”
In this section, we will look at claims of CS as having a unique paradigm (being truly
sui generis and not just a new kind of science or engineering), as art, as the study of
complexity, as philosophy, as a way of thinking, as AI, and as magic(!).

3.14.1 CS Has Its Own Paradigm
We just saw that Hartmanis argued that CS was sui generis among the sciences (§3.13.2)
and that Loui argued that CS was sui generis within engineering (§3.13.1.2). Denning
& Peter A. Freeman offer a slightly stronger argument to the effect that CS is neither
science, nor engineering, nor math; rather, CS has a “unique paradigm” (Denning and
Freeman, 2009, p. 28).

But their position is somewhat muddied by their claim that “computing is a fourth
great domain of science alongside the physical, life, and social sciences” (Denning
and Freeman, 2009, p. 29, my italics). That implies that CS is a science, though of a
different kind, as Hartmanis suggested.

It also leaves mathematics out of science! In a related article published three
months earlier in the same journal, Denning & Paul S. Rosenbloom assert without
argument that “mathematics . . . has traditionally not been considered a science” (Den-
ning and Rosenbloom, 2009, p. 28) (see also Rosenbloom 2010). Denying that math
is a science allows them to avoid considering CS as a mathematical science (an option
that we explored in §3.9.1).

To justify their conclusion that CS is truly sui generis, Denning & Freeman need
to show that it is not a physical, life, or social science. Denning & Rosenbloom say
that “none [of these] studies computation per se” (Denning and Rosenbloom, 2009,
p. 28). This is only half of what needs to be shown; it also needs to be shown that
CS doesn’t study physical, biological, or social entities. Obviously, it does study such
things, though that is not its focus. As they admit, CS is “used extensively in all the
domains” (Denning and Rosenbloom, 2009, p. 28); that is, computation is used by
scientists in these domains as a tool.

So, what makes CS different? Denning & Freeman give a partial answer:

The central focus of the computing paradigm can be summarized as information
processes—natural or constructed processes that transform information. . . . [T]he
computing paradigm . . . is distinctively different because of its central focus on
information processes. (Denning and Freeman, 2009, pp. 29–30)

This is only a partial answer, because it only discusses the object of study (which, as
we saw in §3.8, is either vague or multiply ambiguous).

The rest of their answer is provided in a table showing the methodology of CS
(Denning and Freeman, 2009, p. 29, Table 2), which comes down to their version of
“computational thinking” (Denning and Freeman, 2009, p. 30, col. 3): “The computing
paradigm”, they say, begins by “determin[ing] if the system . . . can be represented by
information processes”, then “design[s] a computational model”, “implement[s the] de-
signed processes”, “test[s] the implementation”, and finally “put[s] the results to action
in the world”. (We’ll explore “computational thinking” further in §3.14.5. Denning

3.14. CS AS “NEITHER” 147

& Freeman’s version of it is close to what I will present as “synthetic” computational
thinking in §3.15.2.1.2.)

3.14.2 CS Is Art
Recall from §3.8 that Forsythe said that CS was “the art and science of representing
and processing information . . . with . . . computers” (Forsythe, 1967a, p. 3, my italics).
Why might he have said that CS is an “art” (in addition to being a science)? Recall
something else that he said: “strings of binary digits can simulate . . . numbers . . .
automobiles . . . , chess pieces, electrons . . . , musical notes, . . . words, patterns on
paper, human cells, colors, electrical circuits, and so on” (cited in Knuth 1972b, p. 722).
Perhaps because some of these things are not “scientific”, then, if CS is going to study
them, then CS must be an “art”. After all, ‘art’ is often opposed to ‘science’.

Knuth defends his use of the word ‘art’ in the title of his multi-volume classic The
Art of Computer Programming (Knuth, 1973) not by saying that all of CS is an art, but
that ‘art’ can be applied to, at least, computer programming. The application is not in
opposition to ‘science’, but alongside it. He gives a useful survey of the history of the
term ‘art’: According to Knuth (1974a, p. 668, col. 1), ‘art’ in the non-painting sense
once “meant something devised by man’s intellect, as opposed to activities derived
from nature or instinct”, as in the “liberal arts”, and it later came to be . . .

. . . used . . . for the application of knowledge [where ‘science’ was “used to stand
for knowledge”]. . . . The situation was almost exactly like the way in which we
now distinguish between “science” and “engineering.”
(Knuth, 1974a, p. 668, col. 2, my italics)

Today, when one thinks of the “liberal arts”, one tends to think of the humanities
rather than the sciences, but, classically, there were seven liberal arts: the linguistic
liberal arts (grammar, rhetoric, and logic) and the mathematical liberal arts (arithmetic,
music, geometry, and astronomy). The phrase originally referred to “those subjects
. . . considered essential for a free person (liberalis, ‘worthy of a free person’)” (https:
//en.wikipedia.org/wiki/Liberal arts education). Thought of this way, it becomes more
reasonable to consider CS as a modern version of these.

Further Reading:
On the liberal arts in general, see the Wikipedia article “Liberal Arts Education”, https://en.
wikipedia.org/wiki/Liberal arts education. On CS as a liberal art, see Lindell 2001.

Perlis (1962, p. 210) agrees:

I personally feel that the ability to analyze and construct processes is a very impor-
tant ability, one which the student has to acquire sooner or later. I believe that he
[sic] does acquire it in a rather diluted way during four years of an engineering or
science program. I consider it also important to a liberal arts program.

148 CHAPTER 3. WHAT IS COMPUTER SCIENCE?

Indeed,

Pedagogically, computer programming has the same relation to studying CS as
playing an instrument does to studying music or painting does to studying art.
(Tucker et al., 2003, p. V)

Knuth has a more interesting suggestion about art:

Science is knowledge which we understand so well that we can teach it to a com-
puter; and if we don’t fully understand something, it is an art to deal with it. Since
the notion of an algorithm or a computer program provides us with an extremely
useful test for the depth of our knowledge about any given subject, the process of
going from an art to a science means that we learn how to automate something.
(Knuth, 1974a, p. 668, col. 2, my italics)

Knuth (2001, p. 168) adds this: “Every time science advances, part of an art becomes
a science, so art loses a little bit. Yet, mysteriously, art always seems to register a
net gain, because as we understand more we invent more new things that we can’t
explain to computers.” (We saw a similar comment, by Wheeler, in connection with
our discussion of philosophy in §2.5.1.)

This suggests that being an art is a possibly temporary stage in the development of
our understanding of something, and that our understanding of computer programming
is (or at least was at the time tht Knuth was writing) not yet fully scientific. If some
subject is never fully scientifically understood, then what is left over remains an art:

Artificial intelligence has been making significant progress, yet there is a huge gap
between what computers can do in the foreseeable future and what ordinary people
can do. . . . [N]early everthing we do is still an art. (Knuth, 1974a, pp. 668–669).

But he then goes on to give a slightly different meaning to ‘art’, one more in line
with the sense it has in ‘the fine arts’, namely, as “an art form, in an aesthetic sense”
(Knuth, 1974a, p. 670). In this sense, programming can be “beautiful” and “it can
be like composing poetry or music” (Knuth, 1974a, p. 670). This is not inconsistent
with programming being considered a science or a branch of mathematics. Indeed,
many scientists and mathematicians speak of theories, theorems, demonstrations, or
proofs as being “beautiful”. One can, presumably, scientifically (or mathematically)
construct a logically verifible program that is ugly (for example, difficult to read or
understand) as well as one that is beautiful (for example, a pleasure to read or easy to
understand); Knuth himself has advocated this under the rubric “literate programming”
(Knuth, 1984). More recently, Robin K. Hill (2017b) has suggested various criteria that
make programs “elegant”.

So, CS can certainly be considered to have interesting relationships to “art” in all
of that term’s senses. But it is surely not just an art.

3.14. CS AS “NEITHER” 149

Further Reading:
Soare 2016, pp. xvii–xviii, distinguishes between art as a study of beauty and art as a craft, and
argues that CS should be viewed as an art in both senses. Decker et al. 2017 treats “computing
education as an artistic practice” and “the act of programming . . . [as] a form of creative expres-
sion”. See also Dennett 2017, pp. 81–82, for similar observations. On beauty in science more
generally, see Quine 1987, “Beauty”, pp. 17–18.

3.14.3 CS Is the Study of Complexity
[T]he art of programming is the art of organising complexity, of mastering multi-
tude and avoiding its bastard chaos as effectively as possible.
—Edsger W. Dijkstra (1972, p. 6)

Software entities are more complex for their size than perhaps any other human
construct, because no two parts are alike (at least above the statement level). If
they are, we make the two similar parts into one, a subroutine In this respect
software systems differ profoundly from computers, buildings, or automobiles,
where repeated elements abound. . . . The complexity of software is an essential
property, not an accidental one.
—Frederick P. Brooks (1995, pp. 182–183)22

It has been suggested that CS is the study of complexity—not just the mathematical
subject of “computational complexity”, which is really more a study of efficiency—but
complexity in general and in all of nature. Ceruzzi (1988, pp. 268–270) ascribes this
to the electrical engineer and MIT president Jerome Wiesner (1958). But all Wiesner
says is that “Information processing systems are but one facet of . . . communication
sciences . . . that is, the study of . . . t̀he problems of organized complexity’ ” (quoted
in Ceruzzi 1988, p. 269). But even if computer science is part of a larger discipline
(“communication sciences”?) that studies complexity, it doesn’t follow that CS itself is
the study of complexity.

According to Ceruzzi, Edsgar Dijkstra also held this view: “programming, when
stripped of all its circumstantial irrelevancies, boils down to no more and no less than
very effective thinking so as to avoid unmastered complexity” (Dijkstra, 1975a, §4,
p. 3). (We’ll look in more detail at the nature of this kind of thinking in §3.14.5,
below.) What’s missing from Dijkstra’s argument, in any case, is a premise to the effect
that computer science is the study of programming, but Dijkstra doesn’t say that—not
in Dijkstra 1975a nor in Dijkstra 1976, the document that Ceruzzi says contains that
premise. (Khalil and Levy (1978), however, do make that claim.)

Programming helps “avoid complexity” because “Computer science offers a stan-
dard way to handle complexity: hierarchical structure” (Lamport, 2012, p. 16). That
is,

[P]rograms are built from programs. . . . Programs are compilations in another
sense as well. Even the smallest sub-program is also a compilation of sub-components.
Programmers construct sub-programs by assembling into a coherent whole such

22On essential vs. accidental properites, see §§2.8 and 9.5.4.

150 CHAPTER 3. WHAT IS COMPUTER SCIENCE?

discrete program elements as data, data structures, and algorithms. The “engineer-
ing” in software engineering involves knowing how to assemble these components
to produce the desired behavior. (Samuelson et al., 1994, pp. 2326–2327)

This is the idea that a complex program is “just” a construction from simpler things,
each of which—“recursively” (recall §2.10.4)—can be analyzed down to the primitive
operations and data structures of one’s programming system (for a Turing Machine,
these would include the operations of printing and moving, and data structures con-
structed from ‘0’s and ‘1’s). It is the underlying way in which complexity can be dealt
with. It is also where engineering (considered as a form of construction) comes into
the picture.

But, again, at most this makes the claim that part of computer science is the study of
complexity. CS certainly offers many techniques for handling complexity: structured
programming, abstraction, modularity, hierarchy, top-down design, stepwise refine-
ment, object-oriented programming, recursion, etc. So, yes, CS is one way—perhaps
even the best way—to manage (or avoid) complexity, but that does not mean that it is
the study of complexity.

Indeed, Denning et al. (1989, p. 11) point out that viewing “ ‘computer science [as]
the study of abstraction and the mastering of complexity’ . . . also applies to physics,
mathematics, or philosophy”; no doubt many other disciplines also study complexity.
So defining CS the study of complexity doesn’t seem to be right.

Further Reading:
For more on CS and complexity, see Lloyd 1990; Pylyshyn 1992; and Hartmanis 1993, pp. 5–6.

3.14.4 CS Is the Philosophy(!) of Procedures
Could CS be the study of procedures (as Shapiro urged; see §3.9.3, above), yet be a
branch of philosophy instead of science?

Here is an interesting definition:

Computer science is philosophy. Logic is the foundation of philosophy. It’s also
the foundation of Computer Science. (Rupp, 2003, my italics)

The first sentence is the title of Rupp’s essay. The next two sentences (which are the
first two sentences of the essay) are the only support that he offers for his definition.
But this argument is invalid: Just because two disciplines share a common foundation,
it does not follow that one of them “is” the other, or that they are identical.

A more interesting argument can be found in an introductory CS text that claims
that CS is neither a science nor the study of computers (Abelson et al., 1996, “Preface
to the First Edition”). Rather, it is what the authors call ‘procedural epistemology’, that
is:

the study of the structure of knowledge from an imperative point of view, as op-
posed to the more declarative point of view taken by classical mathematical sub-
jects. Mathematics provides a framework for dealing precisely with notions of
“what is.” Computation provides a framework for dealing precisely with notions
of “how to.” (Italics added.)

3.14. CS AS “NEITHER” 151

And epistemology is, after all, the branch of philosophy that studies knowledge and
belief (see §2.8).

Further Reading:
Abelson et al. 1996 was greatly influenced by Seymour Papert, a CS educator and cre-
ator of the Logo programming language (https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-
8.html#% chap Temp 5). For more on Papert, see Papert 1980 and §3.14.5, below.

“How to” is certainly important, and interestingly distinct from “what is”. But
is there really a difference between “how to” and “what is”? As Selmer Bringsjord
(2006) argues, talk of procedures can be replaced by declarative talk of “first-order
logic, and proofs and interpretations”. Many imperative statements can be equally
well be expressed as declarative ones: Consider, for example, Lisp programs, which
appear to be merely declarative definitions of recursive functions. Or consider that each
“p :- q” rule of a Prolog program can be interpreted either procedurally (“to achieve p,
execute q”) or declaratively (“p if q”).

Or consider Euclid’s Elements, which was originally written in “how to” form (Tou-
ssaint, 1993): To construct an equilateral triangle using only compass and straightedge,
follow this algorithm.23 (Compare: To compute the value of this function using only
the operations of a Turing Machine, follow this algorithm.) (For further discussion
of the “to accomplish goal G, do procedure P” formula, see §17.7.) But today it is
expressed in “what is” form: The triangle that is constructed by following that algo-
rithm is equilateral: “When Hilbert gave a modern axiomatization of geometry at the
beginning of the present century, he asserted the bald existence of the line. Euclid,
however, also asserted that it can be constructed” (Goodman, 1987, §4). (We’ll return
to this topic in §10.3.) Note that the declarative version of a geometry theorem can be
considered to be a formal proof of the correctness of the procedural version. This is
closely related to the notion of program verification, which we’ll look at in Chapter 16.

Much more can be said on this issue. For example, there is a related issue in philos-
ophy concerning the difference between knowing that something is the case (knowing
that a declarative proposition is true) and knowing how to do something (knowing a
procedure for doing it). This, in turn, may be related to Knuth’s view of programming
as teaching a computer (perhaps a form of knowing-that), contrasted with the view of a
machine-learning algorithm that allows a computer to learn on its own by being trained
(perhaps a form of knowing-how). The former can easily gain declarative “knowledge”
of what it is doing so that it can be programmed to explain what it is doing; the latter
not so easily. (We looked at this briefly in §3.6.1.)

Even if procedural language can be intertranslated with declarative language, the
two are surely distinct. And, just as surely, CS is concerned with procedures! So, we
need to be clearer about what we mean by ‘procedure’ (as well as phrases like ‘com-
putational thinking’ or ‘algorithmic thinking’). This is a philosophical issue worthy of
discussion (and we’ll return to it in Chapter 7).

23http://www.perseus.tufts.edu/hopper/text?doc=Perseus:text:1999.01.0086:book=1:type=Prop:
number=1

152 CHAPTER 3. WHAT IS COMPUTER SCIENCE?

Further Reading:
See “Some References on the Procedural-Declarative Controversy”,
http://www.cse.buffalo.edu/∼rapaport/676/F01/proc.decl.html

3.14.5 CS Is Computational Thinking

A currently popular view is to say that CS is a “way of thinking”, that “computa-
tional”, or “algorithmic”, or “procedural” thinking—about anything(!)—is what makes
CS unique:

CS is the new “new math,” and people are beginning to realize that CS, like math,
is unique in the sense that many other disciplines will have to adopt that way of
thinking. It offers a sort of conceptual framework for other disciplines, and that’s
fairly new. . . . Any student interested in science and technology needs to learn to
think algorithmically. That’s the next big thing. (Bernard Chazelle, interviewed in
Anthes 2006, my italics)

Jeannette Wing’s notion of “computational thinking” (Wing, 2006, echoing Papert
1980) is thinking in such a way that a problem’s solution “can effectively be carried
out by an information-processing agent” (Wing, 2010) (see also Guzdial 2011). Here,
it is important not to limit such “agents” to computers, but to include humans (as Wing
(2008a, p. 3719) admits).

Further Reading:
Papert 1980 only mentions ‘computational thinking’ on p. 182 and ‘procedural thinking’ on
p. 155, but his entire book can be thought of as an extended characterization of this kind of
thinking and learning. For more on Papert and his version of computational thinking, see Papert
1996 and Barba 2016; see also §3.14.4, above.

The view of CS as computational thinking may offer compromises on several con-
troversies: It avoids the procedural-declarative controversy, by including both concepts,
as well as others. Her definition of CS (Wing, 2006, p. 34, col. 2) as “the study of
computation—what can be computed and how to compute it” is nice, too, because the
first conjunct clearly includes the theory of computation and complexity theory (‘can’
can include “can in principle” as well as “can efficiently”), and the second conjunct can
be interpreted to include both software programming as well as hardware engineering.
‘Study’ is nice, too: It avoids the science-engineering controversy.

Another insight into “computational thinking” comes from a news item that “New
South Wales [in Australia] . . . has made it illegal to possess not just guns, but digital
files that can be used to create guns using a 3D printer or milling machine” (New
Scientist, 2016, my italics).

Further Reading: See the actual law at
https://www.parliament.nsw.gov.au/bill/files/1009/Passed%20by%20both%20Houses.pdf

3.14. CS AS “NEITHER” 153

The point is that one can think of an object in two ways: (1) as a “completed” (or
implemented) physical object or (2) as an algorithm for constructing it; the latter way
of thinking is computational thinking. Note, too, that it is recursive: The completed
physical object is the “base case”; the algorithm is the “recursive case”.

Five years before Perlis, along with Newell & Simon, defined CS as the science of
computers, he emphasized what is now called computational thinking (or procedural
thinking:

[T]he purpose of . . . [a] first course in programming . . . is not to teach people how
to program a specific computer, nor is it to teach some new languages. The pur-
pose of a course in programming is to teach people how to construct and analyze
processes. . . .

A course in programming . . . , if it is taught properly, is concerned with ab-
straction: the abstraction of constructing, analyzing, and describing processes. . . .

This, to me, is the whole importance of a course in programming. It is a
simulation. The point is not to teach the students how to use [a particular pro-
gramming language, such as] ALGOL, or how to program [a particular computer,
such as] the 704. These are of little direct value. The point is to make the stu-
dents construct complex processes out of simpler ones (and this is always present
in programming) in the hope that the basic concepts and abilities will rub off. A
properly designed programming course will develop these abilities better than any
other course. (Perlis, 1962, pp. 209–210, my italics)

Further Reading:
For a commentary on Perlis’s view of what is now called ‘computational thinking’, see Guzdial
2008. Similar points have been made by Wheeler 2013, p. 296; Lazowska 2014, p. A26; and
Scott and Bundy 2015, p. 37.

Some of the features of computational thinking that various people have cited in-
clude: abstraction, hierarchy, modularity, problem analysis, structured programming,
the syntax and semantics of symbol systems, and debugging techniques. Note that all
of these are among the methods cited in §3.14.3 for handling complexity!

Further Reading:
See, for example, the list in Grover and Pea 2013, pp. 39–40. On abstraction, see Kramer
2007; Wing 2008a, pp. 3717–3719; and our discussion of abstraction and implementation in
Chapter 14.

154 CHAPTER 3. WHAT IS COMPUTER SCIENCE?

Here is another characterization of CS, one that also characterizes computational
thinking:

Computer science is in significant measure all about analyzing problems, breaking
them down into manageable parts, finding solutions, and integrating the results.
The skills needed for this kind of thinking apply to more than computer program-
ming. They offer a kind of disciplined mind-set that is applicable to a broad range
of design and implementation problems. These skills are helpful in engineering,
scientific research, business, and even politics![24] Even if a student does not go on
to a career in computer science or a related subject, these skills are likely to prove
useful in any endeavor in which analytical thinking is valuable. (Cerf, 2016, p. 7)

Denning (2009, p. 33) also recognizes the importance of “algorithmic thinking”.
However, he dislikes it as a definition of CS, primarily on the grounds that it is too
narrow:

Computation is present in nature even when scientists are not observing it or think-
ing about it. Computation is more fundamental than computational thinking. For
this reason alone, computational thinking seems like an inadequate characteriza-
tion of computer science. (Denning, 2009, p. 30)

Note that, by ‘computation’, Denning means Turing Machine computation. (For his
arguments about why it is “present in nature”, see the discussion in §3.9.3, above. A
second reason why Denning thinks that defining CS as computational thinking is too
narrow is that there are other equally important forms of thinking: “design thinking,
logical thinking, scientific thinking, etc.” (Denning et al., 2017).

Further Reading:
The homepage for the Center for Computational Thinking is at http://www.cs.cmu.edu/
∼CompThink/. Lu and Fletcher 2009 gives examples of how computational thinking can be
introduced in primary- and secondary-school curricula even before any formal introduction to
CS. Pappano 2017 discusses how computational thinking is being taught at all levels. Carey
2010 (cited in §3.13.1.1, above) argues for the value of algorithmic thinking in fields other than
computer science (including finance and journalism).

Tedre and Denning 2016 gives a good survey of the history of “computational thinking”. Den-
ning and Tedre 2019 expands on that history as well as providing a thorough overview of its
many meanings, noting that “computing [in the sense of “calculating”] is an ancient human pro-
cess” (p. 11) dating back to at least the Babylonians (see §3.15.1, above), and so “computational
thinking” is equally ancient. Denning 2017 and Glass and Paulson 2017 cast a skeptical eye on
the notion.

24As well as the humanities (Ruff, 2016)

3.14. CS AS “NEITHER” 155

3.14.6 CS Is AI
[Computer science] is the science of how machines can be made to carry out intel-
lectual processes.
—John McCarthy (1963, p. 1, my italics)

The goal of computer science is to endow these information processing devices
with as much intelligent behavior as possible.
—Juris Hartmanis (1993, p. 5, my italics) (see also Hartmanis 1995a, p. 10)

Understanding the activities of an animal or human mind in algorithmic terms
seems to be about the greatest challenge offered to computer science by nature.
—Jiřı́ Wiedermann (1999, p. 1)

Computational Intelligence is the manifest destiny of computer science, the goal,
the destination, the final frontier.
—Edward A. Feigenbaum (2003, p. 39)

These aren’t exactly definitions of CS, but they could be turned into ones: Computer
science—note: CS, not AI!—is the study of (choose one): (a) how to get computers
to do what humans can do; (b) how to make computers (at least) as “intelligent” as
humans; (c) how to understand (human or animal) cognition computationally.

As we will see in more detail in Chapter 6, the history of computers supports this:
It is a history that began with how to get machines to do some human thinking (in
particular, certain mathematical calculations), then more and more. And (as we will
see in Chapter 8: “Turing’s Analysis of Computation”) the Turing Machine, as a model
of computation, was motivated by how humans compute: (Turing, 1936, §9) analyzes
how humans compute, and then designs what we would now call a computer program
that does the same thing. But the branch of CS that analyzes how humans perform a
task and then designs computer programs to do the same thing is AI. So, the Turing
Machine was the first AI program!

But, as I will suggest in §3.15.2.1.1, defining CS as AI is probably best understood
as a special case of its fundamental task: determining what tasks are computable.

156 CHAPTER 3. WHAT IS COMPUTER SCIENCE?

3.14.7 Is CS Magic?

Figure 3.4: https://www.gocomics.com/wizardofid/2014/04/24,
c©2014, John L. Hart FLP

To engender empathy and create a world using only words is the closest thing we
have to magic.
—Lin-Manuel Miranda (2016)25

The great science-fiction author Arthur C. Clarke famously said that “Any sufficiently
advanced technology is indistinguishable from magic” (http://en.wikipedia.org/wiki/
Clarke’s three laws). Could it be that the advanced technology of CS is not only indis-
tinguishable from magic, but really is magic? Not magic as in tricks, but magic as in
Merlin or Harry Potter? As one CS student put it,

Computer science is very empowering. It’s kind of like knowing magic: you learn
the right stuff and how to say it, and out comes an answer that solves a real prob-
lem. That’s so cool.
—Euakarn (Som) Liengtiraphan, quoted in Hauser 2017, p. 16

Brooks makes an even stronger claim than Clarke:

The programmer, like the poet, works only slightly removed from pure thought-
stuff. He [sic] builds castles in the air, creating by the exertion of the imagination
. . . . Yet the program construct, unlike the poet’s words [or the magician’s spells?],
is real in the sense that it moves and works, producing visible outputs separate
from the construct itself. . . . The magic of myth and legend has come true in our
time. One types the correct incantation on a keyboard, and a display screen comes
to life, showing things that never were nor could be.
(Brooks, 1975, pp. 7–8, my emphases).

(For a nice illustration of computational implementations of “things that never were”,
see Figure 3.5. And compare what von Kármán says about engineering, quoted later in
this book in §5.3.)

25https://www.nytimes.com/2016/04/10/books/review/lin-manuel-miranda-by-the-book.html

3.14. CS AS “NEITHER” 157

Figure 3.5: Computers can “show . . . things that never were nor could be”.
https://www.google.com/books/edition/From Animals to Animats 3/kcMoUj3aIfoC?hl=en&gbpv=1&printsec=frontcover

What is “magic”? Here’s how one anthropologist defines it:

In anthropology, magic generally means beliefs in the use of symbols to control
forces in nature (Stevens, 1996, p. 721, col. 1)

A definition of magic can be constructed to say something like the follow-
ing: Magic involves the human effort to manipulate the forces of nature directly,
through symbolic communication and without spiritual assistance.
(Stevens, 1996, p. 723, col. 2).26

Clearly, programming involves exactly that kind of use of symbols. Or, as Abelson &
Sussman put it in their introductory CS text (which we discussed in §3.14.4):

A computational process is indeed much like a sorcerer’s idea of a spirit. It cannot
be seen or touched. It is not composed of matter at all. However, it is very real.
It can perform intellectual work. It can answer questions. It can affect the world
by disbursing money at a bank or by controlling a robot arm in a factory. The
programs we use to conjure processes are like a sorcerer’s spells. They are care-
fully composed from symbolic expressions in arcane and esoteric programming
languages that prescribe the tasks we want our processes to perform.
(Abelson et al., 1996, my italics)27

26For more on definitions of ‘magic’, see Stairs 2014.
27https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-9.html#% idx 8

158 CHAPTER 3. WHAT IS COMPUTER SCIENCE?

How is magic supposed to work? Anthropologist James G. Frazer (1915) “had sug-
gested that primitive people imagine magical impulses traveling over distance through
‘a kind of invisible ether.’ ” (Stevens, 1996, p. 722, col. 1). That sounds like a descrip-
tion of electrical currents running from a keyboard to a CPU, or information traveling
across the Internet, or text messaging.

According to another anthropologist, Bronisław Malinowski,

The magical act involves three components: the formula, the rite, and the condi-
tion of the performer. The rite consists of three essential features: the dramatic
expression of emotion through gesture and physical attitude, the use of objects and
substances that are imbued with power by spoken words, and, most important, the
words themselves. (Stevens, 1996, p. 722, col. 2, my italics; citing Malinowski)

A “wizard”, gesturing with a “wand”, performs a “spell” consisting of a formula ex-
pressed in the words of an arcane language; the spell has real-world effects, imbuing
objects with power.

We see all of this in computing: Programs play the role of spells; the programmer
plays the role of the wizard; a mouse, trackpad, or touchscreen plays the role of the
wand; programming languages (or, in the case of Siri or Alexa, English itself) plays
the role of the arcane language; and computations are “powered” by “words” with
real-world effects.

Here is another aspect of the role of symbols in magic:

[A symbol] can take on the qualities of the thing it represents, and it can take the
place of its referent; indeed, as is evident in religion and magic, the symbol can
become the thing it represents, and in so doing, the symbol takes on the power of
its referent. (Stevens, 1996, p. 724, my italics)

We see this happening in computers when we treat desktop icons (which are symbols)
or the screen output of a WYSIWYG word processor (such as a page of a Microsoft
Word document) as if they were the very things they represent. More significantly, we
see this in the case of those computer simulations in which the simulation of some-
thing really is that (kind of) thing: In online banking, the computational simulation of
transferring funds between accounts is the transferring of funds; digitized signatures on
online Word or PDF documents carry legal weight; in AI, computationally simulated
cognition (arguably) is cognition (Rapaport, 2012b, §8). And a National Research
Council report (cited by Samuelson et al. 1994, p. 2324, notes 44, 46; p. 2325, note 47)
talks about user interfaces as “illusions”:

Unlike physical objects, the virtual objects created in software are not constrained
to obey the laws of physics. . . . In the desktop metaphor, for example, the elec-
tronic version of file folders can expand, contract, or reorganize their contents on
demand, quite unlike their physical counterparts. (Samuelson et al., 1994, p. 2334)

Isn’t that magic?

3.14. CS AS “NEITHER” 159

Newell says some things about the nature of physical symbol systems (that is, com-
puters) that have “magical” overtones. The symbols of such a system “stand for some
entity”, that is:

An entity X designates an entity Y relative to a process P, if, when P takes X as
input, its behavior depends on Y. (Newell, 1980, p. 156)

Here, I take it that what Newell means is that P’s behavior really depends on Y instead
of on X, even though X (not Y) is P’s input. But that seems to be the essence of magic;
it is “action at a distance: The process behaves as if inputs, remote from those it in
fact has, effect it” (Newell, 1980, p. 156). Process P behaves as it does because of a
symbolic “spell” cast at a distance from P itself.

Perhaps computers are not just metaphorically magic (as Arthur C. Clarke might
have said); they are magic (as Brooks said)!

However, there is a difference between computing and “the magic of myth and
legend”: The latter lacks (or at least fails to specify) any causal connection between
incantation and result, whereas computation is quite clear about the connection: Re-
call the emphasis on algorithms (and see the discussion in §3.15.2.1.2, below). Thus,
although CS may have the outward appearance of magic, and even accomplish (some
of) the things that magic accomplishes, the way that it does it is different. CS has a
method; magic does not. Actually, CS has more in common with magic tricks than
with “real” magic.

Further Reading:

“I’m writing a book on magic,” I explain, and I’m asked, “Real magic?” By real
magic people mean miracles, thaumaturgical acts, and supernatural powers. “No,”
I answer: “Conjuring tricks, not real magic.” Real magic, in other words, refers to
the magic that is not real, while the magic that is real, that can actually be done,
is not real magic. (Lee Siegel, quoted in Dennett 2017, p. 318, my italics)

Magic tricks require intermediary steps that accomplish the illusions of magic:

Alan Perlis referred to AI researchers as “illusionists” because they try to create
the illusion of intelligence. He argued they should be considered stage magicians
rather than scientists. (Parnas, 2017, p. 5)

Another way to put this is that magic tricks—and computation—work “locally”, whereas
“real” magic is “non-local”:

The idea of locality emerged early in the history of science. For the Greek atomists,
it was what distinguished naturalistic explanations from magical ones. Whereas the
gods were believed to be capable of acting nonlocally, by simply willing remote
events to occur, genuine causality for the atomists was always local, a matter of
hard little atoms bumping into one another. (Holt, 2016, p. 50)

(In this regard, quantum mechanics would be more “magical” than computing, because
it violates the principle of locality, allowing what Einstein called “spooky action at a
distance”.) Put another way, magic does what it does magically; CS does those things
computationally:

160 CHAPTER 3. WHAT IS COMPUTER SCIENCE?

Everything going on in the software [of a computer] has to be physically supported
by something going on in the hardware. Otherwise the computer couldn’t do what
it does from the software perspective—it doesn’t work by magic. But usually we
don’t have to know how the hardware works—only the engineer and the repairman
do. We can act as though the computer just carries out the software instructions,
period. For all we care, as long as it works, it might as well be magic. (Jack-
endoff, 2012, p. 99, my boldface, italics in original)

Further Reading:
That CS does computationally what magic does magically is reminiscent of the situation in
Isaac Asimov’s (1953) Foundation trilogy, where the character known as “the Mule” does things
intuitively that Hari Selden’s followers needed to do step by step. But they did it so quickly that
it was equivalent in input-output behavior to what the Mule did. This is related to the knowing-
how/knowing-that distinction that we looked at earlier:

The baseball player, who’s thrown a ball over and over again a million times, might
not know any equations but knows exactly how high the ball will rise, the velocity
it will reach, and where it will come down to the ground. The physicist can write
equations to determine the same thing. But, ultimately, both come to the identical
point. (Geoffrey Hinton, quoted in Mukherjee 2017, p. 51

As the logician Joseph R. Shoenfield wrote, “a [computational] method must be mechanical. . . .
[M]ethods which involve chance procedures are excluded [M]ethods which involve magic
are excluded [M]ethods which require insight are excluded” (Shoenfield, 1967, p. 107,
italics in original, my boldface).

The difference between magic and computation is related to the difference between what Den-
nett (1995, Ch. 3, §4) calls ‘skyhooks’ and ‘cranes’: “Skyhooks” are “imaginary” (or magical)
devices that do their work (such as lift things up) miraculously, with no explanation; “cranes” are
real (non-magical) devices that do the same thing “in an honest, non-question-begging fashion”.
For other comments on computer science and magic, see Crowcroft 2005, p. 19, note 2; Green
2014b; and Figure 3.6.

For a good overview of the philosophical and computational analysis of causation, see Maudlin
2019b, as well as various articles on ‘cause’, ‘causality’, and ‘causation’ in the Stanford Ency-
clopedia of Philosophy.

3.15. SO, WHAT IS COMPUTER SCIENCE? 161

Figure 3.6: http://rhymeswithorange.com/comics/october-26-2017/,
c©2017 RWO Studios

3.15 So, What Is Computer Science?
It is time to take stock by summarizing the insights from our survey. But we have
a long way to go to flesh out the details! You, the reader, should feel free—or even
obligated!—to challenge this summary and to come up with a reasoned one of your
own.

3.15.1 Computer Science and Elephants
Consider the fable of the blind men and the elephant: Six blind, wise men try to de-
scribe an elephant that they can only touch, not see. The first touches its side and says
that the elephant is like a wall. The second touches its tusk and says that the elephant
is like a spear. The third touches its trunk and says that the elephant is like a snake.
The fourth touches its knee and says that the elephant is like a tree. The fifth touches
its ear and says that the elephant is like a fan. The sixth touches its tail and says that
the elephant is like a rope. As John Godfrey Saxe’s 1873 poem sums it up,

And so these men of Indostan
Disputed loud and long,
Each in his own opinion
Exceeding stiff and strong,
Though each was partly in the right,
And all were in the wrong!
(http://www.noogenesis.com/pineapple/blind men elephant.html)28

Our exploration of the various answers to the question “What is CS?” suggests that
it has no simple, one-sentence answer. Any attempt at one is no better than the fabled
blind men’s descriptions of an elephant: Many, if not most or all, such attempts wind
up describing the subject by focusing on only one aspect of it, as we saw with Newell,
Perlis, & Simon and with Knuth.

Now that we have looked at all sides of our “elephant” (to continue the earlier
metaphor), I would put it differently: CS is the scientific study of a family of topics

28See also https://en.wikipedia.org/wiki/Blind men and an elephant

162 CHAPTER 3. WHAT IS COMPUTER SCIENCE?

surrounding both abstract (or theoretical) and concrete (or practical) computing: It is a
“portmanteau” discipline.29 Let me explain:

When the discipline was first getting started, it emerged from various other disci-
plines: “electrical engineering, physics, mathematics, or even business” (Hamming,
1968, p. 4). In fact, the first academic computer programming course I took (in
Fortran)—the only one offered at my university in the late 1960s—was given by its
School of Business.

Charles Darwin said that “all true classification . . . [is] genealogical” (Darwin,
1872, Ch. 14, §“Classification”, p. 437). CS’s genealogy involves two historical tra-
ditions: (1) the study of algorithms and the foundations of mathematics (from ancient
Babylonian mathematics (Knuth, 1972a), through Euclid’s geometry, to inquiries into
the nature of logic, leading ultimately to the Turing Machine) and (2) the attempts to
design and construct a calculating machine (from the Antikythera Mechanism of an-
cient Greece; through Pascal’s and Leibniz’s calculators and Babbage’s machines; to
the ENIAC, iPhone, and beyond). (We’ll go into more detail in Chapter 6; for a brief
version from Hartmanis’s point of view, see Hartmanis 1993, pp. 9–11.)

Denning (2003, p. 15) makes an offhand comment that has an interesting implica-
tion. He says, “Computer science was born in the mid-1940s with the construction of
the first electronic computers.” This is no doubt true. But it suggests that the answer
to the question of what CS is has to be that it is the study of computers. The study of
algorithms is much older, of course, dating back at least to Turing’s 1936 formaliza-
tion of the notion, if not back to Euclid’s geometry or ancient Babylonian mathematics.
Yet the study of algorithms is clearly part of modern CS. So, modern CS is the result
of a marriage between (or merger of) the engineering problem of building better and
better automatic calculating devices (itself an ancient endeavor) and the mathemati-
cal problem of understanding the nature of algorithmic computation. And that implies
that modern CS has both engineering and science in its DNA. Hence its portmanteau
nature.

The topics studied in contemporary CS roughly align along a spectrum ranging
from the mathematical theory of computing, at one end, to the engineering of physical
computers, at the other, as we saw in §3.4.1. (Newell, Perlis, & Simon were looking at
this spectrum from one end; Knuth was looking at it from the other end.) The topics
share a family resemblance (and perhaps nothing more than that, except for their under-
lying DNA), not only to each other, but also to other disciplines (including mathemat-
ics, electrical engineering, information theory, communication, etc.), and they overlap
with issues discussed in the cognitive sciences, philosophy (including ethics), sociol-
ogy, education, the arts, and business:

I reject the title question [“Are We Scientists or Engineers?”]. . . . Computer Sci-
ence . . . spans a multidimensional spectrum from deep and elegant mathematics
to crafty programming, from abstraction to solder joints, from deep truth to elu-
sive human factors, from scholars motivated purely by the desire for knowledge or
practitioners making my everyday life better. It embraces the ethos of the scholar

29A “portmanteau” is a suitcase that opens into two equal sections. A “portmanteau word”—the term
was coined by Lewis Carroll (1871)—is one with “two meanings packed up into one word”, like ‘slithy’
(meaning “lithe and slimy”) or ‘smog’ (meaning “smoke and fog”).

3.15. SO, WHAT IS COMPUTER SCIENCE? 163

as well as that of the professional. To answer the question would be to exclude
some portion of this spectrum, and I would be poorer for that. (Wulf, 1995, p. 57)

3.15.2 Five Central Questions of CS
In this section, rather than try to say what CS is the study of, or whether it is scientific
or not, I want to suggest that it tries to answer five central questions. The single most
central question is:

1A. What can be computed?

But to answer that, we also need to ask:

1B. How can it be computed?

The other questions follow logically from the central one. So, the five questions
that CS is concerned with are:

1. What can be computed, and how?

2. What can be computed efficiently, and how?

3. What can be computed practically, and how?

4. What can be computed physically, and how?

5. What can be computed ethically, and how?

Let’s consider each of these in a bit more detail:

3.15.2.1 Computability

3.15.2.1.1 What Can Be Computed?

What is computation? This has always been the most fundamental question of our
field.
—Peter J. Denning and Peter Wegner (2010)

Question (1A) is the central question, because all other questions presuppose it. The
fundamental task of any computer scientist—whether at the purely mathematical or
theoretical end of the spectrum, or at the purely practical or engineering end—is to
determine whether there is a computational solution to a given problem, and, if so,
how to implement it. But those implementation questions are covered by the rest of
the questions on the above list, and only make sense after the first question has been
answered. (Alternatively, they facilitate answering that first question; in any case, they
serve the goal of answering it.)

Question (1A) includes the questions:

What is computation?
What kinds of things are computed?
What is computable?

164 CHAPTER 3. WHAT IS COMPUTER SCIENCE?

It is the question that logicians and computing pioneers Alonzo Church, Turing,
Gödel, and others were originally concerned with—Which mathematical functions
are computable?—and whose answer has been given as the Church-Turing Com-
putability Thesis: A function is computable if and only if it is computable by a Turing
Machine (or any formalism logically equivalent to a Turing Machine, such as Church’s
lambda calculus or Gödel’s general recursive functions). It is important to note that not
all functions are computable. (A standard example of a non-computable function is the
Halting Problem.) If all functions were computable, then computability would not be
as interesting a notion.

Various branches of CS are concerned with identifying which problems can be
expressed by computable functions. So, a corollary of the Computability Thesis is that
a task is computable if and only if it can be expressed as a computable function. In
Robert I. Soare (2012, p. 3289)’s characterization, the output of a Turing Machine “is
the total number of 1’s on the tape.” So, the key to determining what is computable
(that is, what kinds of tasks are computable) is finding a coding scheme that allows
a sequence of ‘1’s—that is, (a representation of) an integer—to be interpreted as a
symbol, a pixel, a sound, etc.

Here are some examples:

• Is chess computable? Shannon 1950 investigated whether we can computation-
ally analyze chess. (That is, can we play chess rationally?)

• Is cognition computable? The central question of AI is whether the functions that
describe cognitive processes are computable (see §19.3.2). Given the advances
that have been made in AI to date, it seems clear that at least some aspects of
cognition are computable, so a slightly more precise question is: How much of
cognition is computable? (Rapaport, 2012b, §2, pp. 34–35).

• Is the weather computable? (Brian Hayes 2007a)

• Is fingerprint identification computable? (Srihari, 2010)

• Is final-exam-scheduling computable? Faculty members in my department once
debated whether it was possible to write a computer program that would schedule
final exams with no time conflicts and in rooms that were of the proper size for
the class. Some thought that this was a trivial problem; others thought that there
was no such algorithm (on the (perhaps dubious!) grounds that no one in the
university administration had ever been able to produce such a schedule). In fact,
this problem is NP-complete (http://www.cs.toronto.edu/∼bor/373s13/L14.pdf).
(See also an early discussion of this problem in Forsythe 1968, §3.3, p. 1027.)

This aspect of question (1A)—which tasks are computable?—is close to Forsythe’s
famous concern:

The question “What can be automated?” is one of the most inspiring philosophical
and practical questions of contemporary civilization. (Forsythe, 1968, p. 1025)

Although similar in intent, Forsythe’s question can be understood in a slightly differ-
ent way: Presumably, a process can be automated—that is, done automatically, by a

3.15. SO, WHAT IS COMPUTER SCIENCE? 165

Figure 3.7: https://www.gocomics.com/calvinandhobbes/1986/03/12,
c©1986, Universal Press Syndicate

machine, without human intervention—if it can be expressed as an algorithm. That is,
computable implies automatable. But automatable does not imply computable: Wit-
ness the invention of the electro-mechanical, direct-dialing system in telephony, which
automated the task of the human operator. Yes, direct dialing is also computable, but it
wasn’t a computer that did this automation.30

3.15.2.1.2 How Is It Computable? Question (1B)—the “how” aspect of our cen-
tral question—is equally important: CS cannot be satisfied with a mere existence state-
ment to the effect that a problem is computable; it also requires a constructive answer
in the form of an algorithm that explicitly shows how it is computable.

In the Calvin and Hobbes cartoon in Figure 3.7, Calvin discovers that if you in-
put one thing (bread) into a toaster, it outputs something else (toast). Hobbes wonders
what happened to the input. It didn’t disappear, of course, nor did it “magically” turn
into the output. The toaster did something to the bread (heated it); that intervening
process is the analogue of an algorithm for the bread-to-toast function. Finding “inter-
vening processes” requires algorithmic thinking, and results in algorithms that specify
the transformational relations between input and output. (In psychology, behavior-
ism focused only on inputs and outputs: Pavlov’s famous experiment input a bell to a
dog, and the dog output saliva; but Pavlov didn’t ask how the input and output were
connected. Cognitive psychology focused on the intervening algorithms (Miller et al.,
1960).)

In §2.8, we observed that, for every x, there is a philosophy of x. Similarly, we can
ask, given some x, whether there is a computational theory of x. Finding a computa-
tional solution to a problem requires “computational thinking”, that is, algorithmic (or
procedural) thinking (as we discussed in §3.14.5, above).

30“Strowger Switch”, https://en.wikipedia.org/wiki/Strowger switch

166 CHAPTER 3. WHAT IS COMPUTER SCIENCE?

Computational thinking includes what I call the five Great Insights of CS; we’ll
revisit these in more detail in §7.6):

1. The representational insight:
Only 2 nouns are needed to represent information
(‘0’, ‘1’)

2. The processsing insight:
Only 3 verbs are needed to process information.
(move(left or right), print(‘0’ or ‘1’), erase)

3. The structural insight:
Only 3 grammar rules are needed to combine actions.
(sequence, selection, repetition)

4. The “closure” insight:
Nothing else is needed.
(This is the import of the Church-Turing Computability Thesis.)31

5. The implementation insight:
The first three insights can be physically implemented.

And computational thinking involves both synthesis and analysis:

Synthesis: Design an algorithm to solve a problem p:

1. Express p as a mathematical function Fp
(or a collection of interacting functions;
that is, give an input-output specification of p).

2. Try to find or design an algorithm AFp for computing Fp
(that is, for transforming the input to the output;
then try to find or design an efficient and practical version of AFp).

3. Implement AFp on a physical computer.

(What I am calling synthetic computational thinking is closely related to an anal-
ysis of information processing put forth by David Marr, a pioneer of computa-
tional vision (Marr, 1982); see the discussion in §17.7.3.)

Analysis: Understand the real world computationally:

Given a real-world process p
(physical, biological, psychological, social, economic, etc.),

try to find a computational process Ap that models p.

31The exact number of nouns, verbs, or grammar rules depends on the formalism. E.g., some presentations
add ‘halt’, ‘read’ or ‘exit’ as verbs, or use recursion as the single rule of grammar, etc. The point is that there
is a very minimal set and that nothing else is needed. Of course, more nouns, verbs, or grammar rules allow
for greater ease of expression.

3.15. SO, WHAT IS COMPUTER SCIENCE? 167

“Modeling” p is only one way to characterize what Ap does; we could also say that Ap
“describes”, or “simulates”, or “explains” p, etc. (In Chapter 15, we’ll look at whether
computer programs are scientific theories that might “explain” a real-world process p.)
Note that, once found, Ap can be re-implemented. In other words, the computational
model of p can be implemented in a different “medium” from the one in which p was
found. And that often means that p itself can be implemented in a different medium.
(If p is cognition, then—to the extent that AI succeeds—computers can (be said to)
think! (Rapaport, 2000b).)

3.15.2.2 Efficient Computability

Question (2) is the question studied by the branch of computer science known as com-
putational complexity theory. Given an algorithm, we can ask how much time it will
take to be executed (roughly, the number of operations that will be needed) and how
much space (memory) it will need. Computational-complexity theory is concerned
with efficiency, because it is concerned with the economics of the spatio-temporal
resources needed for computing. A more general question is this: Given the set of
computable functions, which of them can be computed in, so to speak, less time than
the age of the universe, or less space than the size of the universe? The principal dis-
tinction is whether a function is in the class called P (in which case, it is “efficiently”
computable) or in the class NP (in which case it is not efficiently computable but it is
efficiently “verifiable”):

Even children can multiply two primes, but the reverse operation—splitting a large
number into two primes—taxes even the most powerful computers. The numbers
used in asymmetric encryption are typically hundreds of digits long. Finding the
prime factors of such a large number is like trying to unmix the colors in a can of
paint, . . . “Mixing paint is trivial. Separating paint isn’t.” (Folger, 2016, p. 52)

Many, if not most, algorithms of practical importance are in P. By contrast, one impor-
tant algorithm that is in NP is the Boolean Satisfiability Problem: Given a molec-
ular proposition of propositional logic with n atomic propositions, under what as-
signment of truth-values to those atomic propositions is the molecular proposition
true (or “satisfied”)? Algorithms that are equivalent to Satisfiability are said to be
“NP-complete”:

What [Turing-award winner Stephen] Cook did was show that every problem in
NP has a reduction to satisfiability. Solve satisfiability and you can solve all of NP.
If you have an efficient algorithm for solving satisfiability, then all the problems
whose solutions we can efficiently check have efficient algorithms, and P = NP.
. . . “NP-complete” means those problems in NP powerful enough that they can be
used to solve any other problem in NP. (Fortnow, 2013, pp. 54, 58)

Whether P = NP is one of the major open questions in mathematics and CS. Most
computer scientists both hope and believe that P 6= NP. Here’s why:

What happens if P = NP? We get a beautiful world where everything is easy to
compute. We can quickly learn just about everything, and the great mysteries of

168 CHAPTER 3. WHAT IS COMPUTER SCIENCE?

the world fall quickly, from cures [for] deadly diseases to the nature of the universe.
The beautiful world also has a dark underbelly, including the loss of privacy and
jobs, as there is very little computers cannot figure out or accomplish. (Fortnow,
2013, p. 9)

Further Reading:
P is so-called because it is the class of functions computable in “Polynomial time”, and NP is so-
called because it is the class of functions computable in “Non-deterministic Polynomial time”;
for more technical details, see https://en.wikipedia.org/wiki/Non-deterministic Turing machine
and Bernhardt 2016, pp. 63–67.

On computational complexity and P = NP, see Austin 1983; Cook 1983; Mycielski 1983; Fort-
now 2009; Walsh 2014 for semi-technical discussions, and see Fortnow 2013 for a non-technical
discussion.

3.15.2.3 Practical Computability

His was a slap-dash method, but the world has been built slap-dash, and the beauty
of mountain and river and sunset may be but the varnish with which the unskilled
artificer hides his joins.
—E.M. Forster (1910, Ch. 26, p 165)

Question (3) is considered both by complexity theorists as well as by more practically-
oriented software engineers. Given a computable function in P (or, for that matter, in
NP) what are some practically efficient methods of actually computing it? For example,
under certain circumstances, some sorting algorithms are more efficient in a practical
sense (for example, faster) than others. Even a computable function that is in NP
might be practically computable in special cases. And some functions might only be
practically computable “indirectly” via a “heuristic”: A heuristic for problem p can be
defined as an algorithm for some problem p′, where the solution to p′ is “good enough”
as a solution to p (Rapaport, 1998, p. 406). Being “good enough” is, of course, a
subjective notion; Oommen and Rueda (2005, p. 1) call the “good enough” solution
“a sub-optimal solution that, hopefully, is arbitrarily close to the optimal.” The idea
is related to Simon’s notion of “bounded rationality”: We might not be able to solve
p because of limitations in space, time, or knowledge, but we might be able to solve
p′ algorithmically within the required spatio-temporal-epistemic limits. And if the
algorithmic solution to p′ gets us closer to a solution to p, then it is a heuristic solution
to p. But it is still an algorithm. A classic case of this is the Traveling Salesperson
Problem, an NP-complete problem that software like Google Maps solves special cases
of every day (even if their solutions are only “satisficing” ones (Simon, 1959, 1996a)).

3.15. SO, WHAT IS COMPUTER SCIENCE? 169

Further Reading:
Two important surveys of meanings of the term ‘heuristic’ are Romanycia and Pelletier 1985;
Chow 2015. Simon and Newell 1958—in addition to its discussion of the division of labor
(see §6.5.3, below) and its infamous prediction that a computer would become the world chess
champion by 1968 (see §19.4.2, below)—distinguishes algorithmic problem solving of “well-
structured” problems from heuristic problem solving of “ill-structured” problems. Other discus-
sions include Newell and Simon 1976; Korf 1992; Shapiro 1992a; Findler 1993; and the classic
Polya 1957. Thagard 2007 is not about heuristics, but presents a theory of “approximate” truth
that bears a close resemblance to the idea that a heuristic is an algorithm that computes an ap-
proximately correct answer.

Satisficing is “finding optimal solutions for a simplified world, or finding satisfactory solutions
for a more realistic world” (Simon, 1978, p. 350).

On the difference between computer science approaches to an important theoretical problem and
computer engineering approaches to a practical version of the same problem, see Vardi 2014.

3.15.2.4 Physical Computability

Question (4) brings in both empirical (hence scientific) and engineering considerations.
To the extent that the only (or the best) way to decide whether a computable function
really does what it claims to do is to execute it on a real, physical computer, com-
puters become an integral part of CS. Even a practically efficient algorithm for com-
puting some function might run up against physical limitations. Here is one example:
Even if, eventually, computational linguists devise practically efficient algorithms for
natural-language “competence” (understanding and generation; Shapiro 1989; Shapiro
and Rapaport 1991), it remains the case that humans have a finite life span, so the
infinite capabilities of natural-language competence are not really required (a Turing
Machine isn’t needed; a push-down automaton might suffice). This is also the question
that issues in the design and construction of real computers (“computer engineering”)
are concerned with. And it is where investigations into alternative physical implemen-
tations of computing (quantum, optical, DNA, etc.) come in.

3.15.2.5 Ethical Computability

Question (5) brings in ethical considerations. Arden, elaborating Forsythe’s question,
said that “the basic question [is] . . . what can and should be automated” (Arden, 1980,
p. 29, my italics) (Tedre 2015, pp. 167–168, makes the same elaboration). As Matti
Tedre (2008, p. 48, my italics) observes,

Neither the theoretician’s question “What can be efficiently automated?” nor the
practitioner’s question “How can processes be automated reliably and efficiently?”
include, explicitly or implicitly, any questions about why processes should be auto-
mated at all, if it is desirable to automate things or to introduce new technologies,
or who decides what will be automated.

Actually, the question “What should be computed?” is slightly ambiguous. It could
simply refer to questions of practical efficiency: Given a sorting problem, which sort-

170 CHAPTER 3. WHAT IS COMPUTER SCIENCE?

ing algorithm should be used; that is, which one is the “best” or “most practical” or
“most efficient” in the actual circumstances? But this sense of ‘should’ does not really
differentiate this question from question (3).

It is the ethical interpretation that makes this question interesting: Suppose that
there is a practical and efficient algorithm for making certain decisions (for example,
as in the case of autonomous vehicles). There is still the question of whether we should
use those algorithms to actually make decisions for us. Or let us suppose that the goal
of AI—a computational theory of cognition—is practically and efficiently computable
by physically plausible computers. One can and should still raise the question whether
such “artificial intelligences” should be created, and whether we (their creators) have
any ethical or moral obligations towards them, and vice versa! (See Delvaux 2016;
Nevejans 2016.) And there is the question of implicit biases that might be (intentionally
or unintentionally) built into some machine-learning algorithms. (We will discuss these
topics at greater length in Chapters 18 and 20.)

3.15.3 Wing’s Five Questions
I said that CS is concerned with five central questions. It might have been better to
say that it should be concerned with them. You will see why, when I compare our five
questions to Wing’s “Five Deep Questions in Computing” (Wing, 2008b).

1. Wing’s first question is

P = NP ?

This is part of our second question: “What is efficiently computable?”.

2. Curiously, her second question:

What is computable?

is our central one! (I should note, however, that a later essay (Wing, 2008a,
p. 3724) says that her five questions are a “set”, thus “no ordering implied”.)

3. Her third question is:

What is intelligence?

This can be rephrased as “How much of (human) cognition is computable?”,
which is a special case of our central question.

3.15. SO, WHAT IS COMPUTER SCIENCE? 171

4. Her fourth question:

What is information?

can be seen as asking an ontological question about the nature of what it is that
is computed: Is it numbers (0s and 1s)? Is it symbols (‘0’s and ‘1’s)? Is it infor-
mation in some sense (and, if so, in which sense)? (Recall from our discussion
in §2.8 that ontology is the philosophical study of what kinds of things exist.) In
the present context, “What is information?” is closely related to the question we
asked earlier in this chapter (§3.4.2) about what objects CS studies. Thus, it is
an aspect of our central question.

5. Wing’s last question:

(How) can we build complex systems simply?

is ambiguous between two readings of ‘build’: (a) On a software reading, this
question can be viewed in an abstract (scientific, mathematical) way as asking
about the structural nature of software: Structured programming and the issues
concerning the proper use of the “goto” statement (Dijkstra, 1968) would fall
under this category. As such, it concerns the grammar rules, and so it is an
aspect of our central question. (b) On a hardware reading, it is an engineering
question: How should we build physical computers? On that interpretation, it is
part of our fourth question.

Wing (2008a, p. 3724) adds a sixth question: “the most basic question of all: what
is a computer?”. Whether or not this is the most basic question (perhaps “What is
computable?” is more basic?), it would seem to be an aspect of the “how” part of
either our central question or our fourth question: How can something be computed
physically?

Thus, Wing’s five questions can be boiled down to two:

• What is computation such that only some things can be computed?
(And what can be computed (efficiently), and how?)

This is equivalent to our questions (1)–(3).

• (How) can we build devices to perform these computations?

This is equivalent to our question (4). And, in this case, we see once again the two
parts of the discipline: the scientific (or mathematical, or abstract) and the engineering
(or concrete).

But it is interesting and important to note that none of Wing’s questions correspond
to our ethical question (5). As computer scientist and philosopher Robin K. Hill ob-
serves:

Whereas the philosophy of computer science has heretofore been directed largely
toward the study of formal systems by means of other formal systems . . . con-
cerned professionals have also devoted attention to the ethics of computing, taking
on issues like privacy, the digital divide, and bias in selection algorithms. Let’s
keep it up. There are plenty. (Hill, 2017a)

172 CHAPTER 3. WHAT IS COMPUTER SCIENCE?

3.15.4 Conclusion

I said that our survey suggests that there is no simple, one-sentence answer to the ques-
tion: What is CS? If we were to summarize the discussion in this chapter in one sen-
tence, it would look something like this:

CS is the scientific (or STEM) study of:

what problems can be solved,
what tasks can be accomplished,
and what features of the world can be understood . . .

. . . computationally, that is, using a language with only:

2 nouns (‘0’, ‘1’),
3 verbs (‘move’, ‘print’, ‘halt’),
3 grammar rules (sequence, selection, repetition),
and nothing else,

and then to provide algorithms to show how this can be done:

efficiently,
practically,
physically,
and ethically.

But this definition is hardly a simple sentence!
However, one of the opening quotations for this chapter—from an interview with a

computational musician—comes closer, so we will end where this chapter began:

The Holy Grail of computer science is to capture the messy complexity of the natural
world and express it algorithmically.
—Teresa Marrin Nakra, quoted in Davidson 2006, p. 66, my italics.

3.16 A Look Ahead

We are now ready to look into all of these issues in more detail, so that we’ll be able to
have a better grasp of exactly what CS is. A more complete answer is going to depend
on answers to many other questions. In the next chapter, we will look at the first one:
What is science?

3.16. A LOOK AHEAD 173

Further Reading:
The website “What Is Computer Science?” (http://www.elon.edu/e-web/academics/elon college/
computing sciences/curriculum/cs.xhtml) on the website of Elon University’s Department of
Computing Sciences (note the plural name!) discusses pretty much all the issues we’ve been
looking at: Is it a science? What does it study? Is it an engineering discipline?

Crowcroft 2005 argues that CS is not the study of either the natural or the artificial but of the
virtual. An earlier essay on CS and “the virtual” is Pylyshyn 1992.

Also of value are Matti Tedre’s (2007) “Lecture Notes in the Philosophy of Computer Science”,
especially the following lectures:

• “Introduction to the Course”
http://cs.joensuu.fi/∼mmeri/teaching/2006/philcs/files/lecture notes1.pdf,

• “Part I: Struggling for Status”
http://cs.joensuu.fi/∼mmeri/teaching/2006/philcs/files/lecture notes2.pdf,

• “Part II: Emerging Interdisciplinarity”
http://cs.joensuu.fi/∼mmeri/teaching/2006/philcs/files/lecture notes3.pdf

B. Hayes 2015b distinguishes “three communities in the world of computation”: computer sci-
ence, computational science, and software development.

174 CHAPTER 3. WHAT IS COMPUTER SCIENCE?

3.17 Questions for the Reader
1. Computer scientist and philosopher Amnon H. Eden (Eden, 2007) seeks to bring

clarity to the science-vs.-math-vs.-engineering controversy by taking up a dis-
tinction due to Peter Wegner (1976) among three different “Kuhnian paradigms”
(see Ch. 4, §4.9.2): a view of CS as (1) a “rationalist” or “mathematical” dis-
cipline, (2) a “technocratic” or “technological” discipline, and (3) a “scientific”
discipline. (Tedre and Sutinen 2008 also discusses these three paradigms.) Eden
then argues in favor of the scientific paradigm.

But must there be a single paradigm? Are there any disciplines with multiple
paradigms? Does the existence of multiple paradigms mean that there is no
unitary discipline of CS? Or can all the paradigms co-exist?

2. Journalist Steve Lohr (2008) quotes a high-school math and CS teacher as saying,
“I do feel that computer science really helps students understand mathematics . . .
And I would use computers more in math, if I had access to a computer lab.”

Is CS best seen as the use of a physical tool, or as the study of (as well as the
use of) a method of thinking (“computational thinking”)?

3. The philosopher Gottfried Wilhelm Leibniz (1646–1716) thought that a lingua
characteristica universalis (or universal formal language) and a calculus ratio-
cinator (or formal logic) would offer “mankind . . . a new instrument which will
enhance the capabilities of the mind to a far greater extent than optical instru-
ments strengthen the eyes” (Leibniz, 1677, p. 23). From this statement, com-
puter scientist Moshe Vardi (2011a) derives a “definition of computing, as an
‘instrument for the human mind’.” This is similar to Daniel C. Dennett’s sugges-
tion that the computer is a “prosthesis” for the mind (see, for example, (Dennett,
1982)).

Is that a reasonable definition of CS?

4. In §3.12, I said that it makes no—or very little—sense to have a program without
a computer to run it on. That a computer is useful, but not necessary, is demon-
strated by the “Computer Science Unplugged” project (http://csunplugged.org/).
And some of the earliest AI programs (for playing chess) were executed by
hand (Shannon 1950; Turing 1953; https://chessprogramming.wikispaces.com/
Turochamp).

So, did these programs “have a computer to run on”? Were the humans, who
hand-executed them, the “computers” that these programs “ran on”? When you
debug a computer program, do you do the debugging by hand?32

32Thanks to Stuart C. Shapiro for this suggestion.

3.17. QUESTIONS FOR THE READER 175

5. Forsythe observed that,

in the long run the solution of problems in field X on a computer should be-
long to field X , and CS should concentrate on finding and explaining the prin-
ciples [“the methodology”] of problem solving [with computers]. (Forsythe,
1967b, p. 454)

Should contributions made by AI researchers to philosophy or psychology be
considered to be the results of AI? Or are they philosophical or psychological
results that were only produced or facilitated by computational techniques?

6. Maybe when Knuth says that CS is the “study” of algorithms, by ‘study’ he
means both science and engineering. In what sense does the study of electricity
belong both to engineering and to science? Certainly, the science of physics stud-
ies electricity as a physical phenomenon. And, certainly, electrical engineering
studies electricity from an engineering perspective. But physics and electrical
engineering are typically considered to be separate (albeit related) disciplines.

Should the same be said for computer science (which would study algorithms)
and computer engineering (which would study computers and, perhaps, software
engineering)?

7. Arden (1980, p. 9) suggests, but does not endorse, a “committee-produced, all-
purpose” definition:33 “computer science is the study of the design, analysis,
and execution of algorithms, in order to better understand and extend the appli-
cability of computer systems”. Note that this avoids the science-vs.-engineering
quandary, by its use of ‘study’, and tries to cover all the ground. Arden sug-
gests, however, that his entire book should be taken as the “elaboration” of this
definition.

Isn’t this like saying that CS is what computer scientists do?

8. “Computer Science is the science of using computers to solve problems” (George
Washington University Department of Computer Science, 2003)
(see also Roberts 2006, p. 5). Because this definition doesn’t limit the kind of
problems being solved, it has the advantage of illuminating the generality and in-
terdisciplinarity of CS. And, because it implicitly includes the software (algorith-
mic) side of computing—after all, you can’t use a computer to solve a problem
unless it has been appropriately programmed—it nicely merges the computer-
vs.-algorithm aspects of the possible definitions. Something more neutral could
just as easily have been said: Computer science is the science of solving prob-
lems computationally, or algorithmically—after all, you can’t solve a problem
that way without executing its algorithmic solution on a computer.

But can there really be a science of problem solving? And, even if there could
be, is it CS? Or is that all that CS is?

33That is, a “klunky” one designed to be acceptable to a variety of competing interests. The standard joke
about such definitions is that a camel is a horse designed by a committee. See http://en.wikipedia.org/wiki/
Design by committee

176 CHAPTER 3. WHAT IS COMPUTER SCIENCE?

9. As we mentioned in §2.6.2.2, McGinn (2015b) argues that philosophy is a sci-
ence just like physics (which is an empirical science) or mathematics (which is a
“formal” science), likening it more to the latter than the former (p. 85). To make
his argument, he offers this characterization of science:

[W]hat distinguishes a discourse as scientific are such traits as these: rigor,
clarity, literalness, organization, generality (laws or general principles), tech-
nicality, explicitness, public criteria of evaluation, refutability, hypothesis
testing, expansion of common sense (with the possibility of undermining
common sense), inaccessibility to the layman, theory construction, symbolic
articulation, axiomatic formulation, learned journals, rigorous and lengthy
education, professional societies, and a sense of apartness from naı̈ve opin-
ion. (McGinn, 2015b, p. 86)

Does CS fit that characterization?

10. In §3.5.4, we considered the possibility that CS is not a “coherent” discipline.
Consider the following interpretation of the blind-men-and-the-elephant story:

The man at the tail is sure he has found a snake; the man at the tusks believes
he’s holding spears. Through teamwork, they eventually discover the truth.
“But what if they were wrong?” [magician Derek] DelGaudio asks onstage.
“What if that thing was some sort of magical creature that had a snake for a
nose and tree-trunk legs, and they convinced it it was an elephant? Maybe
that’s why you don’t see those things anymore.” (Weiner, 2017)

Might CS have been such a “magical creature”? Is it still?

11. In this chapter, we asked what CS is: Is it a science? A branch of engineer-
ing? Or something else? But we could also have responded to the question with
another one: Does it matter? Is it the case that, in order for a discipline to be
respectable, it has to be (or claim to be!) a science? Or is it the case that a disci-
pline’s usefulness is more important? (For instance, whether or not medicine is
a science, perhaps what really matters is that it is a socially useful activity that
draws upon scientific—and other!—sources.)34

So: Does it matter what CS is? And what would it mean for a discipline to be
“useful”?

34Thanks to Johan Lammens (personal communication, 2017) for the observations in this question.

3.17. QUESTIONS FOR THE READER 177

12. Wing (2016) says this about computational thinking:

I argued that the use of computational concepts, methods and tools would
transform the very conduct of every discipline, profession and sector. Some-
one with the ability to use computation effectively would have an edge over
someone without. So, I saw a great opportunity for the computer science
community to teach future generations how computer scientists think. Hence
“computational thinking.”

How do computer scientists think? At the very least, we might say that they
think procedurally. Is that the same as saying that they think algorithmically?
We might also say that they think recursively. Because procedural theories of
computability (such as Turing’s) are logically equivalent to recursive theories
(such as Gödel’s), is procedural (or algorithmic) thinking the same as recursive
thinking? Is thinking abstractly part of computational thinking, as in the case of
procedural abstraction (or is thinking abstractly merely something that is more
generally part of thinking “logically” or “scientifically”)? Are there other ways
in which computer scientists think that is unique to computer science?

13. A related (but distinct) question is: What is a computer scientist? Bill Gasarch
(https://blog.computationalcomplexity.org/2018/09/what-is-physicist-mathematician.html)
considers a number of reasons why the answer to this question is not straightfor-
ward: Does it depend on whether the person is in a CS department? Whether
the person’s degree is in CS? What the person’s research is? For example, the
computer scientist Scott Aaronson received a prize in physics, yet he insists that
he his not a physicist (Aaronson, 2018). Read Gasarch’s post and try to offer
some answers. (We’ll return to this issue in §15.4.4.)

178 CHAPTER 3. WHAT IS COMPUTER SCIENCE?

Chapter 4

What Is Science?

Version of 20 January 2020 DRAFT c© 2004–2020 by William J. Rapaport

Science is the great antidote to the poison of enthusiasm and superstition.
—Adam Smith (1776, V.1.203)

The most remarkable discovery made by scientists is science itself. The discov-
ery must be compared in importance with the invention of cave-painting and of
writing. Like these earlier human creations, science is an attempt to control our
surroundings by entering into them and understanding them from inside. And like
them, science has surely made a critical step in human development which cannot
be reversed. We cannot conceive a future society without science.
—Jacob Bronowski (1958, my italics)

[A] science is an evolving, but never finished, interpretive system. And funda-
mental to science . . . is its questioning of what it thinks it knows. . . . Scientific
knowledge . . . is a system for coming to an understanding.
—Avron Barr (1985)

Science is all about the fact that we don’t know everything.
Science is the learning process.
—Brian Dunning (2007)

[S]cience is not a collection of truths. It is a continuing exploration of mysteries.
—Freeman Dyson (2011b, p. 10)

179

180 CHAPTER 4. WHAT IS SCIENCE?

4.1 Readings
In doing these readings, remember that our ultimate question is whether CS is a science.

1. Required:

• Either:

– Okasha, Samir (2002), Philosophy of Science: A Very Short Introduction
(Oxford: Oxford University Press).
∗ This is my favorite introduction to philosophy of science, although it’s an

entire (but short) book. You may read it instead of any of the following.

• Or:

(a) Kemeny, John G. (1959), A Philosopher Looks at Science
(Princeton: D. van Nostrand),
https://openlibrary.org/works/OL5174372W/A philosopher looks at science

– Introduction, pp. ix–xii
– Ch. 5, “The [Scientific] Method”, pp. 85–105.
– You can skim Ch. 10, “What Is Science?”, pp. 174–183, because his an-

swer is just this: A science is any study that follows the scientific method.
(b) Popper, Karl R. (1953), “Science: Conjectures and Refutations”, in Karl R.

Popper, Conjectures and Refutations: The Growth of Scientific Knowledge
(New York: Harper & Row, 1962),
https://faculty.washington.edu/lynnhank/Popper.doc

(c) Kuhn, Thomas S. (1962), The Structure of Scientific Revolutions
(Chicago: University of Chicago Press),
Ch. IX, “The Nature and Necessity of Scientific Revolutions”,
http://www.marxists.org/reference/subject/philosophy/works/us/kuhn.htm

2. Recommended:

(a) Hempel, Carl G. (1966), Philosophy of Natural Science (Englewood Cliffs, NJ:
Prentice-Hall), “Scope and Aim of this Book”,
http://www.thatmarcusfamily.org/philosophy/Course Websites/Readings/
Hempel%20-%20Philosophy%20of%20Natural%20Science.pdf

• On empirical vs. non-empirical sciences.

(b) Kolak, Daniel; Hirstein, William; Mandik, Peter; & Waskan, Jonathan (2006), Cog-
nitive Science: An Introduction to Mind and Brain (New York: Routledge),
§4.4.2. “The Philosophy of Science”,
http://books.ranvier.ir/download.php?file=
Cognitive%20Science%20An%20Introduction%20to%20the%20Mind%20and%20Brain.pdf

(c) Papineau, David (2003), “Philosophy of Science”, in Nicholas Bunnin & E.P. Tsui-
James (eds.), The Blackwell Companion to Philosophy, 2nd edition (Malden, MA:
Blackwell): 286–316,
https://svetlogike.files.wordpress.com/2014/02/the-blackwell-companion-to-philosophy-2ed-2002.
pdf

• Focus on pp. 286–290 (induction, falsificationism),
& pp. 294–305 (instrumentalism, realism, theory, observation, evidence, pes-
simistic meta-induction, epistemology, causation)

• Skim the rest.

4.2. INTRODUCTION 181

4.2 Introduction
All these processes are very complex, and they tend to follow the rule that the more
you find out about them, the more you discover that you didn’t know That is
both the joy and the frustration of science
—Gregory L. Murphy (2019, §1)

We have seen that one answer to our principal question—What is CS?1—is that it is a
science (or that parts of it are science). Some say that it is a science of computers, some
that it is a science of algorithms or procedures, some that it is a science of information
processing. And, of course, some say that it is not a science at all, but that it is a branch
of engineering. In Chapter 5, we will explore what engineering is, so that we can decide
whether CS is a branch of engineering. In the present chapter, we will explore what it
means to be a science, so that we can decide whether CS is one (or whether parts of it
are).

In keeping with the definition of philosophy as the personal search for truth by
rational means (§2.7), I won’t necessarily answer the question, “Is CS a science?”. But
I will provide considerations to help you find and defend an answer that you like. It is
more important for you to determine an answer for yourself than it is for me to present
you with my view; this is part of what it means to do philosophy in the first person for
the first person. And it is very important for you to be able to defend your answer; this
is part of what it means to be rational (it is the view that philosophy is intimately related
to critical thinking). We will follow this strategy throughout the rest of the book.

4.3 Science and Non-Science
The word ‘science’ originally simply meant “knowledge” or “knowing”. Accord-
ing to the Oxford English Dictionary,(OED)2 it derives from the Latin verb scire,
which meant “to know”. (The word ‘scientist’ was coined by the philosopher William
Whewell, on a parallel with ‘artist’.)3 But, of course, ‘science’ has come to mean much
more than “knowledge” or “knowing”.

Let’s begin by contrasting the term ‘science’ with some other terms. First, of
course, science is often opposed to engineering. Because this will be our focus in
Chapter 5, I won’t say more about it here.

Second, science is sometimes opposed to “art”, not only in the sense of the fine
arts (such as painting, music, and so on) but also in the sense of an informal body of
experiential knowledge, or tricks of the trade: information that is the result of personal
experience, perhaps unanalyzable (or, at least, unanalyzed), and creative. This is “art”
in the sense of “the art of cooking”. By contrast, science is formal, objective, and
systematic.

This contrast can be seen in the titles of two classic texts in CS: Donald Knuth’s
The Art of Computer Programming (Knuth, 1973) and David Gries’s The Science of

1Recall from Ch. 3 that we will refer to computer science as ‘CS’ so as not to beg any questions about
whether it is a science simply because its name suggests that it is.

2http://www.oed.com/view/Entry/172672
3http://www.oed.com/view/Entry/172698.

182 CHAPTER 4. WHAT IS SCIENCE?

Programming (Gries, 1981). The former is a multi-volume handbook of different tech-
niques, catalogued by type, but analyzed (albeit incompletely by today’s standards).
The latter is a compendium of formal methods for program development and verifi-
cation, an application of logic to programming. (For a detailed defense of the title
of Knuth’s work, see Knuth 1974a; recall our discussion of Knuth’s views on art vs.
science in §3.14.2.)

Finally, science is opposed (both semantically and politically) to “pseudo-science”:
any discipline that masquerades as science, but is not science. The problem of de-
termining the dividing line between “real” science and “pseudo”-science is called the
‘demarcation problem’. For example, almost everyone will agree that astronomy is a
“real” science and that astrology is not. But what is the difference between “real” and
“pseudo”-sciences? We will return to this in §4.9.1, because to explain the contrast
between science and pseudo-science is part of the philosophical exploration of what
science is.

One might think that the philosophy of science would be the place to go to find out
what science is, but philosophers of science these days seem to be more interested in
questions such as the following (the first two of which are the closest to our question):

• What is a scientific theory?
(Here, the emphasis is on the meaning of the term ‘theory’.)

• What is scientific explanation?
(Here, the emphasis is on the meaning of the term ‘explanation’.)

• What is the role of probability in science?

• What is the nature of induction? (Why) will the future resemble the past?

• What is a theoretical term?
(That is, what do the terms of (scientific) theories mean? Do they necessarily
refer to something in the real world? For example, there used to be a scientific
concept in the theory of heat called ‘phlogiston’, but we no longer think that this
term refers to anything.)

• How do scientific theories change? When they do, are their terms “commensu-
rable”—that is, do they mean the same thing in different theories?
(For example, what is the relationship between ‘phlogiston’ and ‘heat’? Does
‘atom’, as used in ancient Greek physics, or even 19th-century physics, mean
the same as ‘atom’ as used in 21st-century physics?)

• Are scientific theories “realistic” (do they attempt to describe the world?) or
merely “instrumental” (are they just very good predicting-devices that don’t nec-
essarily bear any obvious resemblance to reality, as sometimes seems to be the
case with our best current theory of physics, namely, quantum mechanics)?

And so on.
These are all interesting and important questions, and it is likely that a good answer

to our question, “What is science?”, will depend on answers to many of these. If so,
then a full answer will be well beyond our present scope, and the interested reader is

4.4. EARLY MODERN SCIENCE 183

urged to explore a good book on the philosophy of science (such as those listed in §4.1
and the Further Reading boxes later in this chapter). Here, we will only be able to
consider a few of these questions.

4.4 Early Modern Science
Sir Francis Bacon—who lived about 400 years ago (1561–1626, a contemporary of
Shakespeare)—devised one of the first “scientific methods”. He introduced science as
a systematic study. (So, when you read about computer scientists who call CS a “study”
rather than a “science”, maybe they are not trying to deny that CS is a science but are
merely using a euphemism.) Bacon . . .

told us to ask questions instead of proclaiming answers, to collect evidence instead
of rushing to judgment, to listen to the voice of nature rather than to the voice of
ancient wisdom. (Dyson, 2011a, p. 26)

He emphasized the importance of “replicability”:

Replicability begins with the idea that science is not private; researchers who make
claims must allow others to test those claims. (Wainer, 2012, p. 358)

Perhaps science is merely any systematic activity, as opposed to a chaotic one.
There is a computer program called ‘AlphaBaby’, designed to protect your computer
from young children who want to play on your computer but who might accidentally
delete all of your files while randomly hitting keys. AlphaBaby’s screen is blank; when
a letter or numeral key is hit, a colorful rendition of that letter or numeral apears on the
screen; when any other key is hit, a geometric figure or a photograph appears. Most
children hit the keys randomly (“chaotically”) rather than systematically investigating
which keys do what (“scientifically”).

Timothy Williamson (2011) suggests something similar when he characterizes the
“scientific spirit” as “emphasizing values like curiosity, honesty, accuracy, precision
and rigor”. And the magician and skeptical investigator known as The Amazing Randi
said: “Science, after all, is simply a logical, rational and careful examination of the
facts that nature presents to us” (quoted in Higginbotham 2014, p. 53, my italics).
Although Shapiro would be happy with the word ‘nature’ here (§3.9.3), others might
not be, but I think that it can be eliminated without loss of meaning and still apply to
computer “science”. (For further discussion of this aspect of science, in the context of
whether both philosophy and CS are sciences, see §3.17, Question 9.)

To study something, X , systematically is:

• to find positive and negative instances of X—to find things are are Xs and things
that are not Xs;

• to make changes in Xs or their environment (that is, to do experiments);

• to observe Xs and to observe the effects of experiments performed with them;

• to find correlations between Xs, their behavior, and various aspects of their envi-
ronment.

184 CHAPTER 4. WHAT IS SCIENCE?

One important question in the history of science has concerned the nature of these
correlations. Are they (merely) descriptions, or are they explanations? In other words,
is the goal of science to describe the world, or is it to explain the world?

Further Reading:
Dyson 2006 is an interesting book review that discusses some of the origins of science. In
particular, the fifth and sixth paragraphs discuss Galileo and Descartes.

4.5 The Goals of Science
At least three different things have been identified as the goals of science: description,
explanation, and prediction. They are not independent of each other: At the very least,
you need to be able to describe things in order to explain them or to predict their
behavior. But they are distinct: A theory that predicts doesn’t necessarily also explain
(for some examples, see Piccinini 2015, p. 94).

4.5.1 Description as the Goal of Science
Ernst Mach was a physicist and philosopher of science who lived about 130 years
ago (1838–1916), at the time when the atomic theory was being developed. He was
influenced by Einstein’s theory of relativity and is probably most famous for having
investigated the speed of sound (which is now measured in “Mach” numbers, “Mach 1”
being the speed of sound).

For Mach, the goal of science was to discover regular patterns among our sensations
in order to enable the prediction of future sensations, and then to describe those pat-
terns in an efficient manner. Scientific theories, he argued, are (merely) shorthand—or
summary—descriptions of how the world appears to us.

According to the philosophy of science known as “physicalism”, our sensory per-
ception yields reliable (but corrigible)4 knowledge of ordinary, medium-sized physical
objects and events. For Mach, because atoms were not observable, there was no reason
to think that they exist. Perhaps it seems odd to you that a physicist would be inter-
ested in our sensations rather than in the world outside of our sensations. This makes
it sound as if science should be done “in the first person, for the first person”, just like
philosophy! That’s almost correct; many philosophically oriented scientists at the turn
of the last century believed that science should begin with observations, and what are
observations but our sensations? Kant distinguished between what he called ‘noumena’
(or “things in themselves”, independent of our concepts and sensations) and what he
called ‘phenomena’ (or things as we perceive and conceive them as filtered through
our conceptual apparatus). He claimed that we could only have knowledge about phe-
nomena, not noumena, because we could not get outside of our first-person, subjective
ways of conceiving and perceiving the world. This is why some philosophers of sci-
ence have argued that sciences such as quantum mechanics are purely instrumental and
only concerned with prediction, rather than being realistic, or concerned with the way
the world “really” is.

4That is, “correctable”.

4.5. THE GOALS OF SCIENCE 185

Further Reading:
Recall our discussion of Kant in §3.12. For more on Kant’s notions of noumena and phenomena,
see Grier 2018 and http://en.wikipedia.org/wiki/Noumenon, espcially the section on ”Kant’s Us-
age: Overview”. The best and shortest (but by no means the easiest!) introduction to Kant’s
philosophy is Kant 1783. We’ll come back to these notions in §17.3.2 when we discuss the
relation of computer programs to the world. For further discussion, see Becker 2018.

4.5.2 Explanation as the Goal of Science
By contrast, the atomic theory was an attempt to explain why the physical world ap-
pears the way it does. Such a goal for science is to devise theories that explain observed
behavior. Such theories are not merely descriptive summaries of our observations, but
go beyond our observations to include terms that refer to things (like atoms) that we
might not be able to observe (yet). So, the task of science is not, in spite of Mach,
merely to describe the complexity of the world in simple terms, but to explain the
world:

This is the task of natural science: to show that the wonderful is not incomprehen-
sible, to show how it can be comprehended (Simon, 1996b, p. 1, my italics)

One major theory of the nature of scientific explanation is the philosopher Carl
Hempel’s Deductive-Nomological Theory (Hempel, 1942, 1962). It is “deductive”,
because the statement (Qc) that some object c has property Q is explained by showing
that it can be validly deduced from two premises: that c has property P (Pc) and that all
Ps are Qs (∀x[Px→ Qx]). And it is “nomological”, because the fact that all Ps are Qs is
lawlike or necessary, not accidental: Anything that is a P must be a Q. (This blending
of induction and deduction is a modern development; historically, Bacon (and other
“empiricists”, chiefly in Great Britain) emphasized experimental “induction and prob-
abilism”, while Descartes (and other “rationalists”, chiefly on the European continent)
emphasized “deduction and logical certainty” (Uglow, 2010, p. 31).)

One of the paradoxes of explanation (it is sometimes called the “paradox of anal-
ysis”) is that, by showing how something mysterious or wonderful or complicated is
really just a complex structure of simpler things that are non-mysterious or mundane,
we lose sight of the original thing that we were trying to understand or analyze. (We
will see this again in Chapter 7 when we look at Dennett’s notion of Turing’s “inver-
sion”. It is also closely related to the notion of recursion (see §7.6.5), where complex
things are defined in terms of simpler ones.) Simon demurs:

. . . the task of natural science . . . [is] to show how it [the wonderful] can be com-
prehended—but not to destroy wonder. For when we have explained the wonderful,
unmasked the hidden pattern, a new wonder arises at how complexity was woven
out of simplicity. (Simon, 1996b, pp. 1–2, my italics)

So, for instance, the fact—if it is a fact (we will explore this issue in Chapter 19)—that
non-cognitive computers can exhibit (or even merely simulate) cognitive behaviors is
itself something worthy of wonder and further (scientific) explanation.

186 CHAPTER 4. WHAT IS SCIENCE?

Question for the Reader:
Are some computer programs theories? In particular, consider an AI program that allows a robot
to “see” or to use natural language. Does such a program constitute a psychological (hence
scientific) theory of vision or language? If so, would it be a descriptive theory or an explanatory
one? (We’ll look at some answers to these questions in Chapter 15.)

4.5.3 Prediction as the Goal of Science

. . . prediction is always the bottom line. It is what gives science its empirical con-
tent, its link with nature. . . . This is not to say that prediction is the purpose of
science. It was once . . . when science was young and little; for success in predic-
tion was . . . the survival value of our innate standards of subjective similarity. But
prediciton is only one purpose among others now. A more conspicuous purpose is
technology, and an overwhelming one is satisfaction of pure intellectual curisity—
which may once have had its survival value too.
—Willard van Orman Quine (1987, p. 162)

Einstein “thought the job of physics was to give a complete and intelligible account
of . . . [the] world” (Holt, 2016, p. 50)—that is, to explain the world. Both scientific
descriptions and explanations of phenomena enable us to make predictions about their
future behavior. This stems, in part, from the fact that scientific descriptions must be
general or universal in nature: They must hold for all times, including future times. As
the philosopher Moritz Schlick put it,

For the physicist . . . the absolutely decisive and essential thing, is that the equa-
tions derived from any data now also hold good of new data. (Schlick, “Causaltiy
in Contemporary Physics” (1931), as quoted in Coffa 1991, p. 333, my boldface,
Schlick’s italics)

Thus, “[t]he ‘essential characteristic’ of a law of nature ‘is the fulfillment of predic-
tions’ ” (Coffa, 1991, p. 333, embedded quotation from Schlick).

According to Hempel (1942, §4), prediction and explanation are not mutually ex-
clusive. In fact, Hempel argues that they are opposite sides of the same coin. As we
saw in the previous section, to explain an event is to find (perhaps abductively) one or
more “initial conditions” (usually, earlier events) and one or more general laws such
that the even to be explained can be deduced from them. For Hempel, to predict an
event is to use already-known initial conditions and general laws to deduce a future
event:

The customary distinction between explanation and prediction rests mainly on a
pragmatical difference between the two: While in the case of an explanation, the
final event is known to have happened, and its determining conditions have to
be sought, the situation is reversed in the case of a prediction: here, the initial
conditions are given, and their “effect”—which, in the typical case, has not yet
taken place—is to be determined. (Hempel, 1942, p. 38)

4.6. INSTRUMENTALISM VS. REALISM 187

But some scientists and philosophers hold that prediction is the only goal that is
important, and that description and explanation are either not important or impossible
to achieve. One of the main reasons for this comes from quantum mechanics. Some
aspects of quantum mechanics are so counter-intuitive that they seem to fail both as
descriptions of reality as we think we know it and as explanations of that reality: For
example, according to quantum mechanics, objects seem to be spread out rather than
located in a particular place—until we observe them; there seems to be “spooky” action
at a distance (quantum entanglement); and so on. Yet quantum mechanics is the most
successful scientific theory (so far) in terms of the predictions it makes. Niels Bohr
(one of the founders of quantum mechanics) said “that quantum mechanics was meant
to be an instrument for predicting our observations”, neither a description of the world,
nor an explanation of it (Holt, 2016, p. 50, my italics).

The explanation-vs.-prediction debate underlies another issue: Is there a world to
be described or explained? That is, does science tell us what the world is “really” like,
or is it just an “instrument” for helping us get around in it?

Further Reading:
Gillis 2017 discusses prediction as the goal of science, in the context of trusting what science
has to tell us about climate and about solar eclispses. For a cultural critic’s views on what we
can learn about the nature of science from the paradox of quantum entanglement in physics, see
Adam Gopnik 2015b. For more on quantum mechanics, see Weinberg 2017; Albert 2018.

4.6 Instrumentalism vs. Realism
Here’s a simplified way of thinking about what a scientific theory is: We can begin by
considering two things: the world and our beliefs about the world (or our descriptions
of the world). Those beliefs or descriptions are theories—theories about the world,
about what the world is like. Such theories are scientific if they can be tested by em-
pirical or rational evidence, in order to see if they are “good” beliefs or descriptions,
that is, beliefs or descriptions that are true (that correspond to what the world is really
like). The testing can take one of two forms: confirmation or refutation. A theory is
confirmed if it can be shown that it is consistent with the way the world really is. And
a theory is refuted if it can be shown that it is not the way the world really is.

A picture might help:

W

O — — — — — — — — —

T

Line W—a continuous line—is intended to represent the world, a continuum. Line O—
a line with gaps—is intended to represent observations that we can make about the
world: Some parts of the world we have observed (or we can observe)—they are

188 CHAPTER 4. WHAT IS SCIENCE?

represented in O by the line segments. Others we have not observed (or we cannot
observe)—those are the gaps. The solid lines in O represent things that we believe
about the world; the gaps represent things that we don’t know (yet) about the world.
Line T is intended to represent a scientific theory about the world (about line W); here,
the gaps are filled in. Those fillings-in are predictions about what the world is like at
those locations where we cannot observe it; they are guesses (hypotheses) about the
world.

Suppose we have an explanatory scientific theory of something, say, atomic the-
ory. Such theories, as we have seen, often include “unobservables”—terms referring to
things that we have not (yet) observed but whose existence would help explain things
that we have observed. One way of looking at this is to think of an experiment as taking
some input (perhaps some change deliberately made to some entity being studied) and
observing what happens after the experiment is over—the output of the experiment.
Between the input and the output, something happens, but we don’t necessarily know
what it is. It is as if what we are studying is a “black box”, and all we can observe are
its inputs and outputs. A scientific theory (or, for that matter, a computer algorithm!)
can be viewed as an explanation of what is going on inside the black box. Can it be
viewed merely as a description of what’s going on inside? Probably not, because you
can only describe what you can observe, and, by hypothesis, we can’t observe what’s
going on inside the black box. Such a theory will usually involve various unobservables
structured in various ways.

Do the unobservables that form part of such an explanatory theory really exist? If
you answer ‘yes’, then you are a “realist”; otherwise, you are an “instrumentalist”. A
realist believes in the real existence of explanatory unobservables. An instrumentalist
believes that they are merely useful tools (or “instruments”) for making predictions.

The debate between realism and instrumentalism is as old as science itself. Galileo
(1564–1642) . . .

. . . and the Church came to an implicit understanding: if he would claim his work
only as “istoria,” and not as “dimonstrazione,” the Inquisitors would leave him
alone. The Italian words convey the same ideas as the English equivalents: a new
story about the cosmos to contemplate for pleasure is fine, a demonstration of the
way things work is not. You could calculate, consider, and even hypothesize with
Copernicus. You just couldn’t believe in him. (Adam Gopnik 2013, p. 107)

In Mach’s time, it was not clear how to treat the atomic theory. Atoms were clearly
of instrumental value, but there was no observable evidence of their existence. But
they were so useful scientifically that it eventually became unreasonable to deny their
existence, and, eventually, they were observed. In our time, black holes have moved
from being “merely” theoretical entities to being considered among the denizens of
the universe, despite never having been observed directly. (Arguably, there is only
circumstantial evidence for them (Bernstein and Krauss, 2016)—recall our discussion
in §2.6.1.3, and see §4.9.1.1, below.)

Quantum mechanics poses a similar problem. If the world really is as quantum
mechanics says that it is, then the world is really weird. But quantum mechanics is our
best current theory about how the world is, So, possibly quantum mechanics is merely

4.6. INSTRUMENTALISM VS. REALISM 189

a useful calculating tool for scientific prediction and shouldn’t be taken literally as a
description of the real world.

Digression and a Look Ahead:
Besides being opposed to realism, instrumentalism can also be opposed to a certain kind of un-
derstanding that is closely related to explanation. There are (at least) two ways to understand
something: (1) You can understand something in terms of something else that you are more
familiar with, and (2) you can understand something in terms of itself, by being very familiar
with it directly. The physicist Jeremy Bernstein has said that there is “a misguided but humanly
understandable desire to explain quantum mechanics by something else—something more famil-
iar. But if you believe in quantum mechanics there is nothing else” (Bernstein and Holt, 2016,
p. 62). On Bernstein’s instrumentalist view, quantum mechanics can only be understood in terms
of itself.

Something that can only be understood in terms of itself and not in terms of anything else
(perhaps like quantum mechanics) is a kind of “base case” of understanding. Things that are
understood in terms of something else are a kind of “recursive” case of understanding. (Re-
call eS2.10.4; we’ll discuss recursion in §7.6.5.) However, other things might be able to be
understood in terms of quantum mechanics: Recent research in cognitive science suggests that
quantum-mechanical methods applied at the macrosopic level might provide better explanations
of certain psychological findings about human cognition than more “standard” methods (Wang
et al., 2013).

We’ll return to these two kinds of understanding in §§14.3.2.3 and 19.6.3.

Can an instrumentalist theory evolve into a realist one?:

Though Galileo . . . wants to convince . . . [readers] of the importance of looking
for yourself, he also want to convince them of the importance of not looking for
yourself. The Copernican system is counterintuitive, he admits—the Earth cer-
tainly doesn’t seem to move. It takes intellectual courage to grasp the argument
that it does. (Adam Gopnik 2013, p. 107)

So, just as the Copernican theory, initially proposed merely as an instrumentalist claim,
became a realist-explanatory theory, so, eventually, the quantum-mechanical view of
the world may come to be accepted as a realist description.

Further Reading:
Fine 1986 is a “state of the art” survey article on realism vs. instrumentalism in science, at least
as of 1986.

Indeed, the great 20th-century philosopher Willard van Orman Quine, in his classic
paper “Two Dogmas of Empiricism” offered this instrumentalist statement:

As an empiricist I continue to think of the conceptual scheme of science as a tool,
ultimately, for predicting future experience in the light of past experience.
(Quine, 1951, p. 44, my italics)

And what about the “real world”? In an earlier paper, “On What There Is”, he argued
that “to be is to be the value of a bound variable” (Quine, 1948). In other words, if your

190 CHAPTER 4. WHAT IS SCIENCE?

best theory talks about Xs—that is, postulates the existence of Xs by quantifying over
them—then, according to that theory, Xs exist. But, in light of his instrumentalism in
the later paper, he made what seems to me to be a more controversial claim. The very
next passage after his remarks about prediction (above) is this statement about whether
the values of the “bound variables” of a theory “really” exist:

Physical objects [that is, what we might think of as “external reality”] are con-
ceptually imported into the situation as convenient intermediaries . . . irreducible
posits comparable, epistemologically, to the gods of Homer. For my part I do, qua
lay physicist, believe in physical objects and not in Homer’s gods; and I consider
it a scientific error to believe otherwise. But in point of epistemological footing
the physical objects and the gods differ only in degree and not in kind. Both sorts
of entities enter our conception only as cultural posits. The myth of physical ob-
jects is epistemologically superior to most in that it has proved more efficacious
than other myths as a device for working a manageable structure into the flux of
experience. (Quine, 1951, p. 44, my italics)

4.7 What Is a Scientific Theory?

It is important to distinguish between the everyday sense of ‘theory’ and the scientific
sense. In the everyday sense, a “theory” is merely an idea; it may or may not have any
evidence to support it. In this everyday sense, ‘theory’ is constrasted with ‘fact’.5 In the
scientific sense, a “theory” is a set of statements (1) that describe, explain, or predict
some phenomenon, often formalized mathematically or logically (or even computa-
tionally, as we’ll see in Chapter 15), and (2) that are grounded in empirical or logical
evidence. (Note that both ‘theory’ and ‘theorem’ are etymologically related.) To be
“scientific”, a theory must be accompanied by confirming evidence, and (as we’ll see
in §4.9.1) its statements must be precise enough to be capable of being falsified.

Anti-evolutionists (both creationists as well as advocates of “intelligent design”)
sometimes criticize the scientific theory of evolution as “merely a theory”. Anyone
who does so is confusing the everyday sense (in which ‘theory’ is opposed to ‘fact’)
with the scientific sense. Evolution is a theory in the scientific sense.

We will return to this topic in Chapter 15, where we will consider whether computer
programs can be scientific theories.

5Philosophers who use the word ‘fact’ to refer to states of affairs in the world would say that the everyday
sense of ‘theory’ is contrasted with ‘factual (or true) statements’.

4.8. “THE” SCIENTIFIC METHOD 191

Further Reading:
For a wonderful discussion of the nature of science with respect to evolution, see the judge’s
opinion in the celebrated legal case of Kitzmiller v. Dover Area School District (especially
§4, “Whether ID [Intelligent Design] Is Science”), http://ncse.com/files/pub/legal/kitzmiller/
highlights/2005-12-20 Kitzmiller decision.pdf.

Also see Adam Gopnik 2015a for a discussion of the nature of ‘theory’ as it is used in science
and in ordinary language. For a discussion of “Why so many people choose not to believe what
scientists say”, see Willingham 2011.

Actually, the scientific notion of theory comes in (at least) two varieties: syntactic and semantic.
We have alredy said a few things about what syntax and semantics are, and we will have a lot
more to say later on. For now, let’s just say that the syntactic approach to scientific theories
focuses on an axiomatic treatment of linguistic sentences. On this view,

a theory was conceived of as an axiomatic theory. That means, as a set of sentences,
defined as the class of logical consequences of a smaller set, the axioms of that
theory. (van Fraassen, 1989, p. 220)

By contrast, the semantic approach to scientific theories focuses on the models that interpret those
sentences and that “link their terms with their intended domain” (van Fraassen, 1989, p. 221).
Just as there is a syntactic vs. a semantic view of scientific theories, so is there a syntactic vs. a
semantic view of computer programs, which we will investigate in Chapter 17.

4.8 “The” Scientific Method
The high school textbook’s caricature of scientific method is not just bad philoso-
phy, entirely inadequate to account for scientific practice. It is also bad history
Although there is no such thing as Scientific ethod, unless it is siply a fague col-
lection of discordant ideas utterly irrelevant to the day-to-day practice of science
of today, there are scientific methods [G]eneralization about science—as if it
were a single enterprise, governed everywhere by that mythical Method—should
be resisted.
—Philip Kitcher (2019)

People often talk about “the scientific method”. There probably isn’t any such thing.
As the philosopher Philip Kitcher said, there are many scientific methods of study-
ing something: (Some) biologists and astronomers use (some) different methods from
(some) physicists. Second, disciplines besides the natural sciences (notably mathemat-
ics and engineering, but also the social sciences and even many of the humanities) also
use scientific methods (Blachowicz, 2016; Ellerton, 2016).

But let’s look at one version of a scientific method, a version that is interesting in
part because it was described by the mathematician John Kemeny, who was also a com-
puter scientist. (He was the inventor of the BASIC computer programming language
and helped develop time sharing. He also worked with Einstein and was president of
Dartmouth College.)

His book A Philosopher Looks at Science presents the scientific method as a cyclic
procedure (Kemeny, 1959, Chs. 5, 10). Because cyclic procedures are called ‘loops’ in
computer programming, I will present Kemeny’s version of the scientific method as an

192 CHAPTER 4. WHAT IS SCIENCE?

infinite loop (an algorithm that does not halt):

Algorithm Scientific-Method6

begin
while there is a new fact to observe, do:
{That is, repeat until there are no new facts to observe.
This will never happen, so we have permanent inquiry}

begin

1. observe things & events;
{Express these observations as descriptive statements about
particular objects a, b, . . . , such as: Pa→ Qa, Pb→ Qb, . . .

Observations may be “theory-laden”, that is, based on assumptions}

2. induce general statements;
{make summary descriptions, such as: ∀x[Px→ Qx]}

3. deduce future observations;
{make predictions, such as: Pc/ ∴ Qc}

4. verify predictions against observations;
{if Qc

then general statement is confirmed or is consistent with theory
else revise theory (or . . .)}

end
end.

Kemeny’s version of the scientific method is a cycle (or “loop”) consisting of obser-
vations, followed by inductive inferences, followed by deductive predictions, followed
by verifications. (Perhaps a better word than ‘verification’ is ‘confirmation’; we’ll dis-
cuss this in §4.9.1.) The scientist begins by making individual observations of specific
objects and events, and describes these in language: Object a is observed to have prop-
erty P, object a is observed to have property Q, object a’s having property P is observed
to precede object a’s having property Q, and so on. Next, the scientist uses inductive
inference to infer from a series of events of the form Pa precedes Qa, Pb precedes Qb,
etc., that whenever any object x has property P, it will also have property Q. So, the
scientist who observes that object c has property P will deductively infer (that is, will
predict) that object c will also have property Q—before observing whether it does or
not. The scientist will then perform an experiment to see whether Qc. If Qc is observed,
then the scientist’s theory that ∀x[Px→ Qx] will be verified; otherwise, the theory will
need to be revised in some way (as we suggested in §2.6.1.3; we’ll discuss it in more
detail in §4.9.1). For Kemeny, an observation is explained by means of a deduction
from a theory, following Hempel’s deductive-nomological theory (§4.5.2).

6This “algorithm” is written in informal pseudocode. Terms in boldface are control structures. Expres-
sions in {braces} are comments.

4.9. ALTERNATIVES TO “THE SCIENTIFIC METHOD” 193

Finally, according to Kemeny,

a discipline is a science if and only if it follows the scientific method.

This rules out astrology, on the grounds that astrologers never verify their predictions.
(Or on the grounds that their predictions are so vague that they are always trivially
verified. See §4.9.1, below.)

4.9 Alternatives to “The Scientific Method”

This “hypothetical-deductive method” of “formulating theoretical hypotheses and test-
ing their predictions against systematic observation and controlled experiment” is the
classical, or popular, view of what science and the scientific method are. And, “at a suf-
ficiently abstract level”, all sciences “count as using” it (Williamson, 2011). But there
are at least two other views of the nature of science that—while generally agreeing on
the distinctions between science as opposed to art, engineering, and pseudo-sciences
such as astrology—differ on the nature of science itself.

4.9.1 Falsifiability

4.9.1.1 Science as Conjectures and Refutations

According to philosopher Karl Popper (1902–1994), the scientific method (as pro-
pounded by people like Kemeny) is a fiction. The “real” scientific method sees science
as a sequence of conjectures and refutations (Popper, 1953).

Further Reading: See also Popper 1959. For Popper’s views on engineering, see Popper 1972.

1. Conjecture a theory (to explain some phenomenon).

2. Compare its predictions with observations
(that is, perform experiments to test the theory).

3. If an observation differs from a prediction,
then the theory is refuted (or falsified)
else the theory is confirmed.

It is important to note that ‘confirmed’ does not mean “true”! Rather, it means
that we have evidence that is consistent with the theory (recall our discussion of the
coherence theory of truth in §2.4.2)—that is, the theory is not yet falsified! This is
because there might be some other explanation for the predicted observation. Just
because a theory T predicts that some observation O will be made, and that observation
is indeed made, it does not follow that the theory is true! This is because argument (A):

(A) O, (T → O) 0D T

194 CHAPTER 4. WHAT IS SCIENCE?

Figure 4.1: http://www.gocomics.com/calvinandhobbes/2012/04/20, c© 1992 Watterson

is an invalid argument (called the Fallacy of Affirming the Consequent). If O is true,
but T is false, then the second premise is still true, so we could have true premises and
a false conclusion. This might also be called the fallacy of circumstantial evidence,
where O is the circumstantial evidence that could support T , but there might be another
theory that also predicts O and which is true. (Recall our discussion of this in §2.6.1.3.)

So, what is science according to Popper?

A theory or statement is scientific if and only if it is falsifiable.

By ‘falsifiable’, Popper meant something like “capable of being falsified in principle”,
not “capable of being falsified with the techniques and tools that we now have available
to us”.

For Popper, falsifiability also ruled out astrology (and other superstitions) as a can-
didate for a scientific theory. It also ruled out Freudian psychotherapy and Marxist
economics. The reason why Popper claimed that astrology, etc., were only pseudo-
sciences was that they cannot be falsified, because they are too vague. The vaguer a
statement or theory is, the harder it is to falsify. As physicist Freeman Dyson once
wrote, “Progress in science is often built on wrong theories that are later corrected. It
is better to be wrong than to be vague” (Dyson, 2004, p. 16). When I was in college,
one of my friends came into my dorm room, all excited about an astrology book he had
found that, he claimed, was really accurate. He asked me what day I was born; I said
“September 30th”. He flipped the pages of his book, read a horoscope to me, and asked
if it was accurate. I said that it was. He then smirked and told me that he had read me
a random horoscope, for April 16th. The point was that the horoscope for April 16th
was so vague that it also applied to someone born on September 30th! (For humorous
takes on this, see Figurex 4.1 and 4.2.)

Further Reading:
For more on the nature of pseudo-science, see Gordin 2012; Pigliucci and Boudry 2013a,b;
Curd 2014. On astrology, see Thagard 1978. On Marxist economics, see Hudelson 1980. On
Freudian theories, see Grünbaum 1984, Hansson 2015, and
http://grunbaum.pitt.edu/wp-content/plugins/downloads-manager/upload/Medicine%20Bibliography%201-
13.pdf.

4.9. ALTERNATIVES TO “THE SCIENTIFIC METHOD” 195

Figure 4.2: http://doonesbury.washingtonpost.com/strip/archive/2017/03/25; c©1988 G.B. Trudeau

4.9.1.2 The Logic of Falsifiability

It is worthwhile to explore the logic of falsifiability a bit more. Although the invalid ar-
gument form (A), above, seems to describe what goes on, it needs to be made more de-
tailed, because it is not the case that scientists deduce predictions from theories alone.
There are usually background beliefs that are independent of the theory being tested
(for example, beliefs about the accuracy of one’s laboratory equipment). And one does
not usually test a complete theory T but merely one new hypothesis H that is being
considered as an addition to T . So it is not simply that argument (A), above, should
have as a premise that theory T predicts observation O. Rather, theory T conjoined with
background beliefs B, conjoined with the actual hypothesis H being tested is supposed
to logically predict that O will be observed:

(T & B & H)→ O

Suppose that O is not observed:

¬O

What follows from these two premises? By the rule of inference called ‘Modus Tol-
lens’, we can infer:

¬(T & B & H)

But, from this, it follows (by DeMorgan’s Law) that:

¬T ∨ ¬B ∨ ¬H

That is, either T is false, or B is false, or H is false, or any combination of them is
false. What this means is that, if you strongly believe in your theory T that seems to be
inconsistent with your observation O, you do not need to give up T . Instead, you could
give up hypothesis H, or some part of T , or (some part of) your background beliefs B
(for example, you could blame your measuring devices as being too inaccurate).

196 CHAPTER 4. WHAT IS SCIENCE?

Logical Digression:
Recall our discussion in §2.6.2.1: T is usually a complex conjunction of claims A1, . . . ,An. Con-
sequently, if T is not the case, then at least one of the Ai is not the case. In other words, you
need not give up a theory; you only need to revise it. That is, if prediction O has been falsified,
then you only need to give up one of the Ai or H, not necessarily the whole theory T . However,
sometimes you should give up an entire theory. This is what happens in the case of “scientific
revolutions”, such as (most famously) when Copernicus’s theory that the Earth revolves around
the Sun (and not vice versa) replaced the Ptolemaic theory, small revisions to which were making
it overly complex without significantly improving it. See §4.9.2, below.

As Quine (1951) pointed out, you could even give up the laws of logic if the rest
of your theory has been well confirmed; this is close to the situation that obtains in
contemporary quantum mechanics with the notion of “quantum logic”.

Further Reading:
On rules of logic such as Modus Tollens and DeMorgan’s Law, see any introductory logic text
(such as Schagrin et al. 1985), Rapaport 1992, or https://en.wikipedia.org/wiki/Propositional
calculus. On quantum logic, see http://plato.stanford.edu/entries/qt-quantlog/. On the pes-
simistic meta-induction, see Papineau 2003, §1.8, pp. 300–301; Ladyman 2019; and https:
//en.wikipedia.org/wiki/Pessimistic induction

4.9.1.3 Problems with Falsifiability

One problem with falisfiability is that not all alleged pseudo-sciences are vague: Is
astrology really a Popperian pseudo-science? Although the popular newspaper style
of astrology no doubt is (on the grounds of vagueness), “real” astrology, which might
be considerably less vague, might actually turn out to be testable and, presumably,
falsified, hence falsifiable. But that would make it scientific (albeit false)!

That points to another problem with falsifiability as the mark of science: Are false
statements scientific? This is related to the “pessimistic meta-induction” that all state-
ments of science are false. But this isn’t quite right: Although it might be the case that
any given statement of science that is currently held to be true may turn out to be false,
it doesn’t follow that all such statements are false or will eventually be found to be
false. What does follow is that all statements of science are provisional:

Newton’s laws of gravity, which we all learn in school, were once thought to be
complete and comprehensive. Now we know that while those laws offer an accu-
rate understanding of how fast an apple falls from a tree or how friction helps us
take a curve in the road, they are inadequate to describe the motion of subatomic
particles or the flight of satellites in space. For these we needed Einstein’s new
conceptions.

Einstein’s theories did not refute Newton’s; they simply absorbed them into a
more comprehensive theory of gravity and motion. Newton’s theory has its place
and it offers an adequate and accurate description, albeit in a limited sphere. As
Einstein himself once put it, “The most beautiful fate of a physical theory is to

4.9. ALTERNATIVES TO “THE SCIENTIFIC METHOD” 197

point the way to the establishment of a more inclusive theory, in which it lives as
a limiting case.” It is this continuously evolving nature of knowledge that makes
science always provisional. (Natarajan, 2014, pp. 64–65)

4.9.2 Scientific Revolutions
Thomas Kuhn (1922–1996), a historian of science, rejected both the classic scientific
method and Popper’s falsifiability criterion (“a plague on both your houses”, he might
have said). Based on his studies of the history of science, Kuhn (1962, Ch. 9) claimed
that the real scientific method works as follows:

1. There is a period of “normal” science, based on a “paradigm”—roughly, on a
generally accepted theory. During that period of normal science, a Kemeny-like
or Popper-like scientific method is in operation. Dyson (2004, p. 16) refers to the
“normal” scientists as “conservatives . . . who prefer to lay one brick at a time on
solid ground”.

2. If that paradigmatic theory is challenged often enough, there will be a “revo-
lution”, and a new theory—a new paradigm—will be established, completely
replacing the old one. Dyson (2004, p. 16) refers to the “revolutionaries” as
“those who build grand castles in the air”.

3. A new period of normal science follows, now based on the new paradigm, and
the cycle repeats.

The most celebrated example of a scientific revolution was the Copernican revolu-
tion in astronomy (Kuhn, 1957). “Normal” science at the time was based on Ptolemy’s
“paradigm” of an Earth-centered theory of the solar system. But this was so inaccurate
that its advocates had to keep patching it up to make it consistent with observations.
Copernicus’s new paradigm—the heliocentric theory that we now believe—overturned
Ptolemy’s paradigm.

Other scientific revolutions include those of Newton (who overthrew Aristotle’s
physics), Einstein (who overthrew Newton’s), Darwin (whose theory of evolution fur-
ther “demoted” humans from the center of the universe), Watson and Crick (“whose
discovery of the . . . structure of DNA . . . changed everything” in biology (Brenner,
2012, p. 1427)), and Chomsky in linguistics (even though some linguists and cognitive
scientists today think that Chomsky was wrong (Boden, 2006)).

Further Reading:
On scientific revolutions and paradigm shifts, see Corcoran 2007; Weinberger 2012. Lehoux
and Foster 2012 is a review of the 4th edition (2012) of Kuhn 1957. On Kuhnian paradigms in
philosophy, see Papineau 2017.

198 CHAPTER 4. WHAT IS SCIENCE?

Figure 4.3: http://www.phdcomics.com/comics/archive.php?comicid=761, 16 Sep. 2006, c© Jorge Cham

4.9.3 Other Alternatives

[T]raditional views about how science is carried out are often idealized or simplis-
tic. Science proceeds in anything but a linear and logical fashion.
—Lawrence M. Krauss (2016, p. 85)

Besides the triumverate of Bacon’s (or Kemeny’s) scientific method, Popper’s falsifi-
cationism, and Kuhn’s scientific revolutions, there are other approaches to the nature
of science. For instance, philosopher of science Michael Polanyi argued in favor of
science as being “socially constructed”, not purely rational or formal (see Kaiser 2012
for an overview). And another philosopher of science, Paul Feyerabend, also critiqued
the rational view of science, from an “anarchic” point of view (Feyerabend, 1975; Pre-
ston, 2012), and compare similar remarks by a computer-scientist-turned-sociologist in
Quillian 1994, §2.2). (For a humorous take on the anarchic view, see Figure 4.3.) But
exploration of alternatives such as these are beyond our scope.

Further Reading:
Quillian’s essay is an explanation, in terms of the communication of information, of why the
natural sciences are more “effective” than the social sciences. Quillian was one of the early
researchers in AI and later became a sociologist of science. Although written in the early days
of the World Wide Web, his paper has some interesting implications for the role of social media
in political discourse.

Chaitin 1968, especially §7, discusses “classical problems of the methodology of science” as
part of an essay on computational complexity. McCain and Segal 1969; Giere 1984; Rosenberg
2000 are good introductions to the philosophy of science and to scientific reasoning. Salmon
1984, Ch. 1 offers “three general conceptions” of scientific explanation.

4.10. CS AND SCIENCE 199

4.10 CS and Science

4.10.1 Is CS a Science?
These are only a handful among many views of what science is. Is CS a science ac-
cording to any of them? This is a question that I will leave to the reader to ponder. But
here are some things to consider:

Does CS follow Kemeny’s scientific method? For that matter, does any science
(like physics, chemistry, or biology) really follow it? Does every science follow it (what
about astronomy or cosmology)? Or is it just an idealized vision of what scientists are
supposed to do?

Philosopher Timothy R. Colburn (2000, p. 168) draws an analogy between the sci-
entific method of formulating, testing, and (dis)confirming hypotheses and the problem-
solving method of CS consisting of formulating, testing, and accepting-or-rejecting an
algorithm. Besides suggesting that CS is (at least in part) scientific, this analogizes
algorithms to scientific hypotheses or theories. (See Chapter 15 for further discussion.)
Even if it is just an idealization, does CS even come close? What kinds of theories are
there in CS? How are they tested? If CS is a science, is it “provisional”? Nelson Pole
has suggested7 that “if there is a bug lurking in every moderately complex program,
then all programs are provisional”. Are any computer-science theories ever refuted?

Similarly, Denning (2005, p. 28) says that “The scientific paradigm . . . is the pro-
cess of forming hypotheses and testing them through experiments; successful hypothe-
ses become models that explain and predict phenomena in the world.” He goes on
to say, “Computing science follows this paradigm in studying information processes”.
For readers who are studying CS, think about your own experiences. Do you agree
with Denning that CS follows this scientific method?

Is CS scientific in Popper’s or Kuhn’s senses? Are any parts of it falsifiable (Pop-
per)? Have there been any revolutions in CS (Kuhn)? Is there even a current Kuhnian
paradigm?

Here are two issues for you to think about: First, the Church-Turing Computability
Thesis identifies the informal notion of computation with formal notions like the Tur-
ing Machine (as we’ll see in more detail in Chapters 7 and 8). “Hypercomputation” is
a name given to various claims that the informal notion of computation goes beyond
Turing Machine computability. Kaznatcheev (2014) suggests that hypercomputation
could be considered as an attempt to falsify the Computability Thesis. Cockshott and
Michaelson (2007, §2.5, p. 235) suggest that the hypercomputation challenges to the
Computability Thesis are examples of Kuhnian revolutionary paradigmatic challenges
to the “normal” science of CS. (They don’t think that the challenges are successful,
however. Stepney et al. 2005 offer a long list of paradigms that they think can and
should be challenged.) Keep this in mind when you read Chapter 11 on hypercompu-
tation.

Second, two traditions in AI have been logically oriented, knowledge-based AI
(sometimes called “Good Old-Fashioned AI”, or GOFAI); and connectionist AI, which
is based on “artificial neural networks” instead of on logic. Although the former dom-
inated AI research in the early days and, arguably, still has an important role to play

7Private communication, 9 March 2015.

200 CHAPTER 4. WHAT IS SCIENCE?

(Levesque 2017; Landgrebe and Smith 2019a; Seabrook 2019; B.C. Smith 2019) most
AI now is based on the latter. When three connectionist researchers (Geoffrey Hinton,
Yann LeCun, and Yoshua Bengio) received the Turing Award, another AI researcher
(Oren Etzioni) said, “What we have seen is nothing short of a paradigm shift in the
science. History turned their way, and I am in awe” (quoted in Metz 2019b). Keep this
in mind when you read Chapter 19 on AI.

And there are other considerations: What about disciplines like mathematics? Math
certainly seems to be scientific in some sense, but is it a science like physics or biology?
Is CS, perhaps, more like math than like these (other) sciences? This raises another
question: Even if CS is a science, what kind of science is it?

4.10.2 What Kind of Science Might CS Be?

Hempel (1966) distinguished between empirical sciences and non-empirical sciences.
The former explore, describe, explain, and predict various occurrences in the world.
Such descriptions or explanations are empirical statements that need empirical (that is,
experimental) support. The empirical sciences include the natural sciences (physics,
chemistry, biology, some parts of psychology, etc.) and the social sciences (other parts
of psychology, sociology, anthropology, economics, perhaps political science, perhaps
history, etc.). Is CS an empirical science?

The non-empirical sciences are logic and mathematics. Their statements don’t need
empirical support. Yet they are true of, and confirmed by, empirical evidence (though
exactly how and why this is the case is still a great mystery). Is CS a non-empirical
science?

CS arose from logic and math. But it also arose from the development of the com-
puter as a tool to solve logic and math problems. (We will explore this twin history of
computers and algorithms in Chapter 6.) This brings it into contact with the empiri-
cal world and empirical concerns such as space and time limitations on computational
efficiency (or “complexity” (Loui, 1996; Aaronson, 2013b)).

One possible way of adding CS to Hempel’s taxonomy is to take a cue from the
fact that psychology doesn’t neatly belong to just the natural or just the social sciences.
So, perhaps CS doesn’t neatly belong to just the empirical or just the non-empirical
sciences, but that parts of it belong to each. And it might even be the case that the
non-empirical aspects of CS are not simply a third kind of non-empirical science, on a
par with logic and math, but are themselves parts of both logic and of math.

Or it might be the case that we are barking up the wrong tree altogether. What if
CS isn’t a science at all? This possibility is what we turn to in the next chapter.

4.10. CS AND SCIENCE 201

Further Reading:
On “the unreasonable effectiveness of mathematics in science”, see Wigner 1960; Hamming
1980a. Wilson and Frenkel 2013 discusses a related question about whether scientists need to
study mathematics at all.

Burkholder 1999 discusses the difference between “empirical experimental disciplines” (like
mechanics, which is a branch of physics) and “a priori disciplines” (like mathematics). Mark
Steedman (2008), a computational linguist, has some interesting things to say on the differences
between a discipline such as physics and a discipline such as CS (in general) and computational
linguistics (in particular), especially in §1, “The Public Image of a Science”. Tedre 2011 surveys
ways in which computing is a science. Tedre and Moisseinen 2014 is a survey of the nature of
experiments in science, and whether CS is experimental in nature.

202 CHAPTER 4. WHAT IS SCIENCE?

4.11 Questions to Think About

1. Hempel’s empirical–non-empirical distinction may be an arbitrary division of a
continuous spectrum (§3.3.3.1):

The history of science is partly the history of an idea that is by now so familiar
that it no longer astounds: the universe, including our own existence, can be
explained by the interactions of little bits of matter. We scientists are in the
business of discovering the laws that characterize this matter. We do so, to
some extent at least, by a kind of reduction. The stuff of biology, for instance,
can be reduced to chemistry and the stuff of chemistry can be reduced to
physics. (Orr, 2013, p. 26, my italics)

This reductionist picture can be extended at both ends of the spectrum that Orr
mentions: At one end,

if physics was built on mathematics, so was chemistry built on physics, biol-
ogy on chemistry, psychology on biology, and . . . sociology . . . on psychol-
ogy (Grabiner 1988, p. 225, citing Comte 1830, Vol. I, Ch. 2, Introduc-
tion)

At the other end, mathematics is built on logic and set theory (Quine, 1976)
(see Figure 4.4). However, not everyone thinks that this chain of reductions is
legitimate (Fodor, 1974).

Figure 4.4: http://xkcd.com/435/, c©xkcd.com

Does CS fit into this sequence? If it doesn’t, does that mean that it’s not part
of science? After all, it’s not obvious that CS is “in the business of discovering
the laws that characterize . . . matter”. We might try to argue that the universe
isn’t made up of matter, but of information. Then, if you are also willing to say
that CS is the science of information (or of information processing), you could
conclude that it is a science.

4.11. QUESTIONS TO THINK ABOUT 203

2. Vardi 2010 argues that computing (or “computational science”) is not a new kind
of science or a new way of doing science, but just a more efficient way of doing
the same kind of science that humans have always done. Reversing this, George
Johnson (2001b) argues that “all science is computer science”.

Try to reconstruct and evaluate their arguments for these propositions.

3. “Web science” is the scientific study of the World Wide Web (Lohr, 2006; Shnei-
derman, 2007). But just because something is called ‘science’ doesn’t necessar-
ily mean that it is a science! (Recall the joke discussed in §3.3.1.)

Is “Web science” a science?
Whether or not it’s a science, how is it related to CS?

4. Read some of the essays cited in §4.9.1.1 that have been critical of the scientific
status of disciplines such as Freudian psychoanalysis, economics (Marxist or
otherwise!),8 astrology, etc., and consider whether the arguments that have been
used to justify or to challenge their status as a science can be applied to CS.

8For non-Marxist economics, you might consider Rosenberg 1994; Leiter 2004, 2005, 2009; Chetty 2013.

204 CHAPTER 4. WHAT IS SCIENCE?

Chapter 5

What Is Engineering?

Version of 31 December 2019; DRAFT c© 2004–2019 by William J. Rapaport

[Engineering is] the art of directing the great sources of power in nature for the use
and convenience of man [sic].1

— Thomas Tredgold, 1828; cited in (Florman, 1994, p. 175)

Engineering . . . is a great profession. There is the fascination of watching a fig-
ment of the imagination emerge through the aid of science to a plan on paper. Then
it moves to realization in stone or metal or energy. Then it brings jobs and homes
to men [sic]. Then it elevates the standards of living and adds to the comforts of
life. That is the engineer’s high privilege.
— Herbert Hoover (1954),2

http://www.hooverassociation.org/hoover/speeches/engineering\ as\ a\ profession.
php

[T]he scientist builds in order to study; the engineer studies in order to build.
—Frederick P. Brooks (1996, p. 62, col. 1)

[S]cience tries to understand the world, whereas engineering tries to change it.
—Mark Staples (2015, p. 2)3

1For a commentary on this, see Mitcham 2009.
2Yes; the 31st President of the US.
3See the “Philosophical Digression” in §5.7, later in this chapter.

205

206 CHAPTER 5. WHAT IS ENGINEERING?

Figure 5.1: http://www.gocomics.com/nonsequitur/2009/09/22, c©2009 Universal UClick

5.1 Readings
In doing these readings, remember that our ultimate question is whether CS is an engineering
discipline.

1. Required:

• Davis, Michael (2009), “Defining Engineering from Chicago to Shantou”,
The Monist 92(3) (July): 325–338, https://www.researchgate.net/publication/271044960
Defining Engineering from Chicago to Shantou

• Petroski, Henry (2003), “Early [Engineering] Education”, American Scientist 91
(May-June): 206–209.

• Loui, Michael C. (1987), “Computer Science Is an Engineering Discipline”,
Engineering Education 78(3): 175–178.

2. Recommended:

• Davis, Michael (1998), ”Introduction to Engineering”, Part I of Thinking Like an
Engineer: Studies in the Ethics of a Profession (New York: Oxford University
Press).

– Introduction (p. 3)
– Ch. 1, “Science, Technology, and Values” (pp. 3–17)
– “Who Is an Engineer?” (from Ch. 2, pp. 25–28)
– Introduction to Ch. 3, “Are ‘Software Engineers’ Engineers?” (pp. 31–32)
– “The Standard Definition of Engineer” (from Ch. 3, pp. 32–34)
– “Three Mistakes about Engineering” (from Ch. 3, pp. 34–36)
– “Membership in the Profession of Engineering” (from Ch. 3, pp. 36–37)

• Petroski, Henry (2008), “Scientists as Inventors”, American Scientist 96(5)
(September-October): 368–371.

• Brooks, Frederick P., Jr. (1996), “The Computer Scientist as Toolsmith II”,
Communications of the ACM 39(3) (March): 61–68,
http://www.cs.unc.edu/∼brooks/Toolsmith-CACM.pdf

5.2. CAN WE DEFINE ‘ENGINEERING’? 207

5.2 Can We Define ‘Engineering’?

Figure 5.2: http://www.gocomics.com/luann/2016/09/22, c©GEC, Inc.

We began by asking what CS is (Chapter 3), and we considered that it might be what it
says it is: a science. So we then looked at what science is (Chapter 4).

We also considered that CS might be a branch of engineering; so now it is time to
ask what engineering is. What is the relationship of engineering to science? And what
is the relationship of CS to engineering?

The philosophy of engineering is much less well developed than the philosophy
of science, and, for some reason, there seem to be fewer attempts to try to define
‘engineering’. For instance, if you link to various university websites for schools or
departments of engineering, you will rarely find a definition.

Further Reading:
On the paucity of definitions of ‘engineering’, see Koen 1988, p. 307, and Pawley 2009. Dennett
(1995, p. 188) made a similar observation about the philosophy of engineering being not well
developed, and singles out the 1969 first edition of Herbert Simon’s The Sciences of the Artificial
(Simon, 1996b) as a pioneering work in the philosophy of engineering. Recently, there has
been more work on it: In 2009, the philosophy journal The Monist published a special issue on
philosophy and engineering (Simons and Michael, 2009). Staples 2014 presents a deductive view
of theories in engineering, arguing that they “express claims that an artefact . . . will perform in
a way that satisfies its requirements for use” (§8); definitions of engineering are discussed in §2;
and the relation of engineering to science is discussed in §4. Staples 2015 is a sequel containing
a useful “taxonomy” (§3) of ways in which artifacts can fail to conform to specifications (a topic
that will also be relevant to our discussion of implementation in Chapter 14 and the Digression
in §16.2).

The etymology of ‘engineer’ is of little help for understanding what engineering
is. According to the OED, ‘engineer’ comes from ‘engine’ + ‘-or’ (where ‘-or’ means
“agent”), and ‘engine’, in turn, comes from the Latin ‘ingenium’, which had multiple
meanings, including “natural disposition”, “mental powers”, and “clever device”4—
none of which seems to help: The word has evolved too much for us to be able to
figure out what it means from its origins.

4http://www.oed.com/view/Entry/62225 and http://www.oed.com/view/Entry/62223

208 CHAPTER 5. WHAT IS ENGINEERING?

Dictionary definitions of ‘engineering’ are even less helpful than usual. Actually,
dictionary definitions are rarely useful: First, different dictionaries don’t always agree.
Second, some are better than others. Third, dictionaries at best tell you how people use
a term, but, if people use a term “incorrectly”, dictionaries are duty bound to record
that.5 Finally, dictionaries can be misleading: Webster’s Ninth New Collegiate Dictio-
nary (Mish, 1983, p. 259) defines ‘college’ as “a body of clergy living together and
supported by a foundation”! This may once have been true, and may even still be true
in a very limited sense of the term, but why is it listed as the first definition? The answer
is that Merriam-Webster dictionaries list definitions in historical order! So, caution is
always advised when citing a dictionary.

Nevertheless, it is instructive to see how Webster’s Ninth defines ‘engineering’:

1. “The activities or function of an engineer . . . ”

2. “The application of science and mathematics . . . [to make] matter and . . . energy
. . . useful to people . . . ”

The first of these cannot be understood without understanding ‘engineer’, which is
defined thus:

1. “A member of a military group devoted to engineering work.”

2. “A person . . . trained in . . . engineering.”6

Independently of the “military group” condition, both of these definitions of ‘engineer’
require us to already understand ‘engineering’!

As we saw in §3.3.3.1, Hamming (1968, p. 4) once pointed out that “the only gen-
erally agreed upon definition of mathematics is ‘Mathematics is what mathematicians
do’, which is followed by ‘Mathematicians are people who do mathematics’ ” So this
dictionary agrees explicitly with Hamming: Engineering is what engineers do; engi-
neers are people who do engineering!

Only the second definition of ‘engineering’ in Webster’s Ninth holds out some hope
for independent understanding. Arguably, however, it seems to rule out by definition
that CS is engineering, because it is not at all clear that computer scientists “apply
science and math to make matter and energy useful”. Some might do that (by a stretch
of meaning), but surely not all do.

According to the National Research Council’s Committee on the Education and
Utilization of the Engineer, engineering is, by their definition,

Business, government, academic, or individual efforts in which knowledge of
mathematical and/or natural sciences is employed in research, development, de-
sign, maufacturing, systems engineering, or technical operations with the objec-
tive of creating and/or delivering systems, products, processes, and/or services of
a technical nature and content intended for use. (Florman, 1994, pp. 174–175)

5More precisely, if “the meaning” of a word is simply how people use it, then there might be no such
thing as an “incorrect” use. Many dictionaries take it as their task merely to record how people use a word,
without taking a stand on whether any of those uses are “incorrect”.

6For the complete definitions, see (Mish, 1983, p. 412).

5.3. COULD ENGINEERING BE SCIENCE? 209

Even Florman admits that this is a mouthful! Perhaps it can be simplified to some-
thing like this: Efforts in which math and natural science are used in order to produce
something useful. If so, then is engineering (merely) applied science?

And Michael Davis, a philosopher of engineering, points out that this definition,
because of its vagueness (the overuse of ‘and/or’), includes too much (such as accoun-
tants, because they use mathematics). He does say that it emphasizes three important
“elements” of engineering: the centrality of math and science, the concern with the
physical world (which might, therefore, rule out software; but see §12.4, on that topic),
and the fact that “unlike science, engineering does not seek to understand the world
but to remake it”. But he goes on to say that “those three elements . . . do not define”
engineering. So, at best, they are necessary but not sufficient conditions (Davis, 1996,
p. 98).

Here is another definition-by-committee (note the lists of verbs and nouns):7

Engineering is the knowledge required, and the process applied, to conceive, de-
sign, make, build, operate, sustain, recycle or retire, something of significant tech-
nical content for a specified purpose;—a concept, a model, a product, a device, a
process a system, a technology. (Malpas, 2000, p. 31, my italics)

But it comes down to much the same thing as others have said: designing or building
useful things. It emphasizes two aspects to this: One is that the designing or building
must be knowledge-based. This presumably rules out designing or building that is
based, not on scientific knowledge, but on experience alone (what Knuth might call
“art”; see §3.14.2). The other aspect is that engineering is a process, in the sense
of “knowing how” to do something (Malpas, 2000, p. 5). This has an algorithmic
flair—after all, algorithms are methods of describing how to do something. (Recall our
discussion of this in §3.14.4.)

Finally, Henry Petroski (an engineer) notes that we speak of “the sciences” in the
plural (as we do of “the humanities”), but of engineering in the singular, “even though
there are many” “engineerings” (Petroski, 2005, p. 304). So determining what engi-
neering is may be as difficult as determining what CS is. More than for science or even
CS, it seems that engineering is what engineers do. In §§5.4 and 5.5, we will consider
a variation on this theme—that engineering is what engineers study; in §5.6, we will
look at what it is that they do.

5.3 Could Engineering Be Science?
The scientist seeks to understand what is; the engineer seeks to create what never
was.
—Theodore von Kármán, cited in Petroski 2008a, my italics8

Citing this, Petroski (2008a) argues that all scientists are sometimes engineers (for ex-
ample, when they create a new theory that “never was”) and that all engineers are some-
times scientists (for example, when they seek to understand how an existing bridge

7See §3.17, question 7, footnote 33.
8Recall Brooks’s comment cited in §3.14.7 that computer programs “show. . . things that never were”.

210 CHAPTER 5. WHAT IS ENGINEERING?

works). Could engineering and science be the same discipline? (That would cer-
tainly short-circuit the debate about whether CS is one or the other!) Another engineer,
Samuel C. Florman, suggested as much (note the italicized phrase!):

It is generally recognized . . . that engineering is “the art or science of making
practical application of the knowledge of pure sciences.” . . . The engineer uses the
logic of science to achieve practical results. (Florman, 1994, pp. x–xi, my italics)

One philosopher who has tried to explain engineering—Mario Bunge—also places
it among the sciences: First, along with Kemeny (see §4.8), Bunge defines science as
any discipline that applies the scientific method. Next, he says that there are two kinds
of science: pure and applied. Pure sciences apply the scientific method to increas-
ing our knowledge of reality (for example, cell biology). Applied sciences apply the
scientific method to enhancing our welfare and power (for example, cancer research).
Among the applied sciences are operations research (mathematics applied to manage-
ment), pharmacology (chemistry applied to biology), and engineering (Bunge, 1974).
Given this taxonomy, CS would not necessarily be a branch of engineering, though it
might be an applied science alongside engineering. Yet there is a “pure” component
of CS, namely, the mathematical theory of algorithms, computability, and complexity
(which we’ll look at in Chapter 7).

And Quine said something that suggests that engineering might be a part of science:

I have never viewed prediction as the main purpose of science,[9] although it was
probably the survival value of the primitive precursor of science in prehistoric
times. The main purposes of science are understanding (of past as well as future),
technology, and control of the environment. (Quine, 1988, my italics and boldface)

If “technology” can be identified with engineering (and why shouldn’t it be?—but
see §5.6.1), then this puts engineering squarely into the science camp, rendering the
science-vs.-engineering debates moot (though still not eliminating the need to ask what
engineering—or technology—is).

Further Reading:
On how technology might differ from engineering, see Bunge 1974; Fiske 1989.

9Recall our discussion of this in §4.5.3

5.4. A BRIEF HISTORY OF ENGINEERING 211

5.4 A Brief History of Engineering
Rather than treat software engineering as a subfield of CS, I treat it as an element
of the set, {Civil Engineering, Mechanical Engineering, Chemical Engineering,
Electrical Engineering, . . . }. This is not simply a game of academic taxonomy, in
which we argue about the parentage or ownership of the field; the important issue
is the content and style of the education.
—David Lorge Parnas (1998, p. 1, my italics)

Michael Davis (1998) offers an insight into what engineering might be. He begins
with a history of engineering, beginning some 400 years ago in France, where there
were “engines”—that is, machines—and “engineers” who worked with them. These
“engineers” were soldiers: either those who used “engines of war” such as catapults
and artillery, or those who had been carpenters and stonemasons in civilian life and who
continued to ply these trades as soldiers. From this background comes the expression
“railroad engineer” and such institutions as the Army Corps of Engineers.

In 1676, the French army created a corps of engineers (separate from the infantry)
who were charged with military construction. So, at least in 17th-century France, an
engineer was someone who did whatever it was that those soldiers did. Forty years
later, in 1716, there were civil engineers: soldiers who built infrastructure (like bridges
and roads) for civilians.

A distinction was drawn between engineers and architects. The former were trained
in math and physics, and were concerned with reliability and other practical matters.
They were trained as army officers, hence (presumably) more discliplined for larger
projects. Architects, on the other hand, were more like artists, chiefly concerned with
aesthetics.

Engineers in France at that time were trained at the École Polytechnique (“Poly-
technic School”), a university whose curriculum began with a year of science and math,
followed gradually by more and more applications to construction (for example, of
roads), culminating in a specialization.

So, at this time, engineering was the application of science “for the use and conve-
nience of” people and for “improving the means of production” (Tredgold, as quoted
in Davis 1998, p. 15). Engineering was not science: Engineers used science but didn’t
create new knowledge. Nor was engineering applied science: Engineers were con-
cerned with human welfare (and not even with generality and precision), whereas ap-
plied scientists are concerned with applying their scientific knowledge.

Further Reading:
Other writings by Michael Davis on the philosophy and ethics of engineering include Davis
1995a,b, 1996.

212 CHAPTER 5. WHAT IS ENGINEERING?

5.5 Conceptions of Engineering
Davis (2011, pp. 31–33) cites four different conceptions of engineering:

1. “engineering as tending engines”:

This would include railroad engineers and building-superindent engi-
neers. Clearly, neither computer scientists nor software engineers are
engineers in this sense, but neither are electrical, civil, mechanical, or
chemical engineers.

2. “engineering-as-invention-of-useful-objects”:

Davis criticizes this sense as both “too broad” (including architects
and accountants) and “anachronistic” (applying to inventors of use-
ful objects before 1700, which is about when the modern sense of
‘engineer’ came into use). Note that this seems to be the sense of en-
gineering used by many who argue that CS is engineering; they view
engineering as designing and building useful artifacts.

3. “engineering-as-discipline”:

Here, the issue concerns “the body of knowledge engineers are sup-
posed to learn”, which includes “courses concerned with the material
world, such as chemistry and statistics”. Again, this would seem to
rule out both CS and software engineering, on the grounds that neither
needs to know any of the “material” natural sciences like chemistry
or physics (though both software engineers and computer scientists
probably need some statistics) and both need “to know things other
engineers do not”.

4. “engineering-as-profession”:

This is Davis’s favored sense, which he has argued for in his other
writings.

Davis concludes that engineering must be defined by two things: (1) by its profes-
sional curriculum (by its specific knowledge) and (2) by a professional commitment to
use that knowledge consistent with a code of ethics. So, rather than saying that engi-
neering is what engineers do, Davis says that engineering is what engineers learn and
how they ought (ethically) to use that knowledge. This, of course, raises the question:
What is it that engineers learn? Mark Staples10 observes that Davis’s definition of en-
gineering in terms of its curriculum “is circular How does engineering knowledge
become accepted into engineering curricula?”

There is another question—central to our concerns: Is what engineers learn also
something that computer scientists learn? Here, Davis’s explicit argument against soft-
ware engineering (currently) being engineering (and his implicit argument against CS

10Personal communication, 2015.

5.6. WHAT DO ENGINEERS DO? 213

(currently?) being engineering) is that, although both are professions, neither is (cur-
rently) part of the profession of engineering as it is taught and licensed in engineering
schools. Even CS departments that are academically housed in engineering schools
typically do not require their students to take “engineering” courses, their academic
programs are not accredited in the same way,11 nor are their graduates required to be-
come “professional engineers” in any legal senses.

5.6 What Do Engineers Do?

There are two very general tasks that various authors put forth as what engineers do:
They design things, and they build things.

5.6.1 Engineering as Design

Petroski (2003, p. 206) says that engineering’s fundamental activity is design. And
philosopher Carl Mitcham 1994 distinguishes between the engineer as designer and
the technician or technologist as builder. So, engineering is not science, because its
fundamental activity is analysis (Petroski, 2003, p. 207), whereas design (along with
building) are synthesizing activities.

One aspect of design has been picked up by Hamming (1968). When one designs
something, one has to make choices. Hamming suggests that “science is concerned
with what is possible while engineering is concerned with choosing, from among the
many possible ways, one that meets a number of often poorly stated economic and
practical objectives”. This fits well with much of the work—even theoretical work—
that is done by computer scientists. As we saw in §§3.6 and 3.7, one definition of CS
is that it is concerned with what can be automated (in the sense of “computed”; recall
our discussion of this in §3.15.2.1). One way of expressing this is as follows: For what
tasks can there be an algorithm that accomplishes it? But there can be many algorithms
all of which accomplish the exact same task. How can we choose among them? We can
ask which ones are more efficient: Which use less memory (“space”)? Which requires
fewer operations (less “time”)? So, in addition to asking what can be computed, CS
also asks: What can be computed efficiently? (As we discussed in §3.15.2.2.) If that is
computer engineering, so be it, but that would put one of the most abstract, theoretical,
and mathematical branches of CS—namely, the theory of computational complexity—
smack dab in the middle of computer engineering, and that doesn’t seem correct.

Mark Staples12 points out that, contra Petroski, engineering is more than just de-
sign, because architects also design, but are not engineers.

Further Reading:
Petroski 2007 describes how “a theoretician develop[ed] his applied side”. For a computer sci-
entist’s take on design, see Denning 2013a.

11Many of them are accredited, of course, but not as engineering curricula.
12Personal communication, 2015.

214 CHAPTER 5. WHAT IS ENGINEERING?

5.6.2 Engineering as Building
We have seen that many people say that what engineers do is to build or create things.
For example, Paul Abrahams (1987, p. 472) argues as follows:

1. Someone who “discover[s] how things work” is a scientist.

2. Someone who “learn[s] how to build things” is an engineer.

3. Therefore, “[c]omputer science is both a scientific discipline and an engineering
discipline”.

The conclusion can be made valid by adding two missing premises:

A. Computer scientists discover how things work.

B. Computer scientists learn how to build things.

Is the argument sound? The explicit premises seem to be true. But is premise (1) really
true? Is life, or the universe, a “thing”? Do scientists really try to learn how the kinds
of physical objects that engineers build work (and nothing else)? This seems overly
simplistic. Nevertheless, this “analytic vs. synthetic” distinction (that is, a distinction
between analyzing—taking something apart—in order to learn how it works, on the one
hand, and synthesizing—putting things together—in order to build something, on the
other hand) seems to be a feature of many characterizations of science vs. engineering.

As for implicit premise (A), computer scientists can be said to discover how things
work algorithmically. As for (B), computer scientists can be said to build both software
(for example, computer programs) and hardware (for example, computers).

Moreover, “engineering . . . is an activity that creates things” (Petroski, 2005, p. 304).
Note two points: First, it is creative; this is related to claims about engineering as de-
signing and building things. But, second, it is an activity, even grammatically: The
word ‘engineering’ is a gerund—a word that “expresses . . . action”. Is science also an
activity (or is engineering different from science in this respect)? Insofar as science is
an activity, it is an activity that produces “knowledge”. Engineering is an activity that
uses that scientific knowledge to design and build artifacts. Yet one way to discover
how things work is to try to build them; so, is all engineering a kind of science?

5.7 The Engineering Method
Just as there is a “scientific method”, some scholars have proposed an “engineering
method”. Presumably, just as ‘science’ can be defined as any discipline that follows
“the scientific method”, so ‘engineering’ can be defined as any discipline that follows
“the engineering method”. In §4.8, we saw one view of the scientific method, according
to which it is a loop that cycles through observation of facts, induction of general state-
ments, deduction of future observations, and verification of the deduced predictions
against observations, before cycling back to more observations.

Similarly, Robert Malpas (2000) describes the engineering method both linearly
and as a cycle. It begins by inputting a set of requirements, followed by analysis, then

5.7. THE ENGINEERING METHOD 215

Figure 5.3: Malpas’s Engineering Method (Malpas, 2000, p. 35)

synthesis, then evaluation and execution, and outputting a solution. The cycle comes in
between the input and the output: The evaluation and execution cycles back both to the
analysis and to the synthesis, as well as adding to a knowledge base that, along with
a set of resources, interact with the analysis, synthesis and evaluation-execution. (See
Fig. 5.3.)

But neither this nor the scientific method are carved in stone; they are more like
guidelines or even after-the-fact descriptions of behavior rather than rules that must be
slavishly followed. Are “engineering methods” significantly different from “scientific
methods”? Malpas’s engineering method doesn’t seem so. Billy Vaughn Koen (2009)
seeks a “universal method” (not merely a scientific method or a method used in the hu-
manities); he finds it in the “engineering method”, which he identifies with heuristics.
(Recall our discussion of heuristics in §3.15.2.3.)

Koen (1988) defines the engineering method differently, as:

the use of engineering heuristics to cause the best change in a poorly understood
situation within the available resources. (Koen, 1988, p. 308, my italics)

For Koen,

A heuristic is anything that provides a plausible aid or direction in the solution of
a problem but is in the final analysis . . . incapable of justification and fallible. It is
anything that is used to guide, discover and reveal a possible, but not necessarily,
correct way to solve a problem. Though difficult to define, a heuristic has four
characteristics that make it easy to recognize: it does not guarantee a solution; it
may contradict other heuristics; it reduces the search time for solving a problem;

216 CHAPTER 5. WHAT IS ENGINEERING?

and its acceptance depends on the immediate context instead of on an absolute
standard. (Koen, 1988, p. 308).

As we noted in §3.13.1.1, many other disciplines use heuristics; writers, for exam-
ple, are often told to “write simply”. (See Question 4 at the end of this chapter.) So,
what makes a heuristic an engineering heuristic?

According to Koen, the first two characteristics differentiate the use of heuristics
from science and mathematics. So, they demarcate engineering from science and math.
The third and fourth characteristics make their use more practical than at least some
scientific or mathematical theories.

Koen (1988, p. 309) states “that the engineering strategy for causing desirable
change in an unknown situation within the available resources and the use of heuris-
tics is an absolute identity”. First, Koen is saying that what engineers do is to cause
changes. This does contrast with science (and math), whose goal is, presumably, to
understand things, not to change them, and it is consistent with the quote from Staples
cited as an epigraph to this chapter.

Philosophical Digression:
Recall that Marx said that philosophers should change the world, not merely understand it (see
§2.6.2.2). Was Marx proposing a discipline of “philosophical engineering”?

Second, Koen’s engineering method is not as “formal” as, say, Malpas’s, because
it is simply the use of heuristics (“the engineering strategy” = “the use of heuristics”).
But what kind of heuristics? Much of what Koen says suggests that the kind of heuristic
reasoning used by engineers is akin to what Herbert Simon called “bounded rationality”
and “satisficing” (which we discussed briefly in §§2.6.1.4 and 3.15.2.3): being satisfied
with having a reasonable answer to a question rather than the “correct” one. Bounded
rationality is necessary in practical situations, given limits (“bounds”) on our time and
knowledge. (He offers a partial list, with examples, in the rest of his essay.)

Further Reading:
Parts of Popper 1972 discuss the relation of engineering to science, as does Vincenti 1990, which
argues that engineering is a kind of knowledge that is different from scientific knowledge. Hoare
2009 has some interesting comments on the complementary nature of pure academic research
(science) and applied industrial research (engineering). Mitcham 2009, p. 339 says:

Engineering is commonly defined as the art or science of “directing the great
sources of power in nature for the use and the convenience of humans” But
there is nothing in engineering education or knowledge that contributes to any
distinct competence in making judgments about what constitutes “human use and
convenience.” Engineering as a profession is analogous to what medicine might
be if physicians had no expert knowledge of health or to law if attorneys knew
nothing special about justice.

Tedre 2009 (a complementary article to Tedre 2011 on “computing as a science”) discusses
“computing as engineering”. Staples 2014, §6.2 is a reply to Koen. Kaag and Bhatia 2014
argues that “engineers need to become philosophers”.

5.8. SOFTWARE ENGINEERING 217

5.8 Software Engineering
In addition to the question of whether CS is a kind of engineering, there is the question
of the nature of software engineering. Computer scientists (whether or not they con-
sider themselves to be scientists or engineers) often consider software engineering as a
branch of CS. Courses in software engineering are often, perhaps even usually, taught
in CS departments. But is software engineering engineering?

For Davis, software engineering would be (real?) engineering if and only if there is
a professional curriculum for it, along with a code of professional ethics. Interestingly,
he also suggests that this might not happen until “real” engineering starts becoming
more computational (Davis, 2011, p. 34).

Software engineer David Parnas has a different take on CS’s relationship to engi-
neering:

Just as the scientific basis of electrical engineering is primarily physics, the sci-
entific basis of software engineering is primarily computer science. This paper
contrasts an education in a science with an education in an engineering discipline
based on the same science. (Parnas, 1998, p. 2).

There are two interesting implications of this. First, it suggests that Parnas views CS
as a science, because he takes it to be the scientific basis of a branch of engineering.
Second, this view of things is inconsistent with the view advocated by, for instance,
Loui and Hartmanis, who take CS (or parts of it) as being a kind of engineering whose
scientific basis is primarily mathematics, that is, as mathematical engineering (as we
discussed in §3.13). On the other hand, one might argue that if software engineering is
based on CS, which, in turn, is based on mathematics, then software engineering must
ultimately be based on mathematics, too, which suggests that software engineering
would be mathematical-engineering engineering!

And that might not be far from the truth, considering that much of formal software
engineering is based on (discrete) mathematics and logic (such as the formal analysis of
computer programs and their development, or the use of program-verification methods
in the development of programs; see, for example, Mili et al. 1986 and our discussion
of program verification in Chapter 16). So, is software engineering unique in being
a kind of engineering that is based on another kind of engineering rather than on a
science? Or is software engineering indeed based on a science, namely CS? Parnas
quite clearly believes that CS is a science, not an engineering discipline. Why?

Part of the reason concerns his definition of ‘engineering’: “Engineers are profes-
sionals whose education prepares them to use mathematics, science, and the technology
of the day, to build products that are important to the safety and well-being of the pub-
lic” (Parnas, 1998, p. 2, my italics). This echoes Davis’s claim about the central role
of education in the nature of being an engineer, as well as Brooks’s (and others’) claim
that the purpose of engineering is to use science to build humanly useful things.

To complete his argument that CS is not engineering, Parnas needs a premise that
states that CS education doesn’t prepare computer scientists to use CS to build things,
or perhaps just that computer scientists don’t build things. (That leaves open the pos-
sibility that CS might be a branch of math or a “technology of the day”, but it’s pretty
clear from the first quote that he thinks that it is a science.) This missing premise is

218 CHAPTER 5. WHAT IS ENGINEERING?

the gist of his entire article. But at least one part of his argument is this: Proper train-
ing in software engineering (“designing, building, testing, and ‘maintaining’ software
products” (Parnas, 1998, p. 2)) requires more than a course or two offered in a CS
curriculum; rather, it requires an “accredited professional programme . . . modelled on
programmes in traditional engineering disciplines” (Parnas, 1998, p. 2).13

But we still don’t have a clear statement as to why he thinks that CS is a science
and is not engineering. As for the latter, it’s not engineering, because there is no “rigid
accreditation process . . . [hence, no] well documented ‘core body of knowledge’ . . .
for computer science” (Parnas, 1998, p. 2). Such accreditation might be necessary, but
is surely not sufficient: One might force such a core body of knowledge and such an
accreditation process on, say, physics, but that wouldn’t make physics an engineering
discipline.

Some clarity arises here:

It is clear that two programmes are needed [for example, both physics and electri-
cal engineering, or both computer science and software engineering], not because
there are two areas of science involved [for example, physics and electrical engi-
neering], but because there are two very different career paths. One career path
is that of graduates who will be designing products for others to use. The other
career path is that of graduates who will be studying the phenomena that interest
both groups and extending our knowledge in this area. (Parnas, 1998, p. 3, my
italics)

So: scientists study phenomena and extend knowledge; engineers design products. So:
CS studies phenomena and extends knowledge; software engineers design software
products. The distinction between science and engineering, for Parnas, is that between
learning and building (Parnas, 1998, p. 4). Note that Parnas agrees with Brooks about
the distinction, but draws the opposite conclusion, that CS is not engineering!

Questions for the Reader:

1. What phenomena does Parnas think that computer scientists study?

2. Does Parnas consider electrical engineering to be an “area of science”!

Further Reading:
For more on software engineering and software-engineering education, see Denning and Riehle
2009; Dewar and Astrachan 2009.

5.9 Closing Remarks
But a science and an engineering discipline can have the same object: They can be
about the same thing. (For example, both chemists and chemical engineers study
chemistry.) If so, then what is the common object of computer science and computer

13The spelling in this quote is Canadian-British spelling. ‘Programme’ is used in the sense of an “academic
program”, not in the sense of a “computer program”.

5.9. CLOSING REMARKS 219

engineering? Is it computers? Algorithms? Information? Perhaps computer science
studies algorithms and procedures, whereas computer engineering studies computers
and computer systems. If so, then who studies the relations between these, such as
“programmed living machines”? (Recall our discussion of Newell and Simon 1976 in
§3.7.)

Trying to distinguish between science and engineering may be the wrong approach.
It is worth recalling W.A. Wulf’s cautionary remarks, which we quoted in §3.11:

Let’s remember that there is only one nature—the division into science and engi-
neering . . . is a human imposition, not a natural one. Indeed, the division is a
human failure; it reflects our limited capacity to comprehend the whole. That fail-
ure impedes our progress; it builds walls just where the most interesting nuggets
of knowledge may lie. (Wulf, 1995, p. 56; my italics)

Is CS a science that tries to understand the world computationally? Or is it an engi-
neering discipline that tries to change the world by building computational artifacts?
(Or both? Or neither?) No matter our answer, it has to be the science or engineering
(or whatever) of something. We have seen at least two possibilities: It studies comput-
ers, or it studies computation (algorithms). To further explore which of these might be
central to CS, let us begin by asking, “What is a computer?”. Later, we will inquire
into what computation is.

220 CHAPTER 5. WHAT IS ENGINEERING?

5.10 Questions to Think About
1. Link to various engineering websites, and try to find a definition of ‘engineer’ or

‘engineering’. Here are two good ones to begin with:

(a) “What Is Engineering?”,
Whiting School of Engineering, Johns Hopkins University,
http://www.jhu.edu/∼virtlab/index.php

(b) “What is engineering and what do engineers do?”,
National Academy of Engineering of the National Academies,
http://www.nae.edu/About/FAQ/20650.aspx

2. In §3.10, we saw that Brooks argued that CS was not a science, but a branch of
engineering, in part because the purpose of engineering is to build things, and
that that’s what computer scientists do.

How would you evaluate his argument now that you have thought more deeply
about what engineering is?

3. Loui (1987, p. 176) said that “The ultimate goal of an engineering project is a
product . . . that benefits society”, giving bridges and computer programs as sam-
ple “products”. But not all computer programs benefit society—think of com-
puter viruses. Presumably, Loui meant something like “product that is intended
to benefit society.”

But does that mean, then, that a computer programmer who writes a spread-
sheet program is an engineer (no matter how sloppily the programmer writes it),
whereas a computer programmer who writes a computer virus is not an engineer
(even if the program was designed according to the best software engineering
principles)?

4. If the central feature of engineering is, let’s say, the application of scientific
(and mathematical) techniques for producing or building something, then surely
part of CS is engineering—especially those parts that are concerned with build-
ing computers and writing programs. Here’s something to think about: Just as
(some) computer scientists write programs, so journalists and novelists write es-
says. Moreover, they use heuristics, such as “write simply”, “avoid using the
passive voice”, and so on. And Pawley 2009, p. 310, col. 2 makes a similar point
concerning a National Academy of Engineering definition of engineers as “men
and women who create new products”:

Without knowing how the NAE defines “product,” one could argue that an
academic who writes a book on how food is portrayed in Victorian novels
has created a product (the book) based on abstract ideas (theories about the
historical display of food).

Are journalists, novelists, and other writers therefore engineers? Their prod-
ucts are not typically applications of science and math, so perhaps they aren’t.
But might they not be considered to be, say, language engineers?

5.10. QUESTIONS TO THINK ABOUT 221

5. Evaluate the validity and soundness of the following argument:14

(a) Engineers are cognitive agents who build artifacts for some identifiable
purpose.

(b) Birds build nests for housing their young.

(c) Beavers build dams because the sound of rushing water annoys them.15

(d) Computer engineers build computers for computation.

(e) ∴ Birds, beavers, and computer engineers are all engineers.

6. Evaluate the validity and soundness of the following argument:

(a) Engineers are cognitive agents who build artifacts for some identifiable
purpose and who know what that purpose is.

(b) Birds and beavers do not know why they build nests and dams, respectively;
they are only responding to biological or evolutionary instincts.

(c) Computer engineers do know what the purpose of computation is.

(d) ∴ Computer engineers are engineers, but birds and beavers are not.

7. ‘Design’ has a secondary meaning with a slightly negative connotation. Consider
the following passage:

I am purposely using the word designer instead of animator because [Walt]
Disney was always designing things, made designs, and had designs. A de-
signer is someone who indicates with a distinctive mark, and Disney put his
mark on everything in his studios. A designing person is often a crafty person
who manages to put his schemes into effect by hook or by crook.
(Zipes, 1995, p. 341, footnote 9, my italics)

Might computer programmers considered as designers in the more-or-less neu-
tral engineering sense also be designers in this other sense? (This is something
that we will consider in §18.8.1.)

14Thanks to Albert Goldfain for questions 5 and 6.
15http://naturealmanac.com/archive/beaver dams/beaver dams.html

222 CHAPTER 5. WHAT IS ENGINEERING?

Chapter 6

What Is a Computer?
A Historical Perspective

Version of 31 December 2019; DRAFT c© 2004–2019 by William J. Rapaport

Let us now return to the analogy of the theoretical computing machines . . . It can
be shown that a single special machine of that type can be made to do the work of
all. It could in fact be made to work as a model of any other machine. The special
machine may be called the universal machine . . .
—Alan Turing (1947)

If it should turn out that the basic logics of a machine designed for the numerical
solution of differential equations coincide with the logics of a machine intended
to make bills for a department store, I would regard this as the most amazing
coincidence I have ever encountered.
—Howard Aiken (1956), cited in Davis 20121

There is no reason for any individual to have a computer in their home.
—Ken Olsen (1974)2

Many people think that computation is for figuring costs and charges in a grocery
store or gas station.
—Robin K. Hill (2008)

1Five years before Aiken said this, the Lyons tea company in Great Britain became the first company to
computerize its operations (Martin, 2008).

2For the citation and history of this quote, see https://quoteinvestigator.com/2017/09/14/home-computer/.
That website offers an interesting alternative intepretation: Home computers might not be needed if there are
home terminals, that is, if what is now called “cloud computing” becomes ubiquitous.

223

224 CHAPTER 6. WHAT IS A COMPUTER? A HISTORICAL PERSPECTIVE

6.1 Readings
1. Highly Desired (if you have enough time to read two full-length books!):

(a) Aspray, William (ed.) (1990), Computing before Computers (Ames, IA: Iowa State
University Press), http://ed-thelen.org/comp-hist/CBC.html

• On the “engineering” history of computers.

(b) Davis, Martin (2012), The Universal Computer: The Road from Leibniz to Turing;
Turing Centenary Edition (Boca Raton, FL: CRC Press/Taylor & Francis Group);
originally published as Engines of Logic: Mathematicians and the Origin of the
Computer (New York: W.W. Norton, 2000).

• On the “logical” history of computers, written by one of the leading mathe-
maticians in the field of theory of computation.

• At least try to read the Introduction (http://tinyurl.com/Davis00), which is only
one page long!

• Davis 1995c is an article-length version of the story told in this book.
• For reviews of the first edition (2000), see Papadimitriou 2001; Dawson 2001;

Johnson 2002b.

2. Required:

(a) Browse the linked websites at “A Very Brief History of Computers”, http://www.
cse.buffalo.edu/∼rapaport/584/history.html

(b) O’Connor, J.J., & Robertson, E.F. (1998), “Charles Babbage”, http://www-gap.dcs.
st-and.ac.uk/∼history/Mathematicians/Babbage.html

(c) Simon, Herbert A., & Newell, Allen (1958), “Heuristic Problem Solving: The Next
Advance in Operations Research”, Operations Research 6(1) (January-February):
1–10.

• Read the brief history of Babbage’s work (pp. 1–3); skim the rest.
• In this paper, Simon and Newell predicted that (among other things) a com-

puter would “be the world’s chess champion” (p. 7) within 10 years, that is,
by 1968.3

(d) Davis, Martin (1995), “Mathematical Logic and the Origin of Modern Comput-
ers”, Studies in the History of Mathematics, reprinted in Rolf Herken (ed.), Uni-
versal Turing Machine: A Half-Century Survey; Second Edition (Vienna: Springer-
Verlag): 135–158, https://fi.ort.edu.uy/innovaportal/file/20124/1/41-herken ed. 95
- the universal turing machine.pdf

• Article-length version of Davis 2012.

(e) Ensmenger, Nathan (2003), “Bits of History: Review of A.R. Burks’s Who Invented
the Computer? The Legal Battle that Changed Computing History”, in American
Scientist 91 (September-October): 467–468.

3But it didn’t happen till 1997 (https://en.wikipedia.org/wiki/Deep Blue versus Garry Kasparov). I once
asked Simon about this; our email conversation can be found at http://www.cse.buffalo.edu/∼rapaport/584/
S07/simon.txt; see also Simon 1977, p. 1191, endnote 1.

6.2. INTRODUCTION 225

6.2 Introduction

Figure 6.1: http://www.gocomics.com/jumpstart/2012/02/13; c©2012 UFS Inc.

Let us take stock of where we are. We began by asking what CS is, and we saw that it
might be a science, a branch of engineering, a combination of both, or something sui
generis. To help us answer that question, we then investigated the nature of science
and of engineering.

We also asked, “What is CS the science (or engineering, or study) of ”? We saw
that there are at least three options to consider:

1. The subject matter of CS might be computers (the physical objects that compute),
as Newell et al. (1967) suggested; or

2. it might be computing (the algorithmic processing that computers do), as Knuth
(1974b) suggested; or

3. it might be something else (such as the information that gets processed; see §3.8).

In this chapter and Chapter 7, “What Is an Algorithm?”, we will begin to examine the
first two options.

So our focus now will be to seek answers to the question:

What is a computer?

To help answer this, we will look first at the history of computers (in this chapter) and
then, in Chapter 9, at some philosophical issues concerning the nature of computers.

226 CHAPTER 6. WHAT IS A COMPUTER? A HISTORICAL PERSPECTIVE

6.3 Would You Like to Be a Computer?
Some Terminology

Towards the close of the year 1850, the Author first formed the design of rectifying
the Circle to upwards of 300 places of decimals. He was fully aware, at that time,
that the accomplishment of his purpose would add little or nothing to his fame as
a Mathematician, though it might as a Computer; . . .
—William Shanks (1853), as cited in Brian Hayes 2014a, p. 342

Let’s begin our historical investigation with some terminology. Some 130 years ago, in
the May 2, 1892, issue of The New York Times, the following ad appeared:

Figure 6.2: http://tinyurl.com/NYT-computer

So, over a century ago, the answer to the question “What is a computer?” was:
a human who computes! In fact, until at least the 1940s (and probably the 1950s),4

that was the meaning of ‘computer’. When people wanted to talk about a machine
that computed, they would use the phrase ‘computing machine’ or (later) ‘electronic
(digital) computer’. (In Chapters 8 and 19, when we look at Alan Turing’s foundational
papers in CS and AI, this distinction will be important.) Interestingly, nowadays when
one wants to talk about a human who computes, we need to use the phrase ‘human
computer’ (Pandya, 2013). In this book, for the sake of familiarity, I will use the

4And possibly by some people even in the 1960s, as told in the 2016 film Hidden Figures (https://en.
wikipedia.org/wiki/Hidden Figures); see also Bolden 2016; Natarajan 2017.

6.4. TWO HISTORIES OF COMPUTERS 227

word ‘computer’ for the machine, and the phrase ‘human computer’ for a human who
computes.

Digression and Further Reading:
For a history of human computers (most of whom were women), see Lohr 2001; Grier 2005;
Skinner 2006; Thompson 2019. An interesting website is: “Computer Programming Used
to Be Women’s Work”, Smart News Blog, http://blogs.smithsonianmag.com/smartnews/2013/
10/computer-programming-used-to-be-womens-work/ The other kind of human computer, of
course, would be mathematicians (of either sex):

Historians might . . . wonder if mathematicians who devised algorithms were pro-
grammers Modern programmers would . . . say no because these algorithms
were not encoded for a particular machine. (Denning and Martell, 2015, p. 83)

But they were! They were encoded for humans (human computers)! Curiously, on the very next
page, Denning & Martell say exactly that:

The women who calculated ballistic tables for the Army during World War II were
also programmers, although their programs were not instructions for a machine
but for themselves to operate mechanical calculators. In effect, they were human
processing units.

But why should this be treated merely as a kind of metaphor? These women were the computers!

6.4 Two Histories of Computers
There seem to be two histories of computers; they begin in parallel, but eventually
converge and intersect:

• The goal of one of these histories was to build a machine that could compute
(or calculate), that is, a machine that could duplicate—and therefore assist, or
even replace, or eventually supersede—human computers. This is an engineer-
ing goal.

• The goal of the other history was to provide a foundation for mathematics. This
is a scientific (or, at least, a mathematical or logical) goal.

These histories were probably never really parallel but more like a tangled web,
with at least two “bridges” connecting them: The first was a person who lived about
340 years ago, and the other was someone who was active much more recently (about
85 years ago)—Gottfried Wilhelm Leibniz (1646–1716) and Alan Turing (1912–1954).
(There were, of course, other significant people involved in both histories, as we will
see.) Moreover, both histories begin in ancient Greece, the engineering history be-
ginning with the need for computational help for astronomical purposes (including
navigation), and the scientific history beginning with Aristotle’s study of logic.

228 CHAPTER 6. WHAT IS A COMPUTER? A HISTORICAL PERSPECTIVE

6.5 The Engineering History
The engineering history concerns the attempt to create machines that would do certain
mathematical computations. The two main reasons for wanting to do this seem to be
(1) to make life easier for humans (let a machine do the work) and—perhaps of more
importance—(2) to produce computations that are more accurate (both more precise
and with fewer errors) than those that humans produce.

It is worth noting that the goal of having a machine perform an intellectual task that
would otherwise be done by a human is one of the motivations underlying AI. In this
section, we will only sketch some of the highlights of the engineering history.

Further Reading:
Other good sources of information on the engineering history include:
• Goldstine 1972 (written by one of the early pioneers of computers);
• Arden 1980, pp. 10–13, §“A Brief History”;
• Chase 1980 (an illustrated history of computers, with a useful introduction by the science

historian I. Bernard Cohen);
• Carlson et al. 1996 (for more detail on the engineering history);
• O’Regan 2008; and Campbell-Kelly 2009.

Useful websites include: the Computer History Museum, http://www.computerhistory.org/;
Copeland 2000a; Lee 2002; Hoyle 2006; Hitmill.com 2012.

Sloman 2002, §2 argues that even the engineering history of computers has “two strands”: the
“development of machines for controlling physical mechanisms and [the] development of ma-
chines for performing abstract operations, e.g. on numbers.”

Husbands et al. 2008 is an overview of attempts to make mechanical minds.

6.5.1 Ancient Greece
The very early history of the attempt to build machines that could calculate can be
traced back to at least the second century B.C.E., when a device now known as the An-
tikythera Mechanism was constructed. This was a device used to calculate astronom-
ical information, possibly for use in agriculture or religion. Although the Antikythera
Mechanism was discovered in 1900, a full understanding of what it was and how it
worked was not figured out until the 2000s.

Further Reading and Questions for the Reader:
On the Antikythera Mechanism, see Freeth et al. 2006; Wilford 2006; Seabrook 2007a; Wilford
2008; Freeth 2009. For a photo slideshow, see Seabrook 2007b.

In §3.9.5, we asked how someone who didn’t know what a computer was would describe a laptop
found in the desert. The Antikythera Mechanism is close to a real-life example of the “computer
found in the desert”.

Does it compute? What does it compute? Is what it computes determined by its creators?
Can we determine it?

6.5. THE ENGINEERING HISTORY 229

6.5.2 17th-Century Adding Machines
Skipping ahead almost 2000 years to about 350 years ago, two philosopher-mathemati-
cians are credited with more familiar-looking calculators: Blaise Pascal (1623–1662),
who helped develop the theory of probability, also invented an adding (and subtract-
ing) machine that worked by means of a series of connected dials, and Leibniz (who
invented calculus, almost simultaneously with, but independently of, Isaac Newton)
invented a machine that could add, subtract, multiply, and divide. As we’ll see later on,
Leibniz also contributed to the scientific history of computing with an idea for some-
thing he called a “calculus ratiocinator” (loosely translatable as a “reasoning system”).

Further Reading:
“Before electronic calculators, the mechanical slide rule dominated scientific and engineering
computation”, according to Stoll 2006. Note: The slide rule is an analog calculator! For more on
analog computation, see §9.7.1, below, and: Rubinoff 1953; Samuel 1953, p. 1224, § “The Ana-
logue Machine”; Jackson 1960; Montague 1960; Pour-El 1974; Moor 1978; Haugeland 1981a;
Copeland 1997, “Nonclassical Analog Computing Machines”, pp. 699–704; Shagrir 1999; Holst
2000; Piccinini 2004a, 2007d, 2008, 2009, 2010b, 2011, 2012; Care 2007; Zenil and Hernández-
Quiroz 2007, especially p. 5; Fortnow 2010; Piccinini and Craver 2011; McMillan 2013; Corry
2017.

For an alternative way to compute with real numbers other than with analog computers, see
Buzen 2011.

For some good images of early calculating machines, including Pascal’s and Leibniz’s, see:
• “Generations of Computers”,

http://generationsofcomputers.blogspot.com/2007/12/generation-of-computers.html;
• IBM “Antique Attic” (a three-“volume”, illustrated exhibit of computing artifacts),

http://www-03.ibm.com/ibm/history/exhibits/index.html;
• “Vintage Calculators Web Museum”, http://www.vintagecalculators.com/

6.5.3 Babbage’s Machines
We both went to see the thinking machine (for such it seems) last Monday.
—Lady Byron (Ada Lovelace’s mother), writing in 1833 about Babbage’s

Difference Engine (as cited in Stein 1984, p. 38)

Two of the most famous antecedents of the modern electronic computer were due to the
English mathematician Charles Babbage, who lived about 190 years ago (1791–1871).
The first of the machines he designed was the Difference Engine (1821–1832), inspired
in part by a suggestion made by a French mathematician named Gaspard de Prony
(1755–1839).

De Prony, who later headed France’s civil-engineering college, needed to construct
highly accurate, logarithmic and trigonometric tables for large numbers, and was him-
self inspired by Adam Smith’s 1776 text on economics, The Wealth of Nations. Smith
discussed the notion of the “division of labor”: The manufacture of pins could be made
more efficient by breaking the job down into smaller units, with each laborer who

230 CHAPTER 6. WHAT IS A COMPUTER? A HISTORICAL PERSPECTIVE

worked on one unit becoming an expert at his one job. This is essentially what mod-
ern computer programmers call “top-down design” (Mills, 1971) and “stepwise refine-
ment” (Wirth, 1971): To accomplish some task T , analyze it into subtasks T1, . . . , Tn,
each of which should be easier to do than T . This technique can be repeated: Analyze
each Ti into sub-subtasks Ti1 , . . . , Tim , and so on, until the smallest sub. . . subtask is
so simple that it can be done without further instruction (this is the essence of “recur-
sion”; see §7.7). De Prony, realizing that it would take him too long using “difference
equations” by hand,5 applied this division of labor to computing the log and trig tables,
using two groups of human computers, each as a check on the other.

It should be noted that, besides its positive effects on efficiency, the division of
labor has negative ones, too: It “would make workers as ‘stupid and ignorant as it is
possible for a human creature to be.’ This was because no worker needed to know how
to make a pin, only how to do his part in the process of making a pin” (Skidelsky,
2014, p. 35), quoting Adam Smith, in The Wealth of Nations, Book V, Ch. I, Part III,
Article II6 More recently, several writers have pointed out that very few of us know
every detail about the facts that we know or the activities that we know how to perform
(see, for example, Dennett 2017, Ch. 15). So this negative effect might be unavoidable.

Further Reading:
Babbage was inspired by de Prony, who was inspired by Smith. Adam Smith’s pin-factory story
is reprinted in Lawson 2004. Smith may, in turn, have been inspired by the Talmud—the 2500-
year-old Jewish commentaries on the Torah. See Kennedy, Gavin (2008, 11 May), “The Tal-
mud on the Division of Labour”, Adam Smith’s Lost Legacy (blog), http://adamsmithslostlegacy.
blogspot.com/2008/05/talmud-on-dvision-of-labour.html (note: the misspelling of ‘dvision’ in
that URL is not a typographical error!) and Cowen, Tyler (2008), “Division of Labor in the Baby-
lonian Talmud”, Marginal Revolution (blog), http://marginalrevolution.com/marginalrevolution/
2008/05/division-of-lab.html. See also Stein 1984; Pylyshyn 1992.

The recursive nature of top-down design and stepwise refinement has been identified with the
notion of scientific progress by Rosenblueth and Wiener (1945, p. 319): “Scientific progress
consists in a progressive opening of . . . [closed, that is, “black”] boxes” and subdividing closed
boxes into “several samller shut compartments” some of which “may be . . . left closed, because
they are considered only functionally, but not structurally important.”

Babbage wanted a machine to replace de Prony’s people; this was to be his Dif-
ference Engine. He later conceived of an “Analytical Engine” (1834–1856), which
was intended to be a general-purpose problem-solver (perhaps more closely related to
Leibniz’s goal for his calculus ratiocinator). Babbage was unable to completely build
either machine: The techniques available to him in those days were simply not up to the
precision required. However, he developed techniques for what we would today call
“programming” these machines, using a 19th-century version of punched cards (based
on a technique invented by Joseph Marie Jacquard for use in looms—a sequence of
punched cards constituted a “program” for weaving a pattern in the cloth on the loom).

5Difference equations are a discrete-mathematical counterpart to differential equations. They involve
taking successive differences of sequences of numbers.

6https://www.marxists.org/reference/archive/smith-adam/works/wealth-of-nations/book05/ch01c-2.htm

6.5. THE ENGINEERING HISTORY 231

Working with Babbage, Lady Ada Lovelace (1815–1852)—daughter of the poet Lord
Byron—wrote a description of how to program the (yet-unbuilt) Analytical Engine;
she is, thus, considered to be the first computer programmer.

According to Stein 1984, p. 49,

. . . the important difference between the two machines is that the Difference En-
gine followed an unvarying computational path . . . , while the Analytical Engine
was to be truly programmable

This suggests that the relationship between the Difference Engine and the Analytical
Engine was similar to that between a Turing Machine (which can only compute a single
function) and a universal Turing Machine (which can compute any function whose
algorithm is stored on its tape).

Further Reading:
Hyman 1982 is a biography of Babbage (reviewed in O’Hanlon 1982). Useful websites on Bab-
bage include: the Charles Babbage Institute, http://www.cbi.umn.edu/; Lee 1994a; Greenemeier
2008; Sydell 2009; Johnstone 2014.

Robin Gandy (1988, pp. 53, 54), who was Turing’s only PhD student, notes that Babbage’s An-
alytic Engine can be considered as a kind of register machine, in which case it is equivalent to
a Turing Machine, and he considers this statement by Babbage—“the whole of the development
and operations of analysis are now capable of being executed by machinery”—to be “Babbage’s
Thesis” (perhaps on a par with Turing’s Thesis).

On the Difference Engine, see Park 1996 and Campbell-Kelly 2010. A partial model of the Dif-
ference Engine was finally built around 1991 (Swade, 1993), and efforts were underway to build
a version of the Analytical Engine (http://www.plan28.org/). For more on the (re-)construction
of the Analytical Engine, see Markoff 2011, which contains a diagram of the Analytical Engine,
http://www.nytimes.com/interactive/2011/11/07/science/before-its-time-machine.html.

“Was Babbage’s Analytical Engine Intended to Be a Mechanical Model of the Mind?”—that
question is answered in the negative (at least from Babbage’s point of view) in Green 2005.

Ada Lovelace’s commentary can be found in her notes to her translation of a description of the
Analytic Engine (Menabrea and Lovelace, 1843). For more on Lovelace, see Stein 1984, 1985;
Kidder 1985; Kim and Toole 1999; Holt 2001; MacFarlane 2013; Uglow 2018.

For a more historically accurate discussion of the history of programming, see Randell 1994.
Lohr 2002 is the story of one of the early computer programmers. For “Reflections on the first
textbook on programming”, see Campbell-Kelly 2011. Ensmenger 2011a contains “Reflections
on recruiting and training programmers during the early period of computing.”

For the story of the Jacquard loom, see Keats 2009.

232 CHAPTER 6. WHAT IS A COMPUTER? A HISTORICAL PERSPECTIVE

6.5.4 Electronic Computers
The modern history of electronic, digital computers is itself rather tangled and the
source of many historical and legal disputes. Here is a brief survey:

1. John Atanasoff (1903–1995) and his student Clifford Berry (1918–1963), work-
ing at Iowa State University, built the ABC (Atanasoff-Berry Computer) in 1937–
1942. This may have been the first electronic, digital computer, but it was not a
general-purpose (programmable) computer, and it was never completed. It was,
however, the subject of a patent-infringement suit, about which more in a mo-
ment.

2. Konrad Zuse (1910–1995), in Germany, developed the Z3 computer in 1941,
which was programmable.

3. In 1943, the Colossus computer was developed and installed at Bletchley Park,
England, for use in cryptography during World War II. Bletchley Park was where
Alan Turing worked on cracking the Nazi’s code-making machine, the Enigma.

Further Reading:
For more on Colossus, see: Sale nd; Wells 2003; Copeland and Flowers 2010. On the
Enigma, see Kernan 1990. Martin 2013 is a brief biography of Mavis Batey, a code
breaker who worked with Turing at Bletchley Park.

4. Howard Aiken (1900–1973), inspired by Babbage, built the Harvard Mark I com-
puter in 1944; it was designed to compute differential equations.

5. After the war, in 1945, Turing decided to try to implement his “a-machine” (what
is now called the ‘Turing Machine’; see §6.6, below, and—for more detail—
Chapter 8), and developed the ACE (Automatic Computing Engine) (Copeland,
1999; Campbell-Kelly, 2012). It was also around this time that Turing started
thinking about AI and neural networks.

6. John Presper Eckert (1919–1995) and his student John Mauchly (1907–1980),
working at the University of Pennsylvania, built the ENIAC (Electronic Numer-
ical Integrator And Computer) in 1946. This was the first general-purpose—
that is, programmable—electronic computer. In 1945, with the collaboration
of the mathematician John von Neumann (1903–1957)—who outlined an archi-
tecture for computers that is still used today—they began to develop the ED-
VAC (Electronic Discrete Variable Automatic Computer), which used binary
arithmetic (rather than decimal). Completed in 1949, it evolved into the first
commercial computer: the UNIVAC (UNIVersal Automatic Computer). UNI-
VAC became famous for predicting, on national TV, the winner of the 1952 US
presidential election. The company that made UNIVAC evolved into the Sperry
Rand Corporation, which owned the patent rights. The Honeywell Corporation,
a rival computer manufacturer, successfully sued Sperry Rand in 1973, on the
grounds that Mauchly had visited Atanasoff in 1941, and that it was Atanasoff

6.5. THE ENGINEERING HISTORY 233

and Berry—not Eckert and Mauchly—who had “invented” the computer, thus
vacating Sperry Rand’s patent claims.

Further Reading:
On the ENIAC, see Kennedy 1946; Lohr 1996; Levy 2013. For a short biography of
Eckert, see Baranger 1995a. For Atanasoff, see Baranger 1995b. On Zuse, see Lee
1994b; Hyman 2012; Winkler 2012.

On the ENIAC-ABC controversy, with a discussion of an attempt to replicate the ABC,
see Wheeler 1997. A useful summary of some of the issues involved can be found in
Ensmenger 2003, who observes that identifying Atanasoff as “the inventor of the com-
puter” (my phrasing and italics) is an “answer to what is fundamentally the wrong
question” (Ensmenger, 2003, italics in original), because “any particular claim to pri-
ority of invention must necessarily be heavily qualified: If you add enough adjectives,
you can always claim your own favorite”. (Note that the subtitle of Wheeler 1997 is
precisely that question!) For another take on this kind of question, by computer scien-
tist Richard W. Hamming, see Hamming 1980b.

Halmos 1973 is a very readable, short biography of von Neumann, with a heavy em-
phasis on the humorous legends that have grown up around him. The story of von Neu-
mann’s involvement in the development of computers can be found in Dyson 2012b.
(And for commentaries on Dyson 2012b, see Holt 2012; Mauchly et al. 2012.) See also
Bacon 2010. For the original document on the “von Neumann architecture”, see von
Neumann 1945.

6.5.5 Modern Computers
Where a calculator like ENIAC today is equipped with 18,000 vacuum tubes and
weighs 30 tons, computers in the future may have only 1000 vacuum tubes and
perhaps weigh only 1 1

2 tons.
—Popular Mechanics, March 1949, cited in Meigs 2012.

A few years ago, one of our daughters looked at a pile of MacBooks in our living room,
and asked, “Can you hand me a computer?”. Early computers, however, were large,
cumbersome, and expensive, so there weren’t very many of them:

There are currently over one hundred computers installed in American universities.
Probably two dozen or more will be added this year. In 1955 the number was less
than twenty-five. . . . [C]onsidering the costs involved in obtaining, maintaining,
and expanding these machines, the universities have done very well in acquiring
hardware with their limited funds. (Perlis, 1962, p. 181, my italics)

Of course, a university with, say, 5000 students now probably has at least 5000 com-
puters—and probably double that amount if you include smartphones—not to mention
the computers owned by the universities themselves! And each one of those 10,000 or
more computers is at least as powerful as, if not more so than, the 100 that there were
a half-century ago.

Although the early computers were mostly intended for military uses,

234 CHAPTER 6. WHAT IS A COMPUTER? A HISTORICAL PERSPECTIVE

The basic purpose [of computers at universities], at present [that is, in 1962], is to
do computations associated with and supported by university research programs,
largely government financed. . . . Sad to state, some uses occur merely because the
computer is available, and seem to have no higher purpose than that.
—Alan J. Perlis (1962, p. 182, my italics)

And I wouldn’t be surprised if most uses (Candy Crush? Skype? Facebook? Twitter?
Amazon?) of the 10,000 computers at an average contemporary university “have no
higher purpose”! (At this point, you are urged to re-read the chronologically-ordered
epigraphs at the beginning of this chapter.)

It is also worth noting the simultaneous decrease in size of computers from the
1940s to now, as well as their ease of use, as illustrated in Figures 6.3 and 6.4.

Further Reading:
For the history of personal computers, see Ryan 1991 (which tries to predict the future of what
is now known as laptop computers, asking “Is the reign of the desktop computer about to end?’);
Press 1993; Markoff 2000 (on the history of Microsoft Basic), Waldrop 2001; Markoff 2005;
Lohr 2010.

On precursors of the Internet and the Web, see Standage 1998; Alden 1999; and Wright 2008
(on a 1934(!) version of a World Wide Web). For a 1909(!) version of the Internet, see Forster
1909 (we’ll say more about this in §8.10.3.2). For more recent histories of the Internet and the
Web, see Brian Hayes 1994, 2000.

(As for “higher purposes”, see Hafner 2002 :-)

For brief biographies of two computer pioneers—Grace Murray Hopper and Jean E. Sammet—
see Markoff 1992; Sammet 1992; Lohr 2017. And for a history of computers as shown in car-
toons, see Mathews and Reifers 1984.

6.5. THE ENGINEERING HISTORY 235

Figure 6.3: The ENIAC (circa 1946), with Eckert at the controls, and a smaller and
more powerful personal computer (circa 1989), with a child at the controls

Figure 6.4: Cover of the Communications of the ACM, December 2012

236 CHAPTER 6. WHAT IS A COMPUTER? A HISTORICAL PERSPECTIVE

6.6 The Scientific, Mathematical, Logical History

Logic’s dominant role in the invention of the modern computer is not widely ap-
preciated. The computer as we know it today was invented by Turing in 1936,
an event triggered by an important logical discovery announced by Kurt Gödel
in 1930. Gödel’s discovery . . . decisively affected the outcome of the so-called
Hilbert Program. Hilbert’s goal was to formalize all of mathematics and then give
positive answers to three questions about the resulting formal system: is it con-
sistent? is it complete? is it decidable? Gödel found that no sufficiently rich
formal system of mathematics can be both consistent and complete. In proving
this, Gödel invented, and used, a high-level symbolic programming language: the
formalism of primitive recursive functions. As part of his proof, he composed an
elegant modular functional program This computational aspect of his work . . .
is enough to have established Gödel as the first serious programmer in the modern
sense. Gödel’s computational example inspired Turing . . . [who] disposed of the
third of Hilbert’s questions by showing . . . that the formal system of mathematics
is not decidable. Although his original computer was only an abstract logical con-
cept, . . . Turing became a leader in the design, construction, and operation of the
first real computers. (Robinson, 1994, pp. 6–7)7

The parallel historical story concerns, not the construction of a physical device that
could compute, but the logical and mathematical analysis of what computation itself
is.

This story begins, perhaps, with Leibniz, who not only constructed a computing
machine, as we have seen, but who also wanted to develop a “calculus ratiocinator”:
a formalism in a universally understood language (a “characteristica universalis”) that
would enable its “speakers” to precisely express any possible question and then to
rationally calculate its answer. Leibniz’s motto (in Latin) was: Calculemus! (Let us
calculate!). In other words, he wanted to develop an algebra of thought.

This task was taken up around 180 years later (around 180 years ago) by the En-
glish mathematician George Boole (1815–1864), who developed an algebra of logic,
which he called The Laws of Thought (Boole, 2009). This was what is now called
propositional logic. But it lacked a procedure for determining the truth value of a given
(atomic) statement.

Boole’s work was extended by the German mathematician Gottlob Frege (1848–
1925, around 130 years ago), who developed what is now called first-order logic (or the
first-order predicate calculus).8 Frege was a follower of a philosophy of mathematics
called “logicism”, which viewed mathematics as a branch of logic. Thus, to give a firm

7Roughly, a formal system is “consistent” if no false propositions can be proved within it, and it is
“complete” if every true proposition can be proved within it. What Gödel proved was that, if arithmetic is
consistent, then it is incomplete, because an arithmetical version of the English sentence “This sentence is
unprovable” is true but unprovable. We will discuss “primitive recursive functions” in §7.7.2. For more on
Gödel, see the Digression in §2.10.6. For a discussion of the relationship between Gödel’s theorems and
Turing Machines, see Feferman 2011.

8None of these things called ‘calculus’ (plural: ‘calculi’) are related to the differential or integral calculus.
‘Calculus’ just means “system for calculation”.

6.6. THE SCIENTIFIC, MATHEMATICAL, LOGICAL HISTORY 237

foundation for mathematics, it would be necessary to provide a system of logic that
itself would need no foundation.

Unfortunately, the English philosopher Bertrand Russell (1872–1970, around 100
years ago), discovered a problem while reading the manuscript of Frege’s book The
Foundations of Arithmetic. This problem, now known as Russell’s Paradox, concerned
the logic of sets: A set that has as members all and only those sets that do not have
themselves as members would both have itself as a member and not have itself as a
member. This inconsistency in Frege’s foundation for mathematics began a crisis that
resulted in the creation of the theory of computation.

Further Reading:
An enjoyable graphic-novel treatment of the Russell-Frege story, with text by a well-known
computer scientist, is Doxiadis et al. 2009.

That story continues with work done by the German mathematician David Hilbert
(1862–1943, around 115 years ago), who wanted to set mathematics on a rigorous,
logical foundation, one that would be satisfactory to all philosophers of mathematics,
including “intuitionists” and “finitists”. (Intuitionists believe that mathematics is a
construction of the human mind, and that any mathematical claim that can only be
proved by showing that its assumption leads to a contradiction should not be accepted.
Finitists believe that only mathematical objects constructible in a finite number of steps
should be allowed into mathematics.) It is worth quoting Hilbert at length:

Occasionally it happens that we seek . . . [a] solution [to a mathematical problem]
under insufficient hypotheses or in an incorrect sense, and for this reason do not
succeed. The problem then arises: to show the impossibility of the solution
under the given hypotheses, or in the sense contemplated. Such proofs of im-
possibility were effected by the ancients, for instance when they showed that the
ratio of the hypotenuse to the side of an isosceles right triangle is irrational. In
later mathematics, the question as to the impossibility of certain solutions plays a
preeminent part, and we perceive in this way that old and difficult problems, such
as the proof of the axiom of parallels, the squaring of the circle, or the solution
of equations of the fifth degree by radicals have finally found fully satisfactory
and rigorous solutions, although in another sense than that originally intended. It
is probably this important fact along with other philosophical reasons that gives
rise to the conviction (which every mathematician shares, but which no one
has as yet supported by a proof) that every definite mathematical problem
must necessarily be susceptible of an exact settlement, either in the form of
an actual answer to the question asked, or by the proof of the impossibility of
its solution and therewith the necessary failure of all attempts. Take any defi-
nite unsolved problem, . . . However unapproachable these problems may seem to
us and however helpless we stand before them, we have, nevertheless, the firm
conviction that their solution must follow by a finite number of purely logical
processes. Is this axiom of the solvability of every problem a peculiarity char-
acteristic of mathematical thought alone, or is it possibly a general law inherent
in the nature of the mind, that all questions which it asks must be answerable?

238 CHAPTER 6. WHAT IS A COMPUTER? A HISTORICAL PERSPECTIVE

This conviction of the solvability of every mathematical problem is a powerful in-
centive to the worker. We hear within us the perpetual call: There is the problem.
Seek its solution. You can find it by pure reason, for in mathematics there is no
ignorabimus [“We will not know”]. (Hilbert, 1900, pp. 444–445, my boldface)

Further Reading:
For more on impossibility proofs in mathematics, see Stewart 2000. On impossibility proofs
more generally, see also Toussaint 1993. The most famous impossibility proof in CS, of course,
is the Halting Problem; see §7.8.

Hilbert proposed the following “Decision Problem” (Entscheidungsproblem) for
mathematics: to devise a procedure according to which it can be decided by a finite
number of operations whether a given statement of first-order logic is a theorem. (We
will return to the decision problem, see §8.4.)

The Decision Problem:
There are varying versions of the decision problem. Here are some:

. . . determining whether or not a given formula of the predicate calculus is univer-
sally valid. (Hilbert and Ackermann, 1928, p. 112)

In the broadest sense, the decision problem can be considered solved if we have
a method which permits us to decide for any given formula in which domains of
individuals it is universally valid (or satisfiable) and in which it is not. (Hilbert
and Ackermann, 1928, pp. 114–115)

The Entscheidungsproblem is solved if one knows a procedure that allows one to
decide the validity (respectively, satisfiability) of a given logical expression by a
finite number of operations. (Translation in Sieg 1994, p. 77, my italics, possibly
of the above passage from Hilbert and Ackermann 1928, pp. 114–115.)

By the Entscheidungsproblem of a system of symbolic logic is here understood
the problem to find an effective method by which, given any expression Q in the
notation of the system, it can be determined whether or not Q is provable in the
system. Church 1936a, p. 41, note 6

An earlier version (dating from 1900) appeared in Hilbert’s list of 23 math problems that he
thought should be investigated during the 20th century. The 10th problem was this:

Given a diophantine [sic; usually, this word is capitalized] equation with any num-
ber of unknown quantities and with rational integral numerical coefficients: to
devise a process according to which it can be determined by a finite number of op-
erations whether the equation is solvable in rational integers. (English translation
from http://aleph0.clarku.edu/∼djoyce/hilbert/problems.html#prob10)

Like the Halting Problem, Hilbert’s 10th Problem turns out to be non-computable; that is, there
is no such process, no such algorithm. (See §7.8.3.1.) For more on decision problems and the
Entscheidungsproblem, see Bernhardt 2016, pp. 8–10, Ch. 2, Ch. 7.

6.6. THE SCIENTIFIC, MATHEMATICAL, LOGICAL HISTORY 239

Digression: What Is a Theorem?
When you studied geometry, you may have studied a version of Euclid’s original presentation
of geometry via a modern interpretation as an axiomatic system. Most branches of mathematics
(and, according to some philosophers, most branches of science) can be formulated axiomati-
cally. One begins with a set of “axioms”; these are statements that are assumed to be true (or are
considered to be so obviously true that their truth can be taken for granted). Then there are “rules
of inference” that tell you how to logically infer other statements from the axioms in such a way
that the inference procedure is “truth preserving”; that is, if the axioms are true (which they are,
by assumption), then whatever logically follows from them according to the rules of inference
are also true. Such statements are called ‘theorems’. (See §§2.10, 14.3.2.1, and 16.3.1 for more
details.)

A mathematical statement that was decidable in this way was also said to be “ef-
fectively computable” or “effectively calculable”, because one could compute, or cal-
culate, whether or not it was a theorem in a finite number of steps. (We’ll return to this
notion of “effectiveness” in §7.5.)

Many mathematicians took up Hilbert’s challenge: In the US, Alonzo Church
(1903–1995) analyzed the notion of “function” and developed the lambda-calculus (see
below), claiming that any function whoses values could be computed in the lambda-
calculus was effectively computable. The Austrian (and later American) logician Kurt
Gödel (1906–1978), who had previously proved the incompleteness of arithmetic (and
thus became the most respected logician since Aristotle; see footnote 7, above), devel-
oped the notion of “recursive” functions, claiming that this was co-extensive with effec-
tively computable functions. Emil Post, a Polish-born American logician (1897–1954),
developed “production systems”, which also capture the notion of effective computabil-
ity (Soare, 2009, §5.2, p. 380). And the Russian A.A. Markov (1856–1922) developed
what are now known as Markov algorithms. (We will look in more detail at some of
these systems in Chapter 7.)

But central to our story was the work of the English mathematician Alan Turing
(1912–1954), who—rather than trying to develop a mathematical theory of effectively
computable functions in the way that the others approached the subject—gave an anal-
ysis of what human computers did. Based on that analysis, he developed a formal,
mathematical model of a human computer, which he called an “a-machine”, and which
we now call, in his honor, a Turing Machine. In his classic paper published in 1936
(Turing, 1936), Turing presented his informal analysis of human computation, his for-
mal definition of an a-machine, his claim that functions computable by a-machines
were all and only the functions that were “effectively computable”, a (negative) solu-
tion to Hilbert’s Decision Problem (by showing that there was a mathematical problem
that was not decidable computationally, namely, the Halting Problem), a demonstration
that a single Turing Machine (a “universal Turing Machine”) could do the work of all
other Turing Machines, and—as if all that were not enough—a proof that a function
was computable by an a-machine if and only if it was computable in Church’s lambda-
calculus. (To fully appreciate his accomplishment, be sure to calculate how old he was
in 1936!) We will look at Turing’s work in much greater detail in Chapter 8.)

Later, others proved that both methods were also logically equivalent to all of the
others: recursive functions, production systems, Markov algorithms, etc. Because all of

240 CHAPTER 6. WHAT IS A COMPUTER? A HISTORICAL PERSPECTIVE

these theories had been proved to be logically equivalent, this finally convinced almost
everyone that the notion of “effective computability” (or “algorithm”) had been cap-
tured precisely. Indeed, Gödel himself was not convinced until he read Turing’s paper,
because Turing’s was the most intuitive presentation of them all. (But, in Chapters 10
and 11, we will look at the arguments of those who are still not convinced.)

Further Reading:
An excellent, brief overview of the history of logic and the foundations of mathematics that led
up to Turing’s analysis can be found in Henkin 1962, pp. 788–791. See also Stewart Shapiro
1983; Sieg 1994, §1; Chaitin 2002; Soare 1999; and, especially, Soare 2016, Ch. 17.

For the logical history as written by one of its chief players, see Kleene 1981. Robinson 1994
is a personal history of the development of computers and the related logical history, by the de-
veloper of the resolution method of automated theorem proving. Martin Davis, another pioneer
in the theory of computation, has written a lot on its history: Davis 2000 is a somewhat negative
review of David Berlinksi, The Advent of the Algorithm (Harcourt, 2000), correcting some of
the historical errors in that book. Davis 2003 is a review of Marcus Giaquinto, The Search for
Certainty: A Philosophical Account of Foundations of Mathematics (Oxford University Press,
2002). Early sections of Davis 2004 contain a good summary of the history of computation.

On Church, see Manzano 1997. For very elementary introductions to the lambda-calculus, see
“PolR” 2009, §“Alonzo Church’s Lambda-Calculus” and Alama and Korbmacher 2018.

The role of philosophy in the history of computers is told in George 1983.

For a somewhat controversial take on the history of computing (and the notion of a stored-
program computer), see a debate between computer scientist Moshe Vardi and philosopher
B. Jack Copeland: Vardi 2013, Copeland 2013, Vardi 2017.

6.7 The Histories Converge
At this point, the engineering and mathematical histories converge:

. . . it is really only in von Neumann’s collaboration with the ENIAC team
that two quite separate historical strands came together: the effort to achieve high-
speed, high-precision, automatic calculation and the effort to design a logic ma-
chine capable of significant reasoning.

The dual nature of the computer is reflected in its dual origins: hardware in
the sequence of devices that stretches from the Pascaline to the ENIAC, software
in the series of investigations that reaches from Leibniz’s combinatorics to Tur-
ing’s abstract machines. Until the two strands come together in the computer, they
belong to different histories (Mahoney, 2011, p. 26)9

The development of programmable, electronic, digital computers—especially the ED-
VAC, with its von Neumann architecture—began to look like Turing Machines, and

9Mahoney 2011, p. 88, also emphasizes the fact that these histories “converged” but were not “coinci-
dent”.

6.7. THE HISTORIES CONVERGE 241

Turing himself decided to implement a physical computer based on his architecture
(Carpenter and Doran, 1977).

242 CHAPTER 6. WHAT IS A COMPUTER? A HISTORICAL PERSPECTIVE

6.8 What Is a Computer?
The twin histories suggest different answers to our question.

6.8.1 What Is a Computer, Given the Engineering History?
If computers can be defined “historically”, then they are:

machines which (i) perform calculations with numbers, (ii) manipulate or process
data (information), and (iii) control continuous processes or discrete devices . . . in
real time or pseudo real time. (Davis, 1977, p. 1096)

Note that (ii) can be considered a generalization of (i), because numbers are a kind
of data and because performing calculations with numbers is a kind of manipulation
of data. And, because being continuous or being discrete pretty much exhausts all
possibilities, criterion (iii) doesn’t really seem to add much. So this characterization
comes down to (ii) alone:

A computer is a machine that manipulates or processes data (information).

Or does it? One possible interpretation of clause (iii) is that the output of a computer
need not be limited to data, but might include instructions to other “processes . . . or
devices”, that is, real-world effects. (We’ll look into this in Chapter 17.)

According to (Davis, 1977, pp. 1096–1097), computers had evolved to have the
following “key characteristics” (perhaps among others):

1. “digital operation”

• This focuses on only the discrete aspect of (iii), above.

2. “stored program capability”

• This is understood as “the notion that the instructions for the computer be
written in the same form as the data being used by the computer”, and is
attributed to von Neumann. (We will return to this issue in §9.4.2.)

3. “self-regulatory or self-controlling capability”

• This is not merely the automaticity of any machine, but it seems to include
the ideas of feedback and “automatic modifiable stored programs”.

4. “automatic operation”

• This is(singled out from the previous characteristic because of its emphasis
on operating “independently of human operators and human intervention”.

5. “reliance on electronics”

• This is admitted to be somewhat parochial in the sense that electronic com-
puters were, at the time of writing, the dominant way of implementing
them, but Davis recognized that other kinds of computers would eventu-
ally exist. (Recall our mention of quantum, DNA, and other computers in
§3.5.4.)

6.8. WHAT IS A COMPUTER? 243

So, ignoring the last item and merging the previous two, we come down to a version of
our previous characterization:

A (modern) computer is an automatic, digital, stored-program machine
(for manipulating information).

What is the nature of the “information” that is manipulated? Davis said that it is
numbers. But numbers are abstract entities not susceptible to (or capable of) physi-
cal manipulation. Computers really manipulate numerals—that is, physical symbols
that represent numbers—not the (abstract) numbers themselves. So, are computers
machines that manipulate physical (concrete) symbols, or machines that (somehow)
manipulate non-physical (abstract) numbers? There are two versions of this question.
The first version contrasts numbers with numerical symbols (that is, numerals). The
second version contrasts numbers and numerical symbols in particular with symbols
more generally.

The first question is closely related to issues in the philosophy of mathematics. Is
math itself more concerned with numerals than with numbers, or the other way around?
“Formalists” and “nominalists” suggest that it is only the symbols for numbers that we
really deal with. “Platonists” suggest that it is numbers that are our real concern, but at
least some of them admit that the only way that we can directly manipulate numbers is
via numerals (although some Platonists, including Gödel, suggest that we have a kind
of perceptual ability, called ‘intution’, that allows us to access numbers directly). There
are also related questions about whether numbers exist and, if so, what they are. But
these issues are beyond our scope. (For more on the philosophy of mathematics, see
the suggested readings in §2.8.)

Computers, pretty clearly, have to deal with numbers via numerals. So, “The
mathematicians and engineers then [in the 1950s] responsible for computers [who]
insisted that computers only processed numbers—that the great thing was that instruc-
tions could be translated into numbers” (Newell, 1980, p. 137) were probably wrong.
But even if we modify such a claim so that we replace numbers by numerals, we are
faced with the second question above. Do computers only manipulate numerals (or
numbers)? What about all of the things that you use your personal computers for (not
to mention your smartphones)—how many of them involve numerals (or numbers)?

An answer to that question will depend in part on how we interpret the symbols that
a computer deals with. Certainly, there are ways to build computers that, apparently,
can deal with more than merely numerical symbols. The Lisp machines of the 1980s
are prime examples: Their fundamental symbols were Lisp lists.10 But, insofar as
any computer is ultimately constructed from physical switches that are either in an
“on/up” or “off/down” position, we are left with a symbol system that is binary—hence
numerical—in nature. Whether we consider these symbols to be numerals or not may
be more a matter of taste or convenience than anything more metaphysical.

10Lisp is a programming language whose principal data structure is a “linked list”. See, for example,
S.C. Shapiro 1992b.

244 CHAPTER 6. WHAT IS A COMPUTER? A HISTORICAL PERSPECTIVE

6.8.2 What Is a Computer, Given the Logical History?
If the engineering history suggests that a computer is an automatic, digital, stored-
program machine (for manipulating information), what does the scientific-mathematical-
logical history suggest? Is a computer merely a physical implementation of a Turing
Machine? But Turing Machines are hopelessly inefficient and cumbersome (“regis-
ter” machines, another Turing-equivalent model of computation, are closer to modern
computers; see §9.4.1). As Perlis has observed,

What is the difference between a Turing machine and the modern computer? It’s
the same as that between Hillary’s ascent of Everest and the establishment of a
Hilton hotel on its peak. (“Epigrams in Programming”, http://www.cs.yale.edu/
homes/perlis-alan/quotes.html)

To clarify some of this, it will be necessary for us to look more closely at the nature
of “effective computation” and “algorithms”, which we will do in the next chapter.
Armed with the results of that investigation, we will return to the question of what a
computer is (from a philosophical point of view), in Chapter 9.

Further Reading:
One answer to the question “What is a computer?”, aimed at radio engineers who—in the early
1950s—might not be familiar with them, is Samuel 1953, written by an IBM researcher who
later became famous for his work on computer checkers-players.

Copeland 2004a, pp. 3–4 discusses “The Birth of the Modern Computer”. Haigh 2014 discusses
the (ir)relevance of the mathematical history of computation to the engineering history. Despite
its title (“Histories of Computing”), Mahoney 2011 is not so much a history of computing or
computers as a history of CS (Chs. 10 and 11 are especially good on some of the recent mathe-
matical history).

Chapter 7

What Is an Algorithm?

Version of 20 January 2020; DRAFT c© 2004–2020 by William J. Rapaport

Thou must learne the Alphabet, to wit, the order of the Letters as they stand. . . .
Nowe if the word, which thou art desirous to finde, begin with (a) then looke in the
beginning of this Table, but if with (v) looke towards the end. Againe, if thy word
beginne with (ca) looke in the beginning of the letter (c) but if with (cu) then looke
toward the end of that letter. And so of all the rest. &c.
—Robert Cawdrey, A Table Alphabeticall, conteyning and teaching the true

writing, and understanding of hard usuall English wordes (1604),
cited in Gleick 2008, p. 78.

This nation is built on the notion that the rules restrain our behavior
—New York Times 2006

Algorithmic behavior existed long before there was an algorithm.
—Janice Min, quoted in Rutenberg 2019

Figure 7.1: http://babyblues.com/comics/february-25-2004/, c©2004 Baby Blues Partnership

245

246 CHAPTER 7. WHAT IS AN ALGORITHM?

7.1 Readings
1. Required:

(a) Henkin, Leon (1962), “Are Logic and Mathematics Identical?”, Science 138(3542)
(November 16): 788–794.

• Read pp. 788–791; skim the rest
• An excellent, brief overview of the history of logic and the foundations of

mathematics that led up to Turing’s analysis.

(b) Davis, Martin (1987), “Mathematical Logic and the Origin of Modern Comput-
ers”, Studies in the History of Mathematics; reprinted in Rolf Herken (ed.), Uni-
versal Turing Machine: A Half-Century Survey; Second Edition (Vienna: Springer-
Verlag, 1995): 135–158, https://fi.ort.edu.uy/innovaportal/file/20124/1/41-herken
ed. 95 - the universal turing machine.pdf

• Overlaps and extends Henkin’s history, and provides a useful summary of Tur-
ing 1936, which we will discuss in great detail in Chapter 8.

(c) Herman, Gabor T. (1993), “Algorithms, Theory of”, in Anthony S. Ralston & Ed-
win D. Riley (eds.), Encyclopedia of Computer Science, 3rd edition (New York:
Van Nostrand Reinhold): 37–39.

• Discussion of the informal notions of “algorithm” and “effective
computability”; good background for Turing 1936.

2. Strongly Recommended:

• Soare, Robert I. (1999), “The History and Concept of Computability”, in E.R. Grif-
for (ed.), Handbook of Computability Theory (Amsterdam: Elsevier): 3–36,
http://www.people.cs.uchicago.edu/∼soare/History/handbook.pdf

– Read §§1–3, 4.5–4.6; skim the rest

3. Recommended:

(a) Browse through the “Examples of Algorithms” at:
http://www.cse.buffalo.edu/∼rapaport/584/whatisanalg.html

(b) Haugeland, John (1981), “Semantic Engines: An Introduction to Mind Design”, in
John Haugeland (ed.), Mind Design: Philosophy, Psychology, Artificial Intelligence
(Cambridge, MA: MIT Press): 1–34.

• A good description of the syntax and semantics of formal systems and their
relationship to Turing Machines.

(c) Böhm, C.; & Jacopini, G. (1966), “Flow Diagrams, Turing Machines, and Lan-
guages with Only Two Formation Rules”, Communications of the ACM 9(5): 366–
371.

• Uses flowcharts to prove that “go to” statements are eliminable from computer
programs in favor of sequence, selection, and repetition (loops). An important
paper, but not for the faint of heart!

7.2. INTRODUCTION 247

7.2 Introduction
[C]computer science is not really that much about computers. What computer
science is mostly about is computation, a certain kind of process such as sorting
a list of numbers, compressing an audio file, or removing red-eye from a digital
picture. The process is typically carried out by an electronic computer of course,
but it might also be carried out by a person or by a mechanical device of some sort.

The hypothesis underlying AI . . . is that ordinary thinking . . . is also a com-
putational process, and one that can be studied without too much regard for who
or what is doing the thinking.
—Hector J. Levesque (2017, pp. ix–x)

We have been examining two questions: (1) whether CS is a science (or something else,
such as a branch of engineering or some combination of both science and engineering)
and (2) what its subject matter is.

Does CS study computers: (physical) devices that compute—or does it study com-
puting: the algorithmic processes that computers do? (Or perhaps it studies something
else, such as information, or information processing.) In the former case, we need to
ask what computers are; in the previous chapter, we began that investigation by looking
at the history of computers. In this chapter, we ask what computing is. Then we will be
in a better position to return to our question of what a computer is, looking at it from a
philosophical, rather than a historical, point of view. And after that, we will return to
the question of what computing is, again looking at some philosophical issues.

7.3 What Is ‘Computation’?
Many now view computation as a fundamental part of nature, like atoms or the
integers.
—Lance Fortnow (2010, p. 2)

Although I have been talking about “computing”, other terms that are used to describe
more or less the same territory are ‘computation’ and ‘algorithms’. It may be worth
a brief detour into the etymology of these and some related terms. (We’ll look at the
etymology of ‘algorithm’ in §7.5.1.)

7.3.1 ‘compute’
According to the OED1, the verb ‘to compute’ comes from the Latin verb ‘computare’,
meaning “to calculate, reckon, to count up”. But when people talk about “computing”
today, they mean a great deal more than mere counting. Computing has come to include
everything we can do with computers, including text processing, watching videos, and
playing games. So, clearly, the meaning has been extended to include non-numerical
“reckoning”.

The Latin word ‘computare’, in turn, comes from the Latin morpheme ‘com’,
meaning “together with”, and the Latin word ‘putare’, meaning “to cleanse, to prune,

1http://www.oed.com/view/Entry/37974

248 CHAPTER 7. WHAT IS AN ALGORITHM?

to reckon, to consider, think” (and ‘putare’ came from a word meaning “clean, pure”).
So, in ancient Rome at least, to “compute” seems to have meant, more or less, some-
thing like: “to consider or think about things together”, “to clear things up together”,
or maybe “to reckon with (something)”.

7.3.2 ‘reckon’
The verb ‘to reckon’ originally meant “to give an account of, recount; to tell; to de-
scribe”, and later came to mean “to count, to calculate”. ‘Reckon’ is from an Indo-
European2 root ‘rek’, possibly meaning “to reach” or “to tell, to narrate, to say” (as
in “to recite” or “to recount”). These meanings, in turn, may derive from an earlier
meaning “to arrange”, “to put right”, “to move in a straight line”.3

7.3.3 ‘count’, ‘calculate’, ‘figure’
The origins of ‘count’, ‘calculate’, and ‘figure’ are also interesting.

‘Count’ also came from ‘computare’ and originally meant “to enumerate”, “to re-
cite a list” (and, as we just saw, ‘recite’ is probably related to ‘reckon’). Note that when
you “count”, you “recite” a list of number words.

‘Calculate’ came from Latin ‘calculus’. This certainly did not mean the contents
of a certain high school or college course that studies the branch of mathematics con-
cerned with differentiation and integration, and invented by Newton and Leibniz in the
17th century! Rather, it meant “pebble” or “small stone”, since counting was done with
stones originally. (See Figure 7.2.) Even today, a “calculus” in medicine is an accumu-
lation of minerals in the body, forming a small, stone-like object. The root ‘calc’ came
from ‘calx’, meaning “chalk, limestone”, and is related to ‘calcium’.

Figure 7.2: http://rhymeswithorange.com/comics/august-22-2011/, c©2011, Hilary B. Price

The verb ‘to figure’ means “to use figures to reckon”. The earliest citation in the
OED for the noun ‘figure’ is from 1225, when it meant “numerical symbol”. A citation
from 1250 has the meaning “embodied (human) form”. And a citation from 1300 has
the more general meaning of “shape”. (This conversion of the noun ‘figure’ to a verb

2http://en.wikipedia.org/wiki/Indo-European languages
3http://etymonline.com/?term=reckon; http://www.utexas.edu/cola/centers/lrc/ielex/R/P1613.html

7.4. WHAT IS COMPUTATION? 249

is an example of what Perlis meant when he joked, “In English, every word can be
verbed”.)4

7.3.4 ‘computation’
The bottom line seems to be this: ‘Computation’ originally meant something very
closely related to our modern notion of “symbol (that is, shape) manipulation”, which
is another way of describing syntax—the “grammatical” properties of, and relations
among, the symbols of a language. (We’ll talk more about syntax in §§14.3, 16.3.1,
17.8.2, and 19.6.3.3.)

Now that we know how we got the word ‘computation’, we’ll turn to what compu-
tation is.5

Further Reading:
Links to some of these etymologies are at http://www.cse.buffalo.edu/∼rapaport/584/
computetymology.html. On the history of the terms ‘computable’ vs. ‘recursive’, see Soare
2009, §11.5, p. 391. We’ll discuss recursive functions in §7.7.2.

7.4 What Is Computation?
The question before us—what is computation?—is at least as old as computer sci-
ence. It is one of those questions that will never be fully settled because new
discoveries and maturing understandings constantly lead to new insights and ques-
tions about existing models. It is like the fundamental questions in other fields—
for example, “what is life?” in biology and “what are the fundamental forces?” in
physics—that will never be fully resolved. Engaging with the question is more
valuable than finding a definitive answer.
—Peter J. Denning (2010)

To understand what computation is, we first need to understand what a (mathematical)
function is.

7.4.1 What Is a Function?
7.4.1.1 Two Meanings

The English word ‘function’ has at least two, very different meanings. (1) The ordi-
nary, everyday meaning is, roughly, “purpose”. Instead of asking, “What is the purpose
of this button?”, we might say, “What is the function of this button?” To ask for the
function—that is, the purpose—of something is to ask “What does it do?”. (2) In this
chapter, we will be interested in its mathematical meaning, as when we say that some
“dependent variable” is a function of —that is, depends on—some “independent vari-
able”. (We’ll return to its other meaning in Chapter 17.)

4http://www.cs.yale.edu/homes/perlis-alan/quotes.html
5Recall our discussion in §2.2 of the use-mention distinction.

250 CHAPTER 7. WHAT IS AN ALGORITHM?

Further Reading:
As it turns out, this technical sense of the word was, first of all, initiated by Leibniz and, second,
was an extension of its other meaning; for the history of this, see the OED entry on the noun
‘function’, in its mathematical sense (sense 6; http://www.oed.com/view/Entry/75476). On the
history of the concept of “function”, see O’Connor and Robertson 2005.

7.4.1.2 Functions Described Extensionally

Many introductory textbooks define a (mathematical) function as an “assignment” or
“mapping” of values (sometimes called “dependent variables”) to inputs (sometimes
called “independent variables”). But they never define what an “assignment” is. Such
an “assignment” is not quite the same thing as an assignment of a value to a variable in
a programming language or in a system of logic. A better term might be ‘association’:
A value (or dependent variable) is associated with an input (or independent variable).
A much more rigorous way of defining a function is to give a definition based on
set theory, thus explicating the notion of “association”. There are two ways to do
this: “extensionally” and “intensionally” (recall our discussion of extensionality and
intensionality in §3.4).

A function described “extensionally” is a set of input-output pairs such that no two
of them have the same input (or first element). A “binary relation” is a set of ordered
pairs of elements from two sets; so, a function is a certain kind of binary relation. (The
“two” sets can be the same one; you can have a binary relation among the members of a
single set.) But a function is a special kind of binary relation in which no two, distinct
members of the relation have the same first element (but different second elements).
That is, the input (or independent variable) of a function must always have the same
output (or dependent variable). Here is another way of saying this: Suppose that you
have what you think are two different members of a function; and suppose that they
have the same first element and also have the same second element. Then it only
seemed as if they were two members—they were really one and the same member, not
two different ones. As a rule of thumb, a binary relation is a function if “same input
implies same output”.

7.4. WHAT IS COMPUTATION? 251

The logically correct way to say this, in mathematical English, is as follows:6

Let A,B be sets. (Possibly, A = B.)
Then f is a function from A to B =de f

1. f is a binary relation from A to B,

and

2. for all members a ∈ A, and
for all members b ∈ B, and
for all members b′ ∈ B,
if (a,b) is a member of f , and
if (a,b′) is also a member of f ,
then b = b′

Mathematical Digression:
In clause 2, above, keep in mind that b′ might be the same as b! The best way to think about
these sequences of “for all” (or “universal quantifier”) statements is this: Imagine that sets are
paper bags containing their members. (1) “For all a∈ A” means: Put your hand in bag A, remove
a (randomly chosen) member, look at it to see what it is, and return it to the bag. (2) “For all
b ∈ B” means: Put your hand in bag B, remove a (randomly chosen) member, look at it to see
what it is, and return it to the bag. Finally, (3) “For all b′ ∈ B” means exactly the same thing
as in case (2), which means, in turn, that b′ in step (3) might be the same member of B that you
removed but then replaced in step (2); you might simply have picked it out twice by chance.

Because we are considering a binary relation as a set of ordered pairs, let’s write each
member of a binary relation from A to B as an ordered pair 〈a,b〉, where a ∈ A and
b ∈ B. Here are some examples of functions in this extensional sense:

1. f = {〈0,0〉,〈1,2〉,〈2,4〉,〈3,6〉, . . .}
Using “functional” notation—where f (input) = output—this is sometimes
written: f (0) = 0, f (1) = 2, . . .

2. g = {〈0,1〉,〈1,2〉,〈2,3〉, . . .}
This is sometimes written: g(0) = 1, g(1) = 2, . . .

6The notation ‘=de f ’ should be read as “means by definition”.

252 CHAPTER 7. WHAT IS AN ALGORITHM?

3. E = {〈y,〈m,d〉〉 : 〈m,d〉= 〈
((((19 ∗ (y mod 19))+ (y/100)− ((y/100)/4)− (((8 ∗ (y/100))+ 13)/25)+
15) mod 30)− (((y mod 19) + (11 ∗ (((19 ∗ (y mod 19)) + (y/100)−
((y/100)/4)−(((8∗(y/100))+13)/25)+15) mod 30)))/319)+(((2∗((y/100) mod
4))+(2∗((y mod 100)/4))−((y mod 100) mod 4)−(((19∗(y mod 19))+
(y/100)−((y/100)/4)−(((8∗ (y/100))+13)/25)+15) mod 30)−(((y mod
19) + (11∗ (((19∗ (y mod 19))+(y/100)− ((y/100)/4)− (((8∗ (y/100))+
13)/25)+15) mod 30)))/319)+32) mod 7)+90)/25 ,

((((19∗(y mod 19))+(y/100)−(y/100)/4−(((8∗(y/100))+13)/25)+15) mod
30)− (((y mod 19)+ (11 ∗ (((19 ∗ (y mod 19))+ (y/100)− (y/100)/4− (((8 ∗
(y/100))+13)/25)+15) mod 30)))/319)+(((2∗((y/100) mod 4))+(2∗((y mod
100)/4))−((y mod 100) mod 4)−(((19∗(y mod 19))+(y/100)−(y/100)/4−
(((8∗ (y/100))+13)/25)+15) mod 30)− (((y mod 19)+(11∗ (((19∗ (y mod
19))+(y/100)−(y/100)/4−(((8∗(y/100))+13)/25)+15) mod 30)))/319)+
32) mod 7) + ((((19 ∗ (y mod 19)) + (y/100)− (y/100)/4− (((8 ∗ (y/100)) +
13)/25)+15) mod 30)− (((y mod 19)+(11∗ (((19∗ (y mod 19))+(y/100)−
(y/100)/4−(((8∗(y/100))+13)/25)+15) mod 30)))/319)+(((2∗((y/100) mod
4))+(2∗((y mod 100)/4))−((y mod 100) mod 4)−(((19∗(y mod 19))+(y/100)−
(y/100)/4− (((8 ∗ (y/100)) + 13)/25) + 15) mod 30)− (((y mod 19) + (11 ∗
(((19∗(y mod 19))+(y/100)−(y/100)/4−(((8∗(y/100))+13)/25)+15) mod
30)))/319)+32) mod 7)+90)/25+19) mod 32
〉}
This function takes as input a year y and outputs an ordered pair consisting of
the month m and day d that Easter falls on in year y (Stewart, 2001).

4. Here is a finite function (that is, a function with a finite number of members—
remember: a function is a set, so it has members):

h ={〈‘yes’, print ‘hello’〉,
〈‘no’, print ‘bye’〉,
〈input 6= ‘yes’ & input 6= ‘no’, print ‘sorry’〉}

The idea behind h is this:

h prints ‘hello’, if the input is ‘yes’;
h prints ‘bye’, if the input is ‘no’;
and h prints ‘sorry’, if the input is neither ‘yes’ nor ‘no’.

5. Here is a partial function (that is, a function that has no outputs for some possible
inputs):

k = {. . . , 〈−2,
1
−2
〉 , 〈−1,

1
−1
〉 , 〈1, 1

1
〉 , 〈2, 1

2
〉 , . . .}

Here, k(0) is undefined.

7.4. WHAT IS COMPUTATION? 253

6. Another example of a partial function is:

h′ ={〈‘yes’, print ‘hello’〉,
〈‘no’, print ‘bye’〉}

Here, h′(‘yeah’), h′(‘nope’), and h′(‘computer’) are all undefined.

A function defined extensionally associates or relates its inputs to its outputs, but
does not show how to transform an input into an output. For that, we need a “formula”
or an “algorithm” (but these are not the same thing, as we will soon see).

7.4.1.3 Interlude: Functions Described as Machines

Sometimes, functions are characterized as “machines” that accept input into a “black
box” with a “crank” that mysteriously transforms the input into an output, as in Fig-
ure 7.3.

Figure 7.3: A function “machine” f that transforms input a into output b = f (a).

In Figure 7.3, f is a machine into which you put a; you then turn a crank (clockwise,
let’s suppose); f then grinds away at the input by means of some mysterious mecha-
nism; and finally the machine outputs b (that is, f (a)). But this view of a function as
being something “active” or “dynamic” that changes something is incorrect.7

Despite what you may have been told elsewhere (I was told this in high school),
this “machine” is NOT what a function is! A function, as we saw in §7.4.1.2, is merely
the set of input-output pairs. So, what is the machine? It is a computer! And the

7See http://www.askphilosophers.org/question/1877.

254 CHAPTER 7. WHAT IS AN ALGORITHM?

mysterious “gears” hidden inside the black box implement an algorithm that computes
the function.

Interestingly, Gödel made this observation in the 1930s in an unpublished paper!

[Turing] has shown that the computable functions defined in this way [that is, in
terms of Turing Machines] are exactly those for which you can construct a machine
with a finite number of parts which will do the following thing. If you write down
any number n1, . . . , nr on a slip of paper and put the slip into the machine and turn
the crank, then after a finite number of turns the machine will stop and the value
of the function for the argument n1, . . . , nr will be printed on the paper.
(Gödel, 1938, p. 168)

So, the machine pictured in Figure 7.3 is a Turing Machine! In fact, one problem
with this machine metaphor for a function, as we will see, is that not all functions can
be computed by algorithms; that is, there are functions for which there are no such
“function machines”.

7.4.1.4 Functions Described Intensionally

Editor: We are making this communication intentionally short to leave as much
room as possible for the answers. 1. Please define “Algorithm.” 2. Please de-
fine “Formula.” 3. Please state the difference. T. WANGSNESS, J. FRANKLIN
TRW Systems, Redondo Beach, California (Wangsness and Franklin, 1966).8

Sometimes, functions are described “intensionally” by formulas. But—unlike an ex-
tensional description—this is not a unique way to describe them, because two different
formulas can describe the same function. Here are some examples (using the same
function names from §7.4.1.2):

1. f (i) = 2i

2. g(i) = i+1

3. g′(i) = 2i− i+7/(3+4)

Note that g and g′ use two different forumulas to describe the same function; that
is, g = g′, even though their formulas are different.

Exercise for the Reader:
How would you state the fact that the two formulas are different? (Note that you cannot do this
by saying “i+1 6= 2i− i+7/(3+4)”.)

4. h(i) =

 ‘hello’, if i = ‘yes’
‘bye’, if i = ‘no’
‘sorry’, otherwise

5. if i 6= 0, then k(i) = 1
i .

8For the published answers, see the Further Reading box at the end of this section.

7.4. WHAT IS COMPUTATION? 255

A function described extensionally is like a black box; we know the inputs and outputs,
but not how they are related. (To continue the machine metaphor, we don’t know what
(if anything) goes on inside the machine.) A function described intensionally via a
formula is less opaque and gives us more understanding of the relationship between
the input and the outputs.

Further Reading:
For more on this notion of understanding in terms of the internal workings of a black box, see
Strevens 2013, which also suggests an analogy between computation and causation, a topic that
we will return to in Chapters 10, 12, 14, and 16.

A function described intensionally via an algorithm gives us even more understand-
ing, telling us not only what the relationship is, but giving explicit instructions on how
to make the conversion from input to output.

Although formulas may look a lot like algorithms, they are not the same thing.
Consider, for example, the formula ‘2+4∗5’: Without an explicit statement of a rule
telling you whether to multiply first or to add first, there is no way of knowing whether
the number expressed by that formula is 30 or 22. Such a rule, however, would be part
of an algorithm telling you how to calculate the value of the formula.

Or consider the formula ‘2x+ 1’: Should you first calculate 2x and then add 1 to
it? Or should you store 1 somewhere (say, by writing it on a piece of paper), then
calculate 2x, and finally add 2x to 1? And how should you calculate 2x? Take 2, and
then multiply it by x? Or take x, and then multiply it by 2? One of these might be easier
to do than the other; for instance, 2× 1000 might take only 1 step, whereas 1000× 2
might take 999 steps. Of course, the commutative laws of addition and multiplication
tell us that, in this case, as far as the output is concerned, it doesn’t matter in which
order you compute the value of the formula; however, clearly one of these algorithms
might be more efficient than the other. In any case, here we have a clear case of only
one formula but at least two (and possibly 4) distinct algorithms.

Perhaps an even clearer example is function E, above—the one that tells you when
Easter occurs. I dare you to try to use this formula to find out when Easter will occur
next year! Where would you even begin? To use it, you would need an algorithm, such
as the one at http://tinyurl.com/yb9jvbpl.9 (A related matter is knowing whether the
formula is even correct! We’ll explore this issue in Chapter 16.)10

Some functions expressed as formulas might be seen as containing an implicit al-
gorithm for how to compute them:

[A] term in the series for arctan 1/5 can be written either as (1/5)m/m or as
1/(m5m). Mathematically these expressions are identical, but they imply differ-
ent computations. In the first case you multiply and divide long decimal fractions;

9http://techsupt.winbatch.com/webcgi/webbatch.exe?techsupt/nftechsupt.web+WinBatch/How∼To+
Easter∼finder.txt. If neither of these links work, do the following: Link to http://techsupt.winbatch.com/;
then search for “Easter finder”.

10I created this formula by working backwards from the algorithm given in Stewart 2001, so it’s quite
possible that I introduced a typographical error! Even if I didn’t, I am assuming that the algorithm in Stewart
2001 is correct. And that could be a big assumption.

256 CHAPTER 7. WHAT IS AN ALGORITHM?

in the second you build a large integer and then take its reciprocal. (Brian Hayes
2014a, p. 344)

But these formulas can only be interpreted as algorithms with additional information
about the order of operations (roughly, do things in innermost parentheses first, then do
exponentiations, then multiplication and division from left to right, then addition and
subtraction from left to right).

Further Reading:

1. For a good discussion of the difference between formulas and algorithms, see the ques-
tion asked in the epigraph to this section, and the answers in (Huber, 1966) and (Knuth,
1966). Knuth’s answer is a commentary on Huber’s. Huber’s answer, roughly, is that an
algorithm is a set of instructions for computing the value of a function by “executing” (or
carrying out, or following) the instructions, whereas a formula is an expression describing
the value of a function; it can be “evaluated” (that is, the value of the function can be de-
termined from the formula) but not executed (because a formula does not come equipped
with an algorithm for telling you how to evaluate it). In a sense, a formula is “static”,
whereas an algorithm is (potentially) “dynamic”.

2. Turing Award-winner Judea Pearl . . .

. . . considers the difference between two representations of simple algebraic
relations, which he terms “equations versus diagrams,” contrasting:

Y = 2XZ = Y +1

with
X →×2[Y]→+1[Z]

The former describes relations between variables; the latter specifies a simple
computer program, in the form of a flowchart, indicating the order in which
operations are carried out. (Chater and Oaksford 2013, p. 1172, citing Pearl
2000).

The interpretation of the flowchart version is something like this:

(a) input X

(b) multiply X by 2; store in Y

(c) add 1 to Y ; store in Z

Note that this algorithm does not appear to have an output! See §7.5 for discussion of
this.

7.4. WHAT IS COMPUTATION? 257

Functions describable by formulas are not the only kind of functions. There are
functions without formulas for computing them. (To revert to our machine metaphor,
there are functions such that the “gears” of their “machines” work by magic!) For
example, there are “table look-up” functions, where the only way to identify the correct
output for a given input is to look it up in a table (rather than to compute it); usually,
this is the case when there is no lawlike pattern relating the inputs and the outputs. Of
course, there are non-computable functions, such as the Halting Problem (we’ll have
more to say on what this in §7.8). And there are random functions.

As we saw in §3.15.2, one of the central purposes—perhaps the central question—
of CS is to figure out which functions do have algorithms for computing them! (If
functions defined extensionally are “magic”, then functions defined intensionally are
“magic tricks”.) This includes “non-mathematical” functions, such as the (human)
cognitive “functions” that take as input sensory information from the environment and
produce as output (human, cognitive) behavior. To express this another way, the sub-
field of CS known as AI can be considered as having as its purpose figuring out which
such cognitive functions are computable.

7.4.1.5 Computable Functions

So we have two central concepts: function and algorithm. We have given a careful
definition of the mathematical notion of function. We have not yet given a careful
definition of the mathematical notion of algorithm, but we have given some informal
characterizations (and we will look at others in §7.5, below). We can combine them as
follows:

A function f is computable will mean, roughly, that there is an “algo-
rithm” that computes f .

This is only a rough definition or characterization because, for one thing, we haven’t yet
defined ‘algorithm’. But, assuming that an algorithm is, roughly, a set of instructions
for computing the output of the function, then it makes sense to define a function as
being computable if we can . . . well . . . compute it! So:

A function f is computable iff there is an algorithm A f such that, for all
inputs i,A f (i) = f (i).

That is, a function f is computable by an algorithm A f if both f and A f have the same
input-output “behavior” (that is, if both define the same binary relation, or set of input-
output pairs). Moreover, A f must specify how f ’s inputs and outputs are related. So,
whereas a function only shows its input-output pairs but is silent about how they are
related, an algorithm for that function must say more. It must be a procedure, or a
mechanism, or a set of intermediate steps or instructions that transforms the input into
the output, or shows you explicitly how to find the output by starting with the input
or how to get from the input to the output. Algorithms shouldn’t be magic or merely
arbitrary.11

11Except possibly in the “base case”, where the “algorithm” is so simple or basic that it consists merely in
giving you the output directly, without any intermediate processing. (See §7.6.5, below, for an explanation
of “base case”.)

258 CHAPTER 7. WHAT IS AN ALGORITHM?

It seems easy enough to give examples of algorithms for some of the functions
listed earlier:

1. A f (i) =

input i;
multiply i by 2;
output result.

2. Ag(i) =

input i;
add 1 to i;
output result.

3. Ag′(i) =

input i;
multiply i by 2;
call the result x;
subtract i from x;
add 3 to 4;
call the result y;
divide 7 by y;
add x to y;
output result.

4. For E(m,d), see the English algorithm in Stewart 2001 or the computer program
online at the URL given in §7.4.1.4, above. Note that, even though that algorithm
may not be easy to follow, it is certainly much easier than trying to compute the
output of E from the formula. (For one thing, the algorithm tells you where to
begin!)

5. Ak(i) =

if i 6= 0
then

begin
divide 1 by i;
output result

end.

Note that this algorithm doesn’t tell you what to do if i = 0, because there is no
“else”-clause. So, what would happen if you input 0? Because the algorithm is
silent about what to do in this case, anything might happen! If it were imple-
mented on a real computer, it would probably “hang” (that is, do nothing), or
crash, or go into an infinite loop.

7.5. ‘ALGORITHM’ MADE PRECISE 259

Question for the Reader:
The philosopher Richard Montague (1960, p. 433) suggested that—for a more general notion
of computation than a mere Turing Machine (one that would apply to both digital and analog
computation)—a computer needs an output signal that indicates when the computation is finished
As we will see in Chapter 8, in Turing’s theory of computation, the machine simply halts.

How do you know that a machine has halted rather than merely being in an infinite loop? What
is the difference between a program halting and a program hanging?

Good programming technique would require that the program be rewritten to
make it “total” instead of “partial”, perhaps with an error handler like this:

A′k(i) =

if i 6= 0
then

begin
divide 1 by i;
output result

end
else output “illegal input”.

Question for the Reader:
Is A′k(i) merely a different algorithm for function k, or is it really an algorithm for a different
function (call it k′)?

Can this notion of algorithm be made more precise? How?

7.5 ‘Algorithm’ Made Precise
(This section is adapted from Rapaport 2012b, Appendix.)

The meaning of the word algorithm, like the meaning of most other words com-
monly used in the English language, is somewhat vague. In order to have a theory
of algorithms, we need a mathematically precise definition of an algorithm. How-
ever, in giving such a precise definition, we run the risk of not reflecting exactly
the intuitive notion behind the word.
—Gabor T. Herman (1983, p. 57)

7.5.1 Ancient Algorithms
Before anyone attempted to define ‘algorithm’, many algorithms were in use by math-
ematicians—for example, ancient Babylonian procedures for finding lengths and for
computing compound interest (Knuth, 1972a), Euclid’s procedures for construction of
geometric objects by compass and straightedge (Toussaint, 1993), and Euclid’s algo-
rithm for computing the greatest common divisor of two integers. And algorithms were

260 CHAPTER 7. WHAT IS AN ALGORITHM?

also used by ordinary people—for example, the algorithms for simple arithmetic with
Hindu-Arabic numerals (Robertson, 1979). In fact, the original, eponymous use of
the word referred to those arithmetic rules as devised by Abū ‘Abdallāh Muh.ammad
ibn Mūsā Al-Khwārizmī, a Persian mathematician who lived around 1200 years ago
(780–850 CE).

Further Reading:
What looks as if it might be his last name—‘Al-Khwarizmi’—really just means something like
“the person who comes from Khwarizm”, a lake that is now known as the Aral Sea (Knuth, 1985,
p. 171). See Crossley and Henry 1990; O’Connor and Robertson 1999; and Devlin 2011, Ch. 4,
for more on Al-Khwarizmi and his algorithms.

Were the ancient Babylonians really creating algorithms? Insofar as what they
were doing fits our informal notion of algorithm, the answer looks to be: yes. But CS
historian Michael Mahoney cautions against applying 20th-century insights to ancient
times:

When scientists study history, they often use their modern tools to determine what
past work was “really about”; for example, the Babyonian mathematicians were
“really” writing algorithms. But that’s precisely what was not “really” happening.
What was really happening was what was possible, indeed imaginable, in the intel-
lectual environment of the time; what was really happening was what the linguistic
and conceptual framework then would allow. The framework of Babylonian math-
ematics had no place for a metamathematical notion such as algorithm. (Mahoney,
2011, p. 39)

Mahoney cites computer scientist Richard Hamming as making the same point in an
essay on the history of computing, that “we would [like to] know what they thought
when they did it”: What were Babylonian mathematicians thinking when they created
what we now call “algorithms”? But is that fair? Yes, it would be nice to know what
they were really thinking, but isn’t it also the case that, whatever they thought they were
doing, we can describe it in terms of algorithms?

7.5.2 “Effectiveness”

When David Hilbert investigated the foundations of mathematics, his followers began
to try to make the notion of algorithm precise, beginning with discussions of “effec-
tively calculable”, a phrase first used by Jacques Herbrand in 1931 (Gandy, 1988, p. 68)
and later taken up by Alonzo Church (1936b) and his student Stephen Kleene (1952),
but left largely undefined, at least in print.

7.5. ‘ALGORITHM’ MADE PRECISE 261

Further Reading:
Church (1956) calls ‘effective’ an “informal notion”: See p. 50 (and §10.4.1, below); p. 52
(including note 118 [“an effective method of calculating, especially if it consists of a sequence of
steps with later steps depending on results of earlier ones, is called an algorithm”] and note 119
[“an effective method of computation, or algorithm, is one for which it woud be possible to
build a computing machine”, by which he means a Turing Machine]); p. 83; p. 99, note 183
[“a procedure . . . should not be called effective unless there is a predictable upper bound of the
number of steps that will be required”]; and p. 326, note 535). See also Manzano 1997; Sieg
1997, pp. 219–220. Another explication of ‘effective’ is in Gandy 1980, p. 124, which we’ll
return to in Chapter 10. For another take on ‘effective’, see Copeland 2000b.

Another of Church’s students, J. Barkley Rosser made an effort to clarify the con-
tribution of the modifier ‘effective’:

“Effective method” is here used in the rather special sense of a method each step
of which is [1] precisely predetermined and which is [2] certain to produce the
answer [3] in a finite number of steps. (Rosser, 1939, p. 55, my italics and enu-
meration)

But what, exactly, does ‘precisely predetermined’ mean? And does ‘finite number
of steps’ mean (a) that the written statement of the algorithm has a finite number of
instructions or (b) that, when executing them, only a finite number of tasks must be
performed? In other words, what gets counted: written steps or executed instructions?
One written step—“for i := 1 to 100 do x := x+ 1”—can result in 100 executed
instructions. And one written step—“while true do x := x+ 1”—can even result in
infinitely many executed instructions! Here is what Hilbert had to say about finiteness:

It remains to discuss briefly what general requirements may be justly laid down
for the solution of a mathematical problem. I should say first of all, this: that it
shall be possible to establish the correctness of the solution by means of a finite
number of steps based upon a finite number of hypotheses which are implied in the
statement of the problem and which must always be exactly formulated. This re-
quirement of logical deduction by means of a finite number of processes is simply
the requirement of rigor in reasoning. (Hilbert, 1900, pp. 440–441)

262 CHAPTER 7. WHAT IS AN ALGORITHM?

7.5.3 Three Attempts at Precision
Leibniz isolated some general features of algorithmic procedures [A]n algo-
rithmic procedure must determine completely what actions have to be undertaken
by the computing agent. . . . the instructions of a calculation procedure can be
viewed as prescribing operations on symbolic expressions in general, and not just
on numerical expressions. . . . only physical properties of symbols—such as their
shape and arrangement—and not, for example, their meaning, play a role in a cal-
culation process. . . . only elementary intellectual capabilities are required on the
part of the executor of a calculation procedure
—Leen Spruit & Guglielmo Tamburrini (1991, pp. 7–8).

Much later, after Turing’s, Church’s, Gödel’s, and Post’s precise formulations and dur-
ing the age of computers and computer programming, slightly less vague, though still
informal, characterizations were given by A.A. Markov (a Russian mathematician),
Stephen Kleene, and Donald Knuth.

7.5.3.1 Markov

According to Markov (1954, p. 1), an algorithm is a “computational process” satisfying
three (informal) properties:

1. being “determined”

• “carried out according to a precise prescription . . . leaving no possibility
of arbitrary choice, and in the known sense generally understood”

2. having “applicability”

• “The possibility of starting from original given objects which can vary
within known limits”,

3. having “effectiveness”

• “The tendency of the algorithm to obtain a certain result, finally obtained
for appropriate original given objects”.

These are a bit obscure: Being “determined” may be akin to Rosser’s “precisely pre-
determined”. But what about being “applicable”? Perhaps this simply means that an
algorithm must not be limited to converting one specific input to an output, but must
be more general. And Markov’s notion of “effectiveness” seems restricted to only the
second part of Rosser’s notion, namely, that of “producing the answer”. There is no
mention of finiteness, unless that is implied by being computational.

7.5. ‘ALGORITHM’ MADE PRECISE 263

7.5.3.2 Kleene

In his logic textbook for undergraduates, Kleene (1967) elaborates on the notions
of “effective” and “algorithm”. He identifies “effective procedure” with “algorithm”
(Kleene, 1967, p. 231), characterizing an algorithm as

1. a “procedure” (that is, a “finite” “set of rules or instructions”) that . . .

2. “in a finite number of steps” answers a question, where . . .

3. each instruction can be “followed” “mechanically, like robots; no insight or in-
genuity or invention is required”, . . .

4. each instruction “tell[s] us what to do next”, and . . .

5. the algorithm “enable[s] us to recognize when the steps come to an end” (Kleene,
1967, p. 223).

And, in a later essay, Kleene writes:

[a] . . . a method for answering any one of a given infinite class of questions . . . is
given by a set of rules or instructions, describing a procedure that works as follows.
[b] After the procedure has been described, [then] if we select any question from
the class, the procedure will then tell us how to perform successive steps, so that
after a finite number of them we will have the answer to the question selected.
[c] In particular, immediately after selecting the question from the class, the rules
or instructions will tell us what step to perform first, unless the answer to the
question selected is immediate. [d] After our performing any step to which the
procedure has led us, the rules or instructions will either enable us to recognize
that now we have the answer before us and to read it off, or else that we do not
yet have the answer before us, in which case they will tell us what step to perform
next. [e] In performing the steps, we simply follow the instructions like robots; no
ingenuity or mathematical invention is required of us. (Kleene, 1995, p. 18, my
enumeration)

So, for Kleene in 1995, an algorithm (informally) is:

a A set of rules or instructions that describes a procedure. The procedure is one thing;
its description is another: The latter is a set of imperative sentences.

b Given a class of questions Q and a procedure PQ for answering any member of Q:
(∀q ∈ Q)[PQ gives a finite sequence of steps (described by its rules) that answers
q]. So, the finiteness occurs in the execution of PQ (not necessarily in PQ itself).
And PQ does not depend on q, only on Q, which suggests, first, that the algorithm
must be general, and not restricted to a single question. (An algorithm for answering
‘2+ 3 =?’ must also be able to answer all questions of the form ‘x+ y =?’.) And,
second, it suggests that an algorithm has a goal, purpose, or “function” (in the sense
of §7.4.1.1, above). That is, the algorithm must not just be a set of instructions that
happens to answer the questions in Q; it must be designed for that purpose, because
it depends on what Q is.

264 CHAPTER 7. WHAT IS AN ALGORITHM?

Philosophical Digression:
Such a goal, purpose, or function is said to be an “intentional” property. We’ll come back to this
important issue in Chapter 17. “Inten t ionality” spelled with a ‘t’ is distinct from—but related
to—“inten s ionality” spelled with an ‘s’; see Rapaport 2012a.

c The algorithm takes question q as input, and either outputs q’s answer (“base case”),
or else outputs the first step to answer q (“recursive case”).12

d If it is the “recursive case”, then, presumably, q has been reduced to a simpler ques-
tion and the process repeats until the answer is produced as a base case.

Moreover, the answer is immediately recognizable. That does not necessarily
require an intelligent mind to recognize it. It could be merely that the algorithm
halts with a message that the output is, indeed, the answer. In other words, the
output is of the form: The answer to q is qi, where qi is the answer and the algorithm
halts, or qi is a one-step-simpler question and then the algorithm tells us what the
next step is. In a so-called “trial-and-error machine” (to be discussed in §11.4.5),
the output is of the form: My current guess is that the answer to q is qi and then the
algorithm tells us what the next step is. (We’ll see such an algorithm in §7.8.)

e The algorithm is “complete” or “independent”, in the sense that it contains all infor-
mation for executing the steps. We, the executor, do not (have to) supply anything
else. In particular, we do not (have to) accept any further, unknown or unforeseen in-
put from any other source (that is, no “oracle” or interaction with the external world.)
We’ll return to these ideas in Chapters 11 and 17.

7.5.3.3 Knuth

Donald Knuth goes into considerably more detail, albeit still informally (Knuth, 1973,
“Basic Concepts: §1.1: Algorithms”, pp. xiv–9, esp. pp. 1–9). He says that an algo-
rithm is “a finite set of rules which gives a sequence of operations for solving a specific
type of problem”, with “five important features” (Knuth, 1973, p. 4):

1. “Finiteness. An algorithm must always terminate after a finite number of steps”
(Knuth, 1973, p. 4).

• Note the double finiteness: A finite number of rules in the text of the algo-
rithm and a finite number of steps to be carried out. Moreover, algorithms
must halt. (Halting is not guaranteed by finiteness; see point 5, below.)

• Interestingly, Knuth also says that an algorithm is a finite “computational
method”, where a “computational method”, more generally, is a “proce-
dure”, which only has the next four features (Knuth, 1973, p. 4):

12See §7.6.5, below, for an explanation of these scare-quoted terms.

7.5. ‘ALGORITHM’ MADE PRECISE 265

Further Reading:
Hopcroft and Ullman 1969, pp. 2–3, distinguishes a “procedure”, which they vaguely define
(their terminology!) as “a finite sequence of instructions that can be mechanically carried out,
such as a computer program” (to be formally defined in their chapter on Turing Machines) from
an “algorithm”, which they define as “a procedure which always terminates”.

2. “Definiteness. Each step . . . must be precisely defined; the actions to be carried
out must be rigorously and unambiguously specified . . . ” (Knuth, 1973, p. 5).

• This seems to be Knuth’s analogue of the “precision” that Rosser and
Markov mention. (For humorous takes on precision and unambiguousness,
see Figures 7.4, 7.5, and 7.6.)

Figure 7.4: c©14 March 2009, Zits Partnership
https://www.comicskingdom.com/shared comics/ed492d42-84c3-41f8-8f2f-0fddc176e6e7

3. “Input. An algorithm has zero or more inputs” (Knuth, 1973, p. 5).

• Curiously, only Knuth and Markov seem to mention this explicitly, with
Markov’s “applicability” property suggesting that there must be at least
one input. Why does Knuth say zero or more? If algorithms are procedures
for computing functions, and if functions are sets of input-output pairs,
then wouldn’t an algorithm always have to have input? Presumably, Knuth
wants to allow for the possibility of a program that simply outputs some
information. Perhaps Knuth has in mind the possibility of the input being
internally stored in the computer rather than having to be obtained from
the external environment. An example of this13 would be an algorithm for
computing the nth digit in the decimal expansion of a real number: There
do not need to be any explicit inputs; the algorithm can just generate each
digit in turn. Or perhaps this is how constant functions (functions whose
output is constant, no matter what their input is) are handled. (We’ll come
back to this in §11.4.3.1.) It is worth noting, however, that Hartmanis and
Stearns 1965, p. 288—the founding document of the field of computational

13Which Matti Tedre reminded me of (personal communication, 2018).

266 CHAPTER 7. WHAT IS AN ALGORITHM?

Figure 7.5: c©1992 King Features Syndicate

complexity—allows their multi-tape Turing Machines to have at most one
tape, which is an output-only tape; there need not be any input tapes. And,
if there is only at most one output tape, there need not be any input or
output at all!

4. “Output. An algorithm has one or more outputs” (Knuth, 1973, p. 5).

• That there must be at least one output echoes Rosser’s property (2) (“certain
to produce the answer”) and Markov’s notion (3) of “effectiveness” (“a
certain result”). But Knuth characterizes outputs as “quantities which have
a specified relation to the inputs” (Knuth, 1973, p. 5): The “relation” would
no doubt be the functional relation between inputs and outputs, but, if there
is no input, what kind of a relation would the output be in?

Further Reading:
For an example of an algorithm that has an input but no output, see the box in §7.4.1.4, above.
See also Copeland and Shagrir 2011, pp. 230–231.

7.5. ‘ALGORITHM’ MADE PRECISE 267

Figure 7.6: A real-life example of an ambiguous instruction. (Whose head should be removed?)

• Others have noted that, while neither inputs nor outputs are necessary, they
are certainly useful:

There remains, however, the necessity of getting the original definitory
information from outside into the device, and also of getting the final
information, the results, from the device to the outside. (von Neumann,
1945, §2.6, p. 3).

Do computations have to have inputs and outputs? The mathematical
resources of computability theory can be used to define ‘computations’
that lack inputs, outputs, or both. But the computations that are generally
relevant for applications are computations with both inputs and outputs.
(Piccinini, 2011, p. 741, note 11)

The computer has to have something to work on (“definitory information”,
or input), and it has to let the human user know what it has computed (“the
final information, the results”, or output). It shouldn’t just sit there silently
computing. In other words, there has to be input and output if the computer
is not to be “solipsistic”.

Philosophical Digression:
Solipsism is, roughly, the view that I am the only thing that exists, or that I (or my mind) cannot
have knowledge of the external world. So, a computer with no input or output would only
have “knowledge” of things “inside” itself. For more on solipsism, see http://www.iep.utm.edu/
solipsis/ or https://en.wikipedia.org/wiki/Solipsism. We’ll return to the notion in §11.4.3.4.2.

268 CHAPTER 7. WHAT IS AN ALGORITHM?

• Newell has suggested that there must be input iff there is output:

Read is the companion process to write, each being necessary to make
the other useful. Read only obtains what was put into expressions by
write at an earlier time; and a write operation whose result is never read
subsequently might as well not have happened. (Newell, 1980, p. 163)

However, there are circumstances where read would take input from the
external world, not necessarily from previous output. And the last clause
suggests that, while output is not necessary, it is certainly useful!

5. “Effectiveness. This means that all of the operations to be performed in the
algorithm must be sufficiently basic that they can in principle be done exactly
and in a finite length of time by a man [sic] using pencil and paper” (Knuth,
1973, p. 6).

• Note, first, how the term ‘effective’ has many different meanings among
all these characterizations of “algorithm”, ranging from it being an unex-
plained term, through being synonymous with ‘algorithm’, to naming very
particular—and very different—properties of algorithms.

Second, it is not clear how Knuth’s notion of effectiveness differs from
his notion of definiteness; both seem to have to do with the preciseness of
the operations.

Third, Knuth brings in another notion of finiteness: finiteness in time.
Note that an instruction to carry out an infinite sequence of steps in a finite
time could be accomplished by doing each step twice as fast as the previous
step; or each step might only take a finite amount of time, but the number of
steps required might take longer than the expected life of the universe (as in
computing a perfect, non-losing strategy in chess (Zobrist, 2000, p. 367)).
These may have interesting theoretical implications (which we will explore
in Chapter 11) but do not seem very practical. Knuth (1973, p. 7) observes
that “we want good algorithms in some loosely-defined aesthetic sense.
One criterion of goodness is the length of time taken to perform the algo-
rithm”

Finally, the “gold standard” of “a [hu]man using pencil and paper” seems
clearly to be an allusion to Turing’s analysis (Turing, 1936), which we will
examine in great detail in the next chapter.

7.5. ‘ALGORITHM’ MADE PRECISE 269

7.5.3.4 Summary

We can summarize these informal observations as follows:

An algorithm for executor E to accomplish goal G is:

1. a procedure, that is, a finite set (or sequence) of statements (or rules,
or instructions), such that each statement is:

(a) composed of a finite number of symbols (or marks) from a finite
alphabet

(b) and unambiguous for E—that is,
i. E knows how to do it

ii. E can do it
iii. it can be done in a finite amount of time
iv. and, after doing it, E knows what to do next—

2. which procedure takes a finite amount of time (that is, it halts),

3. and that ends with G accomplished.

But the important thing to note is that the more one tries to make precise these
informal requirements for something to be an algorithm, the more one recapitulates
Turing’s motivation for the formulation of a Turing Machine. In Chapter 8, we will
look at exactly what Turing did.

But first we are going to look a bit more deeply into the current view of computa-
tion.

Further Reading:
For more on the attempts to make the notion of “algorithm” precise, see Sieg 1994 (which con-
tains a detailed history and analysis of the development of the formal notions of algorithm in
the 1930s and after) and Copeland 1997 (which is an essay on hypercomputation—or “non-
classical” computation—but whose introductory section (pp. 690–698) contains an enlightening
discussion of the scope and limitations of Turing’s accomplishments). See also Sieg 1997, 2008;
Copeland 1996, 2004a; as well as Korfhage 1993; Moschovakis 1998, 2001; Blass and Gurevich
2003; Chazelle 2006; Gurevich 2011; Hill 2013.

In Chapter 13, we will be looking at whether computer programs can be copyrighted or patented.
In order to answer this question, many legal experts have tried to give a definition of ‘algorithm’.
One such attempt is Chisum 1986.

Farkas 1999 contains advice on how to write informal procedures.

270 CHAPTER 7. WHAT IS AN ALGORITHM?

7.6 Five Great Insights of CS
In this section, we will revisit in detail the five great insights of CS that were introduced
in §3.15.2.1.1. The first three help make precise the vague notion of algorithm that we
have been looking at. The fourth links the vague notion with a precise one. Together,
they define the smallest possible language in which you can write any procedure for any
computer. (And by ‘computer’ here, I merely mean anything—machine or human—
that can execute an algorithm.) The fifth brings in engineering concerns.

7.6.1 Bacon’s, Leibniz’s, Morse’s, Boole’s, Ramsey’s, Turing’s, and
Shannon’s Representational Insight

The first great insight is this:

All the information about any computable problem can be represented
using only two nouns: ‘0’ and ‘1’

Rather than enter into a complicated and controversial historical investigation of who
is responsible for this insight, I will simply list the names of some of the people who
contributed to it:

• Sir Francis Bacon, around 1605, developed an encoding of the alphabet by any
objects “capable of a twofold difference”.14 And, of course, once you’ve rep-
resented the alphabet in a binary coding, then anything capable of being rep-
resented in text can be similarly encoded (Quine, 1987, “Universal Library”,
pp. 223–235, https://urbigenous.net/library/universal library.html).

• Leibniz gave an “Explanation of Binary Arithmetic” in 1703.15

• Famously, Samuel F.B. Morse not only invented the telegraph but also (following
in Bacon’s footsteps) developed his eponymous, binary code in the mid-1800s.16

• Going beyond language, the philosopher Frank P. Ramsey, in a 1929 essay on “a
language for discussing . . . facts”—perhaps something like Leibniz’s character-
istica universalis (which we discussed in §§3.17 and §6.6)—suggested that “all
[of the terms of the language] may be best symbolized by numbers. For instance,
colours have a structure, in which any given colour may be assigned a place by
three numbers Even smells may be so treated . . . ” (Ramsey, 1929, pp. 101–
102, my italics). (For more examples, see http://www.cse.buffalo.edu/∼rapaport/
111F04/greatidea1.html)

• In 1936, as we will see in Chapter 8, Turing made essential use of ‘0’ and ‘1’ in
the development of Turing Machines.

14Bacon, Advancement of Learning, http://home.hiwaay.net/∼paul/bacon/advancement/book6ch1.html;
for discussion, see Cerf 2015, p. 7.

15http://www.leibniz-translations.com/binary.htm
16http://en.wikipedia.org/wiki/Morse code. Arguably, however, Morse code (traditionally conceived as

having only two symbols, “dot” and “dash”) is not strictly binary, because there are “blanks”, or time-lapses,
between those symbols (Gleick 2011, p. 20, footnote; Bernhardt 2016, p. 29).

7.6. FIVE GREAT INSIGHTS OF CS 271

• Finally, the next year, Claude Shannon (in his development of the mathematical
theory of information) used “The symbol 0 . . . to represent . . . a closed circuit,
and the symbol 1 . . . to represent . . . an open circuit” (Shannon, 1937, p. 4), and
then showed how propositional logic could be used to represent such circuits.
Moreover,

Up until that time [that is, the time of publication of Shannon’s “Mathematical
Theory of Communication” (Shannon, 1948)], everyone thought that com-
munication was involved in trying to find ways of communicating written
language, spoken language, pictures, video, and all of these different things—
that all of these would require different ways of communicating. Claude said
no, you can turn all of them into binary digits. And then you can find ways
of communicating the binary digits. (Robert Gallager, quoted in Soni and
Goodman 2017)

There is nothing special about the symbols ‘0’ and ‘1’. As Bacon emphasized, any
other bistable17 pair suffices, as long as they can flip-flop between two easily distin-
guishable states, such as the numbers 0 and 1, “on/off”, “magnetized/de-magnetized”,
“high voltage/low voltage”, etc.

Digression:
Bacon used ‘a’ and ‘b’, but he also suggested that coding could be done “by Bells, by Trumpets,
by Lights and Torches, by the report of Muskets, and any instruments of like natures”,
http://home.hiwaay.net/∼paul/bacon/advancement/book6ch1.html

Strictly speaking, these can be used to represent discrete things; continuous things can
be approximated to any desired degree, however.

This limitation to two nouns is not necessary: Turing’s original theory had no re-
striction on how many symbols there were. There were only restrictions on the nature
of the symbols (they couldn’t be too “close” to each other; that is, they had to be dis-
tinguishable) and that there be only finitely many.

But, if we want to have a minimal language for computation, having only two
symbols suffices, and making them ‘0’ and ‘1’ (rather than, say, ‘a’ and ‘b’—not to
mention “the report of Muskets”!) is mathematically convenient.

Further Reading:
Chaitin 2006a “discuss[es] mathematical and physical arguments against continuity and in favor
of discreteness”. See Cerf 2014 for some interesting comments that are relevant to the insight
about binary representation of information. On Shannon, see Horgan 1990; G. Johnson 2001c;
Cerf 2017; Soni and Goodman 2017.

17That is, something that can be in precisely one of two states; http://en.wikipedia.org/wiki/Bistability.

272 CHAPTER 7. WHAT IS AN ALGORITHM?

7.6.2 Turing’s Processing Insight

So we need only two nouns for our minimal language. Turing is also responsible for
providing the verbs of our minimal language. Our second great insight is this:

Every algorithm can be expressed in a language for a computer (namely, a
Turing Machine) consisting of:

• an arbitrarily long, paper tape divided into squares
(like a roll of toilet paper, except you never run out (Weizenbaum,
1976)),

• with a read/write head,

• whose only nouns are ‘0’ and ‘1’,

• and whose only five verbs (or basic instructions) are:

1. move-left-1-square
2. move-right-1-square
3. print-0-at-current-square
4. print-1-at-current-square
5. erase-current-square

The exact verbs depend on the model of Turing Machine.18 The two “move” instruc-
tions could be combined into a single verb that takes a direct object (that is, a function
that takes a single input argument): move(location). And the “print” and “erase” in-
structions could be combined into another single transitive verb: print(symbol), where
“symbol” could be either ‘0’, ‘1’, or ‘blank’ (here, erasing would be modeled by print-
ing a blank). We’ll see Turing do something similar, when we look at Turing Machines
in §8.13.

Further Reading:
Wang 1957, p. 80 notes that

there are many things which we can do when we permit erasing but which we can-
not do otherwise. Erasing is dispensable only in the sense that all functions which
are computable with erasing are also computable without erasing. For example, if
we permit erasing, . . . only the . . . answer appears on the tape at the end of the
operation, everything else having been erased.

Deciding how to count the number of verbs is an interesting question. In the
formulation above, do we have 3 nouns (‘0’, ‘1’, ‘blank’) and only 1 transitive verb
(‘print(symbol)’)? Or do we have only 2 nouns (‘0’, ‘1’) but 2 verbs (‘print(symbol)’,
‘erase’)? Gurevich (1999, pp. 99–100) points out that

18The ones cited here are taken from John Case’s model described in Schagrin et al. 1985, Appendix B,
http://www.cse.buffalo.edu/∼rapaport/Papers/schagrinetal85-TuringMachines.pdf.

7.6. FIVE GREAT INSIGHTS OF CS 273

at one step, a Turing machine may change its control state, print a symbol at the
current tape cell[,] and move its head. . . . One may claim that every Turing ma-
chine performs only one action a time, but that action [can] have several parts.
The number of parts is in the eye of the beholder. You counted three parts. I can
count four parts by requiring that the old symbol is erased before the new symbol
is printed. Also, the new symbol may be composed, e.g. ‘12’. Printing a composed
symbol can be a composed action all by itself.

And Fortnow (2018b) suggests that there are four verbs: move left, move right, read,
write.

In any case, we can certainly get by with only two (slightly complex) verbs or five
(slightly simpler) verbs. But either version is pretty small.

Further Reading:
Wang 1957, p. 63 “offer[s] a theory which is closely related to Turing’s but is more economical in
the basic operations. . . . [A] theoretically simple basic machine can be . . . specified such that all
partial recursive functions (and hence all solvable computation problems) can be computed by it
and that only four basic types of instruction are employed for the programs: shift left one space,
shift right one space, mark a blank space, conditional transfer. . . . [E]rasing is dispensable, one
symbol for marking is sufficient, and one kind of transfer is enough. The reduction is . . . similar
to . . . the definability of conjunction and implication in terms of negation and disjunction”

A version of Wang’s machine, with many examples, is given in Dennett 2013a, Ch. 24.

274 CHAPTER 7. WHAT IS AN ALGORITHM?

7.6.3 Böhm & Jacopini’s Structural Insight

Figure 7.7: https://xkcd.com/844/

7.6.4 Structured Programming (I)

We have two nouns and perhaps only two verbs. Now we need some grammatical rules
to enable us to put them together. The software-engineering concept of “structured
programming” does the trick. This is a style of programming that avoids the use of the
‘go to’ command. In early programming languages, programmers found it useful to
“go to”—or to “jump” to—another location in the program, sometimes with the ability
to return to where the program jumped from (but not always). This resulted in what
was sometimes called “spaghetti code”, because, if you looked at a flowchart of the
program, it consisted of long, intertwined strands of code that were hard to read and
harder to ensure that they were correct (see Figures 7.7 and 7.8). Edsger W. Dijkstra
wrote a letter to the editor of the Communications of the ACM, that was headlined “Go
To Statement Considered Harmful” (Dijkstra, 1968), arguing against the use of such
statements. This resulted in an attempt to better “structure” computer programs so that
the use of ‘go to’ could be minimized: Corrado Böhm and Giuseppe Jacopini showed
how it could be completely eliminated (Böhm and Jacopini, 1966). This gives rise to

7.6. FIVE GREAT INSIGHTS OF CS 275

Figure 7.8: http://abstrusegoose.com/432

the third insight (and the third item needed to form our language):

Only three rules of grammar are needed to combine any set of basic
instructions (verbs) into more complex ones:

1. sequence:

• first do this; then do that

2. selection (or choice):

• if such-&-such is the case,
then do this
then do that

3. repetition (or looping):

• while such-&-such is the case do this

. . . where “this” and “that” can be:

• any of the basic instructions, or

• any complex instruction created by application of any grammatical
rule.

276 CHAPTER 7. WHAT IS AN ALGORITHM?

7.6.5 Digression—Recursive Definitions

This third insight can be thought of as a “recursive” definition of “instruction”.
A recursive definition of some concept C consists of two parts. The first part, called

the “base case”, gives you some explicit examples of C. These are not just any old
examples, but are considered to be the simplest, or most basic or “atomic”, instances
of C—the building blocks from which all other, more complex instances of C can be
constructed.

The second part of a recursive definition of C consists of rules (algorithms, if you
will!) that tell you how to construct those more complex instances of C. But these rules
don’t simply tell you how to construct the complex instances from just the base cases.
Rather, they tell you how to construct the complex instances of C from any instances
of C that have already been constructed. The first complex instances, of course, will
be constructed directly from the base cases. But others, even more complex, will be
constructed from the ones that were constructed directly from the base cases, and so
on. What makes such a definition “recursive” is that simpler instances of C “recur” in
the definitions of more complex instances.

So, the base case of a recursive definition tells you how to begin. And the recursive
case tells you how to continue.

Recursive definitions can be found outside of CS. Here are two examples:

1. According to some branches of Judaism, a person p is Jewish if (a) p was con-
verted to Judaism (base case) or (b) p’s mother was Jewish (recursive case).

2. “Organisms originate either through synthesis of non-living materials [base case]
or through reproduction, either sexual or asexual [recursive case]” (Northcott and
Piccinini, 2018, p. 2).

Recursive definitions sometimes seem to be circular: After all, we seem to be defin-
ing instances of C in terms of instances of C! But really we are defining “new” (more
complex) instances of C in terms of other, “older” (that is, already constructed), or
simpler instances of C, which is not circular at all. (It would only be circular if the
base cases were somehow defined in terms of themselves. But they are not “defined”;
they are given, by fiat.) (For a humorous example of recursion, with “mustard” as the
base case, see Figure 7.9.)

So, the structural insight above is a recursive definition of the notion of an “instruc-
tion”: The base cases of the recursion are the primitive verbs of the Turing Machine
(‘move(location)’ and ‘print(symbol)’), and the recursive cases are given by sequence,
selection, and repetition.

As an analogy, a crossword puzzle can be solved recursively: Begin by filling in
those words (or phrases) whose answers you know (for example, a 10-letter word for
“first president of the US”). Recursive steps consist in using these “axioms” to “prove
theorems”, that is, to use the letters from already-filled-in answers as additional clues
(or “premises”) for new words. This analogy needs to be taken with a grain of salt,
however: Some answers that you might know “axiomatically” might also be filled in
as “provable theorems”. On the other hand, even formal systems can have different

7.6. FIVE GREAT INSIGHTS OF CS 277

axiomatizations, such that an axiom of one formalization might be a theorem of an-
other. What about “cheating” in the sense of looking up an answer? That’s just the
application of (semantic) table look-up!

It is also worth noting that jigsaw puzzles can be solved recursively: The base case
of the recursion consists in building the frame. A recursive step is to form a “molecular”
piece that consists of two “atomic” pieces that fit together. Further recursions consist
of finding two molecular pieces that fit together.

Further Reading:
For a different analogy with jigsaw puzzles, see the Digression on Syntax, Semantics, and Puz-
zles in §14.3.2.3.)

For more on recursion (and its close cousin, induction), see http://www.cse.buffalo.edu/
∼rapaport/191/recursion.html and Silver 2016 (which is a nice history of mathematical induction
and its relation to recursion, although it tends to conflate mathematical induction with inductive
logic).

Recursion is considered to be the core of the concept of computation. It has been argued that it
is also the core of the concept of language, in particular, and of cognition more generally:

. . . the work of Alonzo Church, Kurt Gödel, Emil Post, and Alan Turing, who es-
tablished the general theory of computability . . . demonstrated how a finite object
like the brain could generate an infinite variety of expressions. (Chomsky, 2017)

[The] faculty of language . . . in the narrow sense . . . only includes recursion and
is the only uniquely human component of the faculty of language. (Hauser et al.,
2002)

However, this is a highly controversial claim; to follow the debate, see Pinker and Jackendoff
2005; Fitch et al. 2005; Jackendoff and Pinker 2005. For another take on this debate, see Cor-
ballis 2007.

7.6.6 Structured Programming (II)
There are optional, additional instructions and grammatical rules:

1. An explicit “halt” instruction:

• This is not strictly necessarily, because it can always be simulated by hav-
ing the program execute a command that does nothing and does not have
a “next”; step. We will see such a program when we look at Turing Ma-
chines, in Chapter 8. However, a “halt” instruction can sometimes make a
program simpler or more elegant.

2. An “exit” instruction:

• This allows a program to exit from a loop under certain conditions, before
the body of the loop is completed. Again, this can provide simplicity or
elegance.

278 CHAPTER 7. WHAT IS AN ALGORITHM?

Figure 7.9: c©1994 North America Syndicate

3. Abstraction:

• A structured programming language . . . must provide a mechanism whereby the
language can be extended to contain the abstractions which the user requires. A lan-
guage containing such a mechanism can be viewed as a general-purpose, indefinitely-
high-level language. (Liskov and Zilles, 1974, p. 51)

There are two varieties of abstraction worth noting:

(a) Procedural abstraction (or named procedures):

Define new (typically, complex) actions by giving a single name
to a (complex) action. This is even more optional than “exit”, but
it is very powerful in terms of human readability and comprehen-
sion, and even in terms of machine efficiency.

Further Reading:
We’ll see examples of procedural abstraction when we discuss Turing Machines (§8.12) and
when we discuss the relation of programs to the world (§17.8.2.1). For more information, see
Dijkstra 1972; Pylyshyn 1992; and Conery 2010, p. 3. One of the best introductions to it is Pattis
et al. 1995; see also Rapaport 2017a, §5.2.2. (And see Figure 7.10 for a humorous version.)

For more on the power of abstraction, see the first few paragraphs of Antoy and Hanus 2010.

7.6. FIVE GREAT INSIGHTS OF CS 279

Figure 7.10: http://www.shoecomics.com/, c© 5/5/1984? Jefferson Communications

(b) Abstract Data Types:

Procedural abstraction allows the programmer to define new verbs
in terms of “old” ones. A related technique is the use of abstract
data types, which allows the programmer to define new nouns
in terms of “old” ones (Liskov and Zilles, 1974). Moreover, as
is especially clear in object-oriented programming, new “nouns”
require new “verbs”:

[A] consequence of the concept of abstract data types is that
most of the abstract operations in a program will belong to the
sets of operations characterizing abstract types. (Liskov and
Zilles, 1974, p. 52)

We’ll return to abstraction in Chapter 14.

4. Recursion:

Recursion can be an elegant replacement for repetition: A recursive in-
struction tells you how to compute the output value of a function in terms
of previously computed output values instead of in terms of its input value.
Of course, the base case (that is, the output value of the function for its
initial input) has to be given to you in a kind of table-lookup. (We’ll look
at recursion more closely in §7.7.)

Further Reading:
Dijkstra 1972, especially §7 is the classic discussion of structured programming based on se-
quence, selection, and repetition, along with top-down design and stepwise refinement, with
several examples worked out in detail. Harel 1980 provides a history of the Böhm-Jacopini
Theorem.

280 CHAPTER 7. WHAT IS AN ALGORITHM?

7.6.7 The Church-Turing Computability Thesis
We now have our language: Any algorithm for any computable problem can be ex-
pressed in this language (for a Turing Machine) that consists of the two nouns ‘0’ and
‘1’, the two verbs ‘move(location)’ and ‘print(symbol)’, and the three grammatical
rules of sequence, selection, and repetition.

But is it a minimal language? In other words, is that really all that is needed?
Can your interaction with, say, a spreadsheet program or Facebook be expressed in
this simple (if not “simple-minded”!) language? There’s no doubt that a spreadsheet
program, for example, that was written in this language would be very long and very
hard to read. But that’s not the point. The question is: Could it be done? And the
answer is our next great insight. In one word, ‘yes’:

The informal notion of computability can be identified with (anything
logically equivalent to) Turing Machine computability.

Another way to put this is to say:

Nothing besides our two nouns, two verbs, and three grammar rules
are necessary.

Such a statement, as part of a recursive definition, is sometimes called a “closure”
clause.19

That is, an algorithm is definable as a program expressible in (anything equivalent
to) our minimal language.

This idea was almost simultaneously put forth both by Church (1936b) in terms of
his lambda calculus and by Turing (1936). Consequently, some people call it ‘Church’s
Thesis’; others call it ‘Turing’s Thesis’; and, as you might expect, some call it ‘the
Church-Turing Thesis’, in part because Turing proved that Church’s lambda calculus
is logically equivalent to Turing Machines. For this reason, Robert Soare (2009) has
advocated calling it, more simply and more neutrally, the ‘Computability Thesis’.

But it is only a proposed definition of ‘computable’ or ‘algorithm’: It proposes to
identify an informal, intuitive notion of effective computability or algorithm with the
formal, mathematically precise notion of a Turing Machine.

Further Reading:
To be clear, I have not given such a formal, mathematically precise notion here. For that, see
any textbook on computability theory, such as Kleene 1952; Davis 1958; Kleene 1967; Minsky
1967; Rogers 1967; Hopcroft and Ullman 1969; Boolos and Jeffrey 1974; Clark and Cowell
1976; Kfoury et al. 1982; Davis and Weyuker 1983; Cooper 2004; Homer and Selman 2011;
Soare 2016.

How do we know that Turing Machine computability captures (all of) the intuitive
notion(s) of effective computability? After all, there are other analyses of compu-
tation: For instance, there is Church’s analysis in terms of the lambda calculus (see
§6.6). Should one of these be preferred over the other? There are two reasons for

19http://faculty.washington.edu/keyt/InductiveDefinitions.pdf

7.6. FIVE GREAT INSIGHTS OF CS 281

preferring Turing’s over Church’s: First, Turing’s is easier to understand, because it
follows from his analysis of how humans compute. Second—and this is “merely” an
appeal to authority—Gödel preferred Turing’s analysis, not only to Church’s, but also
to his own!

Church’s theory (the lambda calculus, which John McCarthy later used as the basis
of the Lisp programming language) had as its basic, or atomic, steps formal operations
on function formulas that some people—Gödel in particular—did not find to be intu-
itively computable. The same could be said even for Gödel’s own theory of recursive
functions. But Turing’s basic operations were, by design, simple things that any human
could easily do: put a mark at specific location on a piece of paper, and shift attention
to a different location.

Further Reading:
For discussion of the appeal to Gödel’s authority, see Shagrir 2006, which explores why Gödel
believed both that “the correct definition of mechanical computabilty was established beyond
any doubt by Turing” (Gödel, 1938, p. 168) and that “this definition . . . rest[s] on the dubious
assumption that there is a finite number of states of mind” (Shagrir, 2006, §1). Copeland and Sha-
grir 2013 explores both Gödel’s interpretations of Turing’s work and the relation of the human
mind to Turing Machines. See also Sieg 2006, as well as Soare 2009, §2, “Origins of Com-
putabilty and Incomputablity”, which contains a good summary of the history of both Turing’s
and Gödel’s accomplishments. For more on Gödel, see §§2.10.6 and 6.6.

But the lambda calculus and Turing Machines are not the only theories of computation.
Here is a list of some others:

• Post Machines

– like Turing Machines, but treats the tape as a queue;
see https://en.wikipedia.org/wiki/Post%E2%80%93Turing machine

• Markov algorithms

– later used as the basis of the Snobol programming language;
see https://en.wikipedia.org/wiki/Markov algorithm

• Post productions

– later used as the basis of production systems in AI;
see Post 1941, 1943; and Soare 2012, p. 3293

• Herbrand-Gödel recursion equations

– later used as the basis of the Algol family of programming languages;
see §7.7.2, below

• µ-recursive functions (see §7.7.2, below)

• register machines (Shepherdson and Sturgis, 1963)

282 CHAPTER 7. WHAT IS AN ALGORITHM?

• any programming language (including, besides those already mentioned, Pascal,
C, C+, Java, etc.)

– But not languages like HTML, which are not “Turing-complete”—that is,
not logically equivalent to a Turing Machine—usually because they lack
one or more of the three grammar rules. Such languages are weaker than
Turing Machines. The question of whether there are models of computation
that are stronger than Turing Machines is the topic of Chapter 11.

There are two major reasons to believe the Computabiity Thesis:

1. Logical evidence:
All of the formalisms that have been proposed as precise, mathematical analy-
ses of computability are not only logically equivalent (that is, any function that is
computable according to one analysis is also computable according to each of the
others), but they are constructively equivalent (that is, they are inter-compilable,
in the sense that you can write a computer program that will translate (or com-
pile) a program in any of these languages into an equivalent program in any of
the others). Here is how Turing expressed it in a paper published the year after
his magnum opus:20

Several definitions have been given to express an exact meaning corre-
sponding to the intuitive idea of ‘effective calculability’ as applied for in-
stance to functions of positive integers. The purpose of the present paper is
to show that the computable functions introduced by the author are identical
with the λ-definable functions of Church and the general recursive functions
due to Herbrand and Gödel and developed by Kleene. It is shown that ev-
ery λ-definable function is computable and that every computable function is
general recursive. . . . If these results are taken in conjunction with an already
available proof that every general recursive function is λ-definable we shall
have the required equivalence of computability with λ-definability

The identification of ‘effectively calculable’ functions with computable
functions is possibly more convincing than an identification with the λ-definable
or general recursive functions. For those who take this view the formal proof
of equivalence provides a justification for Church’s calculus, and allows the
‘machines’ which generate computable functions to be replaced by the more
convenient λ-definitions. (Turing, 1937, p. 153, my italics)

Turing cites Church 1936b for the definition of lambda-definability, Kleene 1936a
for the definition of general recursiveness, and Kleene 1936b for the proof of
their equivalence.

Further Reading:
For statements of equivalence of general recursive, µ-recursive, lambda-definable, etc., see Soare
2012, p. 3284. Kleene 1995 shows how to “compile” (or translate the language of) recursive
functions into (the language of) Turing Machines, that is, how a Turing Machine can compute
recursive functions.

20In the following quote, ‘λ’ is the lower-case, Greek letter “lambda”.

7.6. FIVE GREAT INSIGHTS OF CS 283

2. Empirical evidence:
All algorithms that have been devised so far can be expressed as Turing Ma-
chines; that is, there are no intuitively effective-computable algorithms that are
not Turing Machine computable.

But this has not stopped some philosophers and computer scientists from challenging
the Computability Thesis. Some have advocated forms of computation that “exceed”
Turing Machine computability. We will explore some of these options in Chapters 10
and 11.

Another “objection” to the Computability Thesis (especially in the way that I have
presented it) is that

[C]onflating algorithms with Turing machines is a misreading of Turing’s 1936
paper Turing’s aim was to define computability, not algorithms. His paper
argued that every function on natural numbers that can be computed by a human
computer . . . can also be computed by a Turing machine. There is no claim in the
paper that Turing machines offer a general model for algorithms. (Vardi, 2012)

Vardi goes on to cite Gurevich’s idea that algorithms are “abstract state machines”,
whose “key requirement is that one step of the machine can cause only a bounded local
change on . . . [a] state” (which is an “arbitrary data structure”). This corresponds to
Turing’s analysis and to our analysis in §7.5. He also cites Moschovakis’s idea that al-
gorithms are “recursors”: “recursive description[s] built on top of arbitrary operations
taken as primitives.” This corresponds to recursive functions and the lambda calcu-
lus, as we will discus in §7.7, below. And he then observes—in line with the proofs
that Turing Machines, the lambda calculus, recursive functions, etc., are all logically
equivalent—that these distinct notions are analogous to the wave-particle duality in
quantum mechanics: “An algorithm is both an abstract state machine and a recursor,
and neither view by itself fully describes what an algorithm is. This algorithmic duality
seems to be a fundamental principle of computer science.”

Can the Computability Thesis be proved? Most scholars say ‘no’, because any at-
tempt to prove it mathematically would require that the informal notion of computabil-
ity be formalized for the purposes of the proof. Then you could prove that that formal-
ization was logically equivalent to Turing Machines. But how would you prove that
that formalization was “correct”? This leads to an infinite regress.

284 CHAPTER 7. WHAT IS AN ALGORITHM?

Further Reading:
Kreisel 1987 is a paper by a well-known logician arguing that Church’s Thesis can be proved.
Similar arguments are made in Stewart Shapiro 1993 and Dershowitz and Gurevich 2008.

For more on the Church-Turing Computability Thesis, see: Stewart Shapiro 1983 (which dis-
cusses the notion of computability from a historical perspective, and contains a discussion of
Church’s thesis), Mendelson 1990, Bringsjord 1993 (which is a reply to Mendelson), Folina
1998, and Piccinini 2007c. Soare 2016, §17.3.3, argues that the Computability Thesis should
properly be understood as a “claim with demonstration” and not as proposition “in need of con-
tinual verification”.

Rescorla 2007 identifies Church’s Thesis as the proposition that a number-theoretic function is
intuitively computable iff it is recursive. And he identifies Turing’s Thesis as the proposition that
a number-theoretic function is intuitively computable iff a corresponding string-theoretic func-
tion that represents the number-theoretic one is computable by a Turing Machine. He concludes
that Church’s Thesis is therefore not the same as Turing’s Thesis. (On representing numbers by
strings, see Stuart C. Shapiro 1977.) In an essay on Church’s analysis of effective calculability,
Sieg 1997 argues that “Turing’s analysis is neither concerned with machine computations nor
with general human mental processes. Rather, it is human mechanical computability that is be-
ing analyzed . . . ” (p. 171).

Rey 2012 distinguishes between Turing’s Thesis and the Turing Test, which we’ll discuss in
Chapter 19. Tharp 1975 investigates an analogous issue in logic: Is our informal or pre-
theoretical conception of logic best captured by first-order predicate logic or by some other
(more powerful?) logic.

7.6.8 Turing’s, Kay’s, Denning’s, and Piccinini’s Implementation
Insight

Before turning our attention to a somewhat more mathematical outline of structured
programming and recursive functions, after which we will ask whether there are func-
tions that are non-computable, there is one more insight:

The first three insights can be physically implemented . . .

That is, Turing Machines can be physically implemented. And, presumably, such a
physical implementation would be a computer. This was what Turing attempted when
he designed the ACE (recall §6.5.4).

In fact, as Matti Tedre (personal communcation, 2018) pointed out to me, not only
can the previous insights be physically implemented, but they can be physically imple-
mented

. . . using only one kind of “logic gate”,

either a NOR-gate or a NAND-gate. (“Nor” and “nand” are connectives of propo-
sitional logic, each of which suffices by itself in the sense that all other connectives
(“and”, “or”, “if-then”, etc.) can be defined in terms of them. Typically, however, as
Tedre pointed out, real computers use several different kinds of gates, for the sake of
efficiency.)

7.7. STRUCTURED PROGRAMMING AND RECURSIVE FUNCTIONS 285

Moreover, as we have seen, there does not appear to be any limitation on the
“medium” of implementation: Most computers today are implemented electronically,
but there is work on DNA, optical, etc., computers, and there have even been some
built out of Tinker Toys (http://www.computerhistory.org/collections/catalog/X39.81).

Digression and Further Reading:
The implementation insight was first suggested to me by Peter Denning (personal communica-
tion, 2014). It is discussed in great detail in Piccinini 2015, 2017.

This brings in the engineering aspect of CS. But it also brings in its train limitations
imposed by physical reality: limitations of space, time, memory, etc. Issues concern-
ing what is feasibly or efficiently computable in practice (as opposed to what is theo-
retically computable in principle)—complexity theory, worst-case analyses, etc.—and
issues concerning the use of heuristics come in here.

Turing Award-winner Alan Kay divides this insight into a “triple whammy of com-
puting”:

1. Matter can be made to remember, discriminate, decide and do

2. Matter can remember descriptions and interpret and act on them

3. Matter can hold and interpret and act on descriptions that describe anything
that matter can do. (Guzdial and Kay, 2010)

He later suggests that the third item is the most “powerful”, followed by the first, and
then the second, and that issues about the limits of computability and multiple realiz-
ability are implicit in these.

7.7 Structured Programming and Recursive Functions
(The material in this section is based on lectures given by John Case at SUNY Buffalo around 1983,

which in turn were based on Clark and Cowell 1976.)

7.7.1 Structured Programming
In §7.6.3, I mentioned “structured programming”—a style of programming that avoids
the use of “jump” commands, or the ‘go to’ command, which Böhm & Jacopini proved
could be completely eliminated. Let’s see how this can be done.

7.7.1.1 Structured Programs

We can begin with a (recursive) definition of ‘structured program’: As with all recursive
definitions, we need to give a base case (consisting of two “basic programs”) and a
recursive case (consisting of four “program constructors”). We will use the capital and
lower-case Greek letters ‘pi’ (Π,π) to represent programs.

286 CHAPTER 7. WHAT IS AN ALGORITHM?

1. Basic programs:

(a) The empty program π = begin end. is a basic (structured) program.

(b) Let F be a “primitive operation” that is (informally) computable.
Then the 1-operation program π = begin F end. is a basic (structured)
program.

Note that this definition does not specify which operations are
primitive; they will vary with the programming language. One
example might be an assignment statement (which will have the
form “y← c”, where y is a variable and c is a value that is assigned
to y). Another might be the print and move operations of a Turing
Machine.

Compare the situation with Euclidean geometry: If the prim-
itive operations are limited to those executable using only com-
pass and straightedge, then an angle cannot be trisected. But, of
course, if the primitive operations also include measurement of an
angle using a protractor, then calculating one-third of an angle’s
measured size will do the trick.

That means that structured programming is a style of program-
ming, not a particular programming language. It is a style that
can be used with any programming language. As we will see
when we examine Turing’s paper in Chapter 8, he spends a lot of
time justifying his choice of primitive operations.

2. Program constructors:

The recursive case for structured programs specifies how to construct
more complex programs from simpler ones. The simplest ones, of
course, are the basic programs: the empty program and the
1-operation programs. So, in good recursive fashion, we begin by
constructing slightly more complex programs from these. Once we
have both the basic programs and the slightly more complex programs
constructed from them, we can combine them—using the recursive
constructs below—to form even more complex ones, using the fol-
lowing techniques:

Let π, π′ be (simple or complex) programs, each of which contains exactly
1 occurrence of end.

Let P be a “Boolean test”.

A Boolean test, such as “x > 0”, is sometimes called a ‘propositional
function’ or ‘open sentence’.21 The essential feature of a Boolean test

21It is a “propositional function” because it can be thought of as a function whose input is a proposition,
and whose output is a truth value. It is an “open sentence” in the sense that it contains a variable (in English,
that would be a pronoun) instead of a constant (in English, that would be a proper name).

7.7. STRUCTURED PROGRAMMING AND RECURSIVE FUNCTIONS 287

is that it is a function whose output value is “true” or else it is “false”.
P must also be (informally) computable (and, again, Turing spends a
lot of time justifying his choices of tests).

And let y be an integer-valued variable.

Then the following are also (more complex, structured) programs:

(a) Π = begin π; π′ end. is a (complex) structured program.

Such a Π is the “linear concatenation” of π followed by π′. It is
Böhm & Jacopini’s “sequence” grammar rule.

(b) Π = begin
if P

then π

else π′

end.
is a (complex) structured program.

Such a Π is a “conditional branch”: If P is true, then π is ex-
ecuted, but, if P is false, then π′ is executed. It is Böhm & Ja-
copini’s “selection” grammar rule.

(c) Π = begin
while y > 0 do

begin
π;
y← y−1

end
end.

is a (complex) structured program.

Such a Π is called a “count loop” (or “for-loop”, or “bounded
loop”): The simpler program π is repeatedly executed while (that
is, as long as) the Boolean test “y > 0” is true (that is, until it
becomes false). Eventually, it will become false, because each
time the loop is executed, y is decremented by 1, so eventually y
must become equal to 0. Thus, an infinite loop is avoided. This is
one kind of Böhm & Jacopini’s “repetition” grammar rule.

(d) Π = begin
while P do π

end.
is a (complex) structured program.

Such a Π is called a “while-loop” (or “free” loop, or “unbounded”
loop): The simpler program π is repeatedly executed while (that
is, as long as) the Boolean test P is true (that is, until P is false).
Note that, unlike the case of a count loop, a while loop can be
an infinite loop, because there is no built-in guarantee that P will

288 CHAPTER 7. WHAT IS AN ALGORITHM?

eventually become false (because, in turn, there is no restriction
on what P can be, as long as it is a Boolean test). In particular, if
P is the constantly-true test “true”—or a constantly-true test such
as “1=1”—then the loop will be guaranteed to be infinite. This is
a more powerful version of repetition.

7.7.1.2 Two Kinds of Structured Programs

We can classify structured programs based on the above recursive definition:

1. π is a count-program
(or a “for-program”, or a “bounded-loop program”) =de f

(a) π is a basic program, or

(b) π is constructed from count-programs by:

• linear concatenation, or

• conditional branching, or

• count looping

(c) Nothing else is a count-program.

2. π is a while-program
(or a “free-loop program”, or an “unbounded-loop program”) =de f

(a) π is a basic program, or

(b) π is constructed from while-programs by:

• linear concatenation, or

• conditional branching, or

• count-looping, or

• while-looping

(c) Nothing else is a while-program.

The inclusion of count-loop programs in the construction-clause for while-programs
is not strictly needed, because all count-loops are while-loops (just let the P of a
while-loop be “y > 0” and let the π of the while-loop be the linear concatenation
of some other π′ followed by “y ← y− 1”). So count-programs are a proper
subclass of while-programs: While-programs include all count-programs plus
programs constructed from while-loops that are not also count-loops.

7.7. STRUCTURED PROGRAMMING AND RECURSIVE FUNCTIONS 289

Informal Mathematical Digression:

1. A function is “one-to-one” (or “injective”) =de f if two of its outputs are the same, then
their inputs must have been the same (or: if two inputs differ, then their outputs differ).
For example, f (n) = n+1 is a one-to-one function. However,

g = {〈a,1〉,〈b,1〉}

is not a one-to-one function (it is, however, a “two-to-one” function).

2. A function is “onto” (or “surjective”) =de f everything in the set of possible outputs “came
from” something in the set of possible inputs. For example, h(n) = n is an onto function.
However, the one-to-one function f (n) above is not onto if its inputs are restricted to non-
negative numbers, because 0 is not the result of adding 1 to any non-negative number, so
it is not in the set of actual outputs.

3. A function is a “one-to-one correspondence” (or “bijective”) =de f it is both one-to-one
and onto. For example, the onto function h(n) above is also one-to-one.

For more formal definitions and more examples, see
http://www.cse.buffalo.edu/∼rapaport/191/F10/lecturenotes-20101103.html

7.7.2 Recursive Functions
Now let’s look at one of the classic analyses of computable functions: a recursive
definition of non-negative integer functions that are intuitively computable—that is,
functions whose inputs are non-negative integers, also known as “natural numbers”.
But, first, what is a “natural number”?

7.7.2.1 A Recursive Definition of Natural Numbers

Informally, the set N of natural numbers = {0,1,2, . . .}. They are the numbers defined
(recursively!) by Peano’s axioms.

P1 Base case: 0 ∈ N

That is, 0 is a natural number.

P2 Recursive case:

If n ∈ N, then S(n) ∈ N,
where S is a one-to-one function from N to N such that (∀n ∈ N)[S(n) 6= 0].

S(n) is called “the successor of n”. So, the recursive case says that ev-
ery natural number has a successor that is also a natural number. The
fact that S is a function means that each n ∈N has only one successor.
The fact that S is one-to-one means that no two natural numbers have
the same successor. And the fact that 0 is not the successor of any
natural number means both that S is not an “onto” function and that 0
is the “first” natural number.

P3 Closure clause: Nothing else is a natural number.

290 CHAPTER 7. WHAT IS AN ALGORITHM?

We now have a set of natural numbers:

N= {0, S(0), S(S(0)), S(S(S(0))), . . .}

and, as is usually done, we define 1 =de f S(0), 2 =de f S(S(0)), and
so on. The closure clause guarantees that there are no other natural
numbers besides 0 and its successors: Suppose that there were an
m ∈ N that was neither 0 nor a successor of 0, nor a successor of any
of 0’s successors; without the closure clause, such an m could be used
to start a “second” natural-number sequence: m, S(m), S(S(m)),
So, the closure clause ensures that no proper superset of N is also a
set of natural numbers. Thus, in a sense, N is “bounded from above”.
But we also want to “bound” it from below; that is, we want to say
that N is the smallest set satisfying (P1)–(P3). We do that with one
more axiom:

P4 Consider an allegedly proper (hence, smaller) subset M of N. Suppose that:

1. 0 ∈M

and that

2. for all n ∈ N, if n ∈M, then S(n) ∈M.

Then M = N.

Stated thus, (P4) is the axiom that underlies the logical rule of inference known
as “mathematical induction”:

From the fact that 0 has a certain property M
(that is, if 0 is a member of the class of things that have property M),
and
from the fact that, if any natural number that has the property M is
such that its successor also has that property,
then it may be inferred that all natural numbers have that property.

Further Reading:
Peano’s axioms were originally proposed in Peano 1889; Dedekind 1890. For more on what
are also sometimes called the “Dedekind-Peano” axioms, see Kennedy 1968; Joyce 2005; and
https://en.wikipedia.org/wiki/Giuseppe Peano.

For further discussion of P4, see http://www.cse.buffalo.edu/∼rapaport/191/F10/
lecturenotes-20101110.html

7.7. STRUCTURED PROGRAMMING AND RECURSIVE FUNCTIONS 291

7.7.2.2 Recursive Definitions of Recursive Functions

There are various kinds of recursive functions. To define them, we once again begin
with “basic” functions that are intuitively, clearly computable, and then we recursively
construct more complex functions from them. In this section, we will define these basic
functions and the ways that they can be combined. In the next section, we will define
the various kinds of recursive functions.

1. Basic functions:

Let x,x1, . . . ,xk ∈ N.

(a) successor: S(x) = x+1

That is, x+1 is the successor of x. You should check to see that S
satisfies Peano’s axiom (P2).

(b) predecessor: P(x) = x−̇1, where

a−̇b =de f

{
a−b, if a≥ b
0, otherwise

The odd-looking arithmetic operator is a “minus” sign with a dot
over it, sometimes called “monus”. So, the predecessor of x is
x−1, except for x = 0, which is its own predecessor.

(c) projection:22 P j
k (x1, . . . ,x j, . . . ,xk) = x j

That is, P j
k picks out the jth item from a sequence of k items.

The basic functions (a)–(c) can be seen to correspond in an intuitive way
to the basic operations of a Turing Machine: (a) The successor function
corresponds to move(right), (b) the predecessor function corresponds to
move(left) (where you cannot move any further to the left than the begin-
ning of the Turing Machine tape), and (c) the projection function corre-
sponds to reading the current square of the tape.23

22Sometimes called ‘identity’ (Kleene 1952, p. 220; Soare 2012, p. 3280; Soare 2016, p. 229).
23We’ll return to this analogy in §8.11.2. An analogous comparison in the context of “register machines”

is made in Shepherdson and Sturgis 1963, p. 220.

292 CHAPTER 7. WHAT IS AN ALGORITHM?

Digression:
An alternative to predecessor as a basic function is the family of constant functions
Cq(x1, . . . ,xk) = q for each q ∈ N (Kleene 1952, p. 219; Soare 2009, §15.2, p. 397; Soare 2016,
p. 229).

Both predecessor and monus can be defined recursively: Where n,m ∈ N, let

P(0) = 0

P(S(n)) = n

and let

n−̇0 = n

n−̇S(m) = P(n−̇m)

For more details, see https://en.wikipedia.org/wiki/Monus#Natural numbers.

And, while we’re at it, we can define addition recursively, too:

n+0 = n

n+S(m) = S(n+m)

2. Function constructors:

Let g,h,h1, . . . ,hm be (basic or complex) recursive functions.
Then the following are also (complex) recursive functions:

(a) f is defined from g,h1, . . . ,hm by generalized composition =de f
f (x1, . . . ,xk) = g(h1(x1, . . . ,xk), . . . ,hm(x1, . . . ,xk))

This can be made a bit easier to read by using the symbol x for the
sequence x1, . . . ,xk. If we do this, then generalized composition
can be written as follows:

f (x) = g(h1(x), . . . ,hm(x)),

which can be further simplified to:

f (x) = g(h(x))

Note that g(h(x))—called “function composition”—is some-
times written ‘g ◦ h’. So, roughly, if g and h are recursive func-
tions, then so is their (generalized) composition g◦h.

This is analogous to structured programming’s notion of linear
concatenation (that is, sequencing): First compute h; then com-
pute g.

(b) f is defined from g,h, i by conditional definition =de f

f (x1, . . . ,xk) =

{
g(x1, . . . ,xk), if xi = 0
h(x1, . . . ,xk), if xi > 0

7.7. STRUCTURED PROGRAMMING AND RECURSIVE FUNCTIONS 293

Using our simplified notation, we can write this as:

f (x) =
{

g(x), if xi = 0
h(x), if xi > 0

This is analogous to structured programming’s notion of condi-
tional branch (that is, selection): If a Boolean test (in this case,
“xi = 0”) is true, then compute g, else compute h.24

(c) f is defined from g,h by primitive recursion =de f

f (x1, . . . ,xk,y) =
{

g(x1, . . . ,xk), if y = 0
h(x1, . . . ,xk, f (x1, . . . ,xk,y−1)), if y > 0

Using our simplified notation, this becomes:

f (x,y) =
{

g(x), if y = 0
h(x, f (x,y−1), if y > 0

Note, first, that the “y = 0” case is the base case, and the “y > 0
case is the recursive case. Second, note that this combines condi-
tional definition with a computation of f based on f ’s value for
its previous output. This is the essence of recursive definitions of
functions: Instead of computing the function’s output based on its
current input, the output is computed on the basis of the function’s
previous output.

Further Reading: For a useful discussion of this, see Allen 2001.

This is analogous to structured programming’s notion of a count-
loop: while y > 0, decrement y and then compute f .

(d) f is defined from g,h1, . . . ,hk, i by while-recursion =de f

f (x1, . . . ,xk) =

{
g(x1, . . . ,xk), if xi = 0
f (h1(x1, . . . ,xk), . . . ,hk(x1, . . . ,xk)), if xi > 0

Again, using our simplified notation, this can be written as:

f (x) =
{

g(x), if xi = 0
f (h(x)), if xi > 0

This is analogous to structured programming’s notion of while-
loop (that is, repetition): While a Boolean test (in this case, “xi >
0”) is true, compute h, and loop back to continue computing f ,
but, when the test becomes false, then compute g.

24Note, by the way, that “xi = 0” can be written: Pi
k(x1, . . . ,xk) = 0

294 CHAPTER 7. WHAT IS AN ALGORITHM?

An Example of a Function Defined by While-Recursion:

The Fibonacci sequence is:
0,1,1,2,3,5,8,13, . . .

where each term after the first two terms is computed as the sum of the previous two terms. This
can be stated recursively:

• The first two terms of the sequence are 0 and 1.
• Each subsequent term in the sequence is the sum of the previous two terms.

This can be defined using while-recursion as follows:

f (x) =


0, if x = 0
1, if x = 1
f (x−1)+ f (x−2), if x > 1

We can make this look a bit more like the official definition of while-recursion by taking h1(x) =
P(x) = x−̇1 and h2(x) = P(P(x)) = P(x−̇1) = (x−̇1)−̇1 = x−̇2. In other words, the two base
cases of f are projection functions, and the recursive case uses the predecessor function twice
(the second time, it is the predecessor of the predecessor).

(e) f is defined from h by the µ-operator [pronounced: “mu”-operator] =de f

f (x1, . . . ,xk) = µz[h(x1, . . . ,xk,z) = 0]

where:

µz[h(x1, . . . ,xk ,z) = 0] =de f


min{z :

 h(x1, . . . ,xk ,z) = 0
and
(∀y < z)[h(x1, . . . ,xk ,y) has a non-0 value]

}, if such z exists

undefined, if no such z exists

This is a complicated notion, but one well worth getting an intu-
itive understanding of. It may help to know that it is sometimes
called “unbounded search” (Soare, 2012, p. 3284).

Let me first introduce a useful notation. If f (x) has a value—
that is, if it is defined (in other words, if an algorithm that com-
putes f halts)—then we will write: f (x) ↓. And, if f (x) is unde-
fined—that is, if it is only a “partial” function (in other words, if
an algorithm for computing f goes into an infinite loop)—then we
will write: f (x) ↑. Now, using our simplified notation, consider
the sequence

h(x,0), h(x,1), h(x,2), . . . , h(x,n), h(x,z), . . . , h(x,z′)

7.7. STRUCTURED PROGRAMMING AND RECURSIVE FUNCTIONS 295

Suppose that each of the first n+ 1 terms of this sequence halts
with a non-zero value, but thereafter each term halts with value 0;
that is:

h(x,0) ↓ 6= 0

h(x,1) ↓ 6= 0

h(x,2) ↓ 6= 0

. . .

h(x,n) ↓ 6= 0

but:

h(x,z) ↓ = 0

. . .

h(x,z′) ↓= 0

The µ-operator gives us a description of that smallest or “min”imal
z (that is, the first z in the sequence) for which h halts with value
0. So the definition of µ says, roughly:

µz[h(x,z) = 0] is the smallest z for which h(x,y) has a
non-0 value for each y < z, but for which h(x,z) = 0, if
such a z exists;
otherwise (that is, if no such z exists), µz[h(x,z)] is un-
defined.

So, f is defined from h by the µ-operator if you can compute
f (x) by computing the smallest z for which h(x,z) = 0.

If h is intuitively computable, then, to compute z, we just have
to compute h(x,y), for each successive natural number y, until we
find z. So definition by µ-operator is also intuitively computable.

7.7.2.3 Classification of Recursive Functions

Given these definitions, we can now classify computable functions:

1. f is a while-recursive function =de f

(a) f is a basic function, or

(b) f is defined from while-recursive functions by:

i. generalized composition, or
ii. conditional definition, or

iii. while-recursion

(c) Nothing else is while-recursive.

296 CHAPTER 7. WHAT IS AN ALGORITHM?

This is the essence of the Böhm-Jacopini Theorem: Any computer program (that
is, any algorithm for any computable function) can be written using only the three
rules of grammar: sequence (generalized composition), selection (conditional
definition), and repetition (while-recursion).

2. f is a primitive-recursive function =de f

(a) f is a basic function, or
(b) f is defined from primitive-recursive functions by:

i. generalized composition, or
ii. primitive recursion

(c) Nothing else is primitive-recursive.

The primitive-recursive functions and the while-recursive functions overlap: Both
include the basic functions and functions defined by generalized composition
(sequencing).

The primitive-recursive functions also include the functions defined by primi-
tive recursion (a combination of selection and count-loops), but nothing else.

The while-recursive functions include (along with the basic functions and gen-
eralized composition) functions defined by conditional definition (selection) and
those defined by while-recursion (while-loops).

3. f is a partial-recursive function =de f

(a) f is a basic function, or
(b) f is defined from partial-recursive functions by:

i. generalized composition, or
ii. primitive recursion, or

iii. the µ-operator
(c) Nothing else is partial-recursive.

4. f is a recursive function =de f

(a) f is partial-recursive, and
(b) f is a total function

(that is, defined for all elements of its domain)

Further Reading:
Unfortunately, the terminology varies with the author. For example, primitive recursive functions
were initially called just “recursive functions”; now, it is the while-recursive functions that are
usually just called “recursive functions”, or sometimes “general recursive functions” (to distin-
guish them from the primitive recursive functions); and partial recursive functions are sometimes
called “µ-recursive functions” (because they are the primitive recursive functions augmented by
the µ-operator). For the history of this and some clarification, see Soare 2009, §§2.3–2.4, p. 373–
373; and §15.2, pp. 396–297; and http://mathworld.wolfram.com/RecursiveFunction.html

7.8. THE HALTING PROBLEM 297

How are all of these notions related? First, here are the relationships among the var-
ious kinds of recursive functions: As we saw, there is an overlap between the primitive-
recursive functions and the while-recursive functions, with the basic functions and the
functions defined by generalized composition in their intersection.

The partial-recursive functions are a superset of the primitive-recursive functions.
The partial-recursive functions consist of the primitive-recursive functions together
with the functions defined with the µ-operator.

The recursive functions are a subset of the partial-recursive functions: The recur-
sive functions are the partial-recursive functions that are also total functions.

Second, here is how the recursive functions and the computable functions are re-
lated:

f is primitive-recursive if and only if f is count-program-computable.

f is partial-recursive iff f is while-program-computable.

And both of these (partial-recursive and while-program-computable) are
logically equivalent to being Turing Machine computable, lambda-definable,
Markov-algorithmic, etc.

7.8 The Halting Problem

Figure 7.11: c©1989 United Feature Syndicate

7.8.1 Introduction
You can build an organ which can do anything that can be done, but you cannot
build an organ which tells you whether it can be done.
—John von Neumann (1966), cited in Dyson 2012a.

Have we left anything out? That is, are there any other functions besides these? Yes!
The “Halting Problem” provides an example of a non-computable function, that is, a
function that cannot be defined using any of the mechanisms of §7.7.2. Recall that a
function is computable if and only if there is an algorithm (that is, a computer program)

298 CHAPTER 7. WHAT IS AN ALGORITHM?

that computes it. So, the Halting Problem asks whether there is an algorithm (for
example, a program for a Turing Machine)—call it the “Halting Algorithm”, AH—that
computes the following function H(C, i) (call it the “Halting Function”):

H(C, i) takes as input both:

1. an algorithm (or computer program) C
(which we can suppose takes an integer as input),

and

2. C’s input i
(which would be an integer)

and H(C, i) outputs:

• “halts”, if C halts on i

• “loops”, if C loops on i.

A formula for H is:

H(C, i) =
{

“halts”, if C(i) ↓
“loops”, if C(i) ↑

And our question is: Is there an algorithm AH that computes H? Can we write such a
program?

In terms of the “function machine” illustration from §7.4.1.3, we are asking whether
there is a “function machine” (that is, a computer) whose internal mechanism (that is,
whose program) is AH . When you input the pair 〈C, i〉 to this “function machine”
and turn its “crank”, it should output “halts” if another function machine (namely, the
function machine for C) successfully outputs a value when you give it input i, and it
should output “loops” if the function machine for C goes into an infinite loop and never
outputs any final answer. (It may, however, output some messages, but it never halts
with an answer to C(i).)

Here’s another way to think about this: AH is a kind of “super”-machine that takes
as input, not only an integer i, but also another machine C. When you turn AH ’s “crank”,
AH first feeds i to C, and then AH turns C’s “crank”. If AH detects that C has success-
fully output a value, then AH outputs “halts”; otherwise, AH outputs “loops”.

This would be very useful for introductory computer-programming teachers or soft-
ware engineers in general! After all, one thing you never want in a computer program
is an unintentional infinite loop. Sometimes, you might want an intentional one, how-
ever: You don’t want an automated teller machine to halt—you do want it to behave
in an infinite loop so that it is always ready to accept new input from a new customer.
It would, however, be very useful to have a single, handy program that could quickly
check to see if any program that someone writes has an infinite loop in it. But no such
program can be written! In a moment, we will see why.

Before doing so, however, it is important to be clear that it can be possible to write
a program that will check if another program has an infinite loop. In other words, given
a program C1, there might be another program H1 that will check whether C1—but
not necessarily any other program—has an infinite loop. What cannot be done is this:

7.8. THE HALTING PROBLEM 299

To write a single program AH that will take any program C whatsoever and tell you
whether C will halt or not.

Logical Digression and Further Reading:
To be more precise, the difference between these two situations has to do with the order of the
logical quantifiers: The Halting Problem asks this question: Does there exist a single program
AH , such that, for any program C, AH outputs “halts” if C halts, else it outputs “loops”? The
answer to this question is “no”; no such program AH exists. The other question, for which there
can be a positive answer, is this: Given any program C, does there exist a program HC (which will
depend on what C is!) that outputs “halts” if C halts, else it outputs “loops”? Note that different
Cs might have different HCs. The answer to this question can be “yes”, at least for some Cs:

In contrast to popular belief, proving termination is not always impossible. . . .
[M]any have drawn too stong of a conclusion [from Turing’s proof that Halting
is non-computable] . . . and falsely believe we are always unable to prove termi-
nation, rather than more benign consequence that we are unable to always prove
termination. . . . In our new problem statement we will still require that a termina-
tion proving tool always return answers that are correct, but we will not necessarily
require an answer. (Cook et al., 2011, my italics)

Vardi 2011b also argues that the Halting Problem is not the absolute limitation that it appears to
be; a reply and response are in Ledgard and Vardi 2011.

Note that we can’t answer the question whether C halts on i by just running C on
i: If it halts, we know that it halts. But if it loops, how would we know that it loops?
After all, it might just be taking a long time to halt.

There are two ways that we might try to write AH .

1. You can imagine that AH(C, i) works as follows:

• AH gives C its input i, and then runs C on i.

(If AH is a “function machine”, then its mechanism includes a
miniature version of C’s function machine: You input both i and
C’s function machine to AH and turn the crank; AH then inputs i
to C’s function machine and turns its crank.)

• If C halts on i, then AH outputs “halts”;
otherwise, AH outputs “loops”.

So, we might write AH as follows:

algorithm A1
H(C, i):

begin
if C(i) ↓

then output ‘halts’
else output ‘loops’

end.

This matches our formula for function H.

300 CHAPTER 7. WHAT IS AN ALGORITHM?

2. But here’s another way to write AH :

algorithm A2
H(C, i):

begin
output ‘loops’; {that is, make an initial guess that C loops}
if C(i) ↓

then output ‘halts’; {that is, revise your guess}
end.

“Trial-and-error” programs like A2
H will prove useful in our later discussion (in

Chapter 11) of hypercomputation (that is, computation that, allegedly, cannot be
modeled by Turing Machines). But it won’t work here, because we’re going to
need to convert our program for H to another program called A∗H , and A2

H can’t
be converted that way, as we’ll see. More importantly, A2

H doesn’t really do the
required job: It doesn’t give us a definitive answer to the question of whether
C halts, because its initial answer is not really “loops”, but something like “not
yet”.

The answer to our question about whether such an algorithm AH exists or can be
written is negative: There is no program for H(C, i). In other words, H(C, i) is a non-
computable function. Note that it is a function: There exists a perfectly good set of
input-output pairs that satisfies the extensional definition of ‘function’ and that looks
like this:

{〈C1, i1〉,“halts”〉 , . . . ,〈C j, ik〉,“loops”〉 , . . .}

The next section sketches a proof that H is not computable. The proof takes the
form of a “reductio ad absurdum” argument.

Logical Digression:
A “reductio ad absurdum” argument is one that “reduces” a claim to “absurdity” in order to refute
the claim. If you want to show that a claim P is false, the strategy is to assume—“for the sake of
the argument”—that P is true, and then to derive a contradiction C (that is, an “absurdity”) from
it. If you can thus show that P→ C, then—because you know that ¬C is the case (after all, C
is a contradiction, hence false; so ¬C must be true)—you can conclude that ¬P, thus refuting P.
The rule of inference that sanctions this is “Modus Tollens”; see §4.9.1.2, above.

So, for our proof, we will assume that H is computable, and derive a contradiction. If
an assumption implies a contradiction, then—because no contradiction can be true—
the assumption must have been wrong. So, our assumption that H is computable will
be shown to be false.

7.8. THE HALTING PROBLEM 301

7.8.2 Proof Sketch that H Is Not Computable

7.8.2.1 Step 1

Assume that function H is computable.
So, there is an algorithm AH that computes function H.
Now consider another algorithm, A∗H , that works as follows: A∗H is just like algo-

rithm AH , except that:

• if C halts on i, then A∗H loops

(Remember: If C halts on i, then, by C’s definition, AH does not loop,
because AH outputs “halts” and then halts.)

and

• if C loops on i, then A∗H outputs “loops” and halts (just like AH does).

Here is how we might write A∗H , corresponding to the version of AH that we called ‘A1
H ’

above:

algorithm A1∗
H (C, i):

begin
if C(i) ↓

then while true do begin end
else output ‘loops’

end.

Here, ‘true’ is a Boolean test that is always true. (As we noted earlier, you could replace
it by something like ‘1=1’, which is also always true.)

Note that we cannot write a version of A2
H that might look like this:

algorithm A2∗
H (C, i):

begin
output ‘loops’; {that is, make an initial guess that C loops}
if C(i) ↓

then while true do begin end {that is, if C halts, then loop}
end.

Why not? Because if C halts, then the only output we will ever see is the message that
says that C loops! That initial, incorrect guess is never revised. So, we’ll stick with AH
(that is, with A1

H) and with A∗H (that is, with A1∗
H).

Note that if AH exists, so does A∗H . That is, we can turn AH into A∗H as follows: If
AH were to output “halts”, then let A∗H go into an infinite loop. That is, replace AH ’s
“output ‘halts’ ” by A∗H ’s infinite loop. This is important, because we are going to show
that, in fact, A∗H does not exist; hence, neither does AH .

302 CHAPTER 7. WHAT IS AN ALGORITHM?

7.8.2.2 Step 2

Returning to our proof sketch, the next step is to code C as a number, so that it can be
treated as input to itself.

What? Why do that? Because this is the way to simulate the idea of putting the C
“machine” into the AH machine and then having the AH machine “turn” C’s “crank”.

So, how do you “code” a program as a number? This is an insight due to Kurt
Gödel. To code any text (including a computer program) as a number in such a way
that you could also decode it, begin by coding each symbol in the text as a unique
number (for example, using the ASCII code). Suppose that these numbers, in order,
are L1,L2,L3, . . . ,Ln, where L1 codes the first symbol in the text, L2 codes the second,
. . . , and Ln codes the last symbol.

Then compute the following number:

2L1 ×3L2 ×5L3 ×7L4 × . . .× pLn
n

where pn is the nth prime number, and where the ith factor in this product is the ith
prime number raised to the Lith power.

By the “Fundamental Theorem of Arithmetic”,25 the number that is the value of
this product can be uniquely factored, so those exponents can be recovered, and then
they can be decoded to yield the original text.

Further Reading:
Gödel numbering is actually a bit more complicated than this. For more information, see “Gödel
Number”, http://mathworld.wolfram.com/GoedelNumber.html, or “Gödel Numbering”, http://
en.wikipedia.org/wiki/Godel numbering Turing has an even simpler way to code symbols; we’ll
discuss his version in detail in §8.13. For a comparison of the two methods, see Kleene 1987,
p. 492.

7.8.2.3 Step 3

Now consider A∗H(C,C). This step is called “diagonalization”. It looks like a form of
self-reference, because it looks as if we are letting C take itself as input to itself—but
actually C will take its own Gödel number as input. That is, suppose that you (1) code
up program C as a Gödel number, (2) use it as input to the program C itself (after all,
the Gödel number of C is an integer, and thus it is in the domain of the function that
C computes, so it is a legal input for C), and (3) then let A∗H do its job on that pair of
inputs.

By the definition of A∗H :

if program C halts on input C, then A∗H(C,C) loops;

and

if program C loops on input C, then A∗H(C,C) halts and outputs “loops”.
25http://mathworld.wolfram.com/FundamentalTheoremofArithmetic.html

7.8. THE HALTING PROBLEM 303

7.8.2.4 Step 4

Now code A∗H by a Gödel number! And consider A∗H(A
∗
H , A∗H). This is another instance

of diagonalization. Again, it may look like some kind of self-reference, but it really
isn’t, because the first occurrence of ‘A∗H ’ names an algorithm, but the second and third
occurrences are just numbers that happen to be the code for that algorithm.26

In other words, (1) code up A∗H by a Gödel number, (2) use it as input to the program
A∗H itself, and then (3) let A∗H do its job on that pair of inputs.

Again, by the definition of A∗H :

if program A∗H halts on input A∗H , then A∗H(A
∗
H , A∗H) loops;

and

if program A∗H loops on input A∗H , then A∗H(A
∗
H , A∗H) halts and outputs

“loops”.

7.8.2.5 Final Result

But A∗H outputting “loops” means that A∗H halts!
So, if A∗H halts (outputting “loops”), then it loops, and, if A∗H loops, then it halts. In

other words, it loops if and only if it halts; that is, it does loop if and only if it does not
loop!

But that’s a contradiction!
So, there is no such program as A∗H . But that means that there is no such program

as AH . In other words, the Halting Function H is not computable.

Further Reading:
On the history of the Halting Problem, see the Further Reading box in §8.10.3.3.

Chaitin 2006a (and Chaitin 2006b, which is aimed at a more general audience) discusses the
Halting Problem, the non-existence of real numbers(!), and the idea that “everything is software,
God is a computer programmer, . . . and the world is . . . a giant computer”(!!). On the non-
“reality” of “real” numbers, see also Knuth 2001, pp. 174–175. On the relationship of random
numbers to the Halting Problem, see footnote 27, below.

For a humorous take on the Halting Problem, see Rajagopalan 2011.

26My notation here, cumbersome as it is(!), is nonetheless rather informal, but—I hope—clearer than it
would be if I tried to be even more formally precise.

304 CHAPTER 7. WHAT IS AN ALGORITHM?

7.8.3 Other Non-Computable Functions

[A] function is a set of ordered pairs . . . [satisfying the unique output condition].
. . . A computable function . . . is a mapping [that is, a function] that can be specifed
in terms of some rule or other, and is generally characterized in terms of what
you have to do to the first element to get the second [where the rule must satisfy
the constraints of being an algorithm]. . . . [A] noncomputable function . . . is an
infinite set of ordered pairs for which no rule can be provided, not only now, but
in principle. Hence its specification consists simply and exactly in the list of
ordered pairs.
—Patricia S. Churchland & Terrence J. Sejnowski, (1992, p. 62, italics in original,

my boldface)27

The Halting Function is not the only non-computable function. There are many more;
in fact, there are infinitely many of them. Moreover, there are more non-computable
functions than computable ones.

Digression:
There are also infinitely many computable functions, but “only” countably in-
finitely many, whereas there are uncountably infinitely many non-computable
functions. For more on this, see https://simple.wikipedia.org/wiki/Countable set,
https://en.wikipedia.org/wiki/Countable set, and https://cs.stackexchange.com/questions/
9633/why-are-there-more-non-computable-functions-than-computable-ones

7.8.3.1 Hilbert’s 10th Problem

Two other famous non-computable functions are Hilbert’s 10th Problem and the Busy
Beaver function.

The first of these was the 10th problem in a famous list of math problems that
Hilbert presented in his 1900 speech as goals for 20th century mathematicians to solve
(Hilbert, 1900, recall §6.6, above). It concerns Diophantine equations, that is, equa-
tions of the form p(x1, . . . ,xn) = 0, where p is a polynomial with integer coefficients.
Hilbert’s 10th Problem says:

Given a diophantine equation with any number of unknown quantities and with
rational integral numerical coefficients: To devise a process according to which
it can be determined by a finite number of operations whether the equation is
solvable in rational integers. (Hilbert, 1900, p. 458)

In the early 1970s, Yuri Matiyasevich, along with the mathematicians Martin Davis
and Julia Robinson, and the philosopher Hilary Putnam, proved that there was no such
“process” (that is, no such algorithm).

27Note that this “specification” is almost the same as the definition of “random number” given in Chaitin
2006a. See the Further Reading box at the end of §7.8.2.5.

7.9. SUMMARY 305

Further Reading:
For more information, see: http://en.wikipedia.org/wiki/Hilbert’s tenth problem
and “Hilbert’s Tenth Problem page”, http://logic.pdmi.ras.ru/Hilbert10/

7.8.3.2 The Busy Beaver Problem

The Busy Beaver function has been described as follows:

Σ(n) is defined to be the largest number which can be computed by an n-state
Turing machine (Chaitin, 1987, p. 2)

A slightly more intuitive description is this:

Given an n-state Turing machine with two-symbol alphabet {0,1}, what is the
maximum number of 1s the machine may print on an initially blank (0-filled) tape
before halting? . . . The busy beaver problem cannot be solved in general by a
computer since the function Σ(n) grows faster than any computable function f (n).
(Dewdney, 1989, pp. 241–242)

It was first described, and proved to be non-computable, by Tibor Radó (1962).

Further Reading:
Radó 1962 is a wonderfully readable introduction to the Busy Beaver “game”. §II gives a
very simple example, aimed at students, of a Turing Machine, and §§I–III and, especially,
§VIII are amusing and well worth reading! For more information, see Suber 1997d and
http://en.wikipedia.org/wiki/Busy beaver

7.9 Summary
Let’s take stock of where we are. We asked whether CS is the science of computing
(rather than the science of computers). In order to answer that, we asked what comput-
ing, or computation, is. We have now seen one answer to that question: Computation
is the process of executing an algorithm to determine the output value of a function,
given an input value. We have seen how to make this informal notion precise, and
we have also seen that it is an interesting notion in the sense that not all functions are
computable.

But this was a temporary interruption of our study of the history of computers
and computing. In the next chapter, we will return to that history by examining Alan
Turing’s formulation of computability.

Further Reading:
Harnad 1994b is a special issue of the journal Minds and Machines on “What Is Computation?”,
including, among others, Bringsjord 1994; Chalmers 1995; Harnad 1994a. Shagrir 1999 dis-
cusses what computers are and what computation is. B.C. Smith 2002 discusses the foundations
of computing. “PolR” 2009 is an excellent introduction for lawyers(!) to computation theory.

306 CHAPTER 7. WHAT IS AN ALGORITHM?

7.10 Questions for the Reader

1. To the lists of features of algorithms in §7.5, above, Gurevich 2012, p. 4 adds
“isolation”:

Computation is self-contained. No oracle is consulted, and nobody interferes
with the computation either during a computation step or in between steps.
The whole computation of the algorithm is determined by the initial state.

(a) Is this related to Markov’s “being determined” feature, or Kleene’s “fol-
lowed mechanically” feature, or Knuth’s “definiteness” feature?

(b) Does “isolation” mean that a program that asks for input from the external
world (or from a user, who, of course, is in the external world!) is not doing
computation? (We’ll discuss this in Chapters 11 and 17, but you should
start thinking about this now.)

2. Gurevich has another “constraint”: “Computation is symbolic (or digital, symbol-
pushing)” (p. 4). That is, computation is syntactic. (See §17.8 for a discussion
of what that means.)

Does that mean that computation is not mathematical (because mathematics
is about numbers, not numerals)? Does it mean that computers cannot have real-
world effects? (We’ll return to these topics in Chapter 17.)

3. Harry Collins described an “experimenter’s regress”:

[Y]ou can say an experiment has truly been replicated only if the replication
gets the same result as the original, a conclusion which makes replication
pointless. Avoiding this, and agreeing that a replication counts as “the same
procedure” even when it gets a different result, requires recognising the role
of tacit knowledge and judgment in experiments. (The Economist, 2013)

Let’s consider an experiment as a mathematical binary relation whose input is,
let’s say, the experimental set-up and whose output is the result of the experiment.
In that case, if a replication of the experiment always gets the same result, then
the relation is a function.

Can scientific experiments be considered as (mathematical) functions? In that
case, does it make any sense to replicate an experiment in order to confirm it?

4. Should other verbs be added to the Processing Insight? Is “read” a verb on a par
with the ones cited? (Is “read” even needed?) Should Boolean tests be included
as verbs?

7.10. QUESTIONS FOR THE READER 307

5. Computability is a relative notion, not an absolute one. All computation,
classical or otherwise, takes place relative to some set or other or primitive
capabilities. The primitives specified by Turing in 1936 occupy no privileged
position. One may ask whether a function is computable relative to these
primitives or to some superset of them. (Copeland 1997, p. 707; see also
Copeland and Sylvan 1999, pp. 46–47)

In §7.7.1.1, definition (1b), I said that primitive operations had to be computable,
at least in an informal sense. After all, there we were trying to define what
it meant to be computable. But another way to proceed would be to say that
primitive operations are computable by definition.

But does this allow anything to be a primitive operation, even something that
really shouldn’t be (informally) computable? What if the primitive operation is,
in fact, non-computable? Could we have a kind of “computation” in which the
recursive portions are based on a non-computable (set of) primitive operation(s)?

Further Reading:
We’ll return to relative computability in §11.4.4, below. For more information, see Soare 2009,
2016; Homer and Selman 2011, Ch. 7.

6. A research question:

. . . every physical process instantiates a computation insofar as it progresses
from state to state according to dynamics prescribed by the laws of physics,
that is, by systems of differential equations. (Fekete and Edelman, 2011,
p. 808)

This suggests the following very odd and very liberal definition: Something is a
computation =de f it is a progression from state to state that obeys a differential
equation. This definition is liberal, because it seems to go beyond the limitations
of a Turing Machine-like algorithm. That’s not necessarily bad; for one thing, it
subsumes both analog and discrete computations under one rubric.

Are Turing Machine algorithms describable by differential equations?

308 CHAPTER 7. WHAT IS AN ALGORITHM?

Chapter 8

Turing’s Analysis of
Computation

Version of 7 January 2020; DRAFT c© 2004–2020 by William J. Rapaport

Turing’s ‘Machines’. These machines are humans who calculate.
—Ludwig Wittgenstein (1980, p. 191e, §1096)

[A] human calculator, provided with pencil and paper and explicit instructions, can
be regarded as a kind of Turing machine.
—Alonzo Church (1937)

[Wittgenstein’s] quotation, though insightful, is somewhat confusingly put. Better
would have been: these machines are Turing’s mechanical model of humans who
calculate.
—Saul A. Kripke (2013, p. 96, footnote 12)

309

310 CHAPTER 8. TURING’S ANALYSIS OF COMPUTATION

8.1 Required Reading
• Turing, Alan M. (1936), “On Computable Numbers, with an Application to

the Entscheidungsproblem”, Proceedings of the London Mathematical Soci-
ety, Ser. 2, Vol. 42 (1937): 230–265,
http://www.cs.virginia.edu/∼robins/Turing Paper 1936.pdf

– Reprinted, with corrections, in Martin Davis (ed.), The Undecidable: Ba-
sic Papers on Undecidable Propositions, Unsolvable Problems and Com-
putable Functions (New York: Raven Press, 1965): 116–154.

1. Concentrate on the informal expository parts; the technical parts are, of
course, of interest, but are rather difficult to follow, incorrect in many parts,
and can be skimmed.

2. In particular, concentrate on:

(a) §§1–6
– Study the simple examples of Turing Machines carefully;

skim the complex ones
(b) §9, part I

– This section elaborates on what it is that a human computer does.

3. §7 describes the universal Turing Machine;
§8 describes the Halting Problem.

– You can skim these sections (that’s ‘skim’, not ‘skip’!)

8.2. INTRODUCTION 311

8.2 Introduction
If there is a single document that could be called the foundational document of CS,
it would be Alan Mathison Turing’s 1936 article, “On Computable Numbers, with an
Application to the Entscheidungsproblem”, which appeared in the journal Proceedings
of the London Mathematical Society, Series 2. In this paper, Turing (who was only
about 24 years old at the time) accomplished (at least) 5 major goals:

1. He gave what is considered to be the clearest and most convincing mathematical
analysis of computation (what is now called, in his honor, a “Turing Machine”).

2. He proved that there were some functions that were not computable, thus show-
ing that computation was not a trivial property. (After all, if all functions were
computable—which no doubt would be a very nice feature—then computability
would not really be a very interesting or special property. But, because some
functions are not computable, computability is a property that only some (but
not all) functions have, and so it becomes more interesting.)

3. He proved that the Turing-machine analysis of computation was logically equiv-
alent to Church’s lambda-calculus analysis of computation.

4. He formulated a “universal” Turing Machine, which is a mathematical version
of a programmable computer.

5. And (as I suggested in §3.14.6) he wrote the first AI program (see §8.8.2.8.3,
below).

Thus, arguably, in this paper, he created the modern discipline of CS.
Because this paper was so important and so influential, it is well worth reading.

Fortunately, although parts of it are tough going (and it contains some errors),1 much
of it is very clearly written. It is not so much that the “tough” parts are difficult or hard
to understand, but they are full of nitty, gritty details that have to be slogged through.
Fortunately, Turing has a subtle sense of humor, too.

In this chapter, I will provide a guide to reading parts of Turing’s paper slowly and
carefully, by actively thinking about it.

Further Reading:
A wonderful guide to reading all of it slowly and carefully is Petzold 2008. (For a review of
Petzold’s book, see Davis 2008.) Petzold’s book has several accompanying websites:
http://www.theannotatedturing.com/, http://www.charlespetzold.com/AnnotatedTuring/,
and http://www.amazon.com/gp/reader/0470229055/ref=sib dp pt#reader-link

Bernhardt 2016, while not focusing on Turing’s paper itself, is an excellent guide for the general
reader to the mathematics of computation theory.

1Some of which Turing himself corrected (Turing, 1938). For a more complete “debugging”, see Davies
1999.

312 CHAPTER 8. TURING’S ANALYSIS OF COMPUTATION

8.3 Slow and Active Reading
One of the best ways to read is to read slowly and actively. This is especially true when
you are reading a technical paper, and even more especially when you are reading
mathematics.

Reading slowly and actively means (1) reading each sentence slowly, (2) thinking
about it actively, and (3) making sure that you understand it before reading the next
sentence.

One way to make sure that you understand it is to ask yourself why the author said
it, or why it might be true. (Recall our discussion in §2.5.1, of the importance of asking
“why”.) If you don’t understand it (after reading it slowly and actively), then you
should re-read all of the previous sentences to make sure that you really understood
them. Whenever you come to a sentence that you really don’t understand, you should
ask someone to help you understand it.

(Of course, it could also be the case that you don’t understand it because it isn’t
true, or doesn’t follow from what has been said, or is confused in some way—and not
because it’s somehow your fault that you don’t understand it!)

When you read, imagine that what you’re reading is like a computer program and
that you are the computer that has to understand it. Except, of course, you’re an in-
dependently intelligent computer, and, if you don’t understand something, you can
challenge what you read. In other words, treat reading as an attempt to “debug” what
the author wrote! (Compare a similar remark in §A.1 about writing.)

Further Reading:
On the value of slow and active reading in general, see https://cse.buffalo.edu/∼rapaport/
howtostudy.html#readactively, as well as Fletcher 2007; Blessing 2013.

8.4 Title: “The Entscheidungsproblem”
We’ll begin our slow and active reading of Turing’s paper with the title, in particular its
last word: ‘Entscheidungsproblem’. This is a German noun that—as we saw in §6.6—
was well known to mathematicians in the 1930s; ‘Entscheidung’ means “decision”,
‘-s’ represents the possessive,2 and ‘problem’ means “problem”. So, an Entschei-
dungsproblem is a decision problem, and the Decision Problem was the problem of
finding an algorithm that would (a) take two things as input: (1) a formal logic L and
(2) a proposition ϕL in the language for that logic, and that would (b) output either
‘yes’, if ϕL was a theorem of that logic, or else ‘no’, if ¬ϕL was a theorem of that logic
(that is, if ϕL was not a theorem of L). In other words, the Decision Problem was the
problem of finding a general algorithm for deciding whether any given proposition was
a theorem.

Wouldn’t that be nice? Mathematics could be completely automated: Given any
mathematical proposition, one could apply this general algorithm to it, and you would
be able to know if it were a theorem or not. Turing was fascinated by this problem,

2Just as in English, so ‘Entscheidungs’ means “decision’s”.

8.5. PARAGRAPH 1 313

and he solved it. Along the way, he invented CS! He solved the Decision Problem in
the negative, by showing that no such algorithm existed—we’ve already seen how: He
showed that there was at least one problem (the Halting Problem) for which there was
no such algorithm.

8.5 Paragraph 1

8.5.1 Paragraph 1, Sentence 1
Let’s turn to the first sentence of the first paragraph:

The “computable” numbers may be described briefly as the real numbers whose
expressions as a decimal are calculable by finite means.
(Turing, 1936, p. 230, my italics)3

8.5.1.1 “Computable”

The word ‘computable’ occurs in quotes here, because Turing is using it in an informal,
intuitive sense. It is the sense that he will make mathematically precise in the rest of
the paper.

8.5.1.2 Real Numbers

Real numbers are all of the numbers on the continuous number line. They consist of:

1. the rational numbers, which consist of:

(a) the integers, which—in turn—consist of:

i. the (non-negative) natural numbers (0, 1, 2, . . .), and
ii. the negative natural numbers (−1,−2, . . .), and

(b) all other numbers that can be expressed as a ratio of integers
(or that can be expressed in decimal notation with repeating decimals),

and

2. the irrational numbers (that is, those numbers that cannot be expressed as a ratio
of integers, such as π,

√
2, etc.)

But the real numbers do not include the “complex” numbers, such as
√
−1.

3In the rest of this chapter, citations from Turing 1936 will just be cited by section or page number of the
original version.

314 CHAPTER 8. TURING’S ANALYSIS OF COMPUTATION

Every real number can be expressed “as a decimal”, that is, in decimal notation.
For instance:

1 = 1.0 = 1.00 = 1.000 (etc.)
1
2 = 0.5 = 0.50 = 0.500 = 0.5000 (etc.)

1
3 = 0.33333. . .

1
7 = 0.142857142857. . .

These are all rational numbers and examples of “repeating” decimals. But the reals
also include the irrational numbers, which have non-repeating decimals:

π = 3.1415926535 . . .

√
2 = 1.41421356237309 . . .

8.5.1.3 Finitely Calculable

Given a real number, is there an algorithm for computing its decimal representation?
If so, then its “decimal [is] calculable by finite means” (because algorithms must be
finite, as we saw in §7.5).

Digression and Further Reading:
Decimal notation is also called ‘base-10 notation’. It is merely one example (another being
binary—or base-2—notation) of what is more generally known as ‘radix notation’ or ‘positional
notation’; see http://en.wikipedia.org/wiki/Radix and http://math.comsci.us/radix/radix.html

For another discussion of the computation of real numbers, see Hartmanis and Stearns 1967.

Myhill 1972 is not directly related to Turing, but “consider[s] the notion of real numbers from a
constructive point of view. The point of view requires that any real number can be calculated”
(p. 748), that is, computed, which is (in part) what Turing’s 1936 paper is about.

For the definition (in fact, the construction) of the reals from the rationals in terms of “Dedekind
cuts”, see the citations in the “Mathematical Digression” in §3.3.3.1.

For a commentary on the “reality” of “real” numbers, see Knuth 2001, pp. 174–175.
On their “unreality”, see Chaitin 2006a,b.

8.5.2 Paragraph 1, Last Sentence
Now, if we were really going to do a slow (and active!) reading, we would next move
on to sentence 2. But, in the interests of keeping this chapter shorter than a full book
(and so as not to repeat everything in (Petzold, 2008)), we’ll skip to the last sentence
of the paragraph:

According to my definition, a number is computable if its decimal can be written
down by a machine. (p. 230, my italics.)

8.6. PARAGRAPH 2 315

This is probably best understood as an alternative way of expressing the first sen-
tence: To be “calculable by finite means” is to be capable of being “written down by a
machine”. Perhaps the latter way of putting it extends the notion a bit, because it sug-
gests that if a number is calculable by finite means, then that calculation can be done
automatically, that is, by a machine—without human intervention. And that, after all,
was the goal of all of those who tried to build calculators or computing machines, as
we saw in Chapter 6. So, Turing’s goal in this paper is to give a mathematical analysis
of what can be accomplished by any such machine (and then to apply the results of this
analysis to solving the Decision Problem).

8.6 Paragraph 2

8.6.1 Paragraph 2, Sentence 1
In §§9, 10 I give some arguments with the intention of showing that the computable
numbers include all numbers which could naturally be regarded as computable.
(p. 230, my italics.)

We will look at some of those arguments later, but, right now, let’s focus on the phrase
‘naturally be regarded as computable’. This refers to the same informal, intuitive, pre-
theoretical notion of computation that his quoted use of ‘computable’ referred to in the
first sentence. It is the sense in which Hilbert wondered about which mathematical
problems were decidable, the sense in which people used the phrase “effective compu-
tation”, the sense in which people used the word ‘algorithm’, and so on. It is the sense
in which people (mathematicians, in particular) can compute. And one of its crucial
features is that it be finite.

The first occurrence of ‘computable’ in this sentence refers to the formal notion
that Turing will present. Thus, this sentence is an expression of Turing’s computability
thesis.

8.6.2 Paragraph 2, Last Sentence
Once again, we’ll skip to the last sentence of the paragraph:

The computable numbers do not, however, include all definable numbers, and an
example is given of a definable number which is not computable.
(p. 230, my italics)

As we noted in §8.2, above, it is much more interesting if not all functions—or numbers—
are computable. Any property that everything has is not especially interesting. But if
there is a property that only some things have (and others lack), then we can begin to
categorize those things and thus learn something more about them.

So Turing is promising to show us that computability is an interesting (because not
a universal) property. And he’s not going to do that by giving us some abstract (or
“transcendental”) argument; rather, he’s actually going to show us a non-computable
number (and, presumably, show us why it’s not computable). We’ve already seen what

316 CHAPTER 8. TURING’S ANALYSIS OF COMPUTATION

this is: It’s the (Gödel) number for an algorithm (a Turing Machine) for the Halting
Problem. So, in this chapter, we’ll skip that part of Turing’s paper. We’ll also skip the
rest of the introductory section of the paper, which simply lays out what Turing will
cover in the rest of the paper.

8.7 Section 1, Paragraph 1: “Computing Machines”
Let’s move on to Turing’s Section 1, “Computing Machines”. We’ll look at the first
paragraph and then jump to Turing’s Section 9 before returning to this section.

Here is the first paragraph of Section 1:

We have said that the computable numbers are those whose decimals are calculable
by finite means. This requires rather more explicit definition. No real attempt will
be made to justify the definitions given until we reach §9. (p. 231.)

This is why we will jump to that section in a moment. But first let’s continue with the
present paragraph:

For the present I shall only say that the justification [of the definitions] lies in the
fact that the human memory is necessarily limited. (p. 231, my italics.)

Turing’s point—following Hilbert—is that we humans do not have infinite means at
our disposal. We all eventually die, and we cannot work infinitely fast, so the number
of calculations we can make in a single lifetime is finite.

But how big is “finite”? Let’s suppose, for the sake of argument, that a typical
human (named ‘Pat’) lives as long as 100 years. And let’s suppose that from the time
Pat is born until the time Pat dies, Pat does nothing but compute. Obviously, this
is highly unrealistic, but I want to estimate the maximum number of computations
that a typical human could perform. The actual number will, of course, be far fewer.
How long does a computation performed by a human take? Let’s suppose that the
simplest possible computation (following our notion of a “basic function” in §7.7.2) is
computing the successor of a natural number, and let’s suppose that it takes as long as
1 second. In Pat’s lifetime, approximately 3,153,600,000 successors can be computed
(because that’s approximately the number of seconds in 100 years). Are there any
problems that would require more than that number of computations? Yes! It has been
estimated that the number of possible moves in a chess game is 10125, which is about
10116 times as large as the largest number of computations that a human could possibly
perform. In other words, we humans are not only finite, we are very finite!

But computer scientists and mathematicians tend to ignore such human limitations
and pay attention only to the mathematical notion of finiteness. Even the mathematical
notion, which is quite a bit larger than the actual human notion (for more on this, see
(Knuth, 2001)), is still smaller than infinity, and so the computable numbers, as Turing
defines them, include quite a bit.

8.8. SECTION 9: “THE EXTENT OF THE COMPUTABLE NUMBERS” 317

8.8 Section 9:
“The Extent of the Computable Numbers”

8.8.1 Section 9, Paragraphs 1 and 2
I want to skip now to Turing’s §9, “The Extent of the Computable Numbers”, because it
is this section that contains the most fascinating part of Turing’s analysis. We’ll return
to his §1 later. He begins as follows:

No attempt has yet been made [in Turing’s article] to show that the “computable”
numbers include all numbers which would naturally be regarded as computable.
(p. 249, my italics.)

Again, Turing is comparing two notions of computability: the technical notion (sig-
nified by the first occurrence of the word ‘computable’—in “scare quotes”) and the
informal or “natural” notion. He is going to argue that the first includes the second.
Presumably, it is more obvious that the second (the “natural” notion) includes the first
(the technical notion), that is, that if a number is technically computable, then it is
“naturally” computable. The less obvious inclusion is the one that is more in need of
support, that if a number is “naturally” computable, then it is technically computable.
But what kind of argument would help convince us of this? Turing says:

All arguments which can be given are bound to be, fundamentally, appeals to intu-
ition, and for this reason rather unsatisfactory mathematically. (p. 249.)

Why is this so? Because one of the two notions—the “natural” one—is informal, and
so no formal, logical argument can be based on it. This is why the Computability
Thesis (that is, Turing’s thesis) is a thesis and not a theorem—it is a hypothesis and not
something formally provable. Nonetheless, Turing will give us “appeals to intuition”,
that is, informal arguments, in fact, three kinds, as he says in the next paragraph:

The arguments which I shall use are of three kinds.

(a) A direct appeal to intuition.

(b) A proof of the equivalence of two definitions (in case the new definition has a
greater intuitive appeal).

(c) Giving examples of large classes of numbers which are computable.
(p. 249.)

In this chapter, we will only look at (a), his direct appeal to intuition.
Let’s return to the last sentence of paragraph 1:

The real question at issue is “What are the possible processes which can be carried
out in computing a number?” (p. 249.)

If Turing can answer this question, even informally, then he may be able to come
up with a formal notion that captures the informal one. That is his “direct appeal to
intuition”.

318 CHAPTER 8. TURING’S ANALYSIS OF COMPUTATION

Further Reading:
Robin Gandy—Turing’s only Ph.D. student—argued “that Turing’s analysis of computation by
a human being does not apply directly to mechanical devices” (Gandy, 1980). This has become
known as “Gandy’s Thesis”. Commentaries on it include Sieg and Byrnes 1999 (which simplifies
and generalizes Gandy’s paper); Israel 2002; Shagrir 2002.

8.8.2 Section 9, Subsection I
Turing notes about “Type (a)”—the “direct appeal to intuition”—that “this argument
is only an elaboration of the ideas of §1” (p. 249). This is why we have made this
digression to Turing’s §9 from his §1; when we return to his §1, we will see that it
summarizes his §9.

8.8.2.1 Section 9, Subsection I, Paragraph 1

The first part of the answer to the question, “What are the possible processes which
can be carried out in computing a number?”—that is, the first intuition about “natural”
computation—is this:

Computing is normally done by writing certain symbols on paper. (p. 249.)

So, we need to be able to write symbols on paper. Is this true? What kind of symbols?
And what kind of paper?

8.8.2.1.1 Is It True? Is computing normally done by writing symbols on paper? We
who live in the 21st century might think that this is obviously false: Computers don’t
have to write symbols on paper in order to do their job. They do have to write symbols
when we ask the computer to print a document, but they don’t when we are watch-
ing a YouTube video. But remember that Turing is analyzing the “natural” notion of
computing: the kind of computing that humans do. And his model includes arithmetic
computations. Those typically are done by writing symbols on paper (or, perhaps, by
imagining that we are writing symbols on paper, as when we do a computation “in our
head”).

8.8.2.1.2 What About the Paper?

We may suppose this paper is divided into squares like a child’s arithmetic book.
(p. 249.)

In other words, we can use graph paper! Presumably, we can put one symbol into each
square of the graph paper. So, for example, if we’re going to write down the symbols
for computing the sum of 43 and 87, we could write it like this:

8.8. SECTION 9: “THE EXTENT OF THE COMPUTABLE NUMBERS” 319

| |1| |

| |4|3|

|+|8|7|

|1|3|0|

We write ‘43’ in two squares, then we write ‘+87’ in three squares beneath this, aligning
the ones and tens columns. To perform the computation, we compute the sum of 7 and
3, and write it as follows: The ones place of the sum (‘0’) is written below ‘7’ in the
ones column and the tens place of the sum (‘1’) is “carried” to the square above the
tens place of ‘43’. Then the sum of 1, 4, and 8 is computed and then written as follows:
The ones place of that sum, namely, ‘3’ (which is the tens place of the sum of 43 and
87) is written below ‘8’ in the tens column, and the tens place of that sum—namely,
‘1’ (which is the hundreds place of the sum of 43 and 87—namely, ‘1’)—is written in
the square to the left of that ‘3’.

Turing continues:

In elementary arithmetic the two-dimensional character of the paper is sometimes
used. (p. 249.)

—as we have just seen.

But such a use is always avoidable, and I think that it will be agreed that the two-
dimensional character of paper is no essential of computation. (p. 249.)

In other words, we could have just as well (if not just as easily) written the computation
thus:

|1| |4|3|+|8|7|=|1|3|0|

Here, we begin by writing the problem ‘43+87’ in five successive squares, followed,
perhaps, by an equals-sign. And we can write the answer in the squares following the
equals-sign, writing the carried ‘1’ in an empty square somewhere else, clearly sepa-
rated (here, by a blank square) from the problem. So, the use of two-dimensional graph
paper has been avoided (at the cost of some extra bookkeeping). As a consequence,
Turing can say:

I assume then that the computation is carried out on one-dimensional paper, i.e.
on a tape divided into squares. (p. 249, my boldface.)

Here is the famous tape of what will become a Turing Machine! (Note, though, that
Turing has not yet said anything about the length of the tape; at this point, it could be
finite.) We now have our paper on which we can write our symbols.

320 CHAPTER 8. TURING’S ANALYSIS OF COMPUTATION

It is, perhaps, worth noting that the tape doesn’t have to be this simple. As Kleene
notes,

[T]he computer is [not] restricted to taking an ant’s eye view of its work,
squinting at the symbol on one square at a time. . . . [T]he Turing-machine squares
can correspond to whole sheets of paper. If we employ sheets ruled into 20 columns
and 30 lines, and authorize 99 primary symbols, there are 100600 = 101200 possible
square conditions, and we are at the opposite extreme. The schoolboy [sic] doing
arithmetic on 8 1

2 by 12” sheets of ruled paper would never need, and could never
utilize, all this variety.

Another representation of a Turing Machine tape is as a stack of IBM cards,
each card regarded as a single square for the machine. (Kleene, 1995, p. 26)

Further Reading:

A 1923 play called The Adding Machine lampooned the monotony of assembly-
line office work and prefigured fears about machine automation. Its main charac-
ter, “Mr. Zero,” writes down numbers all day long, “upon a square sheet of ruled
paper.” (Lepore, 2018, p. 404)

The play, by Elmer Rice, is online at https://archive.org/details/THEADDINGMACHINE.

8.8.2.1.3 What About the Symbols?

I shall also suppose that the number of symbols which may be printed is finite.
(p. 249, my italics.)

This is the first item that Turing has put a limitation on: There are only finitely many
symbols.

Actually, Turing is a bit ambiguous here: There might be infinitely many different
kinds of symbols, but we’re only allowed to print a finite number of them. Or there
might only be a finite number of different kinds of symbols—with a further vagueness
about how many of them we can print: If the tape is finite, then we can only print a
finite number of the finite amount of symbols, but, if the tape is infinite, we could print
infinitely many of the finite amount of symbols. But it is clear from what he says next
that he means that there are only a finite number of different kinds of symbols.

Why finite? Because:

If we were to allow an infinity of symbols, then there would be symbols differing
to an arbitrarily small extent. (p. 249.)

There are two things to consider here: Why would this be the case? And why does it
matter? The answer to both of these questions is easy: If the human who is doing the
computation has to be able to identify and distinguish among infinitely many symbols,
surely some of them may get confused, especially if they look a lot alike! Would they
have to look alike? A footnote at this point suggests why the answer is ‘yes’:

If we regard a symbol as literally printed on a square we may suppose that the
square is 0 ≤ x ≤ 1,0 ≤ y ≤ 1. The symbol is defined as a set of points in this
square, viz. the set occupied by printer’s ink. (p. 249, footnote.)

8.8. SECTION 9: “THE EXTENT OF THE COMPUTABLE NUMBERS” 321

That is, we may suppose that the square is 1 unit by 1 unit (say, 1 cm by 1 cm). Any
symbol has to be printed in this space. Imagine that each symbol consists of very tiny
points of ink (akin to pixels, but smaller!). To be able to print infinitely many different
kinds of symbols in such a square, some of them are going to differ from others by just
a single point of ink, and any two such symbols are going to “differ to an arbitrarily
small extent” and, thus, be impossible for a human to distinguish. So, “the number
of symbols which may be printed” must be finite in order for the human to be able to
easily read them.

Is this really a limitation?

The effect of this restriction of the number of symbols is not very serious. (p. 249.)

Why not? Because:

It is always possible to use sequences of symbols in the place of single symbols.
Thus an Arabic numeral such as 17 or 999999999999999 is normally treated as
a single symbol. Similarly in any European language words are treated as single
symbols . . . (pp. 249–250.)

In other words, the familiar idea of treating a sequence of symbols (a “string” of sym-
bols, as mathematicians sometimes say) as if it were a single symbol allows us to
construct as many symbols as we want from a finite number of building blocks. That
is, the rules of place-value notation (for Arabic numerals) and of spelling (for words
in European languages)—that is, rules that tell us how to “concatenate” our symbols
(to string them together)—give us an arbitrarily large number (though still finite!) of
symbols.

What about non-European languages? Turing makes a (possibly politically incor-
rect) joke:

. . . (Chinese, however, attempts to have an enumerable infinity of symbols). (p. 250.)

Chinese writing is pictographic and thus would seem to allow for symbols that run
the risk of differing by an arbitrarily small extent, or, at least, that do not have to be
constructed from a finite set of elementary symbols. As Turing also notes, using a finite
number of basic symbols and rules for constructing complex symbols from them does
not necessarily avoid the problem of not being able to identify or differentiate them:

The differences from our point of view between the single and compound symbols
is that the compound symbols, if they are too lengthy, cannot be observed at one
glance. This is in accordance with experience. We cannot tell at a glance whether
9999999999999999 and 999999999999999 are the same. (p. 250.)

And probably you can’t, either! So doesn’t this mean that, even with a finite number
of symbols, we’re no better off than with infinitely many? Although Turing doesn’t
say so, we can solve this problem using the techniques he’s given us: Don’t try to
write 15 or 16 occurrences of ‘9’ inside one, tiny square: Write each ‘9’ in a separate
square! And then count them to decide which sequence of them contains 15 and which
contains 16, which is exactly how you “can tell . . . whether 9999999999999999 and
999999999999999 are the same.”

322 CHAPTER 8. TURING’S ANALYSIS OF COMPUTATION

Incidentally, Kleene (1995, p. 19) observes that Turing’s emphasis on not allow-
ing “an infinity of symbols” that “differ . . . to an arbitrarily small extent” marks the
distinction between “digital computation rather than analog computation”.

The other thing that Turing leaves unspecified here is the minimum number of ele-
mentary symbols we need. The answer, as we saw in §7.6.1, is: two (they could be a
blank and ‘1’, or ‘0’ and ‘1’, or any other two symbols). Turing himself will use a few
more (just as we did in our addition example above, allowing for the 10 single-digit
numerals together with ‘+’ and ‘=’).

8.8.2.2 Section 9, Subsection I, Paragraph 2: States of Mind

So, let’s assume that, to compute, we only need a 1-dimensional tape divided into
squares and a finite number of symbols (minimally, two). What else?

(*) The behaviour of the computer at any moment is determined by the symbols
which he is observing, and his “state of mind” at that moment.
(p. 250, my label and italics.)

I have always found this to be one of the most astounding and puzzling sentences!
‘computer’? ‘he’? ‘his’? But it is only astounding or puzzling to those of us who live in
the late 20th/early 21st century, when computers are machines, not humans! Recall the
ad from the 1892 New York Times that we saw in §6.2 for a (human) computer. In 1936,
when Turing was writing this article, computers were still humans, not machines. So,
throughout this paper, whenever Turing uses the word ‘computer’, he means a human
whose job it is to compute. I strongly recommend replacing (in your mind’s ear, so to
speak) each occurrence of the word ‘computer’ in this paper with the word ‘clerk’.4

So, “the behavior of the clerk at any moment is determined by the symbols which he
[or she!] is observing”. In other words, the clerk decides what to do next by looking at
the symbols, and which symbols the clerk looks at partially determines what the clerk
will do. Why do I say ‘partially’? Because the clerk also needs to know what to do
with them: If the clerk is looking at two numerals, should they be added? Subtracted?
Compared? The other information that the clerk needs is his or her “state of mind”.
What is that? Let’s hold off on answering that question till we see what else Turing has
to say.

We may suppose that there is a bound B to the number of symbols or squares which
the computer [the clerk!] can observe at one moment. If he[!] wishes to observe
more, he must use successive observations. (p. 250, my italics.)

This is the second kind of finiteness: We have a finite number of different kinds of sym-
bols and a finite number of them that can be observed at any given time. This upper
bound B can be quite small; in fact, it can equal 1 (and B = 1 in most formal, math-
ematical presentations of Turing Machines), but Turing is allowing for B to be large
enough so that the clerk can read a single word without having to spell it out letter by

4In order to be able to use a word that sounds like ‘computer’ without the 21st-century implication that it
is something like a Mac or a PC, some writers, such as Sieg (1994), use the nonce word ‘computor’ to mean
a human who computes. I prefer to call them ‘clerks’.

8.8. SECTION 9: “THE EXTENT OF THE COMPUTABLE NUMBERS” 323

letter, or a single numeral without having to count the number of its digits (presumably,
the length of ‘9999999999999999’ exceeds any reasonable B for humans). “Successive
observations” will require the clerk to be able to move his or her eyes one square at a
time to the left or right.

We will also suppose that the number of states of mind which need to be taken into
account is finite. (p. 250, my italics.)

Here, we have a third kind of finiteness. But we still don’t know exactly what a “state
of mind” is. Turing does tell us that:

If we admitted an infinity of states of mind, some of them will be “arbitrarily close”
and will be confused. (p. 250.)

—just as is the case with the number of symbols. And he also tells us that “the use of
more complicated states of mind can be avoided by writing more symbols on the tape”
(p. 250), but why that is the case is not at all obvious at this point. (Keep in mind,
however, that we have jumped ahead from Turing’s §1, so perhaps something that he
said between then and now would have clarified this. Nevertheless, let’s see what we
can figure out.)

Further Reading: For more on the notion of bounds, see Sieg 2006, p. 16.

8.8.2.3 Section 9, Subsection I, Paragraph 3: Operations

So, a clerk who is going to compute needs only a (possibly finite) tape divided into
squares and a finite number of different kinds of symbols; the clerk can look at only
a bounded number of them at a time; and the clerk can be in only a finite number of
“states of mind” at a time. Moreover, what the clerk can do (the clerk’s “behavior”) is
determined by the observed symbols and his or her “state of mind”.

What kinds of behaviors can the clerk perform?

Let us imagine the operations performed by the computer [the clerk] to be split
up into “simple operations” which are so elementary that it is not easy to imagine
them further divided. (p. 250, my italics.)

These are going to be the basic operations, the ones that all other operations will be
constructed from. What could they be? This is an important question, because this is
going to be the heart of computation.

Every such operation consists of some change of the physical system consisting of
the computer [the clerk] and his[!] tape. (p. 250, my italics)

So, what “changes of the physical system” can the clerk make? The only things that can
be changed are the clerk’s state of mind (i.e., the clerk can change him- or herself, so
to speak) and the tape, which would mean changing a symbol on the tape or changing
which symbol is being observed. What else could there be? That’s all we have to
manipulate: the clerk, the tape, and the symbols. And all we’ve been told so far is that
the clerk can write a symbol on the tape or observe one that’s already written. Turing
makes this clear in the next sentence:

324 CHAPTER 8. TURING’S ANALYSIS OF COMPUTATION

We know the state of the system if we know the sequence of symbols on the tape,
which of these are observed by the computer [by the clerk] (possibly with a special
order), and the state of mind of the computer [of the clerk]. (p. 250)

The “system” is the clerk, the tape, and the symbols. The only things we can know, or
need to know, are:

• which symbols are on the tape,

• where they are (their “sequence”),

• which are being observed (and in which order—the clerk might be looking from
left to right, from right to left, and so on), and

• what the clerk’s (still mysterious) “state of mind” is.

Here is the first “simple operation”:

We may suppose that in a simple operation not more than one symbol is altered.
Any other changes can be split up into simple changes of this kind.
(p. 250, my italics.)

Altering a single symbol in a single square is a “simple” operation, that is, a “basic”
operation (or “basic program”) in the sense of our discussion in Chapter 7. (And alter-
ations of sequences of symbols can be accomplished by altering the single symbols in
the sequence.) How do you alter a symbol? You replace it with another one; that is,
you write down a (possibly different) symbol. (And perhaps you are allowed to erase a
symbol, but that can be thought of as writing a special “blank” symbol, ‘[’.)

Further Reading:
However, the ability to erase has a downside: It destroys information, making it difficult, if not
impossible, to reverse a computation. See, for example, Brian Hayes 2014b, p. 23.

Which symbols can be altered? If the clerk is looking at the symbol in the first
square, can the clerk alter the symbol in the 15th square? Yes, but only by first observ-
ing the 15th square and then changing it:

The situation in regard to the squares whose symbols may be altered in this way
is the same as in regard to the observed squares. We may, therefore, without loss
of generality, assume that the squares whose symbols are changed are always “ob-
served” squares. (p. 250.)

But wait a minute! If the clerk has to be able to find the 15th square, isn’t that a
kind of operation?

8.8.2.4 Section 9, Subsection I, Paragraph 4: Operations

Yes:

8.8. SECTION 9: “THE EXTENT OF THE COMPUTABLE NUMBERS” 325

Besides these changes of symbols, the simple operations must include changes of
distribution of observed squares. The new observed squares must be immediately
recognisable by the computer [by the clerk]. (p. 250.)

And how does the clerk do that? Is “finding the 15th square” a “simple” operation?
Maybe. How about “finding the 9999999999999999th square”? No:

I think it is reasonable to suppose that they can only be squares whose distance
from the closest of the immediately previously observed squares does not exceed
a certain fixed amount. Let us say that each of the new observed squares is within
L squares of an immediately previously observed square. (p. 250.)

So here we have a fourth kind of boundedness or finiteness: The clerk can only look a
certain bounded distance away. How far can the distance be? Some plausible lengths
are the length of a typical word or small numeral (so L could equal B). The minimum
is, of course, 1 square (taking L = B = 1). So, another “simple” operation is looking
one square to the left or to the right (and, of course, the ability to repeat that operation,
so that the clerk can, eventually, find the 15th or the 9999999999999999th square).

8.8.2.5 Section 9, Subsection I, Paragraph 5: More Operations

What about a different kind of candidate for a “simple” operation: “find a square that
contains the special symbol x”:

In connection with “immediate recognisability”, it may be thought that there are
other kinds of square which are immediately recognisable. In particular, squares
marked by special symbols might be taken as immediately recognisable. Now if
these squares are marked only by single symbols there can be only a finite number
of them, and we should not upset our theory by adjoining these marked squares to
the observed squares. (pp. 250–252.)

So, Turing allows such an operation as being “simple”, because it doesn’t violate the
finiteness limitations. But he doesn’t have to allow them. How would the clerk be able
to find the only square that contains the special symbol x (assuming that there is one)?
By first observing the current square. If x isn’t on that square, then observe the next
square to the left. If x isn’t on that square, then observe the square to the right of the
first one (by observing the square two squares to the right of the current one). And so
on, moving back and forth, till a square with x is found. What if the clerk needs to find
a sequence of squares marked with a sequence of special symbols?

If, on the other hand, they [that is, the squares marked by special symbols] are
marked by a sequence of symbols, we cannot regard the process of recognition as
a simple process. (p. 251)

I won’t follow Turing’s illustration of how this can be done. Suffice it to say that it is
similar to what I just sketched out as a way of avoiding having to include “finding a
special square” as a “simple” operation, and Turing admits as much:

326 CHAPTER 8. TURING’S ANALYSIS OF COMPUTATION

If in spite of this it is still thought that there are other “immediately recognisable”
squares, it does not upset my contention so long as these squares can be found by
some process of which my type of machine is capable. (p. 251.)

In other words, other apparently “simple” operations that can be analyzed into some
combination of the simplest operations of writing a symbol and observing are accept-
able. It is worth noting that this can be interpreted as a claim that “subroutines” can be
thought of as single operations—this is the “procedural abstraction” or “named proce-
dure” operation discussed in §7.6.6.

8.8.2.6 Section 9, Subsection I, Paragraph 6: Summary of Operations

Turing now summarizes his analysis of the minimum that a human computer (what I
have been calling a “clerk”) needs to be able to do in order to compute:

The simple operations must therefore include:

(a) Changes of the symbol on one of the observed squares.

(b) Changes of one of the squares observed to another square within L squares of
one of the previously observed squares.

It may be that some of these changes necessarily involve a change of state of mind.
The most general single operation must therefore be taken to be one of the follow-
ing:

(A) A possible change (a) of symbol together with a possible change of state of
mind.

(B) A possible change (b) of observed squares, together with a possible change of
state of mind. (p. 251.)

In other words, the two basic operations are (A) to write a symbol on the tape (and to
change your “state of mind”) and (B) to look somewhere else on the tape (and to change
your “state of mind”). That’s it: writing and looking! Well, and “changing your state
of mind”, which we haven’t yet clarified, but will, next.

8.8.2.7 Section 9, Subsection I, Paragraph 7

8.8.2.7.1 Conditions. How does the clerk know which of these two things (writing
or looking) to do? Turing’s next remark tells us:

The operation actually performed is determined, as has been suggested on p. 250,
by the state of mind of the computer [that is, of the clerk] and the observed sym-
bols. In particular, they determine the state of mind of the computer [that is, of the
clerk] after the operation is carried out. (p. 251, my italics.)

The passage on p. 250 that Turing is referring to is the one that I marked ‘(*)’ and
called ‘astounding’, above; it says roughly the same thing as the present passage. So,
what Turing is saying here is that the clerk should

8.8. SECTION 9: “THE EXTENT OF THE COMPUTABLE NUMBERS” 327

• first consider his or her state of mind and where he or she is currently looking on
the paper—that is, consider the current condition of the clerk and the paper,

• then decide what to do next
(either write something there or look somewhere else)—that is, perfrm an action,

and,

• finally, change his or her state of mind.

Of course, after doing that, the clerk is in a (possibly) new condition—a (possibly) new
state of mind and looking at a (possibly) new location on the paper—which means that
the clerk is ready to do the next thing.

8.8.2.7.2 States of Mind Clarified. Now, think about a typical computer program,
especially an old-fashioned one, such as those written in (early versions of) Basic or
Fortran, where each line of the program has a line number and a statement to be exe-
cuted (a “command”). The computer (and here I mean the machine, not a clerk) starts
at the first line number, executes the command, and then (typically) moves to the next
line number. In “atypical” cases, the command might be a “jump” or “go to” com-
mand, which causes the computer to move to a different line number. At whatever line
number the computer has moved to after executing the first command, it executes the
command at that new line number. And so on.

But, if you compare this description with Turing’s, you will see that what corre-
sponds to the line number of a program is Turing’s notion of a “state of mind”! And
what corresponds to the currently observed symbol? It is the current input to the pro-
gram! (Or, perhaps slightly more accurately, it is the current state of all “switches” or
registers.)

So, let’s paraphrase Turing’s description of the basic operation that a clerk performs
when computing. We’ll write the paraphrase in terms of a computer program that the
clerk is following:

The operation performed is determined by the current line number of the
program and the current input. The simple operations are: (a) print a sym-
bol and (b) move 1 square left or right on the tape (which is tantamount to
accepting new input), followed by changing to a new line number.

We can also say this in a slightly different way:

If the current line number is N and the current input is I,
then print or move (or both) and go to line N′.

And a program for such a computer will consist of lines of “code” that look like this:

Line N: if input = I
then

begin
print (or move);
go to Line N′

end

328 CHAPTER 8. TURING’S ANALYSIS OF COMPUTATION

8.8.2.8 Section 9, Subsection I, Paragraph 8

8.8.2.8.1 The Turing Machine. I said above that passage (*) was “astounding”;
here is its sequel:

We may now construct a machine to do the work of this computer.
(p. 251, my italics.)

Reading this sentence out of context can make it sound very confusing; after all, isn’t
a computer a machine? But, as we have seen, a computer (for Turing) is a human clerk
who computes. And what Turing is now saying is that the human can be replaced by a
machine, that is, by what we now call a computer (a mechanical device). This sentence
marks the end of Turing’s analysis of what a human computer does and the beginning
of his mathematical construction of a mechanical computer that can do what the human
does. His description of it here is very compact; it begins as follows:

To each state of mind of the computer [of the clerk!] corresponds an
“m-configuration” of the machine. (p. 251)

So, an m-configuration is something in the machine that corresponds to a line number of
a program.5 But, considering modern computers and programs, programs are separate
from the computers that run them, so what could Turing mean when he says that an
m-configuration belongs to a machine? He means that the machine is “hardwired” (as
we would now say) to execute exactly one program (exactly one algorithm). Being
hardwired, no separate program needs to be written out; it is already “compiled” into
the machine. A “Turing Machine” can do one and only one thing; it can compute one
and only one function, using an algorithm that is hardwired into it.

Turing continues:

The machine scans B squares corresponding to the B squares observed by the com-
puter. (p. 251, my italics.)

A modern “translation” of this sentence would say: “The computer scans B squares
corresponding to the B squares observed by the clerk.” The clerk is limited to observing
a maximum of B squares on the tape, as we saw above (in an earlier quote from p. 250).
The machine analogue of that is to move, or “scan”, B squares to the left or right on the
tape. In modern mathematical treatments of Turing Machines, B = 1.

Turing continues:

In any move the machine can change a symbol on a scanned square or can change
any one of the scanned squares to another square distant not more than L squares
from one of the other scanned squares. (pp. 251–252.)

In other words, the machine (the Turing Machine, or modern hardwired computer) can
pay attention to B squares at a time, and each line of its program allows it to print a

5Why ‘m’? It could stand for ‘man’, on the grounds that this is a machine analogue of a (hu)man’s state
of mind; or it could stand for ‘mental’, on the grounds that it is an analogue of a state of mind. But I think
it most likely stands for ‘machine’, because it is a configuration, or state, of a machine. Of course, Turing
might have intended it to be ambiguous among all these options.

8.8. SECTION 9: “THE EXTENT OF THE COMPUTABLE NUMBERS” 329

new symbol on any of those squares or move to any other square that is no more than L
squares away from any of the B squares. Again, modern treatments simplify this: The
machine is scanning a single square, and each line of its program allows it to print a
new symbol on that square or to move one square to its left or right (or both print and
move).

Which “move” should the machine make?

The move which is done, and the succeeding configuration, [that is, the next
m-configuration; that is, the next step in the algorithm], are determined by the
scanned symbol and the [current] m-configuration. (p. 252)

That is, the move that the machine should make, as well as the next m-configuation
(that is, the next step in the algorithm) are determined by the currently scanned symbol
and the current m-configuration. Or, put in terms of computer programs, the instruction
on the current line number together with the current input together determine what to
do now (print, move, or both) and what to do next (which instruction to carry out next).

Digression:
When we think of a machine that prints on a tape, we usually think of the tape as moving through
a stationary machine. But in the case of the Turing Machine, it is the machine that moves, not the
tape! The reason for this is simple: The machine is simulating the actions of a human computer,
who writes on different parts of a piece of paper: It is the human who moves, not the paper.

The children’s game of Candyland is like a Turing Machine: The (randomly shuffled) deck of
color cards is like the Turing-machine table, telling us what to do. The path laid out on the board
is analogous to the tape. At each point, we can move a marker left or right. (Some squares
on the path have other instructions on them, but those could have been encoded in the cards.)
The game is completely deterministic, except that it doesn’t necessarily “compute” anything of
interest because of the random arrangement of the cards. Chess is also completely deterministic,
but so “large” that we can’t play it deterministically.

(For another candy analogy, see Figure 8.1.)

8.8.2.8.2 Turing’s (Computability) Thesis.

The machines just described do not differ very essentially from computing ma-
chines as defined in §2, and corresponding to any machine of this type a comput-
ing machine can be constructed to compute the same sequence, that is to say the
sequence computed by the computer. (p. 252.)

As for the first clause, please recall that we are in the middle of a very long digression
in which we have skipped ahead to Turing’s §9 from Turing’s §1; we have not yet read
Turing’s §2. When we do, we will see a more detailed version of the machines that
Turing has just described for us here in §9.

The next clause is a bit ambiguous. When Turing says “any machine of this type”,
is he referring to the machines of §9 or the machines of §2? It probably doesn’t matter,
because he has said that the two kinds of machines “do not differ very essentially” from

330 CHAPTER 8. TURING’S ANALYSIS OF COMPUTATION

Figure 8.1: https://xkcd.com/205/

each other. But I think that he is, in fact, referring to the machines of §9; “computing
machines” are the ones that are “defined in §2”.

The last phrase is of more significance: These (“computing”) machines (of Turing’s
§2) “compute the same sequence . . . computed by the” clerk. In other words, whatever
a human clerk can do, these machines can also do. What a human clerk can do (i.e.,
which sequences, or functions, a human clerk can compute) is captured by the informal
notion of algorithm or computation. “These machines” are a formal counterpart, a for-
mal “explication” of that informal notion. So this last phrase is a statement of Turing’s
thesis (that is, the Computability Thesis).

What about the other direction? Can a human clerk do everything that one of these
machines can do? Or are these machines in some way more powerful than humans? I
think the answer should be fairly obvious: Given the way the machines are constructed
on the basis of what it is that humans can do, surely a human could follow one of the
programs for these machines. So humans can do everything that one of the machines
can do, and—by Turing’s thesis—these machines can do everything that humans can do
(well, everything that is computable in the informal sense). But these are contentious
matters, and we will return to them when we consider the controversies surrounding
hypercomputation (Chapter 11) and AI (Chapter 19).

8.8.2.8.3 Turing Machines as AI Programs. As we have seen, in order to investi-
gate the Entscheidungsproblem,

. . . Turing asked in the historical context in which he found himself the pertinent
question, namely, what are the possible processes a human being can carry out
(when computing a number or, equivalently, determining algorithmically the value
of a number theoretic function)? (Sieg, 2000, p. 6; original italics, my boldface)

8.8. SECTION 9: “THE EXTENT OF THE COMPUTABLE NUMBERS” 331

That is,

Turing machines appear [in Turing’s paper] as a result, a codification, of his anal-
ysis of calculations by humans. (Gandy, 1988, p. 82)

This strategy underlies much of CS, as Alan Perlis observed:

The intent [of a first computer science course should be] to reveal, through . . . ex-
amples, how analysis of some intuitively performed human tasks leads to mechan-
ical algorithms accomplishable by a machine. (Perlis, 1962, p. 189, my italics)

But not just CS in general. The branch of CS that analyzes how humans perform a task
and then designs computer programs to do the same thing is AI; so, in Section 9, Turing
has developed the first AI program! After all, he showed that human computation is
mathematically computable; that is, he showed that a certain kind of human cognitive
process was computable—and that’s one of the definitions of AI.

One of the founders of AI, John McCarthy, made a similar observation:

The subject of computation is essentially that of artificial intelligence since the de-
velopment of computation is in the direction of making machines carry out ever
more complex and sophisticated processes, i.e. to behave as intelligently as possi-
ble. (McCarthy, 1963, §4.2, p. 38).

This follows from McCarthy’s earlier definition (see §3.9.2) of computation as the sci-
ence of how to get machines to carry out intellectual processes.

Turing was not unaware of this aspect of his work:

One way of setting about our task of building a ‘thinking machine’ would be to
take a man [sic] as a whole and to try to replace all the parts of him by machinery.
(Turing 1948, p. 420 as cited in Proudfoot and Copeland 2012, p. 2)

But that’s almost exactly what Turing’s analysis of human computation in his 1936
paper does (at least in part): It takes a human’s computational abilities and “replaces”
them by (abstract) machinery.

One reason that the Turing Machine can be considered as the first AI program is
that “the elementary processes underlying human thinking are essentially the same as
the computer’s elementary information processes” (Simon, 1977, p. 1187), namely,
those processes that can be carried out by a Turing Machine. And the reason that they
are “essentially the same” is simply that that is how the Turing Machine is defined,
namely, by considering what “elementary processes underl[ie] . . . human thinking”, as
seen in Turing 1936, §9.

332 CHAPTER 8. TURING’S ANALYSIS OF COMPUTATION

8.9 Section 1, continued
For now, we have come to the end of our digression, and we now return to Turing’s §1,
“Computing Machines”.

8.9.1 Section 1, Paragraph 2
This is the paragraph in which Turing gives a more detailed presentation of his abstract
computing machine, the outcome of his detailed analysis from §9 of human computing.
He begins as follows:

We may compare a man in the process of computing a real number to a machine
which is only capable of a finite number of conditions q1,q2, . . . ,qR which will be
called “m-configurations”. (p. 231.)

Why “may” we do this? Turing will give his justification in his §9, which we have just
finished studying. By a “man”, Turing of course means a human, not merely a male
human. To compute a real number is to compute the output of a real-valued function.
And, as we have already seen, an m-configuration is a line of a computer program, that
is, a step in an algorithm. Here, Turing is saying that each such algorithm has a finite
number (namely, R) of steps, each labeled qi. Put otherwise, (human, or informal)
computation can be “compared with” (and, by Turing’s thesis, identified with) a finite
algorithm.

What else is needed?

The machine is supplied with a “tape” (the analogue of paper) running through it,
and divided into sections (called “squares”) each capable of bearing a “symbol”.
(p. 231.)

There are a couple of things to note here. First, from our study of Turing’s §9, we know
why this is the case and what, exactly, the tape, squares, and symbols are supposed to
be and why they are the way they are.

But, second, why does he put those three words in “scare quotes”? There are two
possible answers. I suspect that the real answer is that Turing hasn’t, at this point in his
paper, explained in detail what they are; that comes later, in his §9.

But there is another possible reason, a mathematical or logical reason: In Turing’s
formal, mathematical notion of a computing machine, the concepts of “tape”, “squares”
of a tape, and “symbols” are really undefined (or primitive) terms in exactly the same
way that ‘point’, ‘line’, and ‘plane’ are undefined (or primitive) terms in Euclidean
plane geometry. As Hilbert famously observed, “One must be able to say at all times—
instead of points, lines, and planes—tables, chairs, and beer mugs”. So, here, too, one
must be able to say at all times—instead of tapes, squares, and symbols—tables, chairs,
and beer mugs. (But I’ll use place settings instead of chairs; it will make more sense,
as you will see.) A Turing Machine, we might say, must have a table. Each table must
have a sequence of place settings associated with it (so we must be able to talk about
the nth place setting at a table). And each place setting can have a beer mug on it; there
might be different kinds of beer mugs, but they have to be able to be distinguished

8.9. SECTION 1, CONTINUED 333

from each other, so that we don’t confuse them. In other words, it is the logical or
mathematical structure of a computing machine that matters, not what it is made of.
So, a “tape” doesn’t have to be made of paper (it could be a table), a “square” doesn’t
have to be a regular quadrilateral that is physically part of the “tape” (it could be a place
setting at a table), and “symbols” only have to be such that a “square” can “bear” one
(for example, a numeral can be written on a square of the tape, or a beer mug can be
placed at a place setting belonging to a table).

Further Reading:
Hilbert’s observation about tables, chairs, and beer mugs appears in his Gesammelte Abhandlun-
gen (“Complete Works”), vol. 3, p. 403, as cited in Coffa 1991, p. 135; see also Stewart Shapiro
2009, p. 176. Elsewhere, Hilbert used a different example:

. . . it is surely obvious that every theory is only a scaffolding or schema of concepts
together with their necessary relations to one another, and that the basic elements
can be thought of in any way one likes. If in speaking of my points, I think of
some system of things, e.g., the system: love, law, chimney-sweep . . . and then
assume all my axioms as relations between these things, then my propositions, e.g.,
Pythagoras’ theorem, are also valid for these things . . . [A]ny theory can always be
applied to infinitely many systems of basic elements. (Quoted in Stewart Shapiro
2013, p. 168.)

An excellent discussion of this kind of abstraction can be found in Cohen and Nagel 1934, Ch. 7,
“The Nature of a Logical or Mathematical System”.

Turing continues:

At any moment there is just one square, say the r-th, bearing the symbol S(r)
which is “in the machine”. We may call this square the “scanned square”. (p. 231.)

First, ‘S’ is just the capital letter ‘S’ in a font called “German Fraktur”, or “black
letter”. It’s a bit hard to read, so I will replace it with ‘S’ in what follows (even when
quoting Turing).

Note, second, that this seems to be a slight simplification of his §9 analysis, with
B = 1. Second, being “in the machine” might be another undefined (or primitive) term
merely indicating a relationship between the machine and something else. But what
else? Turing’s punctuation allows for some ambiguity.

Grammatical Digression:
More precisely, his lack of punctuation: If ‘which’ had been preceded by a comma, then “which
is ‘in the machine would have been a “non-restrictive relative clause” that refers to the square.
With no comma, the “which” clause is a “restrictive” relative clause modifying ‘symbol S(r)’.
For more on relative clauses, see “ ‘Which’ vs. ‘that’ ”, online at http://www.cse.buffalo.edu/
∼rapaport/howtowrite.html#whichVthat

So, the “something else” might be the symbol (whatever it is, ‘0’, ‘1’, or a beer mug)
that is in the machine, or it might be the scanned square. I think that it is the latter,
from remarks that he makes next:

334 CHAPTER 8. TURING’S ANALYSIS OF COMPUTATION

The symbol on the scanned square may be called the “scanned symbol”. The
“scanned symbol” is the only one of which the machine is, so to speak, “directly
aware”. (p. 231.)

Here, Turing’s scare quotes around ‘directly aware’, together with the hedge ‘so to
speak’, clearly indicate that he is not intending to anthropomorphize his machine. His
machines are not really “aware” of anything; only humans can be really “aware” of
things. But the machine analogue of human awareness is: being a scanned symbol.
There is nothing anthropomorphic about that: Either a square is being scanned (perhaps
a light is shining on a particular place setting at the table) or it isn’t, and either there
is a symbol on the scanned square (there is a beer mug at the lighted place setting), or
there isn’t.

However, by altering its m-configuration the machine can effectively remember
some of the symbols which it has “seen” (scanned) previously. (p. 231.)

What does this mean? Let’s try to paraphrase it: “By altering the line number of its
program, the computing machine can effectively . . . ”—can effectively do what? It can
“remember previously scanned symbols”. This is to be contrasted with the currently
scanned symbol. How does the machine “remember” “by altering a line number”?
Well, how would it “remember” what symbol was on, say, the 3rd square if it’s now on
the 4th square? It would have to move left one square and scan the symbol that’s there.
To do that, it would have to have an instruction to move left. And to do that, it would
need to go to that instruction, which is just another way of saying that it would have to
“alter its m-configuration”.

Further Reading:
For a different slow-reading analysis of this sentence, see Dresner 2003, 2012.

The possible behaviour of the machine at any moment is determined by the
m-configuration qn and the scanned symbol S(r). (p. 231, my italics.)

It is only a possible behavior, because a given line of a program is only executed when
control has passed to that line. If it is not being executed at a given moment, then it
is only possible behavior, not actual behavior. The machine’s m-configuration is the
analogue of a line number of a program, and the scanned symbol is the analogue of the
external input to the machine.

Digression and a Look Ahead:
It is also possible, given what the reader knows at this stage of Turing’s paper—not yet having
read his §9—that an m-configuration is the entire internal state of the machine, perhaps encoding
what could be called the machine’s “prior” or “background” knowledge—in contrast to external
information from the outside world, encoded in the scanned symbol. On whether symbols on the
tape are analogous to external input, see §8.10.1, below, and Chapters 11 and 17.

This pair qn,S(r) will be called the “configuration”: thus the configuration deter-
mines the possible behaviour of the machine. (p. 231.)

8.9. SECTION 1, CONTINUED 335

Giving a single name (‘configuration’) to the combination of the m-configuration and
the currently scanned symbol reinforces the idea that the m-configuration alone is an
analogue of a line number and that this combination is the condition (or antecedent)
of a condition-action (or a conditional) statement: Line qn begins, “if the currently
scanned symbol is S(r), then . . . ”, or “if the current instruction is the one on line qn
and if the currently scanned symbol is S(r), then . . . ”.

What follows the ‘then’? That is, what should the machine do if the condition is
satisfied?

In some of the configurations in which the scanned square is blank (i.e. bears no
symbol) the machine writes down a new symbol on the scanned square: in other
configurations it erases the scanned symbol. The machine may also change the
square which is being scanned, but only by shifting it one place to right or left. In
addition to any of these operations the m-configuration may be changed.
(p. 231, my boldface.)

So, we have 5 operations:

1. write a new symbol

2. erase the scanned symbol

3. shift 1 square left

4. shift 1 square right

5. change m-configuration.

As we saw in §7.6.2, the first four of these can be simplified to only two operations,
each of which is slightly more complex:

1′ write a new symbol (including [)

2′ shift (which is now an operation that takes an argument: left or right).

There are four things to note:

a) The symbols are left unspecified (which is why we can feel free to add a “blank”
symbol), though, as we have seen, they can be limited to just ‘0’ and ‘1’ (and maybe
also ‘[’).

b) Turing has, again, simplified his §9 analysis, letting L = 1.

c) “Change m-configuration” is essentially a “jump” or “go to” instruction. The whole
point of structured programming, as we have seen, is that this can be eliminated—
so we really only need the first two of our slightly more complex operations, as long
as we require our programs to be structured.

d) There is no “halt” command.
(In §8.10.3, below, we will see why this is not needed.)

336 CHAPTER 8. TURING’S ANALYSIS OF COMPUTATION

Turing next clarifies what symbols are needed. Recall that the kind of computation
that Turing is interested in is the computation of the decimal of a real number.

Some of the symbols written down will form the sequence of figures which is the
decimal of the real number which is being computed. The others are just rough
notes to “assist the memory”. It will only be these rough notes which will be liable
to erasure. (pp. 231–232.)

So, either we need symbols for the 10 Arabic numerals (if we write the real number in
decimal notation) or we only need symbols for the 2 binary numerals (if we write the
real number in binary notation). Any other symbols are merely used for bookkeeping,
and they (and only they) can be erased afterwards, leaving a “clean” tape with only the
answer on it.

There is one more thing to keep in mind: Every real number (in decimal notation)6

has an infinite sequence of digits to the right of the decimal point, even if it is an integer
or (a non-integer) rational number, which are typically written with either no digits, or
a finite number of digits, in the decimal expansion (1, 1.0, 2.5, etc.). If the number
is an integer, this is an infinite sequence of ‘0’s; for example, 1 = 1.000000000000 . . .
(which I will abbreviate as 1.0). If the number is rational, this is an infinite sequence
of some repeating subsequence; for example:

1
2 = 0.500000000000 . . .= 0.50

1
3 = 0.333333333333 . . .= 0.3

1
7 = 0.142857142857 . . .= 0.142857

And if the number is irrational, this is an infinite, non-repeating sequence; for example:
√

2 = 1.41421356237309 . . .

π = 3.1415926535 . . .

What this means is that one of Turing’s computing machines should never halt when
computing (i.e., writing out) the decimal of a real number. It should only halt if it is
writing down a finite sequence, and it can do this in two ways: It could write down the
finite sequence and then halt. Or it could write down the finite sequence and then go
into an infinite loop (either rewriting the last digit over and over in the same square, or
just looping in a do-nothing operation such as the empty program).

6Similar remarks can be made for binary notation.

8.10. SECTION 2: “DEFINITIONS” 337

8.9.2 Section 1, Paragraph 3
Finally,

It is my contention that these operations include all those which are used in the
computation of a number. (p. 232.)

This is another statement of Turing’s version of the Computability Thesis: To compute,
all you have to do is arrange the operations of writing and shifting in a certain way.
The way they are arranged—what is now called “the control structure of a computer
program”—is controlled by the “configuration” and the change in m-configuration (or,
in modern structured programming, by Böhm & Jacopini’s three control structures (that
is, grammar rules) of sequence, selection, and while-repetition). For Turing, it goes
unsaid that all computation can be reduced to the computation of a number; this is the
insight we discussed in §7.6.1 that all the information about any computable problem
can be represented using only ‘0’ and ‘1’; hence, any information—including pictures
and sounds—can be represented as a number. (But it is also important to realize that
this kind of universal binary representation of information doesn’t have to be thought
of as a number, because the two symbols don’t have to be ‘0’ and ‘1’!)

8.10 Section 2: “Definitions”
We are now ready to look at the section in which Turing’s “computing machines” are
defined, as we read in his §9, subsection I, paragraph 8 (see our §8.8.2.8.2, above).

8.10.1 “Automatic Machines”
Turing begins by giving us a sequence of definitions. The first is the most famous:

If at each stage the motion of a machine (in the sense of §1) is completely deter-
mined by the configuration, we shall call the machine an “automatic machine” (or
a-machine). (p. 232.)

Clearly, such a machine’s “motion” (or behavior) is at least partly determined by its
configuration (that is, by its m-configuration, or line number, together with its currently
scanned symbol). Might it be determined by anything else? For all that Turing has
said so far, maybe such a machine’s human operator could “help” it along by moving
the tape for it, or by writing something on the tape. This definition rules that out by
limiting our consideration to such machines whose “motion” “is completely determined
by the configuration”. So, a human operator is not allowed to “help” it in any way: No
cheating allowed!

Turing may have called such a machine an ‘a-machine’. We now call them—in his
honor—‘Turing Machines’. (Alonzo Church (1937) seems to have been the first person
to use this term, in his review of Turing’s paper.)

What about machines that get outside help?

For some purposes we might use machines (choice machines or c-machines) whose
motion is only partially determined by the configuration (hence the use of the word

338 CHAPTER 8. TURING’S ANALYSIS OF COMPUTATION

“possible” in §1). When such a machine reaches one of these ambiguous configu-
rations, it cannot go on until some arbitrary choice has been made by an external
operator. (p. 232.)

First, note that Turing’s explanation of the use of ‘possible’ may be slightly different
from mine. But I think that they are consistent explanations. In the previous statements,
Turing used ‘possible’ to limit the kind of operations that a Turing Machine could
perform. Here, he is introducing a kind of machine that has another kind of possible
operation: writing, moving, or changing m-configuration not as the result of an explicit
instruction but as the result of a “choice . . . made by an external operator”. Note, by
the way, that this external operator doesn’t have to be a human; it could be another
Turing Machine! Such c-machines are closely related to “oracle” machines, which
Turing introduced in his doctoral dissertation. We will return to the topic of choice
machines and oracle machines in Chapter 11.

Further Reading:
For more on Turing’s oracle machines, see Feferman 1992, 2006b, and Soare 2016, pp. xxi–xxii
and §§3.2 & 17.4.

8.10.2 “Computing Machines”
8.10.2.1 Paragraph 1

Turing gives us some more definitions:

If an a-machine prints two kinds of symbols, of which the first kind (called figures)
consists entirely of 0 and 1 (the others being called symbols of the second kind),
then the machine will be called a computing machine. (p. 232.)

The principal definition here is that of ‘computing machine’, a special case of an a-
(or Turing) machine that outputs its results as a binary numeral (in accordance with
the first insight we discussed, in §7.6.1). Once again, here Turing is simplifying his §9
analysis of human computation, restricting the symbols to ‘0’ and ‘1’. Well, not quite,
because he also allows “symbols of the second kind”, used for bookkeeping purposes
or intermediate computations. Note, however, that any symbol of the second kind could
be replaced—at the computational cost of more processing—by sequences of ‘0’s and
‘1’s.

Turing continues:

If the machine is supplied with a blank tape and set in motion, starting from the
correct initial m-configuration, the subsequence of the symbols printed by it which
are of the first kind will be called the sequence computed by the machine. (p. 232.)

Here, he seems to be allowing for some of the symbols of the second kind to remain on
the tape, so that only a subsequence of the printed output constitutes the result of the
computation. In other words, these secondary symbols need not be erased. One way to
think of this is to compare it to the way we write decimal numerals greater than 999,

8.10. SECTION 2: “DEFINITIONS” 339

namely, with the punctuation aid of the non-numerical symbols known as a ‘comma’
and a ‘decimal point’: 1,234,567.89

In the previous paragraph, I almost wrote, “to remain on the tape after the com-
putation halts”. But does it halt? It can’t—because every real number has an infinite
decimal part! The secondary symbols could still be erased, during the computation;
that’s not of great significance (obviously, it’s easier to not erase them and to just ignore
them). The important point to remember is that computations of decimal representa-
tions of real numbers never halt. We’ll return to this in a moment.

Mathematical Digression:
More precisely, every numeral representing a real number has an infinite decimal part. (Recall
our discussion of the number-numeral distinction in §§2.2 and 6.8.1.) But what about numerals
like 2 or 2.1, which seem to either lack a decimal part or have only a finite one? But don’t forget
that 2 = 2.000 . . . and 2.1 = 2.1000 . . . , so there are infinitely many 0s in their decimal parts.

One more small point that simplifies matters:

The real number whose expression as a binary decimal is obtained by prefacing
this sequence by a decimal point is called the number computed by the machine.
(p. 232.)

What about the part of the expression that is to the left of the decimal point? It looks
as if the only numbers that Turing is interested in computing are the reals between 0
and 1 (presumably including 0, but excluding 1). Does this matter? Not really; first,
all reals can be mapped to this interval, and, second, any other real can be computed
simply by computing its “non-decimal” part in the same way. Restricting our attention
to this subset of the reals simplifies the discussion without loss of generality. (We’ll
return to this in §8.10.4, below.)

8.10.2.2 Paragraph 2

Two more definitions:

At any stage of the motion of the machine, the number of the scanned square, the
complete sequence of all symbols on the tape, and the m-configuration will be said
to describe the complete configuration at that stage. The changes of the machine
and tape between successive complete configurations will be called the moves of
the machine. (p. 232.)

Three points to note: First, at any stage of the motion of the machine, only a finite num-
ber of symbols will have been printed, so it is perfectly legitimate to speak of “the com-
plete sequence of all symbols on the tape” even though every real number has infinitely
many numerals after the decimal point. Second, the sequence of all symbols on the
tape probably includes all occurrences of ‘[’ that do not occur after the last non-blank
square (that is, that do occur before the last non-blank square); otherwise, there would
be no way to distinguish the sequence 〈0,0,1, [,0〉 from the sequence 〈[,0, [,0, [,1,0〉.

Third, we now have three notions called ‘configurations’; let’s summarize them for
convenience:

340 CHAPTER 8. TURING’S ANALYSIS OF COMPUTATION

1. m-configuration = line number, qn, of a program for a Turing Machine.

2. configuration = the pair: 〈qn,S(r)〉,
where S(r) is the symbol on the currently scanned square, r.

3. complete configuration = the triple:
〈r, the sequence of all symbols on the tape,7 qn〉.

8.10.3 “Circular and Circle-Free Machines”
8.10.3.1 Paragraph 1

We now come to what I have found to be one of the most puzzling sections of Turing’s
paper. It begins with the following definitions:

If a computing machine never writes down more than a finite number of symbols
of the first kind, it will be called circular. Otherwise it is said to be circle-free.
(p. 233.)

Let’s take this slowly: A computing machine is a Turing Machine that only prints a
binary representation of a real number together with a few symbols of the second kind.
If such a machine “never writes down more than a finite number of” ‘0’s and ‘1’s, then,
trivially, it has only written down a finite number of such symbols. That means that it
has halted! And, in that case, Turing wants to call it ‘circular’! But, to my ears, at least,
‘circular’ sounds like ‘looping’, which, in turn, sounds like it means “not halting”.

And, if it does write down more than a finite number of ‘0’s and ‘1’s, then, trivially,
it writes down infinitely many of them. That means that it does not halt! In that case,
Turing wants to call it ‘circle-free’! But that sounds like ‘loop-free’, which, in turn,
sounds like it means that it does halt.

Further Reading:
Other commentators have made the same observation:

In Turing’s terminology, circularity means that the machine never writes down
more than a finite number of symbols (halting behaviour). A non-circular ma-
chine is a machine that never halts and keeps printing digits of some computable
sequence of numbers. (De Mol and Primiero, 2015, pp. 197–198, footnote 11)

What’s going on? Before looking ahead to see if, or how, Turing clarifies this,
here’s one guess: The only way that a Turing Machine can print a finite number of
“figures” (Turing’s name for ‘0’ and ‘1’) and still “be circular” (which I am interpreting
to mean “loop”) is for it to keep repeating printing—that is, to “overprint”—some or
all of them, that is, for it to “circle back” and print some of them over and over again.
(In this case, no “halt” instruction is needed!)

And the only way that a Turing Machine can print infinitely many “figures” and
also be “circle-free” is for it to continually print new figures to the right of the previous

7As described in the last paragraph.

8.10. SECTION 2: “DEFINITIONS” 341

one that it printed (and, thus, not “circle back” to a previous square, overprinting it with
the same symbol that’s on it).

Is that what Turing has in mind? Let’s see.

8.10.3.2 Paragraph 2

The next paragraph says:

A machine will be circular if it reaches a configuration from which there is no
possible move or if it goes on moving, and possibly printing symbols of the second
kind, but cannot print any more symbols of the first kind. The significance of the
term “circular” will be explained in §8. (p. 233.)

The first sentence is rather long; let’s take it phrase by phrase: “A machine will be
circular”—that is, will print out only a finite number of figures—if [Case 1] it reaches
a configuration from which there is no possible move . . . ”. That is, it will be circular
if it reaches a line number qn and a currently scanned symbol S(r) from which there is
no possible move. How could that be? Easy: if there’s no line of the program of the
form: “Line qn: If currently scanned symbol = S(r) then In that case, the machine
stops,8 because there’s no instruction telling it to do anything.9

That’s even more paradoxical than my interpretation above; here, he is clearly say-
ing that a machine is circular if it halts! Of course, if you are the operator of a Turing
Machine and you are only looking at the tape (and not at the machinery), would you be
able to tell the difference between a machine that was printing the same symbol over
and over again on the same square and a machine that was doing nothing?10 Probably
not. So, from an external, behavioral point of view, these would seem to amount to the
same thing.

But Turing goes on: A machine will also be circular “. . . if [Case 2] it goes on
moving, and possibly printing [only] symbols of the second kind” but not printing any
more “figures”. Here, the crucial point is that the machine does not halt but goes on
moving. It might or might not print anything, but, if it does, it only prints secondary
symbols. So we have the following possibilities: a machine that keeps on moving,
spewing out square after square of blank tape; or a machine that keeps on moving,
occasionally printing a secondary symbol. In either case, it has only printed a finite
number of figures. Because it has, therefore, not printed an infinite decimal represen-
tation of a real number, it has, for all practical purposes, halted—at least in the sense
that it has finished its task, though it has not succeeded in computing a real number.

Once again, a machine is circular if it halts (for all practical purposes; it’s still
working, but just not doing anything significant). This isn’t what I had in mind in my
interpretation above. But it does seem to be quite clear, no matter how you interpret
what Turing says, that he means that a circular machine is one that does not compute
a real number, either by halting or by continuing on but doing nothing useful (not

8At this point, I cannot resist recommending, once again, that you read E.M. Forster’s wonderfully pre-
scient, 1909(!) short story, “The Machine Stops” (Forster, 1909).

9Another possibility is that line qn says: If currently scanned symbol = S(r), then go to line qn. In that
case, the machine never stops, becuase it forever loops (circles?) back to the same line.

10The machine described in the text and the machine described in the previous footnote have this property.

342 CHAPTER 8. TURING’S ANALYSIS OF COMPUTATION

computing a real number). Machines that do compute real numbers are “circle-free”,
but they must also never halt; they must loop forever, in modern terms, but continually
doing useful work (computing digits of the decimal expansion of a real number):

A machine that computes a real number in this sense was called circle-free; one
that does not (because it never prints more than a finite number of 0s and 1s) was
called circular. (Davis, 1995c, p. 141)

In other words, a “good” Turing Machine is a “circle-free” one that does not halt
and that continually computes a real number. This seems to be contrary to modern
terminology and the standard analysis of “algorithms” that we saw in §7.5. And how
does this fit in with Turing’s claim at the beginning of his paper that “the ‘computable’
numbers may be described briefly as the real numbers whose expressions as a decimal
are calculable by finite means” (my italics)? The only way that I can see to make these
two claims consistent is to interpret “by finite means” to refer to the number of steps
in an algorithm, or the amount of time needed to carry one step out, or the number
of operations needed to carry one step out (in case any of the steps are not just basic
operations). It cannot mean, as we have just seen, that the entire task can be completed
in a finite amount of time or that it would necessarily halt.

Finally, what about the allusion to Turing’s §8? That section, which we will not
investigate and which is uninformatively titled “Application of the Diagonal Process”,
is the section in which he proves that the Halting Problem is not computable (more
precisely, that a Gödel-like number of a program for the Halting Problem is not a
computable number). And, pretty obviously, his proof is going to be a little bit different
from the one that we sketched in §7.8 because of the difference between our modern
idea that only Turing Machines that halt are “good” and Turing’s idea that only Turing
Machines that are circle-free are “good”.

8.10.3.3 Coda: A Possible Explanation of ‘Circular’

One possible explanation of the term ‘circular’ comes from the following observation:
Using only finite means (a finite number of states, a finite number of symbols, etc.), a
Turing-machine can compute infinitely many numbers and print infinitely many numer-
als. Machines that could not do that

would eventually repeat themselves and Turing had attempted precisely to show
how a machine with finite specifications would not be constrained to do so. (Corry,
2017, p. 53, col. 3)

That is, machines that were finitely constrained and that would therefore “repeat them-
selves” would be “circular”.

It is interesting to note that, in French, ‘circular’ would normally be translated as
‘circulaire’. Turing wrote a summary of his his 1936 paper in French. In that document,
instead of calling machines that halted without computing a real number ‘circulaire’,
he called them ‘méchant’—‘malicious’! Perhaps he was having second thoughts about
the term ‘circular’ and wanted something more perspicuous.

8.10. SECTION 2: “DEFINITIONS” 343

Further Reading:
For more information on the French summary, see Corry 2017. For more on “circularity”, see
Petzold 2008, Ch. 10, who notes, by the way, that the concept of “halting” was introduced into
the modern literature by Martin Davis (Petzold, 2008, p. 179), “despite the fact that Turing’s
original machines never halt!” (Petzold, 2008, p. 329). Here is a slightly different observation:

The halting theorem is often attributed to Turing in his 1936 paper. In fact, Turing
did not discuss the halting problem, which was introduced by Martin Davis in
about 1952. (Copeland and Proudfoot, 2010, p. 248, col. 2)

This is clarified in Bernhardt 2016:

The halting problem is probably the most well-known undecidable decision
problem. However, this is not the problem that Turing described in his paper.

As Turing described his machines, they did not have accept states [that is,
they did not halt]. They were designed to compute real numbers and so would
never stop if computing an irrational number. The notion of a Turing machine was
changed [from Turing’s original a-machines] to include accept states by Stephen
Kleene and Martin Davis. Once you had this new formulation of a Turing machine,
you could consider the halting problem. Davis [1958] gave the halting problem its
name. (Bernhardt, 2016, pp. 120–121; see also p. 142)

For an analysis of these notions in modern terms, see van Leeuwen and Wiedermann 2013.

8.10.4 “Computable Sequences and Numbers”
Here are Turing’s final definitions from this section. First:

A sequence is said to be computable if it can be computed by a circle-free machine.
(p. 233, my italics.)

Although this is presented as a definition of ‘computable’ (actually, of ‘computable
sequence’), it can, in fact, be understood as another statement of the Computability
Thesis. Being “computable by a circle-free machine” is a very precise, mathematical
concept. In this definition, I think that Turing is best understood as suggesting that this
precise concept should replace the informal notion of being “computable”. Alterna-
tively, Turing is saying here that he will use the word ‘computable’ in this very precise
way.

Next:

A number is computable if it differs by an integer from the number computed by a
circle-free machine. (p. 233, my italics.)

Circle-free machines compute (by printing out) a sequence of figures (a sequence of
‘0’s and ‘1’s). Such a sequence can be considered to be a decimal (actually, a binary)
representation of a number between 0 and 1 (including 0, but not including 1). Here,
Turing is saying that any real number can be said to be computable if it has the same
decimal part (that is, the same part after the decimal point) of a number representable
as a computable sequence of figures. So, for instance, π = 3.1415926535 . . . differs by
the integer 3 from the number 0.1415926535. . . , which is computable by a circle-free
Turing Machine; hence, π is also computable.

344 CHAPTER 8. TURING’S ANALYSIS OF COMPUTATION

8.11 Section 3: “Examples of Computing Machines”
We are now ready to look at some “real” Turing Machines, more precisely, “computing
machines”, which, recall, are “automatic” a-machines that print only figures (‘0’, ‘1’)
and maybe symbols of the second kind. Hence, they compute real numbers. Turing
gives us two examples, which we will look at in detail.

8.11.1 Section 3, Example I
8.11.1.1 Section 3, Example I, Paragraph 1

A machine can be constructed to compute the sequence 010101. . . . (p. 233.)

Actually, as we will see, it prints

0[1[0[1[0[1[. . .

What real number is this? First, note that it is a rational number of the form 0.01.
Treated as being written in binary notation, it = 1

3 ; treated as being written in decimal
notation, it = 1

99 .

The machine is to have the four m-configurations “b”, “c”, “f”, “e” and is capable
of printing “0” and “1”. (p. 233.)

The four line numbers are (in more legible italic font): b, c, f , e.

The behaviour of the machine is described in the following table in which “R”
means “the machine moves so that it scans the square immediately on the right of
the one it was scanning previously”. Similarly for “L”. “E” means “the scanned
symbol is erased” and “P” stands for “prints”. (p. 233.)

This is clear enough. It is, however, interesting to note that it is the Turing Machine that
moves, not the tape! But, of course, when you do a calculation with pencil and paper,
your hand moves; the paper doesn’t! Of course, a pencil is really only an output device
(it prints and erases). To turn it into a full-fledged computer (or, at least, a physical
Turing Machine), you need to add eyes (for input), hands (for moving left and right),
and a mind (for “states of mind”). (See Figure 8.2 and the epigraph to §8.14.)

Before going on with this paragraph, let’s look at the “table”.11 In later writings by
others, such tables are sometimes called ‘machine tables’; they are computer programs
for Turing Machines, written in a “Turing-machine programming language” for which
Turing is now giving us the syntax and semantics.12

However, it is important to keep in mind that the Turing Machine does not “con-
sult” this table to decide what to do. We humans would consult it in order to simulate
the Turing Machine’s behavior. But the Turing Machine itself simply behaves in ac-
cordance with that table, not by following it. The table should be thought of as a

11Not to be confused with our table of place settings and beer mugs!
12That is, the grammar and meaning; see §§9.5.3, 14.2.1.

8.11. SECTION 3: “EXAMPLES OF COMPUTING MACHINES” 345

Figure 8.2: http://rhymeswithorange.com/comics/november-19-2009/, c©2009 Hilary B. Price

mathematical-English description of the way that the Turing Machine is “hardwired”
to behave. (We’ll revisit this idea in §§10.4.1 and 12.4.4.1.2.2.)

Here’s the table, written a bit more legibly than in Turing’s paper:

Configuration Behaviour
m-config. symbol operations final m-config.

b None P0,R c
c None R e
e None P1,R f
f None R b

This program consists of 4 lines. It is important to note that it is a set of lines, not a
sequence: The order in which the lines are written down in the table (or “program”) is
irrelevant; there will never be any ambiguity as to which line is to be executed. Perhaps
a better way of saying this is: There will never be any ambiguity as to which line is
causing the Turing Machine to move.

Each line consists of two principal parts: a “configuration” and a “behavior”. Each
configuration, as you may recall, consists of two parts: an m-configuration (or line
number) and a symbol (namely, the currently scanned symbol). Each behavior con-
sists also of two parts: an “operation” (one or more of E, L, R, or P) and a “final
m-configuration” (that is, the next line number to be executed).

This table (and all succeeding tables of the same kind) is to be understood to mean
that for a configuration described in the first two columns the operations in the
third column are carried out successively, and the machine then goes over into the
m-configuration described in the last column. (p. 233, my italics.)

That is, each line of the program should be understood as follows: “Under the con-
ditions described by the configuration, do the operation and then go to the instruction
at the final m-configuration”. Or, to use Turing’s other terminology: “If your current
state of mind is the one listed in the current m-configuration, and if the symbol on the
current square being scanned is the one in the symbol column, then do the operation
and change your state of mind to the one in the final m-configuration column.”

346 CHAPTER 8. TURING’S ANALYSIS OF COMPUTATION

A modern way of thinking about this is to consider it to be a “production system”.
Production systems are an architecture introduced by Emil Post in his analysis of com-
putation and used by many researchers in AI. A production system consists of a set
of “condition-action” pairs; if the condition is satisfied, then the action is carried out.
That’s exactly what we have in this Turing-machine table: The configuration is the
condition, and the behavior is the action.

Further Reading:
Sieg 2000, p. 7, notes that even Turing considered Turing Machines as production systems. Post’s
writings on computations that have become known as “production systems” are Post 1941, 1943.
For more on production systems in AI, see Winston 1977, pp. 357–366; Agre 1992, pp. 294–295;
and http://www.cse.buffalo.edu/∼rapaport/663/F03/prodsys.eg.html

A further qualification:

When the second column [that is, the symbol column] is left blank, it is understood
that the behaviour of the third and fourth columns applies for any symbol and for
no symbol. (p. 233)

That is the situation we have in this first example, where ‘None’ is the entry in each row
of the symbol column. So the only condition determining the behavior of this Turing
Machine is its current “state of mind”, that is, its current line number.

Finally, we need to know what the initial situation that this “production system” is
intended to apply to:

The machine starts in the m-configuration b with a blank tape. (p. 233.)

Perhaps ‘b’ stands for “begin”, with subsequent “states of mind” (in alphabetical as
well as sequential order) being c, e, and f (‘ f ’ for “final”? What happened to ‘d’?).

Let’s trace this program. We start with a blank tape, which I will show as follows:

[[[[[[[[[[[. . .

We are in state b.
Looking at the table, we see that if we are in state b, then (because any symbol that

might be on the tape is irrelevant), we should do the sequence of operations P0, R. Tur-
ing hasn’t told us what ‘P0’ means, but, because ‘P’ means “print”, it’s pretty obvious
that this means “print 0 on the currently scanned square”.

Note, too, that he hasn’t told us which square is currently being scanned! It prob-
ably doesn’t matter, because all squares on the tape are blank. If the tape is infinite
(or endless) in both directions, then each square is indistinguishable from any other
square, at least until something is printed on one square. However, it’s worth thinking
about some of the options: One possibility is that we are scanning the first, or leftmost,
square; this is the most likely option and the one that I will assume in what follows.
But another possibility is that we are scanning some other square somewhere in the
“middle” of the tape. That probably doesn’t matter, because Turing only told us that it
would compute the sequence ‘010101. . . ’; he didn’t say where it would be computed!

8.11. SECTION 3: “EXAMPLES OF COMPUTING MACHINES” 347

There is one further possbiility, not very different from the previous one: The tape
might not have a “first” square—it might be infinite in both directions!

And now we need to consider something that Turing hasn’t mentioned: How long is
the tape? As far as I can tell, Turing is silent in this paper about how long For all that he
has told us, it could be infinitely long. In fact, the informal way that Turing Machines
are usually introduced does talk about an “infinite” tape. But many mathematicians and
philosophers (not to mention engineers!) are not overly fond of actual infinities. The
more mathematically precise way to describe it is as an “arbitrarily long” tape. That is,
the tape is as long as you need it to be. For most computations (the ones that really do
halt with a correct answer), the tape will be finite. Since no real machine can print out
an infinitely long decimal, no real machine will require an infinite tape, either. In real
life, you can only print out a finite initial segment of the decimal part of a real number;
that is, it will always be an approximation, but you can make the approximation as close
as you want by just printing out a few more numbers. So, instead of saying that the tape
is infinitely long, we can say that, at any moment, the tape only has a finite number of
squares, but there is no limit to the number of extra squares that we are allowed to add
on at one (or maybe both) ends. (As my former teacher and colleague John Case used
to put it, if we run out of squares, we can always go to an office-supply store, buy some
extra squares, and staple them onto our tape!) People don’t have infinite memory, and
neither do Turing Machines or, certainly, real computers. The major difference between
Turing Machines, on the one hand, and people and real computers, on the other hand,
is that Turing Machines can have a tape (or a memory) that is as large as you need,
while people and real computers are limited.

So, let’s now show our initial tape as follows, where the currently scanned square
is underlined:

[[[[[[[[[[[. . .

Performing the two operations on line b converts our initial tape to this one:

0 [[[[[[[[[[. . .

and puts us in state c. That is, we next execute the instruction on line c.
Looking at line c, we see that, no matter what symbol is on the current square (it is,

in fact, blank), we should simply move right one more square and change our mind to
e. So now our tape will look like this:

0 [[[[[[[[[[. . .

Because we are now in state e, we look at line e of the program, which tells us that,
no matter what, if anything, is on the current square, print ‘1’ there, move right again,
and go into state f . So, our tape becomes:

0 [1 [[[[[[[[. . .

Now we are in state f , so, looking at line f , we see that we merely move right once
again, yielding:

0 [1 [[[[[[[[. . .

348 CHAPTER 8. TURING’S ANALYSIS OF COMPUTATION

And we go back into state b. But that starts this cycle all over again; we are indeed in
an infinite loop! One more cycle through this turns our tape into:

0 [1 [0 [1 [[[[[. . .

Clearly, repeated cycles through this infinitely looping program will yield a tape con-
sisting entirely of the infinite sequence 010101. . . with blank squares separating each
square with a symbol printed on it:

0 [1 [0 [1 [0 [1 [. . .

8.11.1.2 Section 3, Example I, Paragraph 2

Can this program be written differently?

If (contrary to the description in §1) we allow the letters L,R to appear more than
once in the operations column we can simplify the table considerably. (p. 234.)

In “the description in §1” (p. 231), Turing allowed the machine to “change the square
which is being scanned, but only by shifting it one place to right or left” (my italics).
Now, he is allowing the machine to move more than one place to the right or left; this
is accomplished by allowing a sequence of moves. Here is the modified program:

m-config. symbol operations final m-config.

b
None
0
1

P0 b
R,R,P1 b
R,R,P0 b

Note that there is only one m-configuration, that is, only one line number; another
way to think about this is that this program has only one instruction. Turing would say
that this machine never changes its state of mind. But that one instruction is, of course,
more complex than the previous ones. This one is what would now be called a ‘case’
statement: In case there is no current symbol, print 0; in case the current symbol =
0, move right 2 squares and print 1; and in case the current symbol = 1, move right 2
squares and print 0.

Exercises for the Reader:

1. I urge you to try to follow this version of the program, both for practice in reading such
programs and to convince yourself that it has the same behavior as the first one.

2. Another interesting exercise is to write a program for a Turing Machine that will print the
sequence 010101. . . without intervening blank squares.

So, our machine has “compute[d] the sequence 010101. . . ”. Or has it? It has
certainly written that sequence down. Is that the same thing as “computing” it?

And here is another question: Earlier, I said that 010101. . . was the binary rep-
resentation of 1

3 and the decimal representation of 1
99 . Have we just computed 1

3 in
base 2? Or 1

99 in base 10?

8.11. SECTION 3: “EXAMPLES OF COMPUTING MACHINES” 349

Further Reading:
For an interesting discussion of this, see Rescorla 2013. In §§14.4, 17.4.2.3, and 17.6.6, We’ll
return to some of the issues discussed in Rescorla’s paper.

Even if you are inclined to answer ‘yes’ to the question whether writing is the same as
copying, you might be more inclined to answer ‘no’ to the question whether we have
computed 1

3 in base 2 or 1
99 in base 10. Although Turing may have a convincing reason

(in his §9) to say that computing consists of nothing more than writing down symbols,
surely there has to be more to it than that; surely, just writing down symbols is only
part of computing. The other parts have to do with which symbols get written down, in
what order, and for what reason. If I asked you to compute the decimal representation
of 1

99 , how would you know that you were supposed to write down 010101. . . ? Surely,
that is the heart of computation. Or is it?

At this point, however, we should give Turing the benefit of the doubt. After all, he
did not say that we were going to compute 1

99 , only that we were going to “compute”
010101. . . , and, after all, “computing” that sequence really just is writing it down;
it’s a trivial, or basic, or elementary, or primitive computation (choose your favorite
adjective). Moreover, arguably, Turing only showed us this trivial example so that we
could clearly see the format of his Turing-machine programs before getting a more
complex example.

Before turning to such a more complex program, let’s consider the syntax (specif-
ically, the grammatical structure) of these programs a bit more. (For more on what
‘syntax’ means, §§14.3, 16.3.1, 17.8.2 and 19.6.3.3; see also (Rapaport, 2017b).) Each
line of the program has the following, general form:

qB S O qE

where:

1. qB is an initial (or Beginning) m-configuration (a line number)

2. S is the symbol on the currently scanned square (possibly a blank)

3. O is an operation (or a sequence of operations) to be performed (where the oper-
ations are Px, E, L, R, and where x is any legally allowed symbol)13

4. qE is a final (or Ending) m-configuration.

13In our first program, the only symbols were ‘0’ and ‘1’; we will see others in subsequent examples.

350 CHAPTER 8. TURING’S ANALYSIS OF COMPUTATION

And the semantics (that is, the meaning or interpretation) of this program line is:

if the Turing Machine is in m-configuration qB, and
if either the current input = S or no input is specified,

then
begin

1. do the sequence of operations O;

{where each operation is either:
• Print x on the current square,

(where printing x overwrites whatever is currently printed
on the square), or

• Erase the symbol that is on the current square,
(where erasing results in a blank square, even if the
square is already blank), or

• move Left one square, or
• move Right one square}

2. go to m-configuration qE
end

8.11.2 Section 3, Example II
8.11.2.1 Section 3, Example II, Paragraph 1

We now come to “a slightly more difficult example”:

As a slightly more difficult example we can construct a machine to compute the
sequence 001011011101111011111. . . . (p. 234.)

First, note that the sequence to be computed consists of the subsequences

0, 1, 11, 111, 1111, 11111, . . .

That is, it is a sequence beginning with ‘0’, followed by the numbers 1, 2, 3, 4, 5, . . .
written in base 1 (that is, as “tally strokes”)—with each term separated by a ‘0’.

But this seems very disappointing! It seems that this “more difficult” computation
is still just writing down some symbols without “computing” anything. Perhaps. But
note that what is being written down (or “computed”) here are the natural numbers.
This program will begin counting, starting with 0, then the successor of 0, the successor
of that, and so on. But, as we saw in §7.7.2, the successor function is one of the basic
recursive functions, that is, one of the basic computable functions.

Being able to (merely!) write down the successor of any number, being able to
(merely!) write down the predecessor of any non-0 number, and being able to find
a given term in a sequence of numbers are the only basic recursive (or computable)
functions. Turing’s “slightly more difficult example” will show us how to compute the
first of these. Devising a Turing Machine program for computing the predecessor of the
natural number n should simply require us to take a numeral represented as a sequence
of n occurrences of ‘1’ and erase the last one. Devising a Turing Machine program for

8.11. SECTION 3: “EXAMPLES OF COMPUTING MACHINES” 351

computing the jth term in a sequence of k symbols should simply require us to move a
certain number of squares in some direction to find the term (or, say, the first square of
a sequence of squares that represents the term, if the term is complex enough to have
to be represented by a sequence of squares).

And any other other recursive function can be constructed from these basic func-
tions by generalized composition (sequencing), conditional definition (selection), and
while-recursion (repetition), which are just “control structures” for how to find a path
(so to speak) through a Turing-machine program—that is, ways to organize the se-
quence of m-configurations that the Turing Machine should go through.

So, it looks as if computation really is nothing more than writing things down,
moving around (on a tape), and doing so in an order that will produce a desired
result! As historian Michael Mahoney suggested, the shortest description of Turing’s
accomplishment might be that Turing

showed that any computation can be described in terms of a machine shifting
among a finite number of states in response to a sequence of symbols read and
written one at a time on a potentially infinite tape. —(Mahoney, 2011, p. 79)

We’ll return to this idea in §9.6.
Let’s now look at this “slightly more difficult” program:

The machine is to be capable of five m-configurations, viz., “o”, “q”, “p”, “ f ”, “b”
and of printing “@”, “x”, “0”, “1”.
(p. 234, substituting italics for German Fraktur letters)

The first two printable symbols are going to be used only for bookkeeping purposes.14

So, once again, Turing is really restricting himself to binary notation for the important
information.

Continuing:

The first three symbols on the tape will be “@@0”; the other figures follow on alter-
nate squares. (p. 234, my italics.)

It may sound as if Turing is saying that the tape comes with some pre-printed informa-
tion. But, when we see the program, we will see that, in fact, the first instruction has
us print ‘@@0’ on the first three squares before beginning the “real” computation. Had
the tape come with pre-printed information, perhaps it could have been considered as
“innate” knowledge,15 though a less cognitive description could simply have been that
the manufacturer of the tape had simplified our life knowing that the first thing that the
program does to a completely blank tape is to print ‘@@0’ on the first three squares be-
fore beginning the ‘real’ computation. Because that only has to be done once, it might
have been simpler to consider it as pre-printed on the tape.

Note that Turing calls these ‘symbols’ in the first clause, and then talks about ‘fig-
ures’ in the second clause. Figures, you may recall from §8.10.2, are the numerals ‘0’

14The inverted ‘e’ is called a ‘schwa’; it is used in phonetics to represent the sound “uh”, as in ‘but’.
Turing uses it merely as a bookkeeping symbol with no meaning.

15That is, knowledge that it was “born” with (or, to use another metaphor, knowledge that is “hardwired”).
For more on innate knowledge, see Samet and Zaitchik 2017.

352 CHAPTER 8. TURING’S ANALYSIS OF COMPUTATION

and ‘1’. So, Turing seems to be saying that all subsequent occurrences of ‘0’ and ‘1’
will occur on “alternate squares”. What happens on the other squares? He tells us:

On the intermediate squares we never print anything but “x”. These letters serve
to “keep the place” for us and are erased when we have finished with them. We
also arrange that in the sequence of figures on alternate squares there shall be no
blanks. (p. 234.)

So, it sounds as if the final tape will begin with ‘@@0’; during the computation, subse-
quent squares will have ‘0’ or ‘1’ interspersed with ‘x’; and at the end of the compu-
tatation, those subsequent squares will only have ‘0’ or ‘1’, and no blanks. Of course,
at the end, we could go back and erase the initial occurrences of ‘@’, so that there would
only be “figures” and no other symbols.

Here is the program:

Configuraton Behaviour
m-config. symbol operations final

m-config.
b P@,R,P@,R,P0,R,R,P0,L,L o

o
1

R, Px, L, L, L
o

0 q

q
Any (0 or 1) R,R q

None P1,L p

p
x E,R q
@ R f

None L,L p

f
Any R,R f
None P0,L,L o

8.11. SECTION 3: “EXAMPLES OF COMPUTING MACHINES” 353

I think it will be helpful to restate this program in a more readable format:

b begin
print ‘@@0’ on the first 3 squares;
P0 on the 5th square;
move left to the 3rd square (which has ‘0’ on it);
go to line o

end

o if current symbol = 1
then

begin
move right;
Px;
move left 3 squares;
go to line o {that is, stay at o}

end
else if current symbol = 0

then go to line q

q if current symbol = 0 or current symbol = 1
then

begin
move right 2 squares;
go to line q

end
else if current square is blank

then
begin

P1;
move left;
go to line p

end
[continued on next page]

354 CHAPTER 8. TURING’S ANALYSIS OF COMPUTATION

p if current symbol = x
then

begin
erase the x;
move right;
go to line q

end
else if current symbol = @

then
begin

move right;
go to line f

end
else if current square is blank

then
begin

move left 2 squares;
go to line p

end

f if current square is not blank
then

begin
move right 2 squares;
go to line f

end
else

begin
P0;
move left 2 squares;
go to line o

end

Note that no line of the program ends with the machine changing its state of mind
to m-configuration b. So that line of the program, which is the one that initializes the
tape with ‘@@0’ on the first 3 squares, is only executed once. Note also that, whenever
an instruction ends with a command to stay in the same m-configuration (that is, to go
to that very same line), we are in a loop. A structured version of the program would
use a while. . . do control structure, instead.

There are some odd things to consider in lines o,q, p: What happens if the machine
is in state o but the current symbol is not a “figure”? What happens in state q if the
current symbol is ‘@’ or ‘x’? And what happens in state p if the current symbol is a
“figure”? Turing doesn’t specify what should happen in these cases. One possibility
is that he has already determined that none of these cases could occur. Still, modern
software engineering practice would recommend that an error message be printed out
in those cases. In general, in a computer program, when a situation occurs for which the

8.11. SECTION 3: “EXAMPLES OF COMPUTING MACHINES” 355

program does not specify what should happen, anything is legally allowed to happen,
and there is no way to predict what will happen; this is sometimes expressed in the
slogan, “garbage in, garbage out”.

8.11.2.2 Section 3, Example II, Paragraph 2

Turing goes on “to illustrate the working of this machine” with “a table . . . of the first
few complete configurations” (p. 234.) Recall that a “complete configuration” con-
sists of information about which square is currently being scanned, the sequence of
all symbols on the tape, and the line number of the instruction currently being exe-
cuted. Rather than use Turing’s format, I will continue to use the format that I used
for Example I, adding the line number at the beginning, using underscoring to indicate
the currently scanned square, and assuming that any squares not shown are blank; any
blank square that is between two non-blank squares (if there are any) will be indicated
by our symbol for a blank that has been made visible: [. You are urged to compare my
trace of this program with Turing’s.

So, we begin with a blank tape. What is the machine’s initial state of mind, its
initial m-configuration? Turing has forgotten to tell us! But it is fairly obvious that b is
the initial m-configuration, and, presumably, we are scanning the leftmost square (or, if
the tape is infinite in both directions, then we are scanning any arbitrary square), and,
of course, all squares are blank:

b : [, [, . . .

The initial instruction tells us to print @, move right, print another @, move right again,
print 0, move right 2 more squares, print another 0, move 2 squares back to the left,
and go into state o. After doing this sequence of primitive operations, our complete
configuration looks like this:

o : @,@,0, [,0, [, . . .

356 CHAPTER 8. TURING’S ANALYSIS OF COMPUTATION

Digression on Notation:
To help you in reading Turing’s paper, my notation for the initial situation should be compared
with his. Here is his:

:
b

He has an invisible blank, followed by a colon, with the m-configuration ‘b’ underneath the
blank, marking the currently scanned square.

Instead, I have ‘b:’ preceding a sequence of (visible) blanks, the first one of which is marked
as being the scanned square.

Turing then shows the second configuration:

@ @ 0 0 :
o

Turing has two occurrences of ‘@’ followed by two ‘0’s that are separated by an (invisible) blank,
with the m-configuration ‘o’ underneath the currently scanned square (which contains the first
‘0’), followed by a colon to mark the end of this complete configuration.

Instead, I have ‘o:’ preceding a sequence consisting of the two occurrences of ‘@’, followed
by a ‘0’ that is marked as being the scanned square, followed by a (visible) blank, followed by
the second ‘0’.

We are now in m-configuration o, and the currently scanned square contains ‘0’, so
the second case (that is, the bottom row) of this second instruction tells us merely to
go into state q. The “operations” column is left empty, so there is no operation to per-
form. It is worth noting that, although there does not always have to be an operation to
perform, there does always have to be a final state to go into, that is, a next instruction
to perform. So, the tape looks exactly as it did before, except that the machine is now
in state q:

q : @,@,0, [,0, [, . . .

Because the machine is now in state q and still scanning a ‘0’, the first case (that
is, the top row) of this third instruction tells us to move two squares to the right but to
stay in state q. So the tape now looks like this:

q : @,@,0, [,0, [, . . .

Because the machine is still in state q and still scanning a ‘0’ (although the currently
scanned square is different), we perform the same (third) instruction, moving two more
squares to the right and staying in state q:

q : @,@,0, [,0, [, [, . . .

The machine is still in state q, but now there is no scanned symbol, so the second
case (bottom line) of the third instruction is executed, resulting in a ‘1’ being printed
on the current square, and the machine moves left, going into state p.

Whenever the machine is in state p and scanning a blank (as it is now), the third
case (last line) of the fourth instruction is executed, so the machine moves two squares
to the left and stays in state p:

p : @,@,0, [,0, [,1, . . .

8.11. SECTION 3: “EXAMPLES OF COMPUTING MACHINES” 357

Now the machine is in state p scanning a blank, so the same instruction is executed:
It moves two more squares to the left and continues in state p:

p : @,@,0, [,0, [,1, . . .

But now it is the second case (middle line) of the fourth instruction that is executed,
so the machine moves right and goes into state f :

f : @,@,0, [,0, [,1, . . .

When in state f scanning any symbol (but not a blank), the machine moves two
squares to the right, staying in f :

f : @,@,0, [,0, [,1, . . .

Again, it moves two squares to the right, staying in f :

f : @,@,0, [,0, [,1, . . .

And again:
f : @,@,0, [,0, [,1, [, [, . . .

But now it executes the second case of the last instruction, printing ‘0’, moving two
squares to the left, and returning to state o:

o : @,@,0, [,0, [,1, [,0, . . .

Now, for the first time, the machine executes the first case of the second instruction,
moving right, printing ‘x’, moving three squares to the left, but staying in o:

o : @,@,0, [,0, [,1,x,0, . . .

At this point, you will be forgiven if you have gotten lost in the “woods”, having
paid attention only to the individual “trees” and not seeing the bigger picture.16 Recall
that we are trying to count: to produce the sequence 0, 1, 11, 111, . . . with ‘0’s between
each term:

0 0 1 0 11 0 111 0 . . .

We started with a blank tape:
[[[. . .

and we now have a tape that looks like this:

@@0[0[1x0[. . .

Clearly, we are going to have to continue tracing the program before we can see the
pattern that we are expecting; Turing, however, ends his tracing at this point. But we
shall continue; however, I will only show the complete configurations without spelling

16My apologies for the mixed metaphor.

358 CHAPTER 8. TURING’S ANALYSIS OF COMPUTATION

out the instructions (doing that is left to the reader). Here goes, continuing from where
we left off:

o : @ @ 0 [0 [1 x 0 . . .
q : @ @ 0 [0 [1 x 0 . . .
q : @ @ 0 [0 [1 x 0 . . .
q : @ @ 0 [0 [1 x 0 . . .
q : @ @ 0 [0 [1 x 0 [[. . .
p : @ @ 0 [0 [1 x 0 [1 . . .
p : @ @ 0 [0 [1 x 0 [1 . . .
q : @ @ 0 [0 [1 [0 [1 . . .
q : @ @ 0 [0 [1 [0 [1 . . .
q : @ @ 0 [0 [1 [0 [1 [[[. . .
p : @ @ 0 [0 [1 [0 [1 [1 [. . .

Hopefully, now you can see the desired pattern beginning to emerge. The occur-
rences of ‘x’ get erased, and what’s left is the desired sequence, but with blank squares
between each term and with two leading occurrences of ‘@’. You can see from the
program that there is no instruction that will erase those ‘@’s; the only instructions
that pay any attention to a ‘@’ are (1) the second case of m-configuration p, which
only tells the machine to move right and to go into state f , and (2) the first case of
m-configuration f , which, when scanning any symbol, simply moves two squares to
the right (but, in fact, that configuration will never occur!).

In the third paragraph, Turing makes some remarks about various notation conven-
tions that he has adopted, but we will ignore these, because we are almost finished with
our slow reading. I do want to point out some other highlights, however.

8.12 Section 4: “Abbreviated Tables”
In this section, Turing introduces some concepts that are central to programming and
software engineering.

There are certain types of process used by nearly all machines, and these, in some
machines, are used in many connections. These processes include copying down
sequences of symbols, comparing sequences, erasing all symbols of a given form,
etc. (p. 235.)

In other words, certain sequences of instructions occur repeatedly in different programs
and can be thought of as being single “processess”: copying, comparing, erasing, etc.

Turing continues:

Where such processes are concerned we can abbreviate the tables for the
m-configurations considerably by the use of “skeleton tables”. (p. 235.)

The idea is that skeleton tables are descriptions of more complex sequences of instruc-
tions that are given a single name. This is the idea behind “subroutines” (or “named
procedures”) and “macros” in modern computer programming. (Recall our discussion

8.13. SECTION 5: “ENUMERATION OF COMPUTABLE SEQUENCES” 359

of this in §7.6.6.) If you have a sequence of instructions that accomplishes what might
better be thought of as a single task (for example, copying a sequence of symbols), and
if you have to repeat this sequence many times throughout the program, it is more con-
venient (for the human writer or reader of the program!) to write this sequence down
only once, give it a name, and then refer to it by that name whenever it is needed.17

There is one small complication: Each time that this named abbreviation is needed,
it might require that parts of it refer to squares or symbols on the tape that will vary
depending on the current configuration, so the one occurrence of this named sequence
in the program might need to have variables in it:

In skeleton tables there appear capital German letters and small Greek letters.
These are of the nature of “variables”. By replacing each capital German letter
throughout by an m-configuration and each small Greek letter by a symbol, we
obtain the table for an m-configuration. (pp. 235–236.)

Of course, whether one uses capital German letters, small Greek letters, or something
more legible or easier to type is an unimportant, implementation detail. The important
point is this:

The skeleton tables are to be regarded as nothing but abbreviations: they are not
essential. (p. 236.)

8.13 Section 5:
“Enumeration of Computable Sequences”

Another highlight of Turing’s paper that is worth pointing out occurs in his §5: a way
to convert every program for a Turing Machine into a number. Let me be a bit more
precise about this before seeing how Turing does it.

First, it is important to note that, for Turing, there really is no difference between
one of his a-machines (that is, a Turing Machine) and the program for it. Turing
Machines are “hardwired” to perform exactly one task, as specified in the program (the
“table”, or “machine table”) for it. So, converting a program to a number is the same
as converting a Turing Machine to a number.

Second, “converting to a number”—that is, assigning a number to an object—really
means that you are counting. So, in this section, Turing shows that you can count
Turing Machines by assigning a number to each one.

Third, if you can count Turing Machines, then you can only have a countable num-
ber of them. But there are uncountably many real numbers, so there will be some real
numbers that are not computable!

Here is how Turing counts Turing Machines. First (using the lower-case Greek
letter “gamma”, γ):

A computable sequence γ is determined by a description of a machine which com-
putes γ. Thus the sequence 001011011101111. . . is determined by the table on

17“As Alfred North Whitehead wrote, ‘Civilisation advances by extending the number of important oper-
ations which we can perform without thinking about them.’ ” (Brian Hayes 2014b, p. 22).

360 CHAPTER 8. TURING’S ANALYSIS OF COMPUTATION

p. 234, and, in fact, any computable sequence is capable of being described in
terms of such a table. (p. 239.)

“A description of a machine” is one of the tables such as those we have been looking
at; that is, it is a computer program for a Turing Machine.

But, as we have also seen, it is possible to write these tables in various ways. So,
before we can count them, we need to make sure that we don’t count any twice because
we have confused two different ways of writing the same table with being two different
tables. Consequently:

It will be useful to put these tables into a kind of standard form. (p. 239.)

The first step in doing this is to be consistent about the number of separate opera-
tions that can appear in the “operations” column of one of these tables. Note that in the
two programs we have looked at, we have seen examples in which there were as few
as 0 operations and as many as 10 (not to mention the variations possible with skeleton
tables). So:

In the first place let us suppose that the table is given in the same form as the first
table, for example, I on p. 233. [See our §8.11.1, above.] That is to say, that the
entry in the operations column is always of one of the forms E : E,R : E,L : Pa :
Pa,R : Pa,L : R : L : or no entry at all. The table can always be put into this form
by introducing more m-configurations. (p. 239)

In other words, the operation in the operations column will be exactly one of:

erase
erase and then move right
erase and then move left
print symbol a
print a and then move right
print a and then move left

(where ‘a’ is a variable ranging over all the possible symbols in
a given program)

move right
move left
do nothing

“Introducing more m-configurations” merely means that a single instruction such as:

b 0 P1,R,P0,L f

can be replaced by two instructions:

b 0 P1,R f1
f1 P0,L f

where ‘ f1’ is a new m-configuration not appearing in the original program. Put other-
wise, a single instruction consisting of a sequence of operations can be replaced by a

8.13. SECTION 5: “ENUMERATION OF COMPUTABLE SEQUENCES” 361

sequence of instructions each consisting of a single operation. (For convenience, pre-
sumably, Turing allows pairs of operations, where the first member of the pair is either
E or P and the second is either R or L. So a single instruction consisting of a sequence
of (pairs of) operations can be replaced by a sequence of instructions each consisting
of a single operation or a single such pair.)

Numbering begins as follows:

Now let us give numbers to the m-configurations, calling them q1, . . . ,qR as in §1.
The initial m-configuration is always to be called q1. (p. 239.)

So, each m-configuration’s number is written as a subscript on the letter ‘q’.
The numbering continues:

We also give numbers to the symbols S1, . . . ,Sm and, in particular,
blank = S0,0 = S1,1 = S2. (pp. 239–240.)

So, each symbol’s number is written as a susbscript on the letter ‘S’.
Note, finally, that Turing singles out three symbols for special treatment, namely,

‘0’, ‘1’, and what I have been writing as [. (So, Turing is finally making the blank
visible.)

At this point, we have the beginnings of our “standard forms”, sometimes called
‘normal’ forms (which Turing labels N1,N2,N3):

The lines of the table are now [one] of [the following three] form[s]

m-config. Symbol Operations Final
m-config.

qi S j PSk,L qm (N1)
qi S j PSk,R qm (N2)
qi S j PSk qm (N3)

(p. 240)

So, we have three “normal forms”:

N1 m-configuration qi = if currently scanned symbol is S j,
then

begin
print symbol Sk;
move left;
go to qm

end

N2 m-configuration qi = if currently scanned symbol is S j,
then

begin
print symbol Sk;
move right;
go to qm

end

362 CHAPTER 8. TURING’S ANALYSIS OF COMPUTATION

N3 m-configuration qi = if currently scanned symbol is S j,
then

begin
print symbol Sk;
go to qm

end

As Turing notes in the following passage (which I will not quote but merely sum-
marize), erasing (E) is now going to be interpreted as printing a blank (PS0), and a line
in which the currently scanned symbol is S j and the operation is merely to move right
or left is now going to be interpreted as overprinting the very same symbol (PS j) and
then moving. So, all instructions require printing something: either a visible symbol or
a blank symbol, and then either moving or not moving. As Turing notes:

In this way we reduce each line of the table to a line of one of the forms (N1),(N2),(N3).
(p. 240.)

Turing simplifies even further, eliminating the ‘print’ command and retaining only
the symbol to be printed. After all, if all commands involve printing something, you
don’t need to write down ‘P’; you only need to write down what you’re printing. So
each instruction can be simplified to a 5-tuple consisting of the initial m-configuration,
the currently scanned symbol (and there will always be one, even if the “symbol” is
blank, because the blank has been replaced by ‘S0’), the symbol to be printed (again,
there will always be one, even if it’s the blank), and the final m-configuration:

From each line of form (N1) let us form an expression qiS jSkLqm; from each line
of form (N2) we form an expression qiS jSkRqm; and from each line of form (N3)
we form an expression qiS jSkNqm. (p. 240.)

Presumably, N means something like “no move”. A slightly more general interpretation
is that, not only do we always print something (even if it’s a blank), but we also always
move somewhere, except that sometimes we “move” to our current location. This
standardization is consistent with our earlier observation (in §7.6.2, above) that the
only two verbs that are needed are ‘print(symbol)’ and ‘move(location)’.

Next:

Let us write down all expressions so formed from the table for the machine and
separate them by semi-colons. In this way we obtain a complete description of the
machine. (p. 240.)

Turing’s point here is that the set of instructions can be replaced by a single string of
5-tuples separated by semi-colons. There are two observations to make. First, because
the machine table is a set of instructions, there could (in principle) be several differ-
ent strings (that is, descriptions) for each such set, because strings are sequences of
symbols. Second, Turing has here introduced the now-standard notion of using a semi-
colon to separate lines of a program; however, this is not quite the same thing as the
convention of using a semi-colon to signal sequencing, because the instructions of a
Turing-machine program are not an ordered sequence of instructions (even if, when-
ever they are written down, they have to be written down in some order).

8.13. SECTION 5: “ENUMERATION OF COMPUTABLE SEQUENCES” 363

So, Turing has developed a standard encoding of the lines of a program: an m-
configuration encoded as qi (forget about b, f , etc.), a pair of symbols encoded as
S j,Sk (the first being the scanned input, the second being the printed output; again,
forget about things like ‘0’, ‘1’, ‘x’, etc.), a symbol (either L, R, or N) encoding the
location to be moved to, and another m-configuration encoded as qm. Next, he gives an
encoding of these standardized codes:

In this description we shall replace qi by the letter “D” followed by the letter “A”
repeated i times, and S j by “D” followed by “C” repeated j times. (p. 240.)

Before seeing why he does this, let’s make sure we understand what he is doing. The
only allowable m-configuration symbols in an instruction are: q1, . . . ,ql , for some l that
is the number of the final instruction. What really matters is that each instruction can
be assumed to begin and end with an m-configuration symbol, and the only thing that
really matters is which one it is, which can be determined by the subscript on q. In
this new encoding, “D” simply marks the beginning of an item in the 5-tuple, and the
i occurrences of letter ‘A’ encode the subscript. Similarly, the only allowable symbols
are: S1, . . . ,Sn, for some n that is the number of the last symbol in the alphabet of sym-
bols. What really matters is that, in each instruction, the second and third items in the
5-tuple can be assumed to be symbols (including a visible blank!), and the only thing
that really matters is which ones they are, which can be determined by the subscript on
S. In our new encoding, “D” again marks the beginning the next item in the 5-tuple,
and the j occurrences of ‘C’ encode the subscript.

Turing then explains that:

This new description of the machine may be called the standard description (S.D).
It is made up entirely from the letters “A”, “C”, “D”, “L”, “R”, “N”, and from “;”.
(p. 240.)

So, for example, this 2-line program:

q3S1S4Rq5

q5S4S0Lq5

will be encoded by an S.D consisting of this 38-character string:

DAAADCDCCCCRDAAAAA;DAAAAADCCCCDLDAAAAA

364 CHAPTER 8. TURING’S ANALYSIS OF COMPUTATION

The next step in numbering consists in replacing these symbols by numerals:

If finally we replace “A” by “1”, “C” by “2”, “D” by “3”, “L” by “4”, “R” by “5”,
“N” by “6”, “;” by “7” we shall have a description of the machine in the form of
an arabic [sic] numeral. The integer represented by this numeral may be called a
description number (D.N) of the machine. (p. 240)

Just as Gödel numbering is one way to create a number corresponding to a string,
“Turing numbering” is another. The D.N of the machine in our previous example is
this numeral:

31113232222531111173111113222234311111

which, written in the usual notation with commas, is:

31,113,232,222,531,111,173,111,113,222,234,311,111

or, in words, 31 undecillion, 113 decillion, 232 nonillion, 222 octillion, 531 septillion,
111 sextillion, 173 quintillion, 111 quadrillion, 113 trillion, 222 billion, 234 million,
311 thousand, one hundred eleven. That is the “Turing number” of our 2-line program!

Turing observes that:

The D.N determine the S.D and the structure of the machine uniquely. The ma-
chine whose D.N is n may be described as M (n). (pp. 240–242.)

Clearly, given a D.N, it is trivial to decode it back into an S.D in only one way. Equally
clearly (and almost as trivially), the S.D can be decoded back into a program in only one
way. Hence, “the structure of the machine” encoded by the D.N is “determine[d] . . .
uniquely” by the D.N. However, because of the possibility of writing a program for a
machine in different ways (permuting the order of the instructions), two different D.Ns
might correspond to the same machine, so there will, in general be distinct numbers
n,m (that is, n 6= m) such that M (n) = M (m). That is, “the” Turing Machine whose
number = n might be the same machine as the one whose number = m; a given Turing
Machine might have two different numbers. Alternatively, we could consider that we
have here two different machines that have exactly the same input-output behavior and
that execute exactly the same algorithm. Even in that latter case, where we have more
machines than in the former case, the machines are enumerable; that is, we can count
them.

Can we also count the sequences that they compute? Yes; Turing explains why
(with Turing’s explanation in italics and my comments interpolated in brackets):

To each computable sequence [that is, to each sequence that is printed to the tape
of a Turing Machine] there corresponds at least one description number [we have
just seen why there might be more than one], while to no description number does
there correspond more than one computable sequence [that is, each machine prints
out exactly one sequence; there is no way a given machine could print out two dif-
ferent sequences, because the behavior of each machine is completely determined
by its program, and no program allows for any arbitrary, free, or random “choices”

8.14. SECTION 6: “THE UNIVERSAL COMPUTING MACHINE” 365

that could vary what gets printed on the tape]. The computable sequences and num-
bers [remember: every sequence corresponds to a unique number]18 are therefore
enumerable [that is, countable]. (p. 241)

Next, on p. 241, Turing shows how to compute the D.N of program I (the one that
printed the sequence 01). And he gives a D.N without telling the reader what program
corresponds to it.

Finally, he alludes to the Halting Problem:

A number which is a description number of a circle-free machine will be called
a satisfactory number. In §8 it is shown that there can be no general process for
determining whether a given number is satisfactory or not. (p. 241.)

A “satisfactory” number is the number of a circle-free Turing Machine, that is, a Turing
Machine that never halts and that does compute the infinite decimal representation of
a real number. That is, a “satisfactory” number is the number of a Turing Machine for
a computable number. So, in Turing’s §8, he is going to show that there is “no general
process”—that is, no Turing Machine that can decide (by computing)—“whether a
given number is satisfactory”, that is, whether a given number is the number of a circle-
free Turing Machine. It is easy to determine if a given number is the number of a
Turing Machine: Just decode it, and see if the result is a syntactically correct, Turing-
machine program. But, even if it is a syntactically correct, Turing-machine program,
there will be no way to decide (that is, to compute) whether it halts or not. (Remember:
For Turing, halting is bad, not halting is good; in modern presentations of computing
theory, halting is good, not halting is (generally considered to be)19 bad.)

8.14 Section 6: “The Universal Computing Machine”
A man provided with paper, pencil, and rubber [eraser], and subject to strict disci-
pline, is in effect a universal machine.
—Alan Turing (1948, p. 416)

In fact we have been universal computers ever since the age we could follow in-
structions.
—Chris Bernhardt (2016, p. 12; see also p. 94)

Although Turing’s §6 is at least one of, if not the most important section of Turing’s
paper, we will only look at it briefly in this chapter. As before, you are encouraged to
consult (Petzold, 2008) for aid in reading it in detail.

Turing begins with this claim:

It is possible to invent a single machine which can be used to compute any com-
putable sequence. (p. 241.)

18Although, because of a curiosity of decimal representation, some numbers correspond to more than one
sequence. The classic example is that 1 = 1.0 = 0.9.

19But see Chapter 11!

366 CHAPTER 8. TURING’S ANALYSIS OF COMPUTATION

So, instead of needing as many Turing Machines as there are computable numbers,
we only need one. Recall that our first “great insight” was that all information can
be represented using only ‘0’ and ‘1’ (§7.6.1, above). That means that all information
that we would want to compute with—not only numbers, but language, images, sounds,
etc.—can be represented by a sequence of ‘0’s and ‘1’s, that is, as a computable number
(in binary notation). So, Turing’s claim is that there is a single machine that can be used
to compute anything that is computable.

Most of you own one. Indeed, most of you own several, some of which are small
enough to be carried in your pocket! They are made by Apple, Dell, et al.; they come
in the form of laptop computers, smartphones, etc. They are general-purpose, pro-
grammable computers.

If this [single] machine U is supplied with a tape on the beginning of which is
written the S.D of some computing machine M , then U will compute the same
sequence as M . (pp. 241–242)

Your laptop or smartphone is one of these Us. A program or “app” that you download
to it is an S.D (written in a different programming language than Turing’s) of a Turing
Machine that does only what that program or “app” does. The computer or smartphone
that runs that program or “app”, however, can also run other programs, in fact, many
of them. That’s what makes it “universal”:

But to do all the things a smartphone can do without buying one, . . . [a] consumer
would need to buy the following:

A cellphone
A mobile e-mail reader
A music player
A point-and-shoot camera
A camcorder
A GPS unit
A portable DVD player
A voice recorder
A watch
A calculator

Total cost: $1,999

In a smartphone, all those devices are reduced to software. (Grobart, 2011, my
italics)

A Turing Machine is to a universal Turing Machine as a music box is to a player
piano: A music box (or Turing Machine) can only play (or execute) the tune (or pro-
gram) that is hardwired into it. Player pianos (or universal Turing Machines) can play
(or execute) any tune (or program) that is encoded on its piano-roll (or tape). Here’s a
related question: “Why is a player piano not a computer?” (Kanat-Alexander, 2008).
Alternatively, when is a universal Turing Machine a player piano? The “instructions”
on the piano roll cause certain keys to be played; you can think of each key as a Turing-
machine tape cell, with “play” or “don’t play” analogous to “print-one” or “print-zero”.

8.14. SECTION 6: “THE UNIVERSAL COMPUTING MACHINE” 367

One difference is that a player piano would be a parallel machine, because you can play
chords.

Further Reading: For discussion of the music-box analogy, see Sloman 2002.

How does Turing’s universal computer work? Pretty much the same way that a
modern computer works: A program (an “app”) is stored somewhere in the computer’s
memory; similarly, the S.D of a Turing Machine is written at the beginning of the uni-
versal machine’s tape. The operating system of the computer fetches (that is, reads) an
instruction and executes it (that is, “simulates its behavior” (Dewdney, 1989, p. 315)),
then repeats this “fetch-execute” cycle until there is no next instruction; similarly, the
single program for the universal machine fetches the first instruction on its tape, exe-
cutes it, then repeats this cycle until there is no next instruction on its tape. The details
of how it does that are fascinating, but beyond our present scope.

However, here is one way to think about this: Suppose that we have two tapes.
Tape 1 will be the one we have been discussing so far, containing input (the symbols
being scanned) and output (the symbols being printed). Tape 2 will contain the com-
puter’s program, with each square representing a “state of mind”. The computer can be
thought of as starting in a square on Tape 2, executing the instruction in that square (by
reading from, and writing to, a square on Tape 1 and then moving to a(nother) square
on Tape 1), and then moving to a(nother) square on Tape 2, and repeating this “fetch-
execute” loop. In reality, Turing Machines only have one tape, and the instructions
are not written anywhere; rather, they are “hardwired” into the Turing Machine. Any
written verion of them is (merely) a description of the Turing Machine’s behavior (or
of its “wiring diagram”). But, if we encode Tape 2 on a portion of Tape 1, then we have
a “stored-program”—or universal—computer.

Further Reading:
Dewdney 1989, Chs. 1, 28, 48; Petzold 2008; and Bernhardt 2016, Ch. 6, cover this in detail.
Another presentation, using the notion of a register machine, can be found in Dennett 2013a,
pp. 126–128. Incidentally, it can be proved that any two-tape Turing Machine is equivalent to a
one-tape Turing Machine; see Dewdney 1989, Ch. 28.

Universal Turing Machines running software S often “evolve” into Turing Ma-
chines that only execute S:

[S]oftware innovations lead . . . the way and hardware redesigns follow . . . , once
the software versions have been proven to work. If you compare today’s computer
chips with their ancestors of fifty years ago, you will see many innovations that
were first designed as software systems, as simulations of new computers running
on existing hardware computers. Once their virtues were proven and their de-
fects eliminated or minimized, they could serve as specifications for making new
processing chips, much faster versions of the simulations. . . . [B]ehavioral com-
petences were first explored in the form of programs running on general-purpose
computers [that is, on universal Turing Machines] . . . and then . . . incorporated
into “dedicated” hardware [that is, Turing Machines]. (Dennett, 2017, p. 256)

368 CHAPTER 8. TURING’S ANALYSIS OF COMPUTATION

Further Reading:
Lammens 1990 is a Common Lisp implementation of Turing’s universal program as specified in
Davis and Weyuker 1983. Cooper 2012b “examine[s] challenges to . . . [the] continued primacy
[of universal Turing Machines] as a model for computation in daily practice and in the wider uni-
verse”. Davis 2012, p. 147, notes that “Turing’s universal machine showed that the distinctness
of these three catgories [machine, program, and data] is an illusion.”

8.15 The Rest of Turing’s Paper
Sections 1–5 of Turing’s paper cover the nature of computation, defining it precisely,
and stating what is now called “Turing’s (computability) thesis”. Sections 6 and 7 of
Turing’s paper cover the universal machine. Section 8 covers the Halting Problem.

We have already examined Section 9 in detail; that was the section in which Turing
analyzed how humans compute and then designed a computer program that would do
the same thing.

Section 10 shows how it can be that many numbers that one might think are not
computable are, in fact, computable. Section 11 proves that Hilbert’s Entscheidungsprob-
lem “can have no solution” (p. 259). And the Appendix proves that Turing’s notion of
computation is logically equivalent to Church’s.

Except for modern developments and some engineering-oriented aspects of CS, one
could create an undergraduate degree program in CS based solely on this one paper that
Turing wrote in 1936!

8.16. FURTHER SOURCES OF INFORMATION 369

8.16 Further Sources of Information
1. Turing’s Writings:

(a) Turing’s last paper before his death—“Solvable and Unsolvable Problems” (Turing,
1954)—is a fascinating version of Turing 1936 aimed at a(n intelligent) general
audience. In this article, he shows that many, if not most, puzzles can be put into a
“kind of ‘normal form’ or ‘standard form’ ” (p. 587) called a “substitution type of
puzzle” (p. 588), which turns out to be essentially the notion of a formal system or
a Turing Machine. He states a kind of “Turing’s Thesis” for such puzzles, noting
that such a . . .

. . . statement is moreover one which one does not attempt to prove. Pro-
paganda is more appropriate to it than proof, for its status is something
between a theorem and a definition. In so far as we know a priori what
is a puzzle and what is not, the statement is a theorem. In so far as we
do not know what puzzles are, the statement is a definition which tells us
something about what they are. (p. 588).

In this article, he also proves a version of the Halting Problem, in the sense that he
proves “that there cannot be any systematic procedure for determining whether a
puzzle be solvable or not” (p. 590).

(b) As if creating computer science (Turing, 1936), helping to win World War II (see
§6.5.4, above), and writing one of the first papers on artificial intelligence (Turing,
1950) wasn’t enough, Turing also had an interest in such questions as why zebras
have the kinds of stripes that they do(!): On this, see Billock and Tsou 2010, pp. 75–
76.

(c) Copeland 2004b is an anthology of Turing’s papers (critically reviewed in Hodges
2006).

(d) Jack Copeland’s “AlanTuring.net Reference Articles on Turing”, http://www.alanturing.
net/turing archive/pages/Reference%20Articles/referencearticlesindex.html is a web-
site that contains a variety of interesting papers on various aspects of Turing’s work,
most written by Copeland, a well-respected contemporary philosopher, including
essays on the Church-Turing Thesis: http://www.alanturing.net/turing archive/pages/
Reference%20Articles/The%20Turing-Church%20Thesis.html and Turing Machines:
http://www.alanturing.net/turing archive/pages/Reference%20Articles/What%20is%
20a%20Turing%20Machine.html

(e) Cooper and van Leeuwen 2013 is a large, “coffee table”-sized anthology of Tur-
ing’s writings with commentaries by, among many others, Rodney Brooks, Gregory
Chaitin, B. Jack Copeland, Martin Davis, Daniel Dennett, Luciano Floridi, Lance
Fortnow, Douglas Hofstadter, Wilfried Sieg, Aaron Sloman, Robert I. Soare, and
Stephen Wolfram (reviewed in Avigad 2014).

2. Biographical Information:

(a) Hodges 2012a is the standard biography. See also Hodges’s “Alan Turing: The
Enigma” website, http://www.turing.org.uk/index.html. Reviews of the first edition
of Hodges’s biography can be found in Hofstadter 1983; Bernstein 1986; Toulmin
1984 (see also Stern and Daston 1984 with a reply by Toulmin).

(b) Another biography is Leavitt 2005, reviewed in Cooper 2006.

370 CHAPTER 8. TURING’S ANALYSIS OF COMPUTATION

(c) Fitzsimmons 2013 discusses the British pardon of Turing for his “crime” of being
homosexual.

(d) Smith 2014b reviews four Turing biographies.

3. Dramatizations:

(a) Breaking the Code (Whitemore, 1966) is a play, later made into a superb film
(http://en.wikipedia.org/wiki/Breaking the Code); the film may be online at http:
//www.youtube.com/watch?v=S23yie-779k. An excerpt of the play was published
as Whitemore 1988.

(b) Enigma (2001), http://en.wikipedia.org/wiki/Enigma (2001 film) is of interest if
only because this fictionalized version omits Turing!

(c) Codebreaker: The Story of Alan Turing (2011), http://en.wikipedia.org/wiki/Codebreaker
(film): Half dramatization, half documentary, with interviews of people who knew
Turing (including some who are fictionalized in The Imitation Game).

(d) The most recent Hollywood treatment, rather controversial because of the many
liberties it took with the facts, is The Imitation Game (2014), https://en.wikipedia.
org/wiki/The Imitation Game. There are several websites that offer background
and critiques of the film. One is “The Imitation Game: The Philosophical Legacy
of Alan Turing”, The Critique (31 December 2014), http://www.thecritique.com/
news/the-imitation-game-the-philosophical-legacy-of-alan-turing/ Others include
Anderson 2014; von Tunzelmann 2014; Woit 2014; Caryl 2015.

4. Turing’s Legacy:

(a) Muggleton 1994 “show[s] that there is a direct evolution in Turing’s ideas from his
earlier investigations of computability to his later interests in machine intelligence
and machine learning.”

(b) Copeland and Proudfoot 1996 observes that “Turing was probably the first person
to consider building computing machines out of simple, neuron-like elements con-
nected together into networks in a largely random manner. . . . By the application
of what he described as ‘appropriate interference, mimicking education’ . . . [such
a] machine can be trained to perform any task that a Turing machine can carry out
. . . ” (p. 361).

(c) Copeland 1997 is an essay on hypercomputation (or “non-classical” computation),
but the introductory section (pp. 690–698) contains an enlightening discussion of
the scope and limitations of Turing’s accomplishments.

(d) Davis 2004, which is also on hypercomputation, contains a good discussion of Tur-
ing’s role in the history of computation.

(e) American Mathematical Society 2006 is a special issue of the Notices of the AMS
that includes articles by Andrew Hodges, Solomon Feferman, S. Barry Cooper, and
Martin Davis, among others.

(f) Soare 2013b compares Turing and Church to Michelangelo and Donatello, respec-
tively (illustrations at http://www.people.cs.uchicago.edu/∼soare/Art/).

(g) Daylight 2013 argues from historical evidence that the reasons that Turing is con-
sidered “the father of computer science” have nothing to do with his involvement
in computer design or construction.

(h) Daylight 2014 “assess[es] the accuracy of popular descriptions of Alan Turing’s
influences and legacy” (p. 36).

8.16. FURTHER SOURCES OF INFORMATION 371

(i) Haigh 2014 discusses the role of the Turing Machine in the history of computers,
minimizing its historical importance to the actual development of computing ma-
chines.

(j) Bullynck et al. 2015 wonders “why . . . computer science ma[de] a hero out of
Turing”.

(k) Other evaluations include Robinson 1994; Sieg 1994, §3; Kleene 1995; Leiber
2006; Michie 2008; Copeland 2012, 2013; Vardi 2013, 2017.

5. Pedagogy:

(a) On Turing Machines and pedagogy, see Schagrin et al. 1985, “Turing Machines”,
Appendix B, pp. 327–339 (http://www.cse.buffalo.edu/∼rapaport/Papers/schagrinetal85-TuringMachines.
pdf); Tymoczko and Goodhart 1986; Suber 1997c,d; Michaelson 2012; Lodder
2014.

(b) There are other Turing-machine exercises at http://www.math.nmsu.edu/hist projects/
and http://www.math.nmsu.edu/hist projects/DMRG.turing.pdf

6. Implementations:

There are several Turing-machine simulators and implementations, some quite curious:

(a) Curtis 1965 contains a program written for the IBM 1620 designed for education
purposes.

(b) Weizenbaum 1976, Ch. 2, “Where the Power of the Computer Comes From” con-
tains a masterful presentation of a Turing Machine implemented with pebbles and
toilet paper! (This is also an excellent book on the role of computers in society, by
the creator of the “Eliza” AI program.)

(c) Stewart 1994 and Brian Hayes 2007b are implementations of Turing Machines us-
ing subway trains and railroad trains, respectively.

(d) Rendell 2000, 2001, 2010 are implementations of Turing Machines in John Con-
way’s Game of Life (on which, see https://en.wikipedia.org/wiki/Conway%27s
Game of Life).

(e) There have been a few physical implementations of Turing Machines (but with fi-
nite tapes!). “[O]ne using servo motors, a Parallax Propeller, felt-tipped pen, and
1000 feet of film leader” is described at http://aturingmachine.com/ and at https://
hackaday.com/2010/03/27/turing-machine-a-masterpiece-of-craftsmanship/. A Tur-
ing Machine simulator app for iPhones and iPads is available at https://mobile.
clauss-net.de/Turing/.

(f) Smith 2014c,a are implementations on a business card! (For more information on
the business-card Turing Machines, see Casselman 2014.)

372 CHAPTER 8. TURING’S ANALYSIS OF COMPUTATION

Chapter 9

What Is a Computer?
A Philosophical Perspective

Version of 20 January 2020,1 DRAFT c© 2004–2020 William J. Rapaport

What is computation? In virtue of what is something a computer? Why do we say
a slide rule is a computer but an egg beater is not? These are . . . the philosophical
questions of computer science, inasmuch as they query foundational issues that are
typicaly glossed over as researchers get on with their projects.
—Patricia S. Churchland & Terrence J. Sejnowski (1992, p. 61, italics added)

. . . everyone who taps at a keyboard, opening a spreadsheet or a word-processing
program, is working on an incarnation of a Turing Machine . . .
—Time magazine, 29 March 1999, cited in Davis 2006a, p. 125

Figure 9.1: http://familycircus.com/comics/march-6-2012/, c©2012 Bil Keane Inc.

1A version of an earlier draft of this chapter appeared as Rapaport 2018b.

373

374CHAPTER 9. WHAT IS A COMPUTER?A PHILOSOPHICAL PERSPECTIVE

9.1 Readings
1. Required:

(a) Searle, John R. (1990), “Is the Brain a Digital Computer?”, Proceedings and Ad-
dresses of the American Philosophical Association 64(3) (November): 21–37, on-
line version without footnotes at http://users.ecs.soton.ac.uk/harnad/Papers/Py104/
searle.comp.html; reprinted in slightly revised form as Searle 1992, Ch. 9

(b) Hayes, Patrick J. (1997), “What Is a Computer? An Electronic Discussion”,
The Monist 80(3).
• Original emails at http://www.philo.at/mii/wic.dir9601/maillist.html

(c) Lloyd, Seth; & Ng, Y. Jack (2004), “Black Hole Computers”, Scientific American
291(5) (November): 52–61,
https://www.scientificamerican.com/article/black-hole-computers-2007-04/
• Argues that the universe is a computer.

(d) Weinberg, Steven (2002), “Is the Universe a Computer?”, New York Review of
Books 49(16) (24 October),
http://www.nybooks.com/articles/2002/10/24/is-the-universe-a-computer/

i. A review of Wolfram’s theories (discussed in §9.8.2.1, below)
ii. There is a follow-up letter:

Shepard, Harvey; & Weinberg, Steven (2003, 16 January), “Is the Universe a
Computer?”, New York Review of Books 50(1),
http://www.nybooks.com/articles/2003/01/16/is-the-universe-a-computer/

2. Recommended:

(a) Samuel, Arthur L. (1953), “Computing Bit by Bit, or Digital Computers Made
Easy”, Proceedings of the IRE [Institute of Radio Engineers] 41(10) (October):
1223–1230.
• An early introduction to computers, aimed at (radio) engineers who might not

be familiar with them; written by an IBM researcher who later became famous
for his work on computer checkers-players.

(b) Shagrir, Oron (2006), “Why We View the Brain as a Computer”, Synthese 153(3)
(December): 393–416, http://moon.cc.huji.ac.il/oron-shagrir/papers/Why we view
the brain as a computer.pdf
• §1, “The Problem of Physical Computation: What Does Distinguish Comput-

ers from Other Physical Systems?”, contains a good survey of various theories
of what a computer is.

(c) Piccinini, Gualtiero (2006), “Computational Explanation in Neuroscience”, Syn-
these 153(3) (December): 343–353, http://www.umsl.edu/∼piccininig/Computational%
20Explanation%20in%20Neuroscience.pdf
• §§1–4 are a good summary of issues related to the nature of computational-

ism, observer-dependence (as opposed to what Searle calls “intrinsic” compu-
tationalism—see §9.5.4, below), and universal realizability (or “pancomputa-
tionalism”).

(d) Piccinini, Gualtiero (2007), “Computational Modelling vs. Computational Expla-
nation: Is Everything a Turing Machine, and Does It Matter to the Philosophy of
Mind?”, Australasian Journal of Philosophy 85(1): 93–115,
http://www.umsl.edu/∼piccininig/Is Everything a TM.pdf

9.2. INTRODUCTION 375

9.2 Introduction

Figure 9.2: http://www.gocomics.com/agnes/2013/3/7, c©2013 T. Cochran

We began our study of the philosophy of computer science by asking what computer
science is. We then asked what it studies: Does it study computers? Or computing?
(Or maybe something else, such as information?) In Chapters 7 and 8, we began our
investigation into what computing is. And in Chapter 6, we began our investigation
into what a computer is, from a historical perspective.

In the present chapter, armed with the results of these investigations, we return to
that question: If computer science is the study of computers, what is a computer? Of
course, as we saw in §6.3, the earliest computers were humans! (To the extent that
computer science is the study of computers, does that mean that computer science is,
at least in part, a study of what humans are?) Note, however, that one of the questions
that we will be looking at is whether the brain is a computer, so perhaps the issue
of humans as computers has only been reformulated. In any case, when the question
is asked today, it is generally assumed to refer to computing machines, and that is
primarily the way that we will understand it in this chapter.

According to Arthur L. Samuel, in a 1953 article introducing computers to engi-
neers who might never have encountered them before,

a computer . . . can be looked at from two different angles, which Professor Hartree
has called the “anatomical” and the “physiological,” that is, “of what is it made?”
and “how does it tick?” (Samuel 1953, p. 1223, citing Hartree 1949, p. 56)

Samuel then goes on to describe the anatomy in terms of things like magnetic cores and
vacuum tubes. Clearly, the anatomy has changed since then, so defining ‘computer’
“anatomically” in such terms doesn’t seem to be the right way to go: It’s too change-
able. What’s needed is a “physiological”—or functional—definition. At the very least,
we might say that a computer is a physical machine (where, perhaps, it doesn’t matter
what it is made of) that is designed (that is, engineered) to compute (that is, to do com-
putations) and, perhaps, that interacts with the world. (In Chapters 11 and 17, we’ll see
why I added “perhaps” to this interaction clause.)

But does a computer have to be a “machine”? Does it have to be “engineered”? If
the brain is a computer, then it would seem that computers could be biological entities

376CHAPTER 9. WHAT IS A COMPUTER?A PHILOSOPHICAL PERSPECTIVE

(which, arguably, are not machines) that evolved (which, arguably, means that they
were not engineered). (At least, not engineered by humans. Dennett (2017) would say
that they were engineered—by Mother Nature, via the natural-selection algorithm.) So,
we should also ask whether the brain is a computer.

But is it even correct to limit a computer to a physical device? Aren’t Turing Ma-
chines computers? Should we distinguish a “real” computer from a mathematical ab-
straction such as a Turing Machine? But, arguably, my iMac—which is surely a com-
puter if anything is—isn’t a Turing Machine; rather, it can be modeled by a (universal)
Turing Machine. And, to the extent that Turing Machines don’t interact with the world,
so much the worse for them as a model of what a computer is.2

But what about a virtual computer implemented in some software, such as a pro-
gram that “simulates” a computer of a certain type (perhaps even a Turing Machine) but
that runs on a (physical) computer of a very different type? For example, for an intro-
ductory course that I once taught, I wrote a very simple Pascal program that added two
integers. This program was compiled (that is, implemented) using the “P88 Assem-
bly Language Simulator”—a virtual machine whose programming language was “P88
Assembly Language”, a very simple assembly language designed for instructional pur-
poses (Biermann, 1990). That assembly language was written (that is, implemented)
in another virtual machine whose programming language was a dialect of Pascal called
MacPascal, which was, in turn, implemented in MacOS assembly language, which
was implemented in the machine language that was implemented on a physical Mac II
computer. Note that, ultimately, there is a physical substrate in these cases.

Question for the Reader:
When two integers are input to my original Pascal program, and their sum is output, “where”
does the actual addition take place? Is it my Pascal program that adds the two integers? Or
is it “really” the Mac II computer that adds them? Or is it one (or all?) of the intermediate
implementations? (We’ll return to this example in §13.6 and to these questions of what it is that
a computer does in §§12.4.4.1.2.2 and 13.7.)

2Thanks to my colleague Stuart C. Shapiro for many of these points.

9.3. INFORMAL DEFINITIONS 377

Further Reading:
For more details on the “implementation chain” of Pascal programs, see Rapaport 2005b; we’ll
come back to this in §14.3.

On the meaning of ‘virtual’ in this context, see Chalmers 2017. For more on virtual machines,
see Popek and Goldberg 1974, Pylyshyn 1992, and—especially—Pollock 2008, who argues that
we are virtual machines! Sloman 2008 views virtual machines as mathematical abstractions that
can have causal relations with the physical world. Sloman 2019b notes that

virtual machines . . . are implemented in, but not equivalent (or reducible) to any
underlying physical machine, in part because the terms used to describe the prop-
erties and functions of the virtual machine (e.g. the internet-based email system
now used all over our planet) are not definable in the language of physics, and the
virtual machine that runs for an extended time is not equivalent to or reducible to
the collection of physical machinery that happens to implement the email system
at any time. For example, parts of the physical network can be temporarily unavail-
able causing messages to be routed differently, and over time parts of the physical
network are replaced using new physical and software technology that was un-
known a few years earlier, providing cheaper, faster and more reliable hardware
running the same virtual machine.

We’ll return to virtual machines in §§13.6 and 13.7.

If the purpose of a computer is to compute, what kind of computations do they
perform? Are they restricted to mathematical computations? Even if that’s so, is that a
restriction? The binary-representation insight (§7.6.1) suggests that any (computable)
information can be represented as a binary numeral; hence, any computation on such
information could be considered to be a mathematical computation.

And what about the difference between a “hardwired” Turing Machine that can only
compute one thing and a “programmable” universal Turing Machine that can compute
anything that is computable? And is a “programmable” computer the same as a “stored-
program” computer? Or what about the difference between a real, physical computer
that can only compute whatever is practically computable (that is, subject to reasonable
space and time constraints) and an abstract, universal Turing Machine that is not thus
constrained?

And what about egg beaters, or rocks? Surely, they are not computers. Or are they?
In short, what is a computer?

9.3 Informal Definitions

9.3.1 Reference-Book Definitions
If you ask a random person what a computer is, they might try to describe their laptop.
If you look up ‘computer’ in a reference book,3 you will find things like this (from the
Encyclopedia of Computer Science):

A digital computer is a machine that will accept data and information presented to
it in a discrete form, carry out arithmetic and logical operations on this data, and

3But recall our caution in §5.2 about dictionary (or encyclopedia) definitions!

378CHAPTER 9. WHAT IS A COMPUTER?A PHILOSOPHICAL PERSPECTIVE

then supply the required results in an acceptable form. (Morris and Reilly, 2000,
p. 539)

Or this (from the OED):

computer, n.

1. A person who makes calculations or computations; a calculator, a reckoner;
spec[ifically,] a person employed to make calculations in an observatory, in
surveying, etc. Now chiefly hist[orical]. [earliest citation dated 1613]

2. A device or machine for performing or facilitating calculation.
[earliest citation dated 1869]

3. An electronic device (or system of devices) which is used to store, manipu-
late, and communicate information, perform complex calculations, or con-
trol or regulate other devices or machines, and is capable of receiving in-
formation (data) and of processing it in accordance with variable procedural
instructions (programs or software); esp[ecially] a small, self-contained one
for individual use in the home or workplace, used esp. for handling text,
images, music, and video, accessing and using the Internet, communicating
with other people (e.g. by means of email), and playing games. [earliest
citation dated 1945]

(OED, http://www.oed.com/view/Entry/37975)

We’ll come back to these in §9.3.5.

9.3.2 Von Neumann’s Definition
In his “First Draft Report on the EDVAC”, which—along with Turing’s 1936 paper—
may be taken as one of the founding documents of computer science, John von Neu-
mann gives the following definition:

An automatic computing system is a (usually highly composite) device, which can
carry out instructions to perform calculations of a considerable order of complexity
. The instructions . . . must be given to the device in absolutely exhaustive
detail. They include all numerical information which is required to solve the prob-
lem under consideration All these procedures require the use of some code to
express . . . the problem . . . , as well as the necessary numerical material [T]he
device . . . must be able to carry them out completely and without any need for
further intelligent human intervention. At the end of the required operations the
device must record the results again in one of the forms referred to above.
(von Neumann, 1945, §1.0, p. 1)

Other comments (in this section of von Neumann 1945, as well as later, in §5.0 (pp. 6ff))
indicate that the code should be binary, hence that the computer is a “digital” device
(§1.0, p. 1). This definition hews closely to being a physical implementation of a Tur-
ing Machine, with clear allusions to the required algorithmic nature of the instructions,
and with a requirement that there be both input and output (recall our discussion of the
necessity of this—or lack thereof—in §7.5).

9.3. INFORMAL DEFINITIONS 379

9.3.3 Samuel’s Definition
Samuel’s “physiological”—or functional—definition of a computer is this:

an information or data processing device which accepts data in one form and de-
livers it in an altered form. (Samuel, 1953, p. 1223)

This seems to be a very high-level description—perhaps too high a level: It omits any
mention of computation or of algorithms. It does mention that the “delivered” data
must have been “processed” from the “accepted” data by the “device”; so it’s not just
a function that relates the two forms of data—it’s more of a function machine. But
there’s no specification of the kind of processing that it does.

Partly because of this, and on purpose, it also doesn’t distinguish between analog
and digital computers. Samuel resolves this by adding the modifier ‘digital’, comment-
ing that “Any operation which can be reduced to arithmetic or to simple logic can be
handled by such a machine. There does not seem to be any theoretical limit to the
types of problems which can be handled in this way” (Samuel, 1953, p. 1224)—a nod,
perhaps, to our binary-representation insight (§7.6.1). Still, this doesn’t limit the pro-
cessing to algorithmic processing. It does, however, allow the brain to be considered as
a computer: “when the human operator performs a reasonably complicated numerical
calculation he [sic]4 is forcing his brain to act as a digital computer” (Samuel, 1953,
p. 1224).5

A bit later (p. 1225), he does say that the processing must be governed by rules; this
gets closer to the notion of an algorithm, though he (so far) puts no constraints on the
rules. It is only after he discusses the control unit of the computer and its programming
(pp. 1226ff) that he talks about the kinds of control structures (loops, etc.) that are
involved with algorithms. So, perhaps we could put all of this together and say that, for
Samuel, a (digital) computer is a physical device that algorithmically processes digital
data.

Further on, he adds the need for input and output devices (p. 1226). Are these really
needed? Are they part of the abstract, mathematical model of a computer, namely,
a Turing Machine? Your first reaction might be to say that the tape serves as both
input and output device. But the tape is an integral part of the Turing Machine; it is
really more like the set of internal switches of a physical computer, whereas physical
computers normally have input and output devices (think of keyboards and monitors)
as separate, additional components: Think of a computer like the Mac Mini, which is
sold without a keyboard and a monitor. This is related to the necessity (or lack thereof!)
of inputs and outputs that we discussed in §7.5.3.3. A computer with no input-output
devices can only do batch processing of pre-stored data (if that—the Mac Mini can’t do
anything if there’s no way to tell it to start doing something). Computers that interact
with the external world require input-output devices, and that raises the question of
their relationship to Turing Machines (a discussion that we will begin in Chapter 10).
Briefly, interacting computers that halt or that have only computable input are simulable

4The use of the male gender here is balanced by Samuel’s earlier statement that computers have “ad-
vantages in terms of the reductions in clerical manpower and woman power” (Samuel, 1953, p. 1223, my
italics).

5See the quote from Chalmers 2011 at the end of §9.8.1, below.

380CHAPTER 9. WHAT IS A COMPUTER?A PHILOSOPHICAL PERSPECTIVE

by Turing Machines; interacting computers with non-computable input are equivalent
to Turing’s oracle machines, which we will look at in §11.4.4.

9.3.4 Davis’s Characterization
Computer scientist Martin Davis (2000, pp. 366–367) suggests (but does not explicitly
endorse) the idea that a computer is simply any device that carries out an algorithm.
Of course, this depends on what ‘carries out’ means: Surely it has to include as part
of its meaning that the internal mechanism of the device must operate in accordance
with—must behave exactly like—one of the logically equivalent mathematical mod-
els of computation. Surely, any computer does that. But is anything that does that a
computer? Can a computer be defined (merely) as a set of registers with contents or
switches with settings? If they are binary switches, each is either on or else off; com-
putation changes the contents (the settings). Do some of the register contents or switch
settings have to be interpreted as data, some as program, and the rest as irrelevant (and
some as output?). Who (or what) does the interpreting?

9.3.5 Discussion
One common thread in such definitions (ignoring the ones that are only of historical
interest) is that computers are:

1. devices or machines . . .

2. . . . that take input (data, information),

3. process it (manipulate it; or operate, calculate, or compute with it) . . .

4. . . . in accordance with instructions (a program),

5. and then output a result (presumably, more data or information, but also includ-
ing control of another device).

There are some other features that are usually associated with “computers”: The
kind that we are interested in must be, or typically are:

automatic
There is no human intervention (beyond, perhaps, writing the program). Of
course, the holy grail of programming is to have self-programmed computers,
possibly to include having the “desire” or “intention” to program themselves (as
in science fiction). Humans might also supply the input or read the output, but
that hardly qualifies as “intervention”. (We will explore “intervention”—in the
guise of “interactive” computing—in §11.4.3.)

general purpose
A computer must be capable of any processing that is “algorithmic”, by means
of a suitable program. This is the heart of Turing’s universal machine. Recall
that a Turing Machine “runs” only one program. The universal Turing Machine
is also a Turing Machine, so it, too, also runs only one program, namely, the

9.3. INFORMAL DEFINITIONS 381

fetch-execute cycle that enables the simulation of another (that is, any other)
single-program Turing Machine.

physically efficient
Many lists of computer features such as this one say that computers are elec-
tronic. But that is a matter of “anatomy”. Modern computers are, as a matter
of fact, electronic, but there is work on quantum computers (see the citations
in §3.5.4), optical computers (https://en.wikipedia.org/wiki/Optical computing),
DNA computers (see the citations in §3.5.4), etc. So, being electronic is not
essential. The crucial (“physiological”) property is, rather, to be constructed in
such a way as to allow for high processing speeds or other kinds of physical
efficiencies. Turing (1950, §4, p. 439) noted this point:

Importance is often attached to the fact that modern digital computers are
electrical Since Babbage’s machine was not electrical, and since all dig-
ital computers are in a sense equivalent, we see that this use of electricity
cannot be of theoretical importance. Of course electricity usually comes in
where fast signalling is concerned, so that it is not surprising that we find it
in [digital computers] The feature of using electricity is thus seen to be
only a very superficial similarity.

digital
Computers should process information expressed in discrete, symbolic form
(typically, alpha-numeric form, but perhaps also including graphical form). The
contrast is typically with being “analog”, where information is represented by
means of continuous physical quantities. Turing (1947, p. 378), however, con-
trasted “digital” with “electronic”:

From the point of view of the mathematician the property of being digital
should be of greater interest than that of being electronic. That it is electronic
is certainly important because these machines owe their high speed to this,
and without the speed it is doubtful if financial support for their construction
would be forthcoming. But this is virtually all that there is to be said on that
subject. That the machine is digital however has more subtle significance. . . .
With digital machines however it is almost literally true that they are able to
tackle any computing problem.

algorithmic
What about the “calculations”, the “arithmetic and logical operations”? Presum-
ably, these need to be algorithmic, though neither the OED nor the Encyclopedia
of Computer Science definitions say so. And it would seem that the authors of
those definitions have in mind calculations or operations such as addition, sub-
traction, etc.; maybe solving differential equations; Boolean operations involving
conjunction, disjunction, etc; and so on. These require the data to be numeric (for
math) or propositional (or truth-functional—for Boolean and logical operations),
at least in some “ultimate” sense: That is, any other data (pictorial, etc.) must be
encoded as numeric or propositional, or else would need to allow for other kinds
of operations.

382CHAPTER 9. WHAT IS A COMPUTER?A PHILOSOPHICAL PERSPECTIVE

There are clear cases of things that are computers, both digital and analog. For ex-
ample, Macs, PCs, etc. are clear cases of digital computers. And slide rules and certain
machines at various universities are clear cases of analog computers. (However, these
may be mostly of historical interest, don’t seem to be programmable—that is, univer-
sal, in Turing’s sense—and seem to be outside the historical development explored in
Chapter 6.)

Further Reading:
On analog computers, see the citations in §6.5.2. On the university analog computers just men-
tioned, see Hedger 1998’s report on the research of Jonathan W. Mills at Indiana University, and
“Harvard Robotics Laboratory: Analog Computation”, http://hrl.harvard.edu/analog/

And there seem to be clear cases of things that are not computers: I would guess
that most people would not consider rocks, walls, ice cubes, egg beaters, or solid blocks
of plastic to be computers (note that I said ‘most’ people!). And there are even clear
cases of devices for which it might be said that it is not clear whether, or in what sense,
they are computers, such as Atanasoff and Berry’s ABC. (Recall the patent lawsuit
discussed in §6.5.4.)

So: What is a computer? What is the relation of a computer to a Turing Machine
and to a universal Turing Machine? Is the (human) brain a computer? Is your smart-
phone a computer? Could a rock or a wall be considered to be a computer? Might
anything be a computer? Might everything—such as the universe itself—be a com-
puter? Or are some of these just badly formed questions?

Further Reading:
Chalmers 2011, “What about computers?”, pp. 335–336 (originally written in 1993) suggests that
a computer is a device that can implement multiple computations by being programmable. (The
2011 version of this essay was accompanied by commentaries, including Egan 2012; Rescorla
2012b; Scheutz 2012; Shagrir 2012a; and a reply by Chalmers (2012b).)

Shagrir 1999 is a short, but wide-ranging, paper on the nature of computers, hypercomputation,
analog computation, and computation as not being purely syntactic (a topic that we’ll look into
in Chapter 17).

Harnish 2002 is a textbook survey of numerous definitions.

Kanat-Alexander 2008 defines a computer as “Any piece of matter which can carry out symbolic
instructions and compare data in assistance of a human goal.”

See also the website Anderson 2006 and the video Chirimuuta et al. 2014.

9.4. COMPUTERS, TURING MACHINES, AND UNIVERSAL TURING MACHINES383

9.4 Computers, Turing Machines, and Universal Tur-
ing Machines

All modern general-purpose digital computers are physical embodiments of the
same logical abstraction[:] Turing’s universal machine.
—J. Alan Robinson (1994, pp. 4–5)

9.4.1 Computers as Turing Machines

Let’s try our hand at a more formal definition of ‘computer’. An obvious candidate for
such a definition is this:

(DC0) A computer is any physical device that computes.

Because a Turing Machine is a mathematical model of what it means to compute, we
can make this a bit more precise:

(DC1) A computer is an implementation of a Turing Machine.

A Turing Machine, as we have seen, is an abstract, mathematical structure. We will
explore the meaning of ‘implementation’ in Chapter 14. For now, it suffices to say that
an implementation of an abstract object is (usually) a physical object that satisfies the
definition of the abstract one. (The hedge-word ‘usually’ is there in order to allow for
the possibility of non-physical—or “virtual”—software implementations of a Turing
Machine.) So, a physical object that satisfies the definition of a Turing Machine would
be an “implementation” of one. Of course, no physical object can satisfy that definition
if part of the definition requires it to be “perfect” in the following sense:

A Turing machine is like an actual digital computing machine, except that (1) it is
error free (i.e., it always does what its table says it should do), and (2) by its access
to an unlimited tape it is unhampered by any bound on the quantity of its storage
of information or “memory”. (Kleene, 1995, p. 27)

The type-(2) limitation of a “real” (physical) Turing Machine is not a very serious one,
given (a) the option of always buying another square and (b) the fact that no computa-
tion could require an actual infinity of squares (else it would not be a finite computa-
tion). The more significant type-(2) limitation is that some computations might require
more squares than there could be in the universe (as is the case with NP computations
such as playing perfect chess).

The type-(1) limitation of “real” Turing Machines—being error free—does not ob-
viate the need for program verification (see Chapter 16). Even an “ideal” Turing Ma-
chine could be poorly programmed.

So let’s modify our definition to take care of this:

(DC2) A computer is a “physically plausible” implementation of a Turing Ma-
chine

384CHAPTER 9. WHAT IS A COMPUTER?A PHILOSOPHICAL PERSPECTIVE

where ‘physically plausible’ is intended to allow for those physical limitations. Tur-
ing himself said something similar: “Machines such as the ACE [Turing’s “automatic
computing engine”; recall §6.5.4] may be regarded as practical versions of this same
type of machine” (that is, one of his a-machines; Turing 1947, p. 379). And, more
generally:

If we take the properties of the universal [Turing] machine in combination with the
fact that the machine processes and rule of thumb processes [that is, algorithmic
processes] are synonymous we may say that the universal machine is one which,
when supplied with the appropriate instructions, can be made to do any rule of
thumb process. This feature is paralleled in digital computing machines such as
the ACE, They are in fact practical versions of the universal machine. (Turing,
1947, p. 383)

Let’s now consider two questions:

• Is a Turing Machine a computer?

• Is a Mac (or a PC, or any other real computer) a physically plausible implemen-
tation of a Turing Machine?

The first question we can dismiss fairly quickly: Turing Machines are not physical
objects, so they can’t be computers. A Turing Machine is, of course, a mathematical
model of a computer. (But a virtual, software implementation of a Turing Machine is,
arguably, a computer.)

The second question is trickier. Strictly speaking, the answer is ‘no’, because Macs
(and PCs, etc.) don’t behave the way that Turing Machines do. They actually behave
more like another mathematical model of computation: a register machine.

Further Reading:
For reasons that will become clear in a moment, it won’t be necessary for us to go into the details
of what a register machine is. But you can read about them in Shepherdson and Sturgis 1963 and
at https://en.wikipedia.org/wiki/Register machine. They are descended from the machines of
Wang 1957 that we discussed in §7.6.2. We’ll talk a bit more about them in §§11.4.4 and 14.4.3.

Register machines, however, are logically equivalent to Turing Machines; they are
just another mathematical model of computation. Moreover, other logically equiva-
lent models of computation are even further removed from Turing Machines or register
machines: How might a computer based on recursive functions work? Or one based on
the lambda calculus? (Think of Lisp Machines.) This suggests a further refinement to
our definition:

(DC3) A computer is a physically plausible implementation of anything logically
equivalent to a Turing Machine.

There is another problem, however: Computers, in any informal sense of the term
(think laptop or even mainframe computer) are programmable. Turing Machines are
not!

9.4. COMPUTERS, TURING MACHINES, AND UNIVERSAL TURING MACHINES385

But universal Turing Machines are! The ability to store a program on a universal
Turing Machine’s tape makes it programmable; that is, the universal Turing Machine
can be changed from simulating the behavior of one Turing Machine to simulating the
behavior of a different one. A computer in the modern sense of the term really means
a programmable computer, so here is a slightly better definition:

(DC4) A (programmable) computer is a physically plausible implementation of
anything logically equivalent to a universal Turing Machine.

But a program need not be stored physically in the computer: It could “control” the
computer via a wireless connection from a different location. The ability to store a
program in the computer along with the data allows for the program to change itself .
Moreover, a hardwired, non-universal computer could be programmed by re-wiring
it. (This assumes that the wires are manipulable. We’ll return to this point in §12.4.)
That’s how early mainframe computers (like ENIAC) were programmed. So, this raises
another question: What exactly is a “stored-program” computer, and does it differ from
a “programmable” computer?

Further Reading:
Allen Newell (1980, p. 148) points out that physical systems are limited in speed, space, and
reliability. Hence, a physical device that implements a Turing Machine will inevitably be more
limited than that abstract, ideal “machine”. So, some functions that are theoretically computable
on a Turing Machine might not be physically computable on a real computer. In Chapter 10,
we will be looking closely at the Church-Turing Computability Thesis. One question to think
about is whether there is a difference between an abstract Computability Thesis that applies to
(abstract) Turing Machines, on the one hand, and a physical Computability Thesis that applies
to (physical) computers, on the other hand. If Newell is right, then a physical version of the
Computability Thesis is going to differ in plausibility from an abstract one. The abstract version
can be made slightly more realistic, perhaps, by redefining, or placing limits on, some of the
terms:

[R]ather than talk about memory being actually unbounded, we will talk about it
being open, which is to say available up to some point, which then bounds the
performance, both qualitatively and quantitatively. Limited, in opposition to open,
will imply that the limit is not only finite, but small enough to force concern.
Correspondingly, universal can be taken to require only sufficiently open memory,
not unbounded memory. (Newell, 1980, p. 161)

9.4.2 Stored Program vs. Programmable
[A] Turing machine . . . was certainly thought of as being programmed in a ‘hard-
wired’ way. . . . It is reasonable to view the universal Turing machine as being
programmed by the description of the machine it simulates; since this description
is written on the memory tape of the universal machine, the latter is an abstract
stored program computer.
—B.E. Carpenter & R.W. Doran (1977, p. 270)

In my experience, the phrase ‘stored program’ refers to the idea that a computer’s
program can be stored in the computer itself (for example, on a Turing Machine’s tape)

386CHAPTER 9. WHAT IS A COMPUTER?A PHILOSOPHICAL PERSPECTIVE

and be changed, either by storing a different program or by modifying the program
itself (perhaps while it is being executed, and perhaps being (self-)modified by the
program itself). However, when I asked a colleague who first came up with the notion
of “stored program” (fully expecting him to say either Turing or von Neumann), he
replied—quite reasonably—“Jacquard”.6

On this understanding, the phrase ‘stored-program computer’ becomes key to un-
derstanding the difference between software and hardware (or programmed vs. hard-
wired computer)—see Chapter 12 for more on this—and it becomes a way of viewing
the nature of the universal Turing Machine.

Here is von Neumann on the concept:

If the device [the “very high speed automatic digital computing sytem” (§1.0, p. 1)]
is to be elastic, that is as nearly as possible all purpose, then a distinction must be
made between the specific instructions given for and defining a particular problem,
and the general control organs which see to it that these instructions—no matter
what they are—are carried out. The former must be stored in some way. . . the
latter are represented by definite operating parts of the device. By the central
control we mean this latter function only (von Neumann, 1945, §2.3, p. 2;
italics in original, my boldface)

The “specific instructions” seems clearly to refer to a specific Turing Machine’s fetch-
execute program as encoded on the tape of a universal Turing Machine. The “central
control” seems clearly to refer to the universal Turing Machine’s program. So, if this
is what is meant by “stored program”, then it pretty clearly refers to the way that a
universal Turing Machine works.

Brian Randell (1994, p. 12)—also discussing the controversy over what stored pro-
gramming is—makes a statement that suggests that the main difference between pro-
grammed vs. hardwired computers might lie in the fact that “a program held on some
read-only medium, such as switches, punched cards, or tape . . . was quite separate
from the (writable) storage device used to hold the information that was being ma-
nipulated by the machine”. “[S]toring the program within the computer, in a memory
that could be read at electronic speeds during program execution” had certain “advan-
tages” first noted by “the ENIAC/EDVAC team” (p. 13). Randell, however, thinks that
the analogy with universal Turing Machines is more central (p. 13), and that “EDVAC
does not qualify as a stored-program computer” because the “representations [of data
and instructions] were quite distinct, and no means were provided for converting data
items into instructions” or vice versa (p. 13).

Vardi (2013) defines ‘stored-program’ in terms of “uniform handling of programs
and data”, which he says can be “traced back to Gödel’s arithmetization of provability”.
(But Copeland (2013) objects to this; Vardi replies in Vardi 2017.) The commonality
between both of these ideas is that of representing two different things in the same no-
tation: Programs and data can both be represented by ‘0’s and ‘1’s; logic and arithmetic
can both be represented by numbers (or numerals; indeed, by ‘0’s and ‘1’s!). And it is
worth noting that the brain represents everything by neuron firings. There is a second
aspect of this commonality: Storing both data and program (represented in the same

6Stuart C. Shapiro, personal communication, 7 November 2013.

9.4. COMPUTERS, TURING MACHINES, AND UNIVERSAL TURING MACHINES387

notation) in the same place: Programs and data can be stored in different sections of
the same Turing-machine tape; arithmetical operations can be applied to both numbers
and logical propositions; and all neuron firings are in the brain. If we reserve ‘stored
program’ to refer to Vardi’s commonality, it certainly seems to describe the principal
feature of a universal Turing Machine (even if Turing shouldn’t be credited with the
invention of the commonality). Clearly, a stored-program computer is programmable.
Are all programmable computers stored-program computers?

Further Reading:
Haigh 2013 argues that the phrase ‘stored-program computer’ is ambiguous between several
different readings and often conflated with the notion of a universal Turing Machine, hence that
it would be better to refrain from using it. See also Haigh and Priestley 2016.

According to Daylight 2013, p. XX, note 3, the phrase ‘stored program’ was not commonly
used in the early 1950s. Furthermore, according to Daylight (2013, §3, p. VII), storing data and
instructions together “was based on practical concerns, not theoretical reasoning” of the sort that
might have been inspired by Turing’s notion of a universal Turing Machine.

Philosophical Digression:
There is a sense in which a stored-program computer does two things: It executes a “hardwired”
fetch-execute cycle, and it executes whatever software program is stored on its tape. Which is it
“really” doing? Newell (1980, p. 148) suggests that it is the former:

A machine is defined to be a system that has a specific determined behavior as a
function of its input. By definition, therefore, it is not possible for a single ma-
chine to obtain even two different behaviors, much less any behavior. The solution
adopted is to decompose the input into two parts (or aspects): one part (the instruc-
tion) being takento determine which input-output function is to be exhibited by the
second part (the input-proper) along with the output.

One way to interpret this passage is to take the “decomposition” to refer, on the one hand, to the
hardwired, fetch-execute program of the univeral Turing Machine, and, on the other hand, to the
software, stored program of the “virtual” machine. The universal Turing Machine thus (“con-
sciously”) executes the software program indirectly by directly (“unconsciously”) executing its
hardwired program. It simulates a Turing Machine that has that software program hardwired as
its machine table (Newell, 1980, p. 150).

In the next three sections, we will look at three recent attempts in the philosophical
literature to define ‘computer’. In §9.8, we will briefly consider two non-standard,
alleged examples of computers: brains and the universe itself.

388CHAPTER 9. WHAT IS A COMPUTER?A PHILOSOPHICAL PERSPECTIVE

9.5 John Searle: Anything Is a Computer

9.5.1 Searle’s Argument

John Searle’s presidential address to the American Philosophical Association, “Is the
Brain a Digital Computer?” (Searle, 1990), covers a lot of ground and makes a lot of
points about the nature of computers, the nature of the brain, the nature of cognition,
and the relationships among them. In this section, we are going to focus on what Searle
says about the nature of computers, with only a few side glances at the other issues.

Further Reading:
Searle 1990 was reprinted with a few changes as Chapter 9 of Searle 1992. For more detailed
critiques and other relevant commentary, see Piccinini 2006b, 2007b, 2010a; and Rapaport 2007.

Here is Searle’s argument relevant to our main question about what a computer is:

1. Computers are described in terms of 0s and 1s.
(See Searle 1990, p. 26; Searle 1992, pp. 207–208.)

Taken literally, he is saying that computers are described in terms
of certain numbers. Instead, he might have said that computers are
described in terms of ‘0’s and ‘1’s. In other words, he might have
said that computers are described in terms of certain numerals. Keep
this distinction (which we discussed in §6.8.1) in mind as we discuss
Searle’s argument.

2. Therefore, being a computer is a syntactic property.
(See Searle 1990, p. 26; Searle 1992, pp. 207.)

Syntax is the study of the properties of, and relations among, symbols
or uninterpreted marks on paper (or on some other medium); a rough
synonym is ‘symbol manipulation’ (see §17.8). In line with the dis-
tinction between numbers and numerals, note that only numerals are
symbols.

3. Therefore, being a computer is not an “intrinsic” property of physical objects.
(See Searle 1990, pp. 27–28; Searle 1992, p. 210.)

4. Therefore, we can ascribe the property of being a computer to any object.
(See Searle 1990, p. 26; Searle 1992, p. 208.)

5. Therefore, everything is a computer.
(See Searle 1990, p. 26; Searle 1992, p. 208.)

Of course, this doesn’t quite answer our question, “What is a computer?”. Rather,
the interpretation and truth value of these theses will depend on what Searle thinks a
computer is. Let’s look at exactly what Searle says about these claims.

9.5. JOHN SEARLE: ANYTHING IS A COMPUTER 389

9.5.2 Computers Are Described in Terms of 0s and 1s
After briefly describing Turing Machines as devices that can perform the actions of
printing ‘0’ or ‘1’ on a tape and of moving left or right on the tape, depending on
conditions specified in its program, Searle says this:

If you open up your home computer you are most unlikely to find any 0’s and 1’s
or even a tape. But this does not really matter for the definition. To find out if an
object is really a digital computer, it turns out that we do not actually have to look
for 0’s and 1’s, etc.; rather we just have to look for something that we could treat
as or count as or could be used to function as 0’s and 1’s.
(Searle 1990, p. 25, my boldface, Searle’s italics; Searle 1992, p. 206)

So, according to Searle, a computer is a physical object that can be described as a
Turing Machine. Recall from §8.9.1 that anything that satisfies the definition of a
Turing Machine is a Turing Machine, whether it has a paper tape divided into squares
with the symbols ‘0’ or ‘1’ printed on them or whether it is a table and placemats with
beer mugs on them. All we need is to be able to “treat” some part of the physical object
as playing the role of the Turing Machine’s ‘0’s and ‘1’s. So far, so good.

Or is it? Is your home computer really a Turing Machine? Or is it a device whose
behavior is “merely” logically equivalent to that of a Turing Machine? That is, is it a
device that can compute all and only the functions that a Turing Machine can compute,
even if it does so differently from the way that a Turing Machine does? Recall that
there are lots of different mathematical models of computation: Turing Machines and
recursive functions are two of them that we have looked at. Suppose someone builds a
computer that operates in terms of recursive functions instead of in terms of a Turing
Machine. That is, it can compute successors, predecessors, and projection functions,
and it can combine these using generalized composition, conditional definition, and
while-recursion, instead of printing ‘0’s and ‘1’s, moving left and right, and combining
these using “go to” instructions (changing from one m-configuration to another). These
two computers (the Turing-machine computer and the recursive-function computer), as
well as your home computer (with a “von Neumann” architecture, whose method of
computation uses the primitive machine-language instructions and control structures
of, say, an Intel chip), are all logically equivalent to a Turing Machine, in the sense of
having the same input-output behavior, but their internal behaviors are radically differ-
ent. To use a terminology from an earlier chapter, we can ask: Are recursive-function
computers, Turing Machines, Macs, and PCs not only extensionally equivalent but also
intensionally equivalent? Can we really describe the recursive-function computer and
your home computer in terms of a Turing Machine’s ‘0’s and ‘1’s? Or are we limited to
showing that anything that the recursive-function computer and your home computer
can compute can also be computed by a Turing Machine (and vice versa)—but not
necessarily in the same way?

Here is an analogy to help you see the issue: Consider translating between French
and English. To say ‘It is snowing’ in French—that is, to convey in French the same
information that ‘It is snowing’ conveys in English—you say: Il neige. The ‘il’ means
“it”, and the ‘neige’ means “is snowing”. This is very much like (perhaps it is exactly
like) describing the recursive-function machine’s behavior (analogous to the French

390CHAPTER 9. WHAT IS A COMPUTER?A PHILOSOPHICAL PERSPECTIVE

sentence) using ‘0’s and ‘1’s (analogous to the English sentence).
But here is a different example: In English, if someone says: ‘Thank you’, you

might reply, ‘You’re welcome’, but, in French, if someone says Merci, you might reply:
Je vous en prie. Does ‘merci’ “mean” (the same as) ‘thank you’? Does ‘Je vous
en prie’ “mean” (the same as) ‘You’re welcome’? Have we translated the English
into French, in the way that we might “translate” a recursive-function algorithm into
a Turing Machine’s ‘0’s and ‘1’s? Not really: Although ‘merci’ is used in much the
same way in French that ‘thank you’ is used in English, there is no part of ‘merci’
that means (the same as) ‘thank’ or ‘you’; and the literal translation of ‘je vous en
prie’ is something like ‘I pray that of you’. So there is a way of communicating the
same information in both French and English, but the phrases used are not literally
inter-translatable.

So, something might be a computer without being “described in terms of ‘0’s and
‘1’s”, depending on exactly what you mean by ‘described in terms of’. Perhaps Searle
should have said something like this: Computers are described in terms of the primitive
elements of the mathematical model of computation that they implement. But let’s
grant him the benefit of the doubt and continue looking at his argument.

9.5.3 Being a Computer Is a Syntactic Property
Let us suppose, for the sake of the argument, that computers are described in terms of
‘0’s and ‘1’s. Such a description is syntactic. This term (which pertains to symbols,
words, grammar, etc.) is usually contrasted with ‘semantic’ (which pertains to mean-
ing), and Searle emphasizes that contrast early in his essay when he says that “syntax
is not the same as, nor is it by itself sufficient for, semantics” (Searle, 1990, p. 21). But
now Searle uses the term ‘syntactic’ as a contrast to being physical. Just as there are
many ways to be computable (Turing Machines, recursive functions, lambda-calculus,
etc.)—all of which are equivalent—so there are many ways to be a carburetor. “A
carburetor . . . is a device that blends air and fuel for an internal combustion engine”
(http://en.wikipedia.org/wiki/Carburetor), but it doesn’t matter what it is made of , as
long as it can perform that blending “function” (purpose). “[C]arburetors can be made
of brass or steel” (Searle, 1990, p. 26); they are “multiply realizable”—that is, you can
“realize” (or make) one in “multiple” (or different) ways. They “are defined in terms
of the production of certain physical effects” (Searle, 1990, p. 26).

But the class of computers is defined syntactically in terms of the assignment of
0’s and 1’s. (Searle 1990, p. 26, Searle’s italics, my boldface; Searle 1992, p. 207)

In other words, if something is defined in terms of symbols, like ‘0’s and ‘1’s, then it is
defined in terms of syntax, not in terms of what it is physically made of.

Hence, being a computer is a syntactic property, not a physical property. It is a
property that something has in virtue of . . . of what? There are two possibilities, given
what Searle has said. First, perhaps being a computer is a property that something has
in virtue of what it does, its function or purpose. Second, perhaps being a computer
is a property that something has in virtue of what someone says that it does, how it
is described. But what something actually does may be different from what someone
says that it does.

9.5. JOHN SEARLE: ANYTHING IS A COMPUTER 391

So, does Searle think that something is a computer in virtue of its function or in
virtue of its syntax? Recall our thought experiment from §3.9.5: Suppose you find a
black box with a keyboard and a screen in the desert and that, by experimenting with it,
you determine that it displays on its screen the greatest common divisor (GCD) of two
numbers that you type into it. It certainly seems to function as a computer (as a Turing
Machine for computing GCDs). And you can probably describe it in terms of ‘0’s and
‘1’s, so you can also say that it is a computer. It seems that if something functions as a
computer, then you can describe it in terms of ‘0’s and ‘1’s.

What about the converse? If you can describe something in terms of ‘0’s and ‘1’s,
does it function as a computer? Suppose that the black box’s behavior is inscrutable:
The symbols on the keys are unrecognizable, and the symbols displayed on the screen
don’t seem to be related in any obvious way to the input symbols. But suppose that
someone manages to invent an interpretation of the symbols in terms of which the box’s
behavior can be described as computing GCDs. Is “computing GCDs” really what it
does? Might it not have been created by some extraterrestrials solely for the purpose
of entertaining their young with displays of pretty pictures (meaningless symbols), and
that it is only by the most convoluted (and maybe not always successful) interpretation
that it can be described as computing GCDs?

You might think that the box’s function is more important for determining what it
is. Searle thinks that our ability to describe it syntactically is more important! After all,
whether or not the box was intended by its creators to compute GCDs or to entertain
toddlers, if it can be accurately described as computing GCDs, then, in fact, it computes
GCDs (as well as, perhaps, entertaining toddlers with pretty pictures).

An alternative view of this is given by the logician and philosopher Nicolas D.
Goodman:

Suppose that a student is successfully doing an exercise in a recursive function
theory course which consists in implementing a certain Turing Machine program.
There is then no reductionism involved in saying that he is carrying out a Turing
Machine program. He intends to be carrying out a Turing Machine program. . . .
Now suppose that, unbeknownst to the student, the Turing Machine program he
is carrying out is an implementation of the Euclidean algorithm. His instructor,
looking at the pages of more or less meaningless computations handed in by the
student, can tell from them that the greatest common divisor of 24 and 56 is 8. The
student, not knowing the purpose of the machine instructions he is carrying out,
cannot draw the same conclusion from his own work. I suggest that the instructor,
but not the student, should be described as carrying out the Euclidean algorithm.
(This is a version . . . of Searle’s Chinese room argument . . .)7 (Goodman, 1987,
p. 484)

Again, let’s grant this point to Searle. He then goes on to warn us:

But this has two consequences which might be disastrous:

1. The same principle that implies multiple realizability would seem to imply
universal realizability. If computation is defined in terms of the assignment

7We will discuss the Chinese Room Argument in §19.6.

392CHAPTER 9. WHAT IS A COMPUTER?A PHILOSOPHICAL PERSPECTIVE

of syntax then everything would be a digital computer, because any object
whatever could have syntactical ascriptions made to it. You could describe
anything in terms of 0’s and 1’s.

2. Worse yet, syntax is not intrinsic to physics. The ascription of syntactical
properties is always relative to an agent or observer who treats certain phys-
ical phenomena as syntactical.
(Searle 1990, p. 26; Searle 1992, pp. 207–208)

Let’s take these in reverse order.

9.5.4 Being a Computer Is Not an Intrinsic Property
of Physical Objects

According to Searle, being a computer is not an intrinsic property of physical ob-
jects, because being a computer is a syntactic property, and “syntax is not intrinsic
to physics”. What does that quoted thesis mean, and why does Searle think that it is
true?

What is an “intrinsic” property? Searle doesn’t tell us, though he gives some ex-
amples:

[G]reen leaves intrinsically perform photosynthesis[;] . . . hearts intrinsically pump
blood. It is not a matter of us arbitrarily or “conventionally” assigning the word
“pump” to hearts or “photosynthesis” to leaves. There is an actual fact of the
matter. (Searle 1990, p. 26; Searle 1992, p. 208)

So, perhaps “intrinsic” properties are properties that something “really” has as opposed
to merely being said to have, much the way our black box in the previous section may
or may not “really” compute GCDs but can be said to compute them. But what does it
mean to “really” have a property?

Here are some possible meanings for ‘intrinsic’:

1. An object might have a property P “intrinsically” if it has P “essentially” rather
than “accidentally”. An accidental property is a property that something has that
is such that, if the object lacked that property, then it would still be the same
object. So, it is merely an accidental property of me that I was wearing a tan
shirt on the day that I wrote this sentence. If I lacked that property, I would still
be the same person. An essential property is a property that something has such
that, if the object lacked that property, then it would be a different object. So, it
is an essential property of me that I am a human being. If I lacked that property,
I wouldn’t even be a person at all. (This is the plot of Franz Kafka’s story The
Metamorphosis, in which the protagonist awakes one day to find that he is no
longer a human, but a beetle.) The exact nature of the essential-accidental dis-
tinction, and its truth or falsity, are matters of great dispute in philosophy. Here, I
am merely suggesting that perhaps this is what Searle means by ‘intrinsic’: Per-
haps he is saying that being a computer is not an essential property of an object,
but only an accidental property.

9.5. JOHN SEARLE: ANYTHING IS A COMPUTER 393

2. An object might have P “intrinsically” if it has P as a kind of “first-order” prop-
erty, not as a kind of “second-order” property. A second-order property is a
property that something has in virtue of having some other (or first-order) prop-
erty. A simple example is a “relational property”, such as the property of being
an aunt or the property of being an uncle: Someone is an aunt or uncle only
if someone else (such as a sibling) has a child. Another example is an object’s
color. An apple has the property of being red, not “intrinsically”, but in virtue
of reflecting light with wavelength approximately 650 nm. We perceive such
reflected light in a certain way, which we call ‘red’. But, conceivably, someone
with a different neural make-up (say, red-green color-blindness) might perceive
it either as a shade of gray that is indistinguishable from green or, in a science-
fiction kind of case called an “inverted spectrum”, as green. The point is that it
is the measurable wavelength of reflected light that might be an “intrinsic” prop-
erty belonging to the apple, whereas the perceived color is a property belonging
to the perceiver and only “secondarily” to the apple itself. So, perhaps Searle is
saying that being a computer is only a second-order property of an object.

3. Another way that an object might have P “intrinsically” (perhaps this is closer
to what Searle has in mind) is if P is a “natural kind”. (Recall our discussion
of this in §3.3.3.1.) This is another controversial notion in philosophy. The
idea, roughly, is that a natural kind is a property that something has as a part
of “nature” and not as a result of what an observer thinks.8 So, being a bear is
a natural kind; there would be bears even if there were no people to see them
or to call them ‘bears’. This does not mean that it is easy to define such nat-
ural kinds. Is a bear “A heavily-built, thick-furred plantigrade quadruped, of
the genus Ursus; belonging to the Carnivora, but having teeth partly adapted
to a vegetable diet” (http://www.oed.com/view/Entry/16537)—that is, a heavily-
built, thick-furred mammal that walks on the soles of its four feet, eats meat, but
can also eat plants? What if a bear was born with only three feet (or loses one in
an accident), or never eats meat? Is an animal a bear whether or not it satisfies
such definitions, and whether or not there were any humans to try to give such
definitions? If so, then being a bear is a natural kind and, perhaps, an “intrinsic”
property. As we saw in §3.3.3, Plato once said that it would be nice if we could
“carve nature into its joints”, that is, find the real, perhaps “intrinsic”, natural
properties of things (Phaedrus 265d–e). But perhaps the best we can do is to
“carve joints into nature”, that is, to “overlay” categories onto nature so that we
can get some kind of understanding of it and control over it, even if those cate-
gories don’t really exist in nature. Is being a computer a natural kind? Well, it’s
certainly not like being a bear! There probably aren’t any computers in nature
(unless the brain is a computer; and see §9.8.2 on whether nature itself is a com-
puter), but there may also not be any prime numbers in nature, yet mathematical
objects are something thought to exist independently of human thought. If they

8You’ll note that several of these concepts are closely related; they may even be indistinguishable. For
instance, perhaps “essential” properties are “natural kinds” or perhaps second-order properties are not natural
kinds. Investigating these relationships is one of the tasks of metaphysics. It is beyond the scope of the
philosophy of computer science.

394CHAPTER 9. WHAT IS A COMPUTER?A PHILOSOPHICAL PERSPECTIVE

do, then, because a Turing Machine is a mathematical object, it might exist in-
dependently of human thought and, hence, being a computer might be able to be
considered to be a “natural” mathematical kind. So, perhaps Searle is saying that
being a computer is not a natural kind in one of these senses.

Further Reading:
For more discussion on what ‘intrinsic’ means, see Lewis 1983; Langton and Lewis 1998; Skow
2007; Bader 2013 (a highly technical essay, but it contains useful references to the literature on
“intrinsic properties”); Marshall 2016; Weatherson and Marshall 2018.

Rescorla 2014a, p. 180 uses slightly different terms for similar ideas:

Inherited meanings arise when a system’s semantic properties are assigned to it by
external observers, either through explicit stipulation or through tacit convention.
Nothing about the system helps generate its own semantics. Indigenous meanings
arise when a system helps generate its own semantics (perhaps with ample help
from its evolutionary, design, or causal history, along with other factors). The
system helps confer content upon itself, through its internal operations or its inter-
actions with the external world. Its semantics does not simply result from external
assignment.

We’ll return to Rescorla 2014a in §17.8.

In fact, a computer is probably not a natural kind for a different reason: It is an
artifact, something created by humans. Again, the nature of artifacts is controversial
(as we saw in §3.5.1): Clearly, chairs, tables, skyscrapers, atomic bombs, and pencils
are artifacts; you don’t find them in nature, and if humans had never evolved, there
probably wouldn’t be any of these artifacts. But what about bird’s nests, beehives,
beaver dams, and other such things constructed by non-human animals? What about
socially “constructed” objects like money? One of the crucial features of artifacts is
that what they are is relative to what a person says they are. You won’t find a table
occurring naturally in a forest, but if you find a tree stump, you might use it as a table.
So, something might be a computer, Searle might say, only if a human uses it that way
or can describe it as one. In fact, Searle says this explicitly:

[W]e might discover in nature objects which had the same sort of shape as chairs
and which could therefore be used as chairs; but we could not discover objects
in nature which were functioning as chairs, except relative to some agents who
regarded them or used them as chairs. (Searle 1990, p. 28; Searle 1992, p. 211)

Why does Searle think that syntax is not “intrinsic” to physics? Because “ ‘syntax’
is not the name of a physical feature, like mass or gravity. . . . [S]yntax is essentially
an observer relative notion” (Searle 1990, p. 27; Searle 1992, p. 209). I think that
what Searle is saying here is that we can analyze physical objects in different ways,
no one of which is “privileged” or “more correct”; that is, we can carve nature into
different joints, in different ways. On some such carvings, we may count an object as
a computer; on others, we wouldn’t. By contrast, an object has mass independently
of how it is described: Having mass is not relative to an observer. How its mass is
measured is relative to an observer.

9.5. JOHN SEARLE: ANYTHING IS A COMPUTER 395

But couldn’t being a computer be something like that? There may be lots of dif-
ferent ways to measure mass, but an object always has a certain quantity of mass, no
matter whether you measure it in grams or in some other units. In the same way, there
may be lots of different ways to measure length, but an object always has a certain
length, whether you measure it in centimeters or in inches. Similarly, an object (natu-
ral or artifactual) will have a certain structure, whether you describe it as a computer
or as something else. If that structure satisfies the definition of a Turing Machine, then
it is a Turing Machine, no matter how anyone describes it.

Searle anticipates this reply:

[S]omeone might claim that the notions of “syntax” and “symbols” are just a man-
ner of speaking and that what we are really interested in is the existence of systems
with discrete physical phenomena and state transitions between them. On this view
we don’t really need 0’s and 1’s; they are just a convenient shorthand.
(Searle 1990, p. 27; Searle 1992, p. 210)

Compare this to my example above: Someone might claim that specific units of mea-
surement are just a manner of speaking and that what we are really interested in is the
actual length of an object; on this view, we don’t really need centimeters or inches;
they are just a convenient shorthand.

Searle replies:

But, I believe, this move is no help. A physical state of a system is a computa-
tional state only relative to the assignment to that state of some computational
role, function, or interpretation. The same problem arises without 0’s and 1’s
because notions such as computation, algorithm and program do not name intrin-
sic physical features of systems. Computational states are not discovered within
the physics, they are assigned to the physics.
(Searle 1990, p. 27, my boldface, Searle’s italics; Searle 1992, p. 210)

But this just repeats his earlier claim; it gives no new reason to believe it. He continues
to insist that being a computer is more like “inches” than like length.

Further Reading:
For more detailed objections to Searle from the nature of measurement, see Dresner 2010;
Matthews and Dresner 2017.

So, we must ask again: Why does Searle think that syntax is not intrinsic to
physics? Perhaps, if a property is intrinsic to some object, then that object can only
have the property in one way. For instance, color is presumably not intrinsic to an ob-
ject, because an object might have different colors depending on the conditions under
which it is perceived. But the physical structure of an object that causes it to reflect a
certain wavelength of light is always the same; that physical structure is intrinsic. On
this view, here is a reason why syntax might not be intrinsic: The syntax of an object is,
roughly, its abstract structure.9 But an object might be able to be understood in terms of
several different abstract structures (and this might be the case whether or not human

9See §§14.3, 17.8, and 19.6.3.3 for further discussion of this point.

396CHAPTER 9. WHAT IS A COMPUTER?A PHILOSOPHICAL PERSPECTIVE

observers assign those structures to the object). If an object has no unique syntactic
structure, then syntax is not intrinsic to it. But if an object has (or can be assigned) a
syntax of a certain kind, then it does have that syntax even if it also has another one.
And if, under one of those syntaxes, the object is a computer, then it is a computer.

But that leads to Searle’s next point.

9.5.5 We Can Ascribe the Property of Being a Computer
to Any Object

There is some slippage in the move from “syntax is not intrinsic to physics” to “we
can ascribe the property of being a computer to any object”. Even if syntax is not
intrinsic to the physical structure of an object (perhaps because a given object might
have several different syntactic structures), why must it be the case that any object can
be ascribed the syntax of being a computer?

One reason might be this: Every object has (or can be ascribed) every syntax. That
seems to be a very strong claim. To refute it, however, all we would need to do is to find
an object O and a syntax S such that O lacks (or cannot be ascribed) S. One possible
place to look would be for an O whose “size” in some sense is smaller than the “size”
of some S. I will leave this as an exercise for the reader: If you can find such O and S,
then I think you can block Searle’s argument at this point.

Here is another reason why any object might be able to be ascribed the syntax
of being a computer: There might be something special about the syntax of being a
computer—that is, about the formal structure of Turing Machines—that does allow it
to be ascribed to (or found in) any object. This may be a bit more plausible than the
previous reason. After all, Turing Machines are fairly simple. Again, to refute it, we
would need to find an object O such that O lacks (or cannot be ascribed) the syntax
of a Turing Machine. Again, I will leave this as an exercise for the reader, but we
will return to it later (when we look at the nature of “implementation” in Chapter 14).
Searle thinks that we cannot find such an object.

9.5.6 Everything Is a Computer

Unlike computers, ordinary rocks are not sold in computer stores and are usually
not taken to perform computations. Why? What do computers have that rocks lack,
such that computers compute and rocks don’t? (If indeed they don’t?) . . . A good
account of computing mechanisms should entail that paradigmatic examples of
computing mechanisms, such as digital computers, calculators, both universal and
non-universal Turing Machines, and finite state automata, compute. . . . A good
account of computing mechanisms should entail that all paradigmatic examples of
non-computing mechanisms and systems, such as planetary systems, hurricanes,
and digestive systems, don’t perform computations. (Piccinini, 2015, pp. 7, 12)

We can ascribe the property of being a computer to any object if and only if everything
is a computer.

9.5. JOHN SEARLE: ANYTHING IS A COMPUTER 397

Thus for example the wall behind my back is right now implementing the Wordstar
program, because there is some pattern of molecule movements which is isomor-
phic with the formal structure of Wordstar.
(Searle 1990, p. 27; Searle 1992, pp. 208–209)

Searle does not offer a detailed argument for how this might be the case, but other
philosophers have done so, and, in Chapter 14, we will explore how they think it can
be done. Let’s assume, for the moment, that it can be done.

In that case, things are not good, because this trivializes the notion of being a com-
puter. If everything has some property P, then P isn’t a very interesting property; P
doesn’t help us categorize the world, so it doesn’t help us understand the world:

[A]n objection to Turing’s analysis. . . is that although Turing’s account may be
necessary it is not sufficient. If it is taken to be sufficient then too many entities
turn out to be computers. The objection carries an embarrassing implication for
computational theories of mind: such theories are devoid of empirical content. If
virtually anything meets the requirements for being a computational system then
wherein lies the explanatory force of the claim that the brain is such a system?
(Copeland, 1996, §1, p. 335)

So, x is a computer iff x is a (physical) model of a Turing Machine. To say that this
“account” is “necessary” means that, if x is a computer, then it is a model of a Turing
Machine. That seems innocuous. To say that it is a “sufficient” account is to say
that, if x is a model of a Turing Machine, then it is a computer. This is allegedly
problematic, because, allegedly, anything can be gerrymandered to make it a model of
a Turing Machine; hence, anything is a computer (including, for uninteresting reasons,
the brain).

How might we respond to this situation? One way is to bite the bullet and accept
that, under some description, any object (even the wall behind me) can be considered
to be a computer. And not just some specific computer, such as a Turing Machine that
executes the Wordstar program:

[I]f the wall is implementing Wordstar then if it is a big enough wall it is imple-
menting any program, including any program implemented in the brain.
(Searle 1990, p. 27; Searle 1992, p. 209)

If a big enough wall implements any program, then it implements the universal Turing
Machine!

But perhaps this is OK. After all, there is a difference between an “intended” in-
terpretation of something and what I will call a “gerrymandered” interpretation. For
instance, the intended interpretation of Peano’s axioms for the natural numbers is the
sequence 〈0,1,2,3, . . .〉. There are also many other “natural” interpretations, such as
〈I, II, III,. . .〉, or 〈∅,{∅},{{∅}}, . . .〉, or 〈∅,{∅},{∅,{∅}}, . . .〉, and so on. As Chris
Swoyer (1991, p. 504, note 26) notes, “According to structuralism, any countably in-
finite (recursive) set can be arranged to form an ω-sequence that can play the role of
the natural numbers. It is the structure common to all such sequences, rather than the
particular objects which any happens to contain, that is important for arithmetic.” But
extremely contorted ones, such as a(n infinite) sequence of all numeral names in French

398CHAPTER 9. WHAT IS A COMPUTER?A PHILOSOPHICAL PERSPECTIVE

arranged alphabetically, are hardly “good” examples. Admittedly, they are examples
of natural numbers, but not very useful ones. (For further discussion, see Benacerraf
1965.)

A better reply to Searle, however, is to say that he’s wrong: Some things are not
computers. Despite what he said in the last passage quoted above, the wall behind
me is not a universal Turing Machine; I really cannot use it to post to my Facebook
account or to write a letter, much less to add 2+2. It is an empirical question whether
something actually behaves as a computer. And the same goes for other syntactic
structures. Consider the formal definition of a mathematical group:

A group =de f a set of objects (for example, integers) that is closed under
an associative binary operation (for example, addition), that has an identity
element (for example, 0), and is such that every element of the set has an
inverse (for example, in the case of integer n, its inverse is −n).

Not every set is a group. Similarly, there is no reason to believe that everything is a
Turing Machine.

In order for the system to be used to compute the addition function these causal
relations have to hold at a certain level of grain, a level that is determined by the
discriminative abilities of the user. That is why . . . no money is to be made trying
to sell a rock as a calculator. Even if (per mirabile) there happens to be a set of
state-types at the quantum-mechanical level whose causal relations do mirror the
formal structure of the addition function, microphysical changes at the quantum
level are not discriminable by human users, hence human users could not use such
a system to add. (God, in a playful mood, could use the rock to add.)
(Egan, 2012, p. 46)

Chalmers (2012b, pp. 215–216) makes much the same point:

On my account, a pool table will certainly implement various a-computations [that
is, computations as abstract objects] and perform various c-computations [that
is, concrete computational processes]. It will probably not implement interesting
computations such as algorithms for vector addition, but it will at least implement
a few multi-state automata and the like. These computations will not be of much
explanatory use in understanding the activity of playing pool, in part because so
much of interest in pool are not organizationally invariant and therefore involve
more than computational structure.

In other words, even if Searle’s wall implements Wordstar, we wouldn’t be able to use
it as such.

9.5. JOHN SEARLE: ANYTHING IS A COMPUTER 399

9.5.7 Other Views in the Vicinity of Searle’s
We count something as a computer because, and only when, its inputs and outputs
can usefully and systematically be interpreted as representing the ordered pairs
of some function that interests us. . . . This means that delimiting the class of
computers is not a sheerly empirical matter, and hence that “computer” is not a
natural kind. . . . Similarly, we suggest, there is no intrinsic property necessary
and sufficient for all computers, just the interest-relative property that someone
sees value in interpreting a system’s states as representing states of some other
system, and the properties of the system support such an interpretation. . . . [I]n
this very wide sense, even a sieve or a threshing machine [or an eggbeater!?] could
be considered a computer
—Patricia S. Churchland & Terrence J. Sejnowski (1992, pp. 65–66)

This is essentially Searle’s point, only with a positive spin put on it. Note that their def-
inition in the first sentence has an objective component (the inputs and outputs must be
computationally related; note, too, that no specification is placed on whether the mech-
anism by which the inputs are transformed into the outputs is a computational one) as
well as a subjective component (if the function computed by the alleged computer is of
no human interest, then it is not a computer!).

Thus, this is a bit different from Searle: Where Searle says that the wall behind
me is (or can be interpreted as) a word processor, Churchland & Sejnowski say that
the wall behind me is computing something, but we don’t care what it is, so we don’t
bother considering it to be a computer.

Presumably, the wall behind me doesn’t have to be a computer in order for its
(molecular or subatomic) behavior to be describable computationally. Or is Searle
making a stronger claim, namely, that, not only is its behavior describable computa-
tionally, but it is a computation? Dana Ballard (1997, p. 11) has an interesting variation
on that stronger claim:

Something as ordinary as a table might be thought of as running an algorithm
that adjusts its atoms continually, governed by an energy function. Whatever its
variables are, just denote them collectively by x. Then you can think of the table
as solving the problem of adjusting its atoms so as to minimize energy, that is,
minx E(x). Is this computation?

Note that this is different from Searle’s claim that the table (or a wall) might be
computing a word processor. It seems closer to the idea that the solar system might be
computing Kepler’s law (see §9.8.2, below).

Another claim in the vicinity of Searle’s and Ballard’s concerns DNA computing:

Computer. The word conjures up images of keyboards and monitors. . . . But must
it be this way? The computer that you are using to read these words [that is, your
brain!] bears little resemblance to a PC. Perhaps our view of computation is too
limited. What if computers were ubiquitous and could be found in many forms?
Could a liquid computer exist in which interacting molecules perform computa-
tions? The answer is yes. This is the story of the DNA computer. (Adleman, 1998,
p. 54, my italics)

400CHAPTER 9. WHAT IS A COMPUTER?A PHILOSOPHICAL PERSPECTIVE

Of course, Adleman is not making the Searlean claim that everything is a computer
and that, therefore, the interacting molecules of (any) liquid peform computations. Nor
is he making the Ballardian claim that DNA computes in the way that a table computes.
(Others have, however, made such a claim, on the grounds that strands of DNA are sim-
ilar to Turing-machine tapes with a four symbols instead of two and with the processes
of DNA transcription and recombination as being computable processes (Shapiro and
Benenson, 2006).) Rather, Adleman’s claim is that one can use DNA “to solve mathe-
matical problems”. However, contrary to what the editors of Scientific American wrote
in their subtitle to Adleman’s article, it is unlikely that that “is redefining what is meant
by ‘computation’ ”. After all, the advent of transistors did not change Turing’s mathe-
matical characterization of computing any more than the use of vacuum tubes did. At
most, DNA computers might change what the lay public means by ‘computer’. But (as
we saw in §6.3) that has already happened, with the meaning changing from “humans”
to “computing machines”.

Let’s take stock of where we are. Presumably, computers are things that compute.
Computing is the process that Turing Machines give a precise description for. That
is, computing is what Turing Machines do. And, what Turing Machines do is to move
around in a discrete fashion and print discrete marks on discrete sections of the space in
which they move around. So, a computer is a device—presumably, a physical device—
that does that. Searle agrees that computing is what Turing Machines do, and he seems
to agree that computers are devices that compute. He also believes that everything is a
computer; more precisely, he believes that everything can be described as a computer
(because that’s what it means to be a computer). And we’ve also seen reason to think
that he might be wrong about that last point.

In the next two sections, we look at two other views about what a computer is.

9.6 Patrick Hayes: Computers as Magic Paper
Let’s keep straight about three intertwined issues that we have been looking at:

1. What is a computer?

2. Is the brain a computer?

3. Is everything a computer?

Our principal concern is with the first question. Once we have an answer to that, we can
try to answer the others. As we’ve just seen, Searle thinks that a computer is anything
that is (or can be described as) a Turing Machine, that everything is (or can be described
as) a computer, and, therefore, that the brain is a computer, but only trivially so, and
not in any interesting sense.

AI researcher Patrick J. Hayes (1997) gives a different definition, in fact, two of
them. Here’s the first:

Definition H1
By “computer” I mean a machine which performs computations, or which computes.
(Hayes, 1997, p. 390, my italics)

9.6. PATRICK HAYES: COMPUTERS AS MAGIC PAPER 401

A full understanding of this requires a definition of ‘computation’; this will be clarified
in his second definition. But there are a few points to note about this first one.

He prefaces it by saying:

First, I take it as simply obvious both that computers exist and that not everything
is a computer, so that, contra Searle, the concept of “computer” is not vacuous.
(Hayes, 1997, p. 390)

So, there are (1) machines that compute (that is, there are things that are machines-that-
compute), and there are (2) things that are not machines-that-compute. Note that (2)
can be true in two ways: There might be (2a) machines that don’t compute, or there
might be (2b) things that do compute but that aren’t machines. Searle disputes the first
possibility, because he thinks that everything (including, therefore, any machine) com-
putes. But contrary to what Hayes says, Searle would probably agree with the second
possibility, because, after all, he thinks that everything (including, therefore, anything
that is not a machine) computes! Searle’s example of the wall that implements (or that
can be interpreted as implementing) Wordstar would be such a non-machine that com-
putes. So, for Hayes’s notion to contradict Searle, it must be that Hayes believes that
there are machines that do not compute. Perhaps that wall is one of them, or perhaps a
dishwasher is a machine that doesn’t compute anything.10

Further Reading:
For a detailed study of what it means for a machine to compute, see Piccinini 2015. See also
Bacon 2010.

Are Hayes’s two “obvious” points to be understood as criteria of adequacy for
any definition—criteria that Hayes thinks need no argument (that is, as something like
“axioms”)? Or are they intended to be more like “theorems” that follow from his first
definition? If it’s the former, then there is no interesting debate between Searle and
Hayes; one simply denies what the other argues for. If it’s the latter, then Hayes needs
to provide arguments or examples to support his position.

A second thing to note about Hayes’s definition is that he says that a computer “per-
forms computations”, not “can perform computations”. Strictly speaking, your laptop
when it is turned off is not a computer by this definition, because it is not performing
any computation. And, as Hayes observes,

On this understanding, a Turing machine is not a computer, but a mathematical
abstraction of a certain kind of computer. (Hayes, 1997, p. 390)

What about Searle’s wall that implements Wordstar? There are two ways to think
about how the wall might implement Wordstar. First, it might do so statically, simply
in virtue of there being a way to map every part of the Wordstar program to some
aspect of the molecular or subatomic structure of the wall. In that case, Hayes could
well argue that the wall is not a Wordstar computer, because it is not computing (even

10A dishwasher might, however, be described by a (non-computable?) function that takes dirty dishes as
input and that returns clean ones as output. Aaronson 2012 considers (semi-humorously) a “toaster-enhanced
Turing machine”.

402CHAPTER 9. WHAT IS A COMPUTER?A PHILOSOPHICAL PERSPECTIVE

if it might be able to). But the wall might implement Wordstar dynamically; in fact,
that is why Searle thinks that the wall implements Wordstar . . .

. . . because there is some pattern of molecule movements which is isomorphic
with the formal structure of Wordstar. (Searle 1990, p. 27, my italics; Searle 1992,
pp. 208–209)

But a pattern of movements suggests that Searle thinks that the wall is computing, so it
is a computer!

Hayes’s second definition is a bit more precise, and it is, presumably, his “official”
one:

Definition H2
[F]ocus on the memory. A computer’s memory contains patterns . . . which are stable
but labile [that is, changeable], and it has the rather special property that changes to the
patterns are under the control of other patterns: that is, some of them describe changes
to be made to others; and when they do, the memory changes those patterns in the way
described by the first ones. . . . A computer is a machine which is so constructed that
patterns can be put in it, and when they are, the changes they describe will in fact occur
to them. If it were paper, it would be “magic paper” on which writing might spontaneously
change, or new writing appear. (Hayes, 1997, p. 393, my italics)

There is a subtle difference between Hayes’s two definitions, which highlights an am-
biguity in Searle’s presentation. Recall the distinction between a Turing Machine and
a universal Turing Machine: Both Turing Machines and universal Turing Machines
are hardwired and compute only a single function. The Turing Machine computes
whichever function is encoded in its machine table; it cannot compute anything else.
But the one function, hardwired into its machine table, that a universal Turing Ma-
chine computes is the fetch-execute function that takes as input a program and its data,
and that outputs the result of executing that program on that data. In that way, a uni-
versal Turing Machine (besides computing the fetch-execute cycle) can (in a different
way) compute any computable function as long as a Turing Machine program for that
function is encoded and stored on the universal Turing Machine’s tape. The universal
Turing Machine is programmable in the sense that the input program can be varied, not
that its hardwired program can be.

Definition H1 seems to include physical Turing Machines (but, as he noted, not
abstract ones), because, after all, they compute (at least, when they are turned on and
running). Definition H2 seems to exclude them, because the second definition requires
patterns that describe changes to other patterns. That first kind of pattern is a stored
program; the second kind is the data that the program operates on. So, Definition H2 is
for a universal Turing Machine.

Here is the ambiguity in Searle’s presentation: Is Searle’s wall a Turing Machine or
a universal Turing Machine? On Searle’s view, Wordstar is a Turing Machine, so the
wall must be a Turing Machine, too. So, the wall is not a computer on Definition H2.
Could a wall (or a rock, or some other suitably large or complex physical object other
than something like a PC or a Mac) be a universal Turing Machine? My guess is
that Searle would say “yes”, but it is hard to see how one would actually go about
programming it.

9.6. PATRICK HAYES: COMPUTERS AS MAGIC PAPER 403

The “magic paper” aspect of Definition H2 focuses, as Hayes notes, on the memory,
that is, on the tape. It is as if you were looking at a universal Turing Machine, but all
you saw was the tape, not the read-write head or its states (m-configurations) or its
mechanism. If you watch the universal Turing Machine compute, you would see the
patterns (the ‘0’s and ‘1’s) on the tape “magically” change. (This would be something
like looking at an animation of the successive states of the Turing-machine tape in
§8.11.2.2, p. 358.)

A slightly different version of the “magic paper” idea is Alan Kay’s third “comput-
ing whammy” (see §7.6.8):

Matter can hold and interpret and act on descriptions that describe anything that
matter can do. (Guzdial and Kay, 2010)

The idea of a computer as magic paper or magic matter may seem a bit fantastic.
But there are more down-to-earth ways of thinking about this. Philosopher Richmond
Thomason has said that

. . . all that a program can do between receiving an input and producing an output
is to change variable assignments . . . (Thomason, 2003, p. 328)

A similar point is made by Turing Award winner Leslie Lamport:

[A]n execution of an algorithm is a sequence of states, where a state is an assign-
ment of values to variables. (Lamport, 2011, p. 6)

If programs tell a computer how to change the assignments of values to variables, then
a computer is a (physical) device that changes the contents of register cells (the register
cells that are the physical implementations of the variables in the program). This is
really just another version of Turing’s machines, if you consider the tape squares to be
the register cells.

Similarly, Stuart C. Shapiro points out that

a computer is a device consisting of a vast number of connected switches. . . . [T]he
switch settings both determine the operation of the device and can be changed by
the operation of the device. (Shapiro, 2001, p. 3)

What is a “switch”? Here is a nice description from Samuel’s 1953 article:

To bring the discussion down to earth let us consider the ordinary electric light
switch in your home. This is by definition a switch. It enables one to direct electric
current to a lighting fixture at will. Usually there is a detent mechanism [see below]
which enables the switch to remember what it is supposed to be doing so that once
you turn the lights on they will remain on. It therefore has a memory. It is also
a binary, or perhaps we should say a bistable device. By way of contrast, the
ordinary telegrapher’s key is a switch without memory since the key will remain
down only as long as it is depressed by the operator’s hand. But the light switch
and the telegraph key are binary devices, that is, they have but two operating states.
(Samuel, 1953, p. 1225)

404CHAPTER 9. WHAT IS A COMPUTER?A PHILOSOPHICAL PERSPECTIVE

Further Reading:
A “detent” is “a catch in a machine that prevents motion until released” (https://www.google.
com/search?q=detent). For more on computers as switch-setting devices, see the discussions in
Stewart 1994 and Brian Hayes 2007b of how train switches can implement computations. Both
of these are also examples of Turing Machines implemented in very different media than silicon
(namely, trains)!

So, a switch is a physical implementation of a Turing-machine’s tape cell, which can
also be “in two states” (that is, have one of two symbols printed on it) and also has
a “memory” (that is, once a symbol is printed on a cell, it remains there until it is
changed). Hayes’s magic-paper patterns are just Shapiro’s switch-settings or Thoma-
son’s and Lamport’s variable assignments.

Does this definition satisfy Hayes’s two criteria? Surely, such machines exist. I
am writing this book on one of them right now. And surely not everything is such a
machine: At least on the face of it, the stapler on my desk is not such “magic paper”.
Searle, I would imagine, would say that we might see it as such magic paper if we
looked at it closely enough and in just the right way. And so the difference between
Searle and Hayes seems to be in how one is supposed to look at candidates for being
a computer: Do we look at them as we normally do? In that case, not everything is a
computer. Or do we squint our eyes and look at them closely in a certain way? In that
case, perhaps we could see that everything could be considered to be a computer. Isn’t
that a rather odd way of thinking about things?

What about the brain? Is it a computer in the sense of “magic paper” (or magic
matter)? If Hayes’s “patterns” are understood as patterns of neuron firings, then, be-
cause surely some patterns of neuron firings cause changes in other such patterns, I
think Hayes would consider the brain to be a computer.

9.7 Gualtiero Piccinini:
Computers as Digital String Manipulators

In a series of three papers, the philosopher Gualtiero Piccinini has offered an analysis
of what a computer is that is more precise than Hayes’s and less universal than Searle’s
(Piccinini, 2007b,d, 2008) (see also Piccinini 2015). It is more precise than Hayes’s,
because it talks about how the magic paper performs its tricks. And it is less universal
than Searle’s, because Piccinini doesn’t think that everything is a computer.

9.7. GUALTIERO PICCININI:COMPUTERS AS DIGITAL STRING MANIPULATORS405

Unfortunately, there are two slightly different definitions to be found in Piccinini’s
papers:

Definition P1
The mathematical theory of how to generate output strings from input strings in accor-
dance with general rules that apply to all input strings and depend on the inputs (and
sometimes internal states) for their application is called computability theory. Within
computability theory, the activity of manipulating strings of digits in this way is called
computation. Any system that performs this kind of activity is a computing system prop-
erly so called. (Piccinini, 2007b, p. 108, my italics)

Definition P2
[A]ny system whose correct mechanistic explanation ascribes to it the function of gener-
ating output strings from input strings (and possibly internal states), in accordance with
a general rule that applies to all strings and depends on the input strings (and possibly
internal states) for its application, is a computing mechanism. The mechanism’s ability
to perform computations is explained mechanistically in terms of its components, their
functions, and their organization. (Piccinini, 2007d, p. 516, my italics)

These are almost the same, but there is a subtle difference between them.

9.7.1 Definition P1

Let’s begin with Definition P1. It implies that a computer is any “system” (presumably,
a physical device, because only something physical can actively “perform” an action)
that manipulates strings of digits, that is, that “generate[s] output strings from input
strings in accordance with general rules that apply to all input strings and [that] depend
on the inputs (and sometimes internal states) for their application”. What kind of “gen-
eral rule”? Piccinini (2008, p. 37) uses the term ‘algorithm’ instead of ‘general rule’.
This is consistent with the view that a computer is a Turing Machine, and explicates
Hayes’s “magic trick” as being an algorithm.

The crucial point, according to Piccinini, is that the inputs and outputs must be
strings of digits. This is the significant difference between (digital) computers and
“analog” computers: The former manipulate strings of digits; the latter manipulate
“real variables”.

Piccinini explicates the difference between digits and real variables as follows:

A digit is a particular [that is, a particular object or component of a device] or a
discrete state of a particular, discrete in the sense that it belongs to one (and only
one) of a finite number of types. . . . A string of digits is a concatenation of digits,
namely, a structure that is individuated by the types of digits that compose it, their
number, and their ordering (i.e., which digit token is first, which is its successor,
and so on). (Piccinini, 2007b, p. 107)11

11In the other two papers in his trilogy, Piccinini gives slightly different characterizations of what a digit
is, but these need not concern us here; see Piccinini 2007d, p. 510; Piccinini 2008, p. 34.

406CHAPTER 9. WHAT IS A COMPUTER?A PHILOSOPHICAL PERSPECTIVE

Piccinini (2007d, p. 510) observes that a digit is analogous to a letter of an alphabet, so
they are like Turing’s symbols that can be printed on a Turing Machine’s tape.

On the other hand,

real variables are physical magnitudes that (i) vary over time, (ii) (are assumed to)
take a continuous range of values within certain bounds, and (iii) (are assumed to)
vary continuously over time. Examples of real variables include the rate of rotation
of a mechanical shaft and the voltage level in an electrical wire. (Piccinini, 2008,
p. 48)

So far, so good. Neither Searle nor Hayes should be upset with this characterization.

Further Reading:
For a different approach to the computation of real numbers, see Blum 2004, which is a relatively
informal and historical presentation of a more technical paper (Blum et al., 1989, described
briefly in Traub 2011).

9.7.2 Definition P2
But Piccinini’s second definition adds a curious phrase. This definition implies that
a computer is any system “whose correct mechanistic explanation ascribes to it the
function of” manipulating digit strings according to algorithms. What is the import of
that extra phrase?

It certainly sounds as if this is a weaker definition. In fact, it sounds a bit Searlean,
because it sounds as if it is not the case that a computer is an algorithmic, digit-string
manipulator, but rather that it is anything that can be so described by some kind of
“mechanistic explanation”. And that sounds as if being a computer is something “ex-
ternal” and not “intrinsic”.

So let’s consider what Piccinini has in mind here. He says:

Roughly, a mechanistic explanation involves a partition of a mechanism into parts,
an assignment of functions and organization to those parts, and a statement that a
mechanism’s capacities are due to the way the parts and their functions are orga-
nized. (Piccinini, 2007d, p. 502)

As we will explain in more detail in §19.6.3.3, syntax in its most general sense is the
study of the properties of a collection of objects and the relations among them. If
a “mechanism” is considered as a collection of its parts, then Piccinini’s notion of a
mechanistic explanation sounds a lot like a description of the mechanism’s syntax. But
syntax, you will recall, is what Searle says is not intrinsic to a system (or a mechanism).

So how is Piccinini going to avoid a Searlean “slippery slope” and deny that every-
thing is a computer? One way he tries to do this is by suggesting that even if a system
can be analyzed syntactically in different ways, only one of those ways will help us
understand the system’s behavior:

Mechanistic descriptions are sometimes said to be perspectival, in the sense that
the same component or activity may be seen as part of different mechanisms de-
pending on which phenomenon is being explained For instance, the heart may

9.8. WHAT ELSE MIGHT BE A COMPUTER? 407

be said to be for pumping blood as part of an explanation of blood circulation,
or it may be said to be for generating rhythmic noises as part of an explanation of
physicians who diagnose patients by listening to their hearts. This kind of perspec-
tivalism does not trivialize mechanistic descriptions. Once we fix the phenomenon
to be explained, the question of what explains the phenomenon has an objective
answer. This applies to computations as well as other capacities of mechanisms. A
heart makes the same noises regardless of whether a physician is interested in hear-
ing it or anyone is interested in explaining medical diagnosis. (Piccinini, 2007d,
p. 516)

Let’s try to apply this to Searle’s “Wordstar wall”: From one perspective, the wall
is just a wall; from another, according to Searle, it can be taken as an implementation
of Wordstar. Compare this to Piccinini’s claim that, from one perspective, a heart is a
pump, and, from another, it is a noisemaker. If you’re a doctor interested in hearing the
heart’s noises, you’ll consider the heart as a noisemaker. If you’re a doctor interested in
making a medical diagnosis, you’ll consider it as a pump. Similarly, if you’re a house
painter, say, you’ll consider the wall as a flat surface to be colored, but if you’re Searle,
you’ll try to consider it as a computer program. (Although I don’t think you’ll be very
successful in using it to write a term paper!)

9.8 What Else Might Be a Computer?
So, what is a computer? It would seem that almost all proposed definitions agree on at
least the following:

• Computers are physical devices.

• They interact with other physical devices in the world.

• They algorithmically manipulate (physical) symbols (strings of digits), convert-
ing some into others.

• They are physical implementations of (universal) Turing Machines in the sense
that their input-output behavior is logically equivalent to that of a (universal) Tur-
ing Machine (even though the details of their processing might not be). A slight
modification of this might be necessary to avoid the possibility that a physical
device might be considered to be a computer even if it doesn’t compute: We
probably want to rule out “real magic”, for instance.

Does such a definition include too much? Let’s assume for a moment that some-
thing like Piccinini’s reply to Searle carries the day, so that it makes sense to say that
not everything is a computer. Still, might there be some things that intuitively aren’t
computers but that turn out to be computers on even our narrow characterization?

This is always a possibility. As we saw in §3.3.3.2.1, any time that you try to
make an informal concept precise, you run the risk of including some things under the
precise concept that didn’t (seem to) fall under the informal concept. You also run the
risk of excluding some things that did. One way to react to this situation is to reject

408CHAPTER 9. WHAT IS A COMPUTER?A PHILOSOPHICAL PERSPECTIVE

the formalization, or else to refine it so as to minimize or eliminate the “erroneous”
inclusions and exclusions. But another reaction is to bite the bullet and agree to the new
inclusions and exclusions: For instance, you might even come to see that something
that you didn’t think was a computer really was one.

In this section, we’ll consider two things that may—or may not!—turn out to be
computers: the brain, and the universe.

9.8.1 Is a Brain a Computer?
[I]t is conceivable . . . that brain physiology would advance so far that it would be
known with empirical certainty

1. that the brain suffices for the explanation of all mental phenomena and is a
machine in the sense of Turing;

2. that such and such is the precise anatomical structure and physiological func-
tioning of the part of the brain which performs mathematical thinking.

—Kurt Gödel, 1951; cited in Feferman 2006a, p. 146

It is the current aim to replace, as far as possible, the human brain by an electronic
digital computer.
—Grace Murray Hopper (1952, p. 243)

Perhaps the most intriguing examples of reactive distributed computing systems
are biological systems such as cells and organisms. We could even consider the
human brain to be a biological computing system. Formulation of appropriate
models of computation for understanding biological processes is a formidable sci-
entific challenge in the intersection of biology and computer science.
—Alfred V. Aho (2011, p. 6, my italics)12

The first computers were biological: they had two arms, two legs and 10 fingers.
“Computer” was a job title, not the name of a machine.
—Timothy K. Lu & Oliver Purcell (2016, p. 59)

We saw in §3.8 that Piccinini (2015) distinguishes computation from information pro-
cessing; in particular, “Piccinini argues that systems can compute without processing
information” (Shagrir, 2017, p. 607). Shagrir also notes that “A working assumption
in brain and cognitive sciences is that the brain is a representational, information-
processing system” (Shagrir, 2012c, p. 519). So, even if the brain is an information-
processing system, it doesn’t follow that it must be a computer.

Still, many people claim that the (human) brain is a computer. Searle thinks it
is, but only because he thinks that everything is a computer. But perhaps there is
a more interesting way in which the brain is a computer. Certainly, contemporary
computational cognitive science uses computers as at least a metaphor for the brain.
Before computers came along, there were many other physical metaphors for the brain:
The brain was considered to be like a telephone system or like a plumbing system.

12We will discuss reactive (or “interactive”) computing in §11.4.3.

9.8. WHAT ELSE MIGHT BE A COMPUTER? 409

Further Reading:
Long before computers, the brain and nervous system were also likened to an electronic
communications network, as in Fritz Kahn’s artwork (https://www.nlm.nih.gov/dreamanatomy/
da g IV-A-02.html). There are also analogies between telephone systems and computers them-
selves (Lewis, 1953). On metaphors for the brain (and mind), see Squires 1970; Sternberg 1990;
Gigerenzer and Goldstein 1996; Guernsey 2009; Angier 2010; Pasanek 2015.

In fact, “computationalism” is sometimes taken to be the view that the brain (or the
mind) is a computer, or that the brain (or the mind) computes, or that brain (or mental)
states and processes are computational states and processes (Rapaport, 2012b, §2):

The basic idea of the computer model of the mind is that the mind is the program
and the brain the hardware of a computational system. (Searle 1990, p. 21; Searle
1992, p. 200)

The core idea of cognitive science is that our brains are a kind of computer
Psychologists try to find out exactly what kinds of programs our brains use, and
how our brains implement those programs. (Alison Gopnik 2009a, p. 43)

Computationalism . . . is the view that the functional organization of the brain (or
any other functionally equivalent system) is computational, or that neural states are
computational states. (Piccinini, 2010a, p. 271; see also pp. 277–278)

Gödel thought so, too: He “view[ed] it as very likely that ‘The brain functions basically
like a digital computer’ ” (Sieg, 2007, §2).

But if one of the essential features of a computer is that it carries out computable
processes by computing rather than (say) by some biological but non-computational
technique, then it’s at least logically possible that the brain is not a computer even if
brain processes are computable.

How can this be? A process is computable if and only if there is an algorithm (or
a system of algorithms) that specifies how that process can be carried out. But it is
logically possible for a process to be computable in this sense without actually being
computed.

Here are some examples:

1. Someone might come up with a computational theory of the behavior of the
stock market, yet the actual stock market’s behavior is determined by the in-
dividual decisions made by individual investors and not by anyone or anything
executing an algorithm. That is, the behavior might be computable even if it is
not computational.

2. Calculations done by slide rules are done by analog means, yet the calculations
themselves are clearly computable. Analog computations are not normally con-
sidered to be Turing-machine computations.

3. Hayes’s magic paper is a logically, if not physically, possible example.

410CHAPTER 9. WHAT IS A COMPUTER?A PHILOSOPHICAL PERSPECTIVE

4. Another example might be the brain itself. Piccinini (2005, 2007a) has argued
that neuron firings (more specifically, “spike trains”—i.e., sequences of “action
potential”—in groups of neurons) are not representable as digit strings. But,
because Piccinini believes that a device is not a computer unless it manipulates
digit strings, and because it is generally considered that human cognition is im-
plemented by neuron firings, it follows that the brain’s cognitive functioning—
even if computable—is not accomplished by computation. Yet, if cognitive func-
tions are computable (as contemporary cognitive science suggests—see Edelman
2008a), then there would still be algorithms that compute cognition, even if the
brain doesn’t do it that way.

We’ll return to this theme in Chapter 19.
The philosopher David Chalmers puts the point this way:

Is the brain a [programmable] computer . . . ? Arguably. For a start, the brain can
be “programmed” to implement various computations by the laborious means of
conscious serial rule-following; but this is a fairly incidental ability. On a different
level, it might be argued that learning provides a certain kind of programmability
and parameter-setting, but this is a sufficiently indirect kind of parameter-setting
that it might be argued that it does not qualify. In any case, the question is quite
unimportant for our purposes. What counts is that the brain implements various
complex computations, not that it is a computer. (Chalmers, 2011, §2.2, especially
p. 336)

There are two interesting points made here. The first is that the brain can simulate
a Turing Machine “by . . . conscious serial rule-following”. The second is the last
sentence: What really matters is that the brain can have input-output behavior that is
computable, not that it “is” a computer. To say that it is a computer raises the question
of what kind of computer it is: A Turing Machine? A register machine? Something sui
generis? And these questions seem to be of less interest than the fact that its behavior
is computable.

Churchland and Sejnowski (1992) and Ballard (1997) have both written books
about whether, and in what ways, the brain might be a computer. As Ballard (1997,
pp. 1–2) puts it, “The key question . . . is, Is computation sufficient to model the brain?”.
One reason this is an interesting question is that researchers in vision have wondered
“how . . . an incomplete description, encoded within neural states, [could] be sufficient
to direct the survival and successful adaptive behavior of a living system” (Richards,
1988, as cited in Ballard 1997, p. 2). If a computational model of this ability is suffi-
cient, then it might also be sufficient to model the brain. And this might be the case
even if, as, for example, Piccinini and Bahar (2013) argue, the brain itself is not a com-
puter, that is, does not behave in a computational fashion. A model of a phenomenon
does not need to be identical in all respects to the phenomenon that it models, as long
as it serves the purposes of the modeling. But Ballard also makes the stronger claim
when he says, a few pages later, “If the brain is performing computation, it should
obey the laws of computational theory” (Ballard, 1997, p. 6, my italics). But whether
the brain performs computations is a different question from whether its performance
can be modeled or described in computational terms. So, the brain doesn’t have to be

9.8. WHAT ELSE MIGHT BE A COMPUTER? 411

a computer in order for its behavior to be describable computationally. As Church-
land and Sejnowski (1992) note, whether the brain is a computer—whether, that is,
the brain’s functioning satisfies one of the (logically equivalent) characterizations of
computing—is an empirical issue.

Still, if the brain computes in some way (or “implements computations”), and if a
computer is, by definition, something that computes, then we might still wonder if the
brain is some kind of computer. As I once read somewhere, “The best current explana-
tion of how a brain could instantiate this kind of system of rules and representations is
that it is a kind of computer.” Thus, we have here the makings of an abductive argument
(that is, a scientific hypothesis) that the brain is a computer. (Recall our discussion of
abduction in §2.6.1.3.) Note that this is a much more reasonable argument than Searle’s
or than trying to model the brain as, say, a Turing Machine. And, as Marcus (2015)
observes, “For most neuroscientists, this is just a bad metaphor. But it’s still the most
useful analogy that we have. . . . The sooner we can figure out what kind of computer
the brain is, the better.”

Question for the Reader:
If the brain is a computer, is its “data” propositional or pictorial? For example, if you are asked
how many windows are in your house, do you form a mental pictorial image of your house, or
do you do the calculation in terms of numerical propositions? (For the debate on this in the
cognitive-science literature, see Pylyshyn 1973, 2003; Kosslyn 2005; and the bibliography at
https://www.cse.buffalo.edu//∼rapaport/575/mentalimages.html.)

Further Reading:
Fitch 2005 is a good discussion by a cognitive biologist of “how the brain computes the mind”
(from the Introduction). Zenil and Hernández-Quiroz 2007 investigates the computational power
of the brain and whether the brain might be a “hypercomputer” (which we’ll discuss in Chap-
ter 11). For a reply to Marcus 2015, see Linker 2015. Naur 2007 says that “the nervous system
. . . has no similarity whatever to a computer” (p. 85); and Schulman 2009 says that minds are
not like computers. For more on “the brain as an input-output model of the world”, see Shagrir
2018a.

It is one thing to argue that brains are (or are not) computers of some kind. It is quite another
to argue that they are Turing Machines, in particular. The earliest suggestion to that effect is
McCulloch and Pitts 1943. For a critical and historical review of that classic paper, see Piccinini
2004a. More recently, the cognitive neuroscientist Stanislas Dehaene and his colleagues have
made similar arguments; see Sackur and Dehaene 2009 and Zylberberg et al. 2011.

See also Kuczynski 2015, part of a series of online articles providing background for the movie
The Imitation Game. In order to investigate whether the human brain is a computer, he reviews
Turing 1936. Among the interesting, if controversial, points that he makes are that “a recursive
function is one that is defined for each of its own outputs” and that the recursive definitions of
addition, multiplication, and exponentiation are the reason that “arithmetic requires no thought
at all” (reminiscent of Dennett’s (2009a; 2013b) notion of Turing’s “inversion”, which we will
discuss in §19.7).

412CHAPTER 9. WHAT IS A COMPUTER?A PHILOSOPHICAL PERSPECTIVE

9.8.2 Is the Universe a Computer?

Figure 9.3: http://abstrusegoose.com/219

Might the universe itself be a computer?13 Consider Kepler’s laws of planetary motion.
Are they just a computable theory that describes the behavior of the solar system? If so,
then a computer that calculates with them might be said to simulate the solar system
in the same way that any kind of program might be said to simulate a physical (or
biological, or economic) process, or in the same way that an AI program might be
said to simulate a cognitive process. (We’ll return to this idea in §15.3.1 and §19.9,
question 1.)

Or does the solar system itself compute Kepler’s laws? If so, then the solar system
would seem to be a (special purpose) computer (that is, a kind of Turing Machine):

A computation is a process that establishes a mapping among some symbolic
domains. . . . Because it involves symbols, this definition is very broad: a system
instantiates a computation if its dynamics can be interpreted (by another process)
as establishing the right kind of mapping.

Under this definition, a stone rolling down a hillside computes its position and
velocity in exactly the same sense that my notebook computes the position and the
velocity of the mouse cursor on the screen (they just happen to be instantiating
different symbolic mappings). Indeed, the universe in its entirety also instantiates
a computation, albeit one that goes to waste for the lack of any process external to
it that would make sense of what it is up to. (Edelman, 2008b, pp. 182–183)

13In addition to the cartoon in Figure 9.3, see also the satirical Google search page “Is the Universe a
Computer?”, http://abstrusegoose.com/115 (best viewed online!).

9.8. WHAT ELSE MIGHT BE A COMPUTER? 413

After all, if “biological computation is a process that occurs in nature, not merely
in computer simulations of nature” (Mitchell, 2011, p. 2), then it is at least not unrea-
sonable that the solar system computes Kepler’s Laws:

Going further along the path of nature, suppose that we have a detailed mathe-
matical model of some physical process such as—say—a chemical reaction; clearly
we can either organise the reaction in the laboratory and observe the outcome, or
we can set up the mathematical model of the reaction on a computer either as the
numerical solution of a system of equations, or as a Montecarlo simulation, and we
can then observe the outcome. We can all agree that when we “run the reaction”
on the computer either as a numerical solution or a Montecarlo simulation, we are
dealing with a computation.

But why then not also consider that the laboratory experiment itself is after all
only a “computational analogue” of the numerical computer experiment! In fact,
the laboratory experiment will be a mixed analogue and digital phenomenon be-
cause of the actual discrete number of molecules involved, even though we may
not know their number exactly. In this case, the “hardware” used for the computa-
tion are the molecules and the physical environment that they are placed in, while
the software is also inscribed in the different molecules species that are involved
in the reaction, via their propensities to react with each other (Gelenbe, 2011,
pp.3–4)

This second possibility does not necessarily follow from the first. As we just saw
in the case of the brain, there might be a computational theory of some phenomenon—
that is, the phenomenon might be computable—but the phenomenon itself need not be
produced computationally.

Indeed, computational algorithms are so powerful that they can simulate virtually
any phenomena, without proving anything about the computational nature of the
actual mechanisms underlying these phenomena. Computational algorithms gen-
erate a perfect description of the rotation of the planets around the sun, although
the solar system does not compute in any way. In order to be considered as provid-
ing a model of the mechanisms actually involved, and not only a simulation of the
end-product of mechanisms acting at a different level, computational models have
to perform better than alternative, noncomputational explanations.
(Perruchet and Vinter, 2002, §1.3.4, p. 300, my italics)

Nevertheless, could it be the case that our solar system is computing Kepler’s laws?
Arguments along these lines have been put forth by Stephen Wolfram and by Seth
Lloyd.

Further Reading:
For a different take on the question of whether the solar system computes Kepler’s laws of
motion, in the context of “pancomputationalsim” (the view that “every deterministic physical
system computes some function”), see Campbell and Yang 2019.

414CHAPTER 9. WHAT IS A COMPUTER?A PHILOSOPHICAL PERSPECTIVE

9.8.2.1 Wolfram’s Argument

Wolfram, developer of the Mathematica computer program, argues as follows (Wol-
fram, 2002b):

1. Nature is discrete.

2. Therefore, possibly it is a cellular automaton.

3. There are cellular automata that are equivalent to a Turing Machine.

4. Therefore, possibly the universe is a computer.

There are a number of problems with this argument. First, why should we believe
that nature (that is, the universe) is discrete? Presumably, because quantum mechanics
says that it is. But some distinguished physicists deny this (Weinberg, 2002) (but see
Chaitin 2006a for more on this). So, at best, for those of us who are not physicists
able to take a stand on this issue, Wolfram’s conclusion has to be conditional: If the
universe is discrete, then possibly it is a computer.

So let’s suppose (for the sake of the argument) that nature is discrete. Might it be
a “cellular automaton”? The easiest way to think of a cellular automaton is as a two-
dimensional Turing-machine tape for which the symbol in any cell is a function of the
symbols in neighboring cells (https://en.wikipedia.org/wiki/Cellular automaton). But,
of course, even if a discrete universe might be a cellular automaton, it need not be.
If it isn’t, the argument stops here. But, if it is, then—because the third premise is
mathematically true —the conclusion follows validly from the premises. Premise 2 is
the one most in need of justification. But even if all of the premises and (hence) the
conclusion are true, it is not clear what philosophical consequences we are supposed to
draw from this.

Further Reading:
On cellular automata that are Turing Machine-equivalent, see, for example,
https://en.wikipedia.org/wiki/Turing completeness, https://en.wikipedia.org/wiki/Rule 110,
and https://en.wikipedia.org/wiki/Conway%27s Game of Life

For more information on cellular automata in general, see the relatively informal presentation
in Bernhardt 2016, Ch. 5, and the more formal presentation in Burks 1970. (Philosopher and
mathematician Arthur Burks was one of the people involved in the construction of ENIAC and
EDVAC.)

You can read more about Wolfram and his theories at his homepage, http://www.stephenwolfram.
com/, and in Wolfram 2002a and Bernhardt 2016, Chs. 5, 6. For a critical review, see Weinberg
2002. Aaronson 2011b claims that quantum computing has “overthrown” views like those of
Wolfram (2002b) that “the universe itself is basically a giant computer . . . by showing that if [it
is, then] it’s a vastly more powerful kind of computer than any yet constructed by humankind.”

9.8. WHAT ELSE MIGHT BE A COMPUTER? 415

9.8.2.2 Lloyd’s Argument

Seth Lloyd also argues that the universe is a computer because nature is discrete, but
Lloyd’s intermediate premises differ from Wolfram’s. Lloyd argues as follows (Lloyd
and Ng, 2004):

1. Nature is discrete. (This is “the central maxim of quantum mechanics” (p. 54).)

2. In particular, elementary particles have a “spin axis” that can be in one of two
directions.

3. ∴ They encode a bit.

4. ∴ Elementary particles store bits of information.

5. Interactions between particles can flip the spin axis;
this transforms the stored data—that is, these interactions are operations on the
data.

6. ∴ (Because any physical system stores and processes information,)
all physical systems are computers.

7. In particular, a rock is a computer.

8. Also, the entire universe is a computer.

Premise 1 matches Wolfram’s fundamental premise and would seem to be a ne-
cessity for anything to be considered a digital computer. The next four premises also
underlie quantum computing.

But the most serious problem with Lloyd’s argument as presented here is premise 6.
Is the processing sufficient to be considered to be Turing-machine-equivalent compu-
tation? Perhaps; after all, it seems that all that is happening is that cells change from 0s
to 1s and vice versa. But that’s not all that’s involved in computing. (Or is it? Isn’t that
what Hayes’s magic-paper hypothesis says?) What about the control structures—the
grammar—of the computation?

And although Lloyd wants to conclude that everything in the universe (including
the universe itself!) is a computer, note that this is not exactly the same as Searle’s ver-
sion of that claim. For Searle, everything can be interpreted as any computer program.
For Lloyd, anything is a computer, “although they may not accept input or give output
in a form that is meaningful to humans” (p. 55). So, for Lloyd, it’s not a matter of
interpretation. Moreover, “analyzing the universe in terms of bits and bytes does not
replace analyzing it in conventional terms such as force and energy” (p. 54). It’s not
clear what the import of that is: Does he mean that the computer analysis is irrelevant?
Probably not: “it does uncover new and surprising facts” (p. 54), though he is vague (in
this general-audience magazine article) on what those “facts” are. Does he mean that
there are different ways to understand a given object? (An object could be understood
as a computer or as an object subject to the laws of physics.) That is true, but un-
surprising (animals, for instance, can be understood as physical objects satisfying the
laws of quantum mechanics as well as being understood as biological objects). Does

416CHAPTER 9. WHAT IS A COMPUTER?A PHILOSOPHICAL PERSPECTIVE

he mean that force and energy can, or should, be understood in terms of the underlying
computational nature of physical objects? He doesn’t say.

But Lloyd does end with a speculation on what it is that the universe is computing,
namely, itself! Or, as he puts it, “computation is existence” (p. 61). As mystical as this
sounds, does it mean anything different from the claim that the solar system computes
Kepler’s Law?

And here’s an interesting puzzle for Lloyd’s view, relating it to issues concerning
whether a computer must halt (recall our earlier discussion in Chapters 7 and 8):

[A]ssuming the universe is computing its own evolution . . . , does it have a finite
lifetime or not? If it is infinite, then its self-computation won’t get done; it never
produces an answer Hence, it does not qualify as a computation. (Borbely,
2005, p. 15)

Of course, Turing—as we saw in §8.10.3.1—would not have considered this to be a
problem: Don’t forget that his original a-machines only computed the decimal expan-
sions of real numbers by not halting!

Further Reading:
Lloyd 2000 investigates “quantitative bounds to the computational power of an ‘ultimate laptop’
with a mass of one kilogram confined to a volume of one litre.” Lloyd 2002 argues that

All physical systems register and process information. The laws of physics de-
termine the amount of information that a physical system can register (number of
bits) and the number of elementary logic operations that a system can perform
(number of ops). The Universe is a physical system. The amount of information
that the Universe can register and the number of elementary operations that it can
have performed over its history are calculated. The Universe can have performed
10120 ops on 1090 bits (10120 bits including gravitational degrees of freedom).

And see Lloyd 2006, along with two reviews of it: Schmidhuber 2006 and Powell 2006 (which
offers an overview and summary that is worth reading independently of the book being re-
viewed).

Konrad Zuse (whom we mentioned in §6.5.4) also argued that the universe is a computer; see
Schmidhuber 2002. Chaitin 2006a argues that “everything is software, God is a computer pro-
grammer, . . . and the world is . . . a giant computer”. See also Bacon 2010.

Related to Lloyd is Bostrom’s (2003) work on whether we are living in a computer simulation. If
Lloyd is right, then the universe is a computer, and we are data structures in its program, brought
to life as it were by its execution. If Bostrom is right, then we are data structures in someone
else’s program; we’ll return to Bostrom in §§15.3.1.2 and 20.8. If theists (computational theists?)
are right, then we are data structures in God’s program. For an argument that simulation theories
are not scientific, see Dunning 2018.

9.9. CONCLUSION 417

9.9 Conclusion
So, finally, what is a computer?

At a bare minimum, we might say that a (programmable) computer is a physically
plausible implementation (including a virtual implementation) of anything logically
equivalent to a universal Turing Machine (DC4, above). Most of the definitions that
we discussed above might best be viewed as focusing on exactly what is meant by
‘implementation’ or which entities count as such implementations. This is something
that we will return to in Chapter 14.

Two kinds of (alleged) computers are not obviously included in this sort of defi-
nition: analog computers and “hypercomputers”. Because most discussions focus on
“digital” computers as opposed to analog ones, I have not considered analog comput-
ers here. By ‘hypercomputer’, I have in mind any physical implementation (assuming
that there are any) of anything capable of “hypercomputation”, i.e., anything capable
of “going beyond the Turing limit”, that is, anything that “violates” the Church-Turing
Computability Thesis.

The topics of hypercomputation and counterexamples to the Computability Thesis
will be discussed in Chapters 10 and 11. But one way to incorporate these other models
of computation into a unified defintion of ‘computer’ might be this:

(DC5) A computer is any physically plausible implementation of anything that is
at least logically equivalent to a universal Turing Machine.

In other words, if something can compute at least all Turing-computable functions,
but might also be able to perform analog computations or hypercomputations, then
it, too, is a computer. A possible objection to this is that an adding machine, or a
calculator, or a machine that is designed to do only sub-Turing computation, such as a
physical implementation of a finite automaton, has at least some claim to being called
a ‘computer’.

So another way to incorporate all such models is to go one step beyond our DC5
to:

(DC6) A computer is a physically plausible implementation of some model of
computation.

Indeed, Piccinini (2018, p. 2) has more recently offered a definition along these lines.
He defines ‘computation’ as “the processing of medium independent vehicles by a
functional mechanism in accordance with a rule.” (See Piccinini 2015, Ch. 7, for ar-
gumentation and more details.) This, of course, is a definition of ‘computation’, not
‘computer’. But we can turn it inside out to get this:

Definition P3
A computer is a functional mechanism that processes medium-independent ve-
hicles in accordance with a rule.

He explicitly cites as an advantage of this very broad definition its inclusion of “not
only digital but also analog and other unconventional types of computation” (p. 3)—
including hypercomputation. But Piccinini (2015, Chs. 15 & 16) also distinguishes

418CHAPTER 9. WHAT IS A COMPUTER?A PHILOSOPHICAL PERSPECTIVE

between the “mathematical” Church-Turing Computability Thesis and a “modest phys-
ical” thesis: “Any function that is physically computable is Turing-computable” (Pic-
cinini, 2015, p. 264), and he argues that it is an “open empirical question” (p. 273)
whether hypercomputers are possible (although he doubts that they are).

Recall Stuart C. Shapiro’s definition, cited in §3.9.3:

[T]he computer is a general-purpose procedure-following machine.
(Shapiro, 2001, p. 2)

Given his broad characterization of ‘procedure’, this fits with DC6. My only hesitation
with these last three definitions is that they seem to be a bit too vague in their gen-
erosity, leaving all the work to the meaning of ‘computation’ or ‘procedure’ or ‘rule’.
But maybe that’s exactly right. Despite its engineering history and despite its name,
perhaps “computer science” is best viewed as the scientific study of computation, not
(just) computers. As we saw in §3.15.2, computer science can be thought of as the
scientific study of what problems can be solved, what tasks can be accomplished, and
what features of the world can be understood computationally, and then to provide al-
gorithms to show how this can be done efficiently, practically, physically, and ethically.
Determining how computation can be done physically tells us what a computer is.

* * * * *
With these preliminary remarks about the nature of CS, computers, and computation
as background, it is now time to look at some challenges to the Church-Turing Com-
putability Thesis, which is the topic of the next part of the book.

9.10. QUESTIONS FOR THE READER 419

9.10 Questions for the Reader
1. (This exercise was developed by Albert Goldfain.)

(a) The following arguments are interesting to think about in relation to the
question whether everything a computer. Try to evaluate them.

Argument 1
P1 A Turing Machine is a model of computation based on what a

single human (that is, a clerk) does.
P2 Finite automata and push-down automata are mathematical mod-

els of computation that recognize regular languages and context-
free languages, respectively.

P3 Recognizing strings in a languages is also something individual
humans do.

C1 ∴ Turing Machines, finite automata, and push-down automata are
all models of computation based on the abilities of individuals.

Argument 2
John Conway’s “Game of Life” is a cellular-automaton model of a
society (albeit a very simplistic one):14

P1 The Game of Life can be implemented in Java.
P2 Any Java program is reducible to a Turing-machine program.
C1 ∴ The Game of Life is Turing-machine computable

Argument 3
P1 The Game of Life can be thought of as a model of computation.
P2 The Game of Life is a model of the abilities of a society.
P3 The abilities of a society exceed those of an individual.
C1 ∴ The abilities of a model of computation based on a society will

exceed the abilities of a model based on the abilities of an individ-
ual.

C2 ∴ It is not the case that every Turing-machine program could be
translated to a Game-of-Life “computation”.

(b) Some of the arguments in Exercise 1 may have missing premises! To de-
termine whether the Game of Life might be a model of computation, do a
Google search using the two phrases: “game of life” “turing machine”

(c) Given an integer input (remember: everything can be encoded as an inte-
ger), how could this integer be represented as live cells on an initial grid?
How might “stable” structures (remember: a 2× 2 grid has 3 neighbors
each) be used as “memory”? How would an output be represented?

(d) Can Turing-machine programs be reduced to Game-of-Life computations?

14See http://en.wikipedia.org/wiki/Conway Game of Life for the rules of this game.

420CHAPTER 9. WHAT IS A COMPUTER?A PHILOSOPHICAL PERSPECTIVE

2. Recall our discussion in §6.5.3 of Jacquard’s looms.

Modern programmers would say . . . [that Jacquard] loom programs are not
computer programs: looms could not compute mathematical functions.
(Denning and Martell, 2015, p. 83)

Looms might not have been computers, but could they have been? Even if we
accept the definition of a computer (program) as one that computes mathematical
functions, does it follow that Jacquard looms could not be computers? Could bits
be implemented as patterns in looms?

3. Which physical processes are computing processes? Are all physical processes
computations?15 Of course, if a physical process is a computation, then, presum-
ably, the physical object carrying out that process is a computer, so this question
amounts to saying that all physical objects that carry out processes are comput-
ers.

4. One argument, adapted from Fekete and Edelman 2011, is this:

(a) A process is a computation iff it operates on representations.

(b) All physical processes can represent.

(c) ∴ All physical processes are computations.

Keep in mind that, even if all physical processes can represent, it does not follow
that they all do represent. (Or does that suggest that “computing is in the eye
of the beholder. If a rock heating up in the sun is not taken as a representer,
then it is not computing, but if I use how hot it is to do something else, then
the hot rock is representing and so computing.”16 Another consideration is this:
Computation is done over uninterpreted marks. Whether those marks represent
anything is a separate matter. I might choose to interpret them as representing
something; or the computational system itself might choose to (self-?)interpret
them as representing something (see Schweizer 2017).

Is this argument sound? Does this argument adequately represent Fekete &
Edelman’s actual argument? (See §7.10, #6.)

5. Is a (physical) implementation of a computation itself a computation?17

(See our discussion of implementation in Chapter 14.)

6. Never mind the name change—the Apple TV and iPhone are computers to
the core. (Gruber, 2007)

Are devices such as these computers? Choose one or more definitions of ‘com-
puter’ and see if Apple TVs, iPhones, etc., are computers on those definitions.

15Thanks to Russ Abbott and Eric Dietrich for suggesting these questions.
16Dietrich, personal communication, 28 June 2015.
17Also due to Dietrich.

9.10. QUESTIONS FOR THE READER 421

7. In §9.6, I considered whether a dishwasher might be a computer. What about a
tree? According to César Hidalgo,

A tree . . . is a computer that knows in which direction to grow its roots and
leaves. Trees know when to turn genes on and off to fight parasites, when to
sprout or shed their leaves and how to harvest carbon from the air via pho-
tosynthesis. As a computer, a tree begets order in the macrostructure of its
branches and the microstructures of its cells. We often fail to acknowledge
trees as computers, but the fact is that trees contribute to the growth of infor-
mation in our planet because they compute. (Hidalgo, 2015, p. 75).

But what is his argument here? He doesn’t seem to have a definition of ‘com-
puter’. Except for the last three words of the above quotation, one might think
that his definition would be something like: A computer is an information-
processing machine. Then his argument might go as follows: Trees are infor-
mation-processing machines (because they “contribute to the growth of informa-
tion”); hence, they are computers. But those last three words suggest that his
argument goes the other way: that trees are computers; hence, they contribute to
the growth of information.

So, are dishwashers computers? Is a tree a computer? Is the human race
a computer? (On the last quetions, see the interview with Hidalgo in O’Neill
2015.)

8. It seems to be correct to say that a real, physical computer such as your laptop
is not a Turing Machine, on the grounds that real, physical computers are finite
devices (finite memory, etc.) whereas Turing Machines are infinite (infinite, or at
least arbitrarily long, tape, etc.).

But could it be a finite-state machine? After all, a finite-state machine is . . .
well . . . finite!

At least one computer scientist has denied this:

Another obvious distinction that is worth making explicit . . . is the distinction
between computers (which include laptops and iPads) on the one hand and
their mathematical models on the other hand. Strictly speaking, then, it is
wrong to say that:

A computer is a finite state machine.

Once again, this is like speaking about a mathematical model (the finite state
machine) as if it coincides with reality (the computer).
(Daylight, 2016, p. 14)

But consider this mathematical definition of a “graph” (paraphrased from
https://en.wikipedia.org/wiki/Graph (discrete mathematics)):

. . . a graph is an ordered pair G = (V,E) comprising a set V of vertices . . .
together with a set E of edges . . . which are . . . [unordered pairs of members]
of V (i.e., an edge is associated with two vertices, and the association takes
the form of the unordered pair of the vertices).

422CHAPTER 9. WHAT IS A COMPUTER?A PHILOSOPHICAL PERSPECTIVE

Now consider a real-world computer network consisting of a set V of comput-
ers and a set E of pairs of computers that are networked to each other. Is that
computer network a graph? Or is it only modeled as a graph?

Similarly, could we say that a real, physical computer is a finite-state machine
if it satisfies the definition of one? It may also have other properties that the
(mathematical) definition of finite-state machine lacks. For example, the com-
puter might be made of plastic and silicon; the definition of a finite-state machine
is silent about any requirements for physical composition:

. . . equating a laptop with a universal Turing Machine is problematic, not
primarily because the former is finite and the latter is infinite, but because the
former moves when you push it and smells when you burn it while the latter
can neither be displaced nor destroyed. (Daylight, 2016, p. 118)

But all properties of finite-state machines will hold of physical computers, even
if there are properties of physical computers that do not hold of finite-state ma-
chines (such as ringing—or failing to ring!—a real bell if its program has a
‘BEEP’ command). (We’ll have more to say about that kind of command in
§§16.5.1 and 16.6.)

Part III

The Church-Turing
Computability Thesis

423

425

We introduced the Church-Turing Computability Thesis as the claim that the informal
notion of computability can be identified with any of the logically equivalent formal
notions of Turing Machine computability, lambda-calculus computability, general re-
cursive function computability, etc.

Here is Turing’s (1939, p. 166) formulation of it (together with his footnote):

A function is said to be “effectively calculable” if its values can be found by some
purely mechanical process. Although it is fairly easy to get an intuitive grasp of
this idea, it is nevertheless desirable to have some more definite, mathematically
expressible definition. Such a definition was first given by Gödel at Princeton in
1934 These functions were described as “general recursive” by Gödel. We
shall not be much concerned here with this particular definition. Another defini-
tion of effective calculability has been given by Church . . . , who identifies it with
λ-definability. The author has recently suggested a definition corresponding more
closely to the intuitive idea It was stated above that “a function is effectively
calculable if its values can be found by some purely mechanical process”. We
may take this statement literally, understanding by a purely mechanical process
one which could be carried out by a machine. It is possible to give a mathemati-
cal description, in a certain normal form, of the structures of these machines. The
development of these ideas leads to the author’s definition of a computable func-
tion, and to an identification of computability† with effective calculability. It is
not difficult, though somewhat laborious, to prove that these three definitions are
equivalent

† We shall use the expression “computable function” to mean a function calculable by a
machine, and we let “effectively calculable” refer to the intuitive idea without particular
identification with any one of these definitions. We do not restrict the values taken by a com-
putable function to be natural numbers; we may for instance have computable propositional
functions.

Recall from Chapter 4 that Popper claimed that sciences must be “falsifiable” and that
Kuhn claimed that sciences are subject to “revolutions”. Is the Computability Thesis
falsifiable? In Chapter 10, we will look at two challenges to the Computability Thesis
having to do with the nature of such real-life procedures as recipes. And in Chapter 11,
we will look at some arguments to the effect that there are forms of computation that
go “beyond” Turing Machine computation. Do such forms of computation constitute a
Kuhnian revolution in CS?

426

Chapter 10

What Is a Procedure?

Version of 20 January 2020; DRAFT c© 2004–2020 by William J. Rapaport

I believe that history will record that around the mid twentieth century many clas-
sical problems of philosophy and psychology were transformed by a new notion
of process: that of a symbolic or computational process.
—Zenon Pylyshyn (1992, p. 4)

Figure 10.1: http://www.gocomics.com/agnes/2011/11/7, c©2011 Tony Cochran

427

428 CHAPTER 10. WHAT IS A PROCEDURE?

10.1 Required Readings
1. Cleland, Carol E. (1993), “Is the Church-Turing Thesis True?”,

Minds and Machines 3(3) (August): 283–312.

2. Preston, Beth (2013), “The Centralized Control Model”, Ch. 1 of Preston, Beth (2013), A
Philosophy of Material Culture: Action, Function, and Mind
(New York: Routledge): 15–43.

(a) p. 17, first full paragraph, introduces three theories of the production of objects by
following procedures: Aristotle’s, Marx’s, and Dipert’s.

i. §“Aristotle”, especially p. 17 to p. 18 (end of top paragraph)
ii. §“Marx”, especially p. 22 (from first full paragraph) to p. 23 (end of first full

paragraph)
iii. §“Dipert”, especially p. 29, first paragraph

(b) §“The Centralized Control Model”, pp. 30–32

(c) §“Control & Improvisation”, pp. 39–43.

(d) Skim the rest of Ch. 1.

10.2. INTRODUCTION 429

10.2 Introduction
Once again, let us take stock of where we are. We proposed two possible answers to
the question of what CS is. The first was that it is the scientific study of computers,
and, in Chapters 6 and 9, we considered what a computer is, examining the history
and philosophy of computers. The second possible answer was that perhaps CS is
the scientific study of computing, that is, of algorithms, and, in Chapters 7 and 8, we
investigated what algorithms are, their history, and their analysis in terms of Turing
Machines.

Algorithms—including procedures and recipes—can fail for many reasons; here
are three of them:

1. They can omit crucial steps (as in Figure 10.1).

2. They can fail to be specific enough (or they can make too many assumptions)
(recall Figure 7.10).

3. They can be highly context dependent or ambiguous
(recall the first instruction in Figure 7.6).1

The general theme of the next few chapters is to challenge various parts of the informal
definition of ‘algorithm’:

• Does it have to be a finite procedure?

• Does it have to be “effective”?

– Does it have to halt?

– Does it have to solve the problem? (What about heuristics?)

• Does it have to be unambiguous or precisely described? (What about recipes?)

In this chapter, we will look at one kind of objection to the Thesis, namely, that there
is a more general notion—the notion of a “procedure”. The objection takes the form
of claiming that there are “procedures” that are computable in the informal sense but
that are not computable by Turing Machines. (For convenience, from now on we will
use the expression ‘Turing-computable’ to mean “computable by anything logically
equivalent to a Turing Machine”, that is, anything computable according to the classical
theory of computability or recursive functions.)

In the next chapter, we will look at a related, but slightly different kind of objec-
tion, namely, that some functions that are not Turing–computable—such as the Halting
Problem—can be computed in a formal, mathematical sense of “computation” that
goes “beyond” Turing computation. This is called ‘hypercomputation’.

1Or read the instructions at https://www.shopyourway.com/energizer-6v-led-utility-lantern/162752012.
For more humorous versions of algorithms, see the cartoons archived at http://www.cse.buffalo.edu/
∼rapaport/510/alg-cartoons.html.

430 CHAPTER 10. WHAT IS A PROCEDURE?

10.2.1 The Church-Turing Computability Thesis
The [Church-Turing] thesis was a great step toward understanding algorithms, but
it did not solve the problem [of] what an algorithm is.
—Andreas Blass & Yuri Gurevich (2003, p. 2)

Recall from §7.6.7, that “Church’s Thesis” is, roughly, the claim that the informal
notion of “algorithm” or “effective computation” is equivalent to (or is completely
captured by, or can be completely analyzed in terms of) Church’s lambda calculus.
More precisely:

Definition 2.1. Church’s Thesis (First Version, unpublished, 1934).
A function is effectively calculable if and only if it is λ-definable.
(Soare, 2009, p. 372)

Later, Church reformulated it in terms of recursive functions:

Definition 2.2. Church’s Thesis [1936].
A function on the positive integers is effectively calculable if and only if it is
recursive. (Soare, 2009, p. 372; see also §11.1, p. 389)

And “Turing’s Thesis” is, roughly, the claim that the informal notion of “algorithm”
or “computability” is equivalent to (or completely captured by, or can be completely
analyzed in terms of) the notion of a Turing Machine. We saw several versions of
Turing’s Thesis in Chapter 8.2 Here is Robert I. Soare’s version:

Definition 3.1. Turing’s Thesis [1936].
A function is intuitively computable (effectively calculable) if and only if it is
computable by a Turing machine (Soare, 2009, p. 373)

Turing proved that Church’s lambda calculus was logically equivalent to his own
a-machines. That is, he proved that any function that was computable by the lambda
calculus was also computable by a Turing Machine (more precisely, that any lambda
computation could be “compiled” into a Turing machine)3 and vice versa—that any
function that was computable by a Turing Machine was also computable by the lambda
calculus (so that the lambda calculus and Turing Machines were inter-compilable).
Consequently, their theses are often combined under the name the “Church-Turing
Thesis”.

There are other, less well-known computability theses. One is Emil Post’s version:

Definition 5.1. [Post’s Thesis, 1943, 1944].
A nonempty set is effectively enumerable (listable in the intuitive sense) iff it is
recursively enumerable (the range of a recursive function) or equivalently iff it is
generated by a (normal) production system. (Soare, 2009, p. 380)

2§§8.5.1, 8.8.1, 8.8.2.8.2, 8.9.2, and 8.10.4.
3I am indebted to John Case’s lectures (at SUNY Buffalo, ca. 1983) on the theory of computation for this

phrasing.

10.2. INTRODUCTION 431

This may look a bit different from Church’s and Turing’s versions, but, as Soare (2009,
p. 380) notes,

Since recursively enumerable sets are equidefinable with partial computable func-
tions . . . Post’s Thesis is equivalent to Turing’s Thesis.

Consequently, Soare (2009, §12) has argued that the thesis should be called simply
the “Computability Thesis”, on the grounds that—given the equivalence of all math-
ematical models of computation (Church’s, Turing’s, Gödel’s, Post’s, etc.)—there are
really many such theses, hence no reason to single out one or two names, any more
than we would refer to the calculus as ‘the Newton calculus’ or ‘the Leibniz calculus’.

On the other hand, an interesting argument to the effect that Church’s Thesis should
be distinguished from Turing’s Thesis has been given by Rescorla (2007): Church’s
Thesis asserts that intuitively computable number-theoretic functions are recursive.
Turing’s Thesis asserts that intuitively computable string-theoretic functions are Turing-
computable. We can only combine these into a Church-Turing Computability Thesis
by adding a requirement that there be a computable semantic interpretation function
between strings and numbers. (And this raises the further question whether that se-
mantic interpretation function is intuitively computable or recursive.) However, Sieg
(2000) first analyzes the (informal) “calculability of number-theoretic functions” into
calculability by humans “satisfying boundedness and locality conditions”; that, in turn,
is analyzed into “computability by string machine”; finally, the latter is analyzed into
computability by a Turing Machine. Sieg identifies “Turing’s thesis” as the analysis of
the first of these by the last.

The Computability Thesis, in any of its various forms, states that the informal no-
tion of effective computation (or algorithm, or whatever) is equivalent to the formal
notion of a Turing-machine program (or a lambda-definable function, or a recursive
function, or whatever). The arguments in favor of the Computability Thesis are gener-
ally of two forms (§7.6.7): (1) All known informal algorithms are Turing-computable.
(This puts it positively. To put it negatively, no one has yet found a universally convinc-
ing example of an informally computable function that is not also Turing-computable.)
And (2) all of the formal, mathematical versions of computation are logically equiva-
lent to each other.

It has also been argued that the Computability Thesis cannot be formally proved
because one “side” of it is informal, hence not capable of being part of a formal proof.
Dershowitz and Gurevich (2008) have suggested that the thesis is capable of being
proved, by providing a set of formal “postulates” for the informal notion, and then
proving that Turing machines satisfy those postulates. Although this is an interesting
exercise, it is not obvious that this proves the Computability Thesis. Rather, it seems to
replace that Thesis with a new one, namely, that the informal notion is indeed captured
by the formal postulates. But that thesis likewise cannot be proved for the same reason
that the Computability Thesis cannot: To prove it would require using an informal
notion that cannot be part of a formal proof.

432 CHAPTER 10. WHAT IS A PROCEDURE?

Further Reading:
Dershowitz and Gurevich 2008, §§1.1 and 1.2, contain a good history of the Computability The-
sis. Other philosophers and logicians who have discussed how to prove the Computability Thesis
include Gandy 1988; Sieg 2000, 2008.

Kripke 2013—which contains a lot of useful historical remarks—offers an argument that the
Thesis can be proved as a corollary of Gödel’s Completeness Theorem. On the other hand,
Folina 1998 argues—against Gandy 1988; Mendelson 1990; Stewart Shapiro 1993; Sieg 1994;
and others—that the thesis is true but unprovable (perhaps as in Gödel’s Incompleteness Theo-
rem?).

Stewart Shapiro 2013 is a very readable discussion of the provability of the Computability The-
sis; of the nature of the “informality”, “vagueness”, or “open texture” of the notion of com-
putability; and of the difference between human, mechanical, and mathematical computability,
with observations on many of the other readings discussed or mentioned in this chapter.

Others have argued that neither (1) nor (2) are even non-deductively good argu-
ments for the Computability Thesis. Against (1), it can be argued that, just because
all known informal algorithms are Turing-computable, it does not follow that all in-
formal algorithms are. After all, just because Aristotle’s theory of physics lasted for
some 2000 years until Newton came along, it did not follow that Aristotle’s physics
was correct, and just because Newton’s theory lasted for some 200 years until Einstein
came along, it did not follow that Newton’s theory was correct. So, there is no induc-
tive reason to think that the Computability Thesis is correct any more than there is to
think that Einstein’s theory is. (As to whether any scientific theory is “correct”, on the
grounds that they are all only falsifiable, see §4.9.1.2.)

But perhaps the Computability Thesis is neither a formally unprovable “thesis” nor
a formally provable one, but something else altogether. In fact, Church called his state-
ment of what we now name “Church’s Thesis” “a definition of effective calculability”.
It is worth quoting in full, including parts of his important footnote 3:

The purpose of the present paper is to propose a definition of effective
calculability3 which is thought to correspond satisfactorily to the somewhat vague
intuitive notion in terms of which problems of this class are often stated, and to
show, by means of an example, that not every problem of this class is solvable.

3 . . . this definition of effective calculability can be stated in either of two
equivalent forms, (1) that a function of positive integers shall be called effectively
calculable if it is λ-definable . . . , (2) that a function of positive integers shall be
called effectively calculable if it is recursive And the proof of equivalence of
the two notions is due chiefly to Kleene, . . . the present author and to J.B. Rosser
. . . . [Note: Kleene and Rosser were Church’s Ph.D. students.] The proposal to
identify these notions with the intuitive notion of effective calculability is first
made in the present paper

. . . The fact . . . that two such widely different and (in the opinion of the author)
equally natural definitions of effective calculability turn out to be equivalent adds
to the strength of the reasons adduced below for believing that they constitute as
general a characterization of this notion as is consistent with the usual intuitive
understanding of it. (Church, 1936b, p. 346)

10.2. INTRODUCTION 433

Definitiions, of course, are not susceptible of proof.

Rather than considering it a definition, the philosopher and logician Richard Mon-
tague (1960, p. 430) viewed the Thesis as an explication of the informal notion of
“effective calculability” or “algorithm”. An “explication” is the replacement of an in-
formal or vague term with a formal and more precise one. (The concept is due to
the philosopher Rudolf Carnap (1956, pp. 7–8). In a similar vein, the mathematician
and logician Elliott Mendelson (1990, p. 229) calls the thesis a “rational reconstruc-
tion” (a term also due to Carnap): “a precise, scientific concept that is offered as an
equivalent of a prescientific, intuitive, imprecise notion.” Mendelson goes on to ar-
gue that the Computability Thesis has the same status as the definition of a function
as a certain set of ordered pairs (see §7.4.1, above) or as other (formal) definitions of
(informal) mathematical concepts (logical validity, Tarski’s definition of truth, the δ-ε
definition of limits, etc.). Mendelson then claims that “it is completely unwarranted to
say that C[hurch’s] T[hesis] is unprovable just because it states an equivalence between
a vague, imprecise notion . . . and a precise mathematical notion” (Mendelson, 1990,
p. 232). One reason he gives is that both sides of the equivalence are equally vague!
He points out that “the concept of set is no clearer than that of function”. Another
is that the argument that all Turing-machine programs are (informally) computable is
considered to be a proof, yet it involves a vague, informal concept. (Note that it is the
converse claim that all informally computable functions are Turing-computable that is
usually considered incapable of proof on these grounds.)

It’s worth comparing the formal explication of the informal (or “folk”?) notion of
algorithm as a Turing Machine (or recursive functions, etc.), with other attempts to de-
fine informal concepts in scientific terms. As with any attempt at a formal explication
of an informal concept (as we discussed in §§3.3.3 and 9.3), there is never any guaran-
tee that the formal explanation will satisfactorily capture the informal notion (usually
because the informal notion is informal, vague, or “fuzzy”). The formal explication
might include some things that are, pre-theoretically at least, not obviously included
in the informal concept, and it might exclude some things that are, pre-theoretically,
included. Many of the attempts to show that there is something wrong with the Com-
putability Thesis fall along these lines.

Question for the Reader:
As we noted in §3.3.3.2.3, ‘life’ is one of these terms. One difference between the two cases
is this: There are many non-equivalent scientific definitions of ‘life’. But in the case of ‘algo-
rithm’, there are many equivalent formalizations: Turing Machines, recursive functions, lambda
calculations, etc. What might have been the status of the informal notion if these had not turned
out to be equivalent?

434 CHAPTER 10. WHAT IS A PROCEDURE?

Further Reading:
Mendelson’s 1990 paper has one of the clearest discussions of the nature of the Computability
Thesis. For responses to Mendelson, see Bringsjord 1993 and Stewart Shapiro 1993.

Good general discussions of the various Computability Theses (Church’s, Turing’s, et al.) and
their history can be found in the Notre Dame Journal of Formal Logic’s Special Issue on Church’s
Thesis 28(4) (October 1987), http://projecteuclid.org/euclid.ndjfl/1093637642; Sieg 1994, §§2–
3; Davis 2004; Soare 2009, §§2, 3, and 12 (“Origins of Computabilty and Incomputability”,
“Turing Breaks the Stalemate”, and “Renaming It the ‘Computability Thesis’ ”); and Olszewski
et al. 2006 (which includes essays by Selmer Bringsjord, Carol Cleland, B. Jack Copeland, Janet
Folina, Yuri Gurevich, Andrew Hodges, Charles McCarty, Elliott Mendelson, Oron Shagrir,
Stewart Shapiro, and Wilfrid Sieg, among many others).

Robin Gandy—Turing’s only Ph.D. student—gave this statement of what (ironically) he referred
to as Church’s Thesis:

What is effectively calculable [“by an abstract human being using some mechan-
ical aids (such as paper and pencil)”] is computable . . . [where] “computable” . . .
mean[s] “computable by a Turing machine”[,] . . . “abstract” indicates that the ar-
gument makes no appeal to the existence of practical limits on time and space . . .
[and] “effective” in the thesis serves to emphasize that the process of calculation
is deterministic—not dependent on guesswork—and that it must terminate after a
finite time. (Gandy, 1980, pp. 123–124, my italics)

Gandy goes on to be concerned with a mechanical version of the Thesis: whether “What can be
calculated by a machine is computable” (Gandy, 1980, p. 124), where by ‘machine’ he says that
he is . . .

. . . using the term with its nineteenth century meaning; the reader may like to
imagine some glorious contraption of gleaming brass and polished mahogany, or
he [sic] may choose to inspect the parts of Babbage’s “Analytical Engine” which
are preserved in the Science Museum at South Kensington. (Gandy, 1980, p. 125).

One difference between a human (even an “abstract” one) and a machine is that the latter can eas-
ily perform parallel operations such as printing “an arbitrary number of symbols simultaneously”
(Gandy, 1980, p. 125).

10.3. WHAT IS A PROCEDURE? 435

Interlude: A Thought Experiment:
A “thought experiment” is a mental puzzle designed to give you some intuitions about the

arguments to come.

Consider this passage from Herbert Simon (1996b, p. 6):

Natural science impinges on an artifact through two of the three terms of the re-
lation that characterizes it: the structure of the artifact itself and the environment
in which it performs. [The third “term of the relation” is an artifact’s “purpose or
goal” (Simon, 1996b, p. 5).] Whether a clock will in fact tell time depends on its
internal construction and where it is placed. Whether a knife will cut depends on
the material of its blade and the hardness of the substance to which it is applied.
. . . An artifact can be thought of as . . . an “interface” . . . between an “inner”
environment, the substance and organization of the artifact itself, and an “outer”
environment, the surroundings in which it operates. If the inner environment is ap-
propriate to the outer environment, or vice versa, the artifact will serve its intended
purpose.

And, presumably, otherwise not.

But more can be said, perhaps relating to the “third term” mentioned in brackets above: Consider
a clock. Lewis Carroll (1850) once observed that a(n analog) clock whose hands don’t work at all
is better than one that loses one minute a day, because the former is correct twice a day, whereas
the latter is correct only once every two years.

Here is the thought experiment: What about the clock that has stopped and one that is consis-
tently 5 minutes slow? The latter is never correct—unless you simply move the numerals on its
face 5 minutes counterclockwise; then it would always be correct (The actual number is prob-
ably closer to 5 1

2 minutes, but this is only a thought experiment!) The (user’s?) interpretation
of the clock’s output seems to be what counts. (Recall, from §9.5, Searle’s emphasis on user
interpretations.) We’ll come back to this thought experiment in §10.4.1.

10.3 What Is a Procedure?
Herbert Simon (1962, p. 479) offers two kinds of descriptions of phenomena in the
world: state descriptions and process descriptions:

The former characterize the world as sensed; they provide the criteria for identify-
ing objects The latter characterize the world as acted upon; they provide the
means for producing or generating objects having the desired characteristics.

The “desired characteristics” to be produced are, presumably, given by a state descrip-
tion. His example of a state description is “A circle is the locus of all points equidistant
from a given point”; his example of a process description is “To construct a circle, ro-
tate a compass with one arm fixed until the other arm has returned to its staring point”.
(Recall our discussion in §3.14.4 of Euclid’s Elements, which was originally written in
terms of “process descriptions”.) Process descriptions describe procedures.

State descriptions seem to be part of “science”, whereas process descriptions seem
to be part of “engineering” and certainly part of “computational thinking”. Consider
this related claim of Michael Rescorla (2014b, §2, p. 1279):

436 CHAPTER 10. WHAT IS A PROCEDURE?

To formulate . . . [Euclid’s GCD algorithm], Knuth uses natural language aug-
mented with some mathematical symbols. For most of human history, this was
basically the only way to formulate mechanical instructions. The computer revo-
lution marked the advent of rigorous computational formalisms, which allow one
to state mechanical instructions in a precise, unambiguous, canonical way.

In other words, CS developed formal methods for making the notion and expression of
procedures mathematically precise. That’s what makes it a science of procedures.

Stuart C. Shapiro’s (2001) more general notion of “procedure” (which we looked
at in §3.9.3) characterizes “ ‘procedure’ as the most general term for the way ‘of go-
ing about the accomplishment of something’ ”, citing the Merriam-Webster Third New
International Dictionary.4 This includes serial algorithms as well as parallel algo-
rithms (which are not “step by step”, or serial), operating systems (which don’t halt),
heuristics (which “are not guaranteed to produce the correct answer”), musical scores
(which are open to interpretation by individual performers), and recipes (which are
also open to interpretation as well as being notoriously vague; see §10.4). Thus, Tur-
ing Machines (or Turing Machine programs)—that is, (serial) algorithms as analyzed
in §7.5—are only a special case of procedures. Given this definition, Shapiro claims
that procedures are “natural phenomena that may be, and are, objectively measured,
principally in terms of the amount of time they take . . . and in terms of the amount
of resources they require.” He gives no argument for the claim that they are natu-
ral phenomena, but this seems reasonable. First, they don’t seem to be “social” phe-
nomena in the sense in which institutions such as money or governments are (Searle,
1995). Some of them might be, but the concept of a procedure in general surely
seems to be logically prior to any specific procedure (such as the procedure for do-
ing long division or for baking a cake). Second, there are surely some procedures
“in nature”, such as a bird’s procedure for building a nest. Insofar as a natural sci-
ence is one that deals with “objectively measurable phenomena” (again citing Web-
ster; http://www.merriam-webster.com/dictionary/natural%20science), it follows triv-
ially that CS is the natural science of procedures. (Recall the discussion of this point
and the references cited in §3.9.3.)

In this chapter, we are focusing on this more general notion of ‘procedure’.

Further Reading:
In conjunction with Shapiro’s observation (cited earlier, in §3.9.3) that CS education can help
you write better cookbooks, Farkas (1999) offers some interesting (non-CS) advice from the
point of view of a technical writer on how to write procedures (that is, instructions).

4http://www.merriam-webster.com/dictionary/procedure

10.4. TWO CHALLENGES TO THE COMPUTABILITY THESIS 437

10.4 Two Challenges to the Computability Thesis
Some philosophers have challenged the Computability Thesis, arguing that there are
things that are intuitively algorithms but that are not Turing Machines. In this section,
we will look at two of these, due to the philosophers Carol Cleland and Beth Preston.
Interestingly, both focus on recipes, though for slightly different reasons—Cleland on
the fact that recipes are carried out in the real world, and Preston on the fact that they
are vague and open to interpretation by chefs.

10.4.1 Carol Cleland:
Some Effective Procedures Are Not Turing Machines

In a series of papers, Carol Cleland has argued that there are effective procedures that
are not Turing Machines (Cleland, 1993, 1995, 2001, 2002b, 2004). By ‘effective
procedure’, she means (1) a “mundane” procedure—that is, an ordinary, everyday, or
“quotidian” one—that (2) generates a causal process, that is, a procedure that physi-
cally causes (or “effects”) a change in the world.

Terminological Digression and Further Reading:
There may be an unintentional pun here. As we have seen, the word ‘effective’ as used in the
phrase ‘effective procedure’ is a semi-technical term that is roughly synonymous with ‘algo-
rithmic’. On the other hand, the verb ‘to effect’, as used in the phrase “to effect a change (in
something)”, is roughly synonymous with the verbs ‘to produce’ or ‘to cause’, and it is not di-
rectly related to ‘effective’ in the algorithmic sense.

And just to make things more confusing, ‘effect’ is also a noun meaning “the result of a cause”.
Worse, there are a verb and a noun spelled slightly differently but pronounced almost the same:
‘affect’! For the difference between the verb ‘to effect’ and the noun ‘an effect’, as well as the
similar-sounding verb and noun ‘affect’, see Rapaport 2013, §4.2.0, “affect vs. effect”.

Algorithms implement mathematical functions; they transform (“change”?) inputs into outputs.
But do functions change anything? This question is discussed at http://www.askphilosophers.
org/question/1877.

According to Cleland, there are three ways to understand the Computability Thesis:

1. It applies only to (mathematical) functions of integers (or, possibly, also to any-
thing representable by—that is, codable into—integers).

2. It applies to all (mathematical) functions (including real-valued functions).

3. It also applies to the production of mental and physical phenomena, such as is
envisaged in AI or robotics.

She agrees that it cannot be proved but that it can be falsified. (Recall, from §4.9.1,
Popper’s thesis that falsifiability is the mark of a science.) It can’t be proved, because
one of the two notions that the Computability Thesis says are equivalent is an informal
notion, hence not capable of occurring in a formal proof. There are two possibilities

438 CHAPTER 10. WHAT IS A PROCEDURE?

for why it can be falsified: According to Cleland, the Computability Thesis can be
falsified by exhibiting an intuitively effective procedure, “but not in Turing’s sense”,
that is “more powerful” than a Turing Machine (Cleland, 1993, p. 285, my italics).
Presumably, the qualification “but not in Turing’s sense” simply means that it must be
intuitively effective yet not capable of being carried out by a Turing Machine, because,
after all, that’s what Turing thought his a-machines could do, namely, carry out any
intuitively effective procedure.

But she also suggests another sense in which the Computability Thesis might be
falsifiable: By exhibiting a procedure that is intuitively effective in Turing’s sense yet
is not Turing–computable. In other words, there might be two different kinds of coun-
terexamples to the Computability Thesis: If Turing were alive, (1) we could show him
an intuitively effective procedure that we claim is not Turing-computable, and he might
agree; or (2) we could show him a procedure, and, either he would not agree that it was
intuitively effective (thus denying that it was a possible counterexample), or he could
show that, indeed, it was Turing-computable (showing how it is not a counterexample
at all). Cleland seems to be opting for (1).

Curiously, however, she goes on to say that her “mundane procedures” are going to
be effective “in Turing’s sense” (Cleland, 1993, p. 286)! In any case, they differ from
Turing-computable procedures by being causal. (When reading Cleland’s article, you
should continually ask yourself two questions: Are her “mundane procedures” causal?
Are Turing Machines not causal?) Here is her argument, with comments after some of
the premises:

1. A “procedure” is a specification of something to be followed (Cleland, 1993,
p. 287). This includes recipes as well as computer programs.

• Her characterization of a procedure as something to be followed puts a fo-
cus on imperatives: You can follow an instruction that says, “Do this!”. But
there are other ways to characterize procedures. Stuart C. Shapiro (2001),
for example, describes a procedure as a way to do something. But his focus
is on the goal or end product; the way to do it—the way to accomplish that
goal—might be to evaluate a function or to determine the truth value of a
proposition, not necessarily to “follow” an imperative command.

• You should also recall (from §8.11.1) that Turing Machines don’t normally
“follow” any instructions! The Turing Machine table is a description of the
Turing Machine, but it is not something that the Turing Machine consults
and then executes. That only happens in a universal Turing Machine, but,
in that case, there are two different programs to consider: There is the
program encoded on the universal Turing Machine’s tape; that program
is consulted and followed. But there is the fetch-execute procedure that
constitutes the universal Turing Machine’s machine table; that one is not
consulted or followed.

• The relationship between these two programs gives rise to several interest-
ing issues in epistemology and the philosophy of AI: Is there any sense in
which the “blindly executed” fetch-execute cycle “knows” what it is do-
ing when it “follows” the program on the tape? (Recall the passage cited in

10.4. TWO CHALLENGES TO THE COMPUTABILITY THESIS 439

§9.5.3 from Nicolas D. Goodman.) Does an AI program “understand” what
it does? (Should it? Could it?) We’ll discuss these issues in §19.7, when
we discuss what Daniel C. Dennett (2013b) has called “Turing’s ‘Strange
Inversion of Reasoning’ ”.

2. To say that a “mundane” procedure is “effective” means, by definition, that fol-
lowing it always results in a certain kind of outcome (Cleland, 1993, p. 291).

• The semi-technical notion of “effective” as it is used in the theory of com-
putation is, as we have seen (§7.5), somewhat ambiguous. Cleland notes
(1993, p. 291) that Marvin Minsky (1967) calls an algorithm ‘effective’ if
it is “precisely described”. And Church (1936b, pp. 50ff; compare p. 357)
calls an algorithm ‘effective’ if there is a formal system that takes a for-
mal analogue of the algorithm’s input, precisely manipulates it, and yields
a formal analogue of its output. Church’s notion seems to combine aspects
of both Minsky’s and Cleland’s notions.

• A non-terminating program (either one that erroneously goes into an infi-
nite loop or else one that computes all the digits in the decimal expansion
of a real number) can be “effective” at each step even though it never halts.
We’ll return to this notion in §11.4.3, when we look at the notion of inter-
active computing.

3. The steps of a recipe can be precisely described (hence, they can be effective in
Minsky’s sense).

• This is certainly a controversial claim. Note that recipes can be notoriously
vague, whereas computer programs must be excruciatingly precise:

How do you know when a thing “just begins to boil”? How can you
be sure that the milk has scorched but not burned? Or touch something
too hot to touch, or tell firm peaks from stiff peaks? How do you define
“chopped”? (Adam Gopnik 2009b, p. 106; compare Sheraton 1981)

We will explore this in more detail in §10.4.2.

4. A procedure is effective for producing a specific output. For example, a proce-
dure for producing fire or a procedure for producing hollandaise sauce might not
be effective for producing chocolate.

• In other words, being effective (better: being “effective for”) is not a prop-
erty of a procedure but a relation between a procedure and a kind of output.
This might seem to be reasonable, but a procedure for producing the truth
table for conjunction might also be effective for producing the truth table
for disjunction by suitably reinterpreting the symbols. (See the “Digression
on Conjunction and Disjunction”, below.)

440 CHAPTER 10. WHAT IS A PROCEDURE?

Digression on Conjunction and Disjunction:
Here is a truth-table for conjunction, using ‘0’ to represent “false” and ‘1’ to represent “true”:

0 0 0
0 1 0
1 0 0
1 1 1

Note that, in the 3rd column—which represents the conjunction of the first two columns—there
are three ‘0’s and one ‘1’, which occurs only in the line where both inputs are ‘1’.

And here is the analogous truth-table for disjunction:

0 0 0
0 1 1
1 0 1
1 1 1

Note that the third column has three ‘1’s and only one ‘0’, which occurs only in the line where
both inputs are ‘0’.

Now suppose, instead, that we use ‘0’ to represent “true” and ‘1’ to represent “false”. Then the
first table represents disjunction, and the second one represents conjunction!

Similar points are made by Peacocke 1995, §1, p. 231; Shagrir 2001; and Sprevak 2010, §3.3,
pp. 268–269. We’ll return to this example in §17.4.2.3.

• Here are some more examples: A procedure that is effective for simulating
a battle in a war might also be effective for simulating a particular game of
chess (Fodor, 1978, p. 232). Or a procedure that is effective for computing
with a mathematical lattice might also be effective for computing with a
chemical lattice. (For the details on both of these, see §17.4.2.1.) And
an ottoman (or a “pouf”) could be (used as) either a seat or a table, yet,
of course, seats and tables are usually considered to be mutually exclusive
classes.

• In cases such as these, the notion of effectiveness might not be the same as
Church’s, because of the possibility of interpreting the output differently.
How important to the notions of (intuitively) effective computation and
formal computation is the interpretation of the output symbols? We will
explore these issues in more detail in §17.6.

5. The effectiveness of a recipe for producing hollandaise sauce depends on causal
processes in the actual world, and these causal processes are independent of the
recipe (the mundane procedure) (Cleland, 1993, p. 294). Suppose that we have
an algorithm (a recipe) that takes eggs, butter, and lemon juice as input, tells us
to mix them, and that outputs hollandaise sauce. Suppose that on Earth the result
of mixing those ingredients is an emulsion that is, in fact, hollandaise sauce. And
suppose that, on the Moon, mixing them does not result in an emulsion, so that
no hollandaise sauce is output (instead, the output is a messy mixture of eggs,
butter, and lemon juice).

10.4. TWO CHALLENGES TO THE COMPUTABILITY THESIS 441

• Now it is time to recall our thought experiment: The “effectiveness” of
a clock’s telling the correct time depends just as much on the orientation
of the clock face as it does on the position of the hands and the internal
clockwork mechanism. That is, it depends, in part, on a situation in the
external world. And the orientation of the clock face is independent of the
clock’s internal mechanism (or “procedure”).

6. Therefore, mundane processes can (must?) be effective for a given output P in
the actual world yet not be effective for P in some other possible world.

• This is also plausible. Consider a blocks-world computer program that in-
structs a robot how to pick up blocks and move them onto or off of other
blocks (Winston, 1977). I once saw a live demo of such a program. Un-
fortunately, the robot failed to pick up one of the blocks, because it was
not correctly placed, yet the program continued to execute “perfectly” even
though the output was not what was intended. (See Rapaport 1995, §2.5.1,
p. 62. A similar situation is discussed in Dennett 1987, Ch. 5, “Beyond
Belief”, p. 172. We’ll return to this example in §17.4.1.1.)

7. Turing Machines are equally effective in all possible worlds, because they are
causally inert.

• But here we have a potential equivocation on ‘effective’. Turing Machines
are effective in the sense of being step-by-step algorithms that are precisely
specified, but they are not necessarily effective for an intended output P: It
depends on the interpretation of P in the possible world!

8. Therefore, there are mundane procedures (such as recipes for hollandaise sauce)
that can produce hollandaise sauce because they result in appropriate causal pro-
cesses, but there are no Turing Machines that can produce hollandaise sauce,
because Turing Machines are purely formal and therefore causally inert. QED

To the objection that physical implementations of Turing Machines could be causally
“ert” (so to speak),5 Cleland replies as follows: The embodied Turing Machine’s “ac-
tions” are not physical actions but action-kinds; therefore, they are causally inert. But
an embodied Turing Machine does act: Embodied action-kinds are causal actions. Al-
ternatively, a Turing Machine’s ‘0’-‘1’ outputs can be interpreted by a device that does
have causal effects, such as a light switch or a thermostat.

Perhaps a procedure or algorithm that is “effective for P” is better understood as
an algorithm simpliciter. In the actual world, it does P. In some other possible world,
perhaps it does Q (6= P). In yet another possible world, perhaps it does nothing (or
loops forever). And so on. For example,

5‘Inert’ comes from the Latin prefix ‘in-’, meaning “not”, and the Latin ‘artem’, meaning “skill”; so, if
‘inert’ means “lacking causal power”, then perhaps the non-word ‘ert’ could mean “having causal power”;
see the OED’s entry on ‘inert’, http://www.oed.com/view/Entry/94999.

442 CHAPTER 10. WHAT IS A PROCEDURE?

. . . if we represent the natural number n by a string of n consecutive 1s, and start
the program with the read-write head scanning the leftmost 1 of the string, then the
program,

q0 1 1 R q0
q0 0 1 R q1

will scroll the head to the right across the input string, then add a single ‘1’ to the
end. It can, therefore, be taken to compute the successor function. (Aizawa, 2010,
p. 229)

But if the environment (the tape) is not a string of n ‘1’s followed by a ‘0’, then this
does not compute the successor function. Compare this to Cleland’s hollandaise sauce
recipe being executed on the Moon. Hence, mundane procedures are interpreted Turing
Machine programs, so they are computable.

Aaron Sloman (2002, §3.2) makes a useful distinction between “internal” and “ex-
ternal” processes: The former “include manipulation of cogs, levers, pulleys, strings,
etc.” The latter “include movements or rearrangements of various kinds of physical
objects”. So, a computer on Earth that is programmed to make hollandaise sauce and
one on the Moon that is identically programmed will have the same internal processes,
but different external ones (because of differences in the external environment).

A related distinction was made by linguist Noam Chomsky between competence:
“an ideal” language user’s “knowledge of his [sic] language”—and performance: “the
actual use of language in concrete situations” (Chomsky, 1965, pp. 3–4). A computer
might be competent to make hollandaise because of its internal processes, yet fail to
do so because of performance limitations due to external-environmental limitations.

Does the ability of a machine to do something that is not Turing-computable mean
that it can compute something that is not Turing-computable? What does physical
performance have to do with computation? Surely we want to say that whatever a
robot can do is computable, even if that includes cooking. But surely that’s because of
the “internal” processes, not the “external” ones.

. . . Turing machines are not so relevant [to AI] intrinsically as machines that are de-
signed from the start to have interfaces to external sensors and motors with which
they can interact online, unlike Turing machines which at least in their main form
are totally self contained, and are designed primarily to run in ballistic mode once
set up with an intial machine table and tape configuration. (Sloman, 2002, §4.2)

This seems to be a distinction between abstract Turing Machines and robots. And
Cleland’s arguments seem more relevant to robots than to Turing Machines, hence
have nothing really to say about the Computability Thesis (which only concerns Turing
Machines and their equivalents). Indeed, Copeland and Sylvan (1999, p. 46) (see also
Copeland 1997) distinguish between two interpretations of the Computability Thesis.
The one that they claim was actually stated by Church and by Turing “concerned the
functions that are in principle computable by an idealised human being unaided by
machinery”. This one, they claim, is correct. The other interpretation is “that the class
of well-defined computations is exhausted by the computations that can be carried out
by Turing machines”.

10.4. TWO CHALLENGES TO THE COMPUTABILITY THESIS 443

So, one possible objection to Cleland is that cooking (for example) is not some-
thing that can be carried out by “an idealized human being unaided by machinery”,
hence the failure of a hollandaise sauce recipe on the moon is irrelevant to the correct
interpretation of the Computability Thesis.

Compare Cleland’s hollandaise sauce example with the following: Suppose that
we have an algorithm (a recipe) that tells us to mix eggs, butter, and lemon juice until
an emulsion is produced, and that outputs hollandaise sauce. In the actual world, an
emulsion is indeed produced, and hollandaise sauce is output. But on the moon, this
algorithm goes into an infinite loop; nothing (and, in particular, no hollandaise sauce)
is ever output.

One problem with this is that the “until” clause (“until an emulsion is produced”)
is not clearly algorithmic. How would the computer tell if an emulsion has been pro-
duced? This is not a clearly algorithmic, Boolean condition whose truth value can be
determined by the computer simply by checking one of its switch settings (that is, a
value stored in some variable). It would need sensors to determine what the exter-
nal world is like. But that is a form of interactive computing, which we’ll discuss in
§11.4.3.

Further Reading:
Cleland’s arguments have generated a lengthy debate: Horsten and Roelants 1995 is a reply
to Cleland 1993, and Cleland 1995 is a response. Cleland 2001, 2002b extend her argument.
Israel 2002; Seligman 2002 also reply to her. Other articles on the issues appear in Cleland
2002a. Wells 2004, §2, contains a discussion of Cleland 1995, 2001 in addition to remarks on
the relation between the Computability Thesis and the P = NP problem.

10.4.2 Beth Preston: Recipes, Algorithms, and Specifications
Introductory computer science courses often use the analogy of recipes to explain what
algorithms are. Recipes are clearly procedures of some kind (Sheraton 1981; Stuart C.
Shapiro 2001). But are recipes really good models of algorithms?

Cleland has assumed that they are. Beth Preston (2013) has a different take. She is
interested in the nature of artifacts and how they are produced (or implemented) from
plans (such as blueprints). Compare this to how a program (which is like a plan) is
actually executed.

According to Preston, the classical view of production is that of “centralized con-
trol”. The etymology of the word ‘control’ is of interest here: ‘To control’ origi-
nally meant “to check or verify (originally by comparison with a duplicate register)
. . . ” (OED, http://www.oed.com/view/Entry/40563). The “duplicate register” was a
“counter-roll”; to control something originally meant to faithfully copy it for the sake
of verification or to regulate it. So, to implement a plan is to copy an abstract design
into reality, that is, to control it. (For more on this idea of verification by comparison,
see the discussion of the relation between syntax and semantics in §19.6.3.3.)

A “mental design” of an artifact to be produced first exists in someone’s mind.
This mental design “specifies all the relevant features of the” artifact to be produced
(the “copy”) (Preston, 2013, p. 30), “along with a set of instructions for construction”

444 CHAPTER 10. WHAT IS A PROCEDURE?

Figure 10.2: http://dilbert.com/strip/2006-01-29

(Preston, 2013, p. 39). Then the “actual construction” of the artifact (that is, the copy-
ing of the mental design) . . .

. . . is a process that faithfully follows the instructions of the construction plan, and
by so doing reproduces in a material medium the features of the product speci-
fied in the design. This faithful copying relationship between the design and con-
struction phases of production is the control aspect of the model. (Preston, 2013,
pp. 30–31)

Compare the way in which a program controls the operations and output of a computer.
But there is a problem: A “faithful copy” requires that . . .

. . . all relevant features of the product [the artifact] be specified in the design In
other words, the design is ideally supposed to be an algorithm (effective procedure)
for realizing both the construction process and the product. (Preston, 2013, p. 39,
my italics)

According to Preston, however, recipes show that this ideal model doesn’t describe
reality.

10.4. TWO CHALLENGES TO THE COMPUTABILITY THESIS 445

Recipes differ from algorithms in several ways (Preston, 2013, p. 40):

1. Recipes leave details open (for example, details about ingredients, which play
the same role in recipes that data structures do in programs):

(a) Recipes provide for alternatives: use “either sour cream or yogurt”.

• But couldn’t a recipe, or a program for that matter, simply call for a
data-analogue of a typed variable or a subroutine here? The recipe
might call, not for sour cream or else yogurt, but, instead, for a “white,
sour, milk-based substance”.

• And what about non-deterministic algorithms? Here is an example of
a non-deterministic procedure for computing the absolute value of x
using a “guarded if” control structure:

if x≥ 0 then return x;
if x≤ 0 then return −x;

Here, if x= 0, it does not matter which line of the program is executed.
In such procedures, a detail is left open, yet we still have an algorithm.

Digression on Guarded Ifs:
In an ordinary “if” statement, when more than one Boolean condition is satisfied, the first one is
executed. In a “guarded if” statement, it doesn’t matter which one is executed. See Gries 1981,
Ch. 10, or http://en.wikipedia.org/wiki/Guarded Command Language#Selection: if

• Or consider a program that simply says to input an integer, without
specifying anything else about the integer. (As a magician might say,
“Think of a number, any number . . . ”). This could still be an algo-
rithm. (Or maybe not! See §11.4.3.)

(b) Recipes specify some ingredients generically: “use frosting”, without spec-
ifying what kind of frosting.

• Here, again, compare typed variables or named subroutines. It does
not matter how the subroutine works; all that matters is its input-output
behavior (what it does). And it doesn’t matter what value the variable
takes, as long as it is of the correct type. Typed variables and named
subroutines are “generic”, yet they appear in algorithms.

(c) Recipes provide for optional ingredients: “use chopped nuts if desired”.

• But compare any conditional statement in a program that is based on
user input. (On the other hand—as noted in premise (1a), above—user
input may raise issues for interactive computing; again, see §11.4.3.)

2. Recipes leave construction steps (= control structure?) open: For instance, the
order of steps is not necessarily specified (at best, a partial order is given): “add
the rest” of the ingredients (where no order for adding is given for “the rest of
the ingredients”).

• Again, compare non-deterministic statements, such as the guarded-if com-
mand in the above example, or programs written in languages like Lisp,

446 CHAPTER 10. WHAT IS A PROCEDURE?

where the order of the functions in the program is not related in any way
to the order in which they are evaluated when the program is executed. (A
Lisp program is an (unordered) set of functions, not a(n ordered) sequence
of instructions.)

3. In recipes, some necessary steps (“put these cookies on a baking sheet before
baking them”) can be omitted (that is, go unmentioned). But should the baking
sheet be greased? A knowledgeable chef would know whether it has to be, so a
recipe written for such a chef need not mention the obvious.

• But the same kind of thing can occur in a program, with preconditions that
are assumed but not spelled out, or details hidden in a subroutine. (Perhaps
“put cookies on baking sheet” is a call to a subroutine of the form: “grease
baking sheet; put cookies on it”.)

4. Recipes can provide alternative ways to do something: “Roll in powdered sugar
. . . or shake in bag with . . . powdered sugar”.

• Again, non-determinism is similar, as are subroutines: To say “multiply
x and y” is not to specify how; to say “coat in powdered sugar” is not to
specify whether this should be done by rolling or shaking.

Preston claims that the cook (that is, the CPU) is expected to do some of the design
work, to supply the missing parts. So, not everything is in the design. She claims that
cooks don’t faithfully follow recipes; instead, they improvise, as jazz or rock musicians
do. They can even change other (“fixed”) parts of the recipe, because of their back-
ground knowledge, based on experience. For example, they can substitute walnuts for
pecans in a recipe for pecan pie. Therefore, the constructor or executor is typically in-
telligent, in contrast to an unintelligent CPU (or the “unintelligent” fetch-execute cyle
of a universal Turing Machine; see my second comment on Cleland’s premise 1, p. 438,
above).

But here is a different interpretation of Preston’s analysis: She offers the central-
ized control model as a description of an algorithm together with a CPU that produces a
process (that is, an algorithm being executed). But her theory of collaborative improvi-
sation might better describe an earlier stage in the production of a process, namely, the
production of an algorithm by a programmer from a specification. That is, although the
execution of an algorithm might well be modeled as centralized control, nevertheless
the development of an algorithm by a programmer from a specification might well be
improvisatory and collaborative, precisely because specifications—like recipes—can
be vague and open to interpretation.

So, recipes are more like design specifications for computer programs than they are
like algorithms. In fact, my counterexamples to differentiate between algorithms and
recipes just show that either recipes are high-level programs requiring implementation
in a lower level, or that recipes are specifications.

10.5. DISCUSSION 447

Further Reading:
On the notion of a “specification” (the general requirements for an algorithm), see Turner 2011.
Petroski 2010 is a nice follow-up to Preston, in which he describes how “an everyday challenge
provides lessons in the processes of planning and execution”.

Daly 2010—about robots that not only follow recipes, but actually cook the meals (“Fear not,
humans, these robots are here to be our friends. To prove it, they serve you food”)—is interesting
reading in connection with what both Cleland and Preston have to say about the computability
of recipes.

10.5 Discussion

So, are there good reasons for seriously doubting the Computability Thesis? We have
just seen two candidates: Cleland argues that certain “mundane procedures” are effec-
tively computable but not Turing-computable, and Preston suggests that certain recipe-
like procedures of the sort typically cited as examples of effective procedures are not
really algorithmic.

But against Cleland’s example, we have seen that there may be a concern in how
one determines what the proper output of an algorithm is, or, to put it another way, in
determining the problem that an algorithm is supposed to solve. Consider the recipe for
hollandaise sauce that, when correctly executed on Earth, produces hollandaise sauce
but, when correctly executed on the Moon, does not. Is that recipe therefore not Turing-
computable? It would seem to be Turing-computable on Earth, but not on the Moon. Or
is it Turing-computable simpliciter (for example, no matter where it is executed), but
conditions having nothing to do with the algorithm or recipe itself conspire to make it
unsuccessful as a recipe for hollandaise sauce on the Moon? Is the algorithm or recipe
itself any different?

And against Preston’s example, we have seen that recipes are, perhaps, more like
specifications for algorithms than they are like algorithms.

Against the view that all mathematical models of computation are logically equiva-
lent, it can be argued that, even though the common theme underlying the equivalence
of Turing Machines, lambda definability, recursive functions, etc., is “robust” and of
great mathematical interest, that is not reason enough to think that there might not be
any other theory of effective computation. In the next chapter, we will look at such
potential counterexamples to the Computability Thesis.

I will close this chapter with one last version of the Thesis (not to be taken too
seriously!):

The Church-Turing Thesis: A problem is computable just in case it wants to
be solved. (Anonymous undergraduate student in the author’s course, CSE 111,
“Great Ideas in Computer Science”, 2000)6

6http://www.cse.buffalo.edu/∼rapaport/111F04.html

448 CHAPTER 10. WHAT IS A PROCEDURE?

Further Reading:
On the Computability Thesis and AI, Kearns 1997 argues that the Computability Thesis “has no
interesting consequences for human cognition” because “carrying out a procedure is a purposive,
intentional activity. No actual machine does, or can do, as much.” On the other hand, Abramson
2011 argues that the Computability Thesis is relevant to questions about the Turing Test for AI.
Rey 2012 distinguishes the Turing Thesis from the Turing Test.

Bowie 1973, especially p. 67, argues that Church’s Thesis is false on the grounds that the infor-
mal notion of computability is intensional but the notion of recursive functions is extensional.
(Recall our discussion in §3.4 of the difference between “intensional” and “extensional”.) He
also argues against it on what would now be considered “hypercomputational” grounds, roughly,
that, if you give a computable function a non-computable input (intensionally represented), it
will compute a non-computable output (Bowie, 1973, p. 75). (We’ll look at “hypercomputation”
in the next chapter.) However, Ross 1974 points out that Bowie’s definition of ‘computable’ is
non-standard, and argues that the standard definition (essentially the one we give in Chapter 7)
is not intensional.

Gandy 1980, p. 124, notes that

Gödel has objected, against Turing’s arguments, that the human mind may, by its
grasp of abstract objects [by “insight and imaginative grasp”], be able to transcend
mechanism.

As Gandy notes, we need to know much more about the nature and limits of the human mind than
we do in order to adequately evaluate this objection. After all, what seems to be “non-mechanical
intelligence” need not be. (Compare the remarks above about universal Turing Machines, and
see our discussion in §19.7 about Turing’s “inversion”.) A more detailed reply to Gödel is given
by Kleene (1987, pp. 492–494), the bottom line of which is this:

The notion of an “effective calculation procedure” or “algorithm” (for which I be-
lieve Church’s thesis) involves its being possible to convey a complete description
of the effective procedure or algorithm by a finite communication, in advance of
performing computations in accordance with it. (p. 493.)

And, according to Kleene, Gödel’s objection fails to satisfy that criterion (as does an objection
raised in Kalmár 1959).

Chapter 11

What Is Hypercomputation?

Version of 7 January 2020; DRAFT c© 2004–2020 by William J. Rapaport

Church, Gödel, and Turing defined . . . [computation] in terms of mathematical
functions . . . Today, I believe we are breaking out of the era where only algorithmic
processes are included in the term computation.
—Dennis J. Frailey (2010, p. 2)

Speculation that there may be physical processes—and so, potentially, machine-
operations—whose behaviour cannot be simulated by the universal Turing ma-
chine of 1936 stretches back over a number of decades. Could a machine, or
natural system, deserving the name ‘hypercomputer’ really exist? Indeed, is the
mind—or the brain—some form of hypercomputer?
—B. Jack Copeland (2002b, p. 462)

We now know both that hypercomputation (or super-recursive computation) is
mathematically well-understood, and that it provides a theory that according to
some accounts for some real-life computation . . . [is] better than the standard
theory of computation at and below the “Turing Limit.” . . . [S]ince it’s mathe-
matically possible that human minds are hypercomputers, such minds are in fact
hypercomputers.
—Selmer Bringsjord & Konstantine Arkoudas (2004, p. 167)

The editors have kindly invited me to write an introduction to this special issue
devoted to “hypercomputation” despite their perfect awareness of my belief that
there is no such subject.
—Martin Davis (2006c, p. 4)

Nobody would be fired from a computer science department for axiomatizing ana-
log computation or hypercomputation. Both are still in [the] purview of computer
science.
—Marcin Miłkowski (2018, §3.2)

449

450 CHAPTER 11. WHAT IS HYPERCOMPUTATION?

11.1 Required Readings
1. Copeland, B. Jack (2002), “Hypercomputation”, Minds and Machines 12(4)

(November): 461–502.

• A good overview and survey.

• Read pp. 461–465.

• Read §1.5, on Putnam & Gold

• Read §1.7, on Boolos & Jeffrey

• Read §1.13, on Kugel

• Read §1.18–§1.18.1, on Penrose, Turing, & Gödel

• Read §1.24, on Cleland

• Read all of §§2–3

2. Wegner, Peter (1997), “Why Interaction Is More Powerful than Algorithms”,
Communications of the ACM 40(5) (May): 80–91.

• Many of Wegner’s papers are online in various formats at his homepage:
http://www.cs.brown.edu/people/pw/home.html

3. Kugel, Peter (2002), “Computing Machines Can’t Be Intelligent (. . . and Turing Said
So)”, Minds and Machines 12(4) (November): 563–579,
http://cs.bc.edu/∼kugel/Publications/Hyper.pdf

4. Soare, Robert I. (2009), “Turing Oracle Machines, Online Computing, and Three Dis-
placements in Computability Theory”, Annals of Pure and Applied Logic 160: 368–399.

• Preprint: http://www.people.cs.uchicago.edu/∼soare/History/turing.pdf

• Published version:
http://www.sciencedirect.com/science/article/pii/S0168007209000128

• You can skim some of the more technical parts
(such as §§4.2.1–4.3, 4.4.1, 7–8).

• A slightly different version appears as Soare 2013a.

5. Davis, Martin (2004), “The Myth of Hypercomputation”, in C. Teuscher (ed.),
Alan Turing: The Life and Legacy of a Great Thinker (Berlin: Springer): 195–212,
http://www1.maths.leeds.ac.uk/∼pmt6sbc/docs/davis.myth.pdf

6. Davis, Martin (2006), “Why There Is No Such Discipline as Hypercomputation”, Applied
Mathematics and Computation 178: 4–7, http://tinyurl.com/Davis20061

1http://research.cs.queensu.ca/home/akl/cisc879/papers/PAPERS FROM APPLIED MATHEMATICS AND COMPUTATION/Special Issue on Hypercomputation/davis%5b1%5d.pdf

11.2. INTRODUCTION 451

11.2 Introduction
We have seen that it can be argued that:

1. CS includes (among other things) the systematic study of computing,

2. computing is the mathematical study of algorithms,

and

3. algorithms are best understood mathematically in terms of Turing Machines
(or anything logically equivalent to them).

But are algorithms best understood that way?
Let’s first consider different kinds of “computation”. We have already distinguished

between analog and discrete (or digital) computation (see §§6.5.2 and 9.3). Within the
latter, we can distinguish several “levels” of computation. There are several models of
computation that are weaker than Turing-machine computation; let’s call them “sub-
Turing computation”: In §7.7, we looked at primitive recursion and count-programs.
But there are models that are even weaker than those: Informally, a finite automaton is
a machine that only

moves from left to right on a finite input tape [It] will have only one oppor-
tunity to scan each square in its motion from left to right, [and] nothing will be
gained by permitting the device to “print” new symbols on its tape Thus, a
finite automaton can be thought of as a very limited computing device which, after
reading a string of symbols on the input tape, either accepts the input or rejects it,
depending upon the state the machine is in when it has finished reading the tape.
(Davis and Weyuker, 1983, pp. 149–150)

Turing-machine computation (or any model of computation that is logically equiv-
alent, such as the lambda calculus, recursive functions, register machines, and so on)
is at the “top” of these levels. A reasonable question to ask is whether there are
levels “above” it: Is there such a thing as “super”-Turing computation? If so, how
would it affect the Computability Thesis? After all, that thesis says that any (informal)
notion of “computation” is equivalent to Turing computation. Sub-Turing computa-
tion can be performed by Turing Machines, simply by not using all of the “power”
of Turing Machines. But if super-Turing computation can do “more” than classical
Turing computation—perhaps even just using Turing Machines—wouldn’t that be a
counterexample to the Computability Thesis?

Further Reading:
For more on sub-Turing computation, see Bernhardt 2016, Ch. 3. Sub-Turing systems are
sometimes referred to as “hypocomputation” (from the Greek root ‘hypo’, meaning “under”;
‘hyper’ means “over”). For more on such models, see any text on the theory of computation
(such as those cited in §7.6.7), as well as discussions of the “Chomsky hierarchy” (for example,
https://en.wikipedia.org/wiki/Chomsky hierarchy). Also see Lindell 2004, 2006; and Bernhardt
2016, Ch. 3.

452 CHAPTER 11. WHAT IS HYPERCOMPUTATION?

Recall our discussion of Kuhn’s philosophy of science in §4.9.2: To the extent that
the Church-Turing Computability Thesis is the standard “paradigm” in CS, rejection of
it could be considered as a Kuhnian revolutionary challenge to “normal” CS (Stepney
et al. 2005; Cockshott and Michaelson 2007, §2.5, p. 235). We saw in the previous
chapter that it can be argued that there might be “procedures” that are not computable
by a Turing Machine. But, of course, this depends on what is meant by ‘procedure’.
Recall from §7.5.3.3 that Hopcroft and Ullman (1969, p. 2) and Knuth (1973, p. 4)
distinguish between “algorithms”, which must halt, and “procedures”, which need not.
Hopcroft and Ullman (1969, p. 80, my italics) also characterize “Church’s hypothesis”
as the claim “that any process which could naturally be called a procedure can be
realized by a Turing machine”. Since procedures in their sense need not halt, neither
need Turing Machines.

Others have suggested that by relaxing one or more of the constraints on the notion
of “algorithm”, we can produce counterexamples to the Computability Thesis. In this
chapter, we continue our look at arguments for this point of view and at some of the
other kinds of procedures that are allegedly not computable by a Turing Machine.

11.3 Hypercomputation

11.3.1 Copeland’s Theory

In a series of papers, the logician and philosopher B. Jack Copeland (along with several
co-authors) has suggested that CS “is outgrowing its traditional foundations” (such as
Turing’s analysis of computation) and has called for “a 21st-century overhaul of that
classical analysis” (Copeland et al., 2016, pp. 34, 36). He contrasts Turing computation
with “hypercomputation” (Copeland, 2002b, p. 461): He describes a Turing computa-
tion as a computation of “functions or numbers . . . with paper and pencil in a finite
number of steps by a human clerk working effectively”. And he defines ‘hypercom-
putation’ as “the computation of functions or numbers that cannot be computed in the
sense of Turing (1936)”.

11.3. HYPERCOMPUTATION 453

Further Reading and Terminological Digression:
For more on Copeland’s views, see Copeland 1997, 1998; Copeland and Proudfoot 1999—
which elicited a rebuttal by Turing’s biographer, Andrew Hodges, at http://www.turing.org.uk/
philosophy/sciam.html—Copeland and Sylvan 1999, 2000; Copeland 2002a,b; Copeland and
Shagrir 2011; and Copeland et al. 2016.

Instead of calling this ‘computation’, Davis (2006c, p. 4) calls it a “computation-like process”.
I will try to reserve the term ‘compute’ for Turing computation, and will use “scare quotes” to
signal any kind of processing that is potentially not Turing computation. I will also use them to
refer to the informal notion that is the subject of the Computability Thesis.

Piccinini (2018, p. 2) defines ‘computation’ as “the processing of medium independent vehicles
by a functional mechanism in accordance with a rule.” (See Piccinini 2015, Ch. 7, for argu-
mentation and more details.) He explicitly cites as an advantage of this very broad definition its
inclusion of “not only digital but also analog and other unconventional types of computation”
(p. 3)—including hypercomputation. But Piccinini (2015, Chs. 15 & 16) also distinguishes be-
tween the “mathematical” Church-Turing Computability Thesis and a “modest physical” thesis:
“Any function that is physically computable is Turing-computable” (Piccinini, 2015, p. 264), and
he argues that it is an “open empirical question” (p. 273) whether hypercomputers are possible
(although he doubts that they are).

Yet another form of hypercomputation, which does not fit easily into the categories of this chap-
ter, is a generalization of Turing computability—which can be considered to be a branch of
discrete mathematics—to the real numbers, so that there can be a theory of computation within
continuous mathematics. This has been investigated in Blum et al. 1989 and Blum 2004. Their
form of computation over the real numbers contains Turing computation as a special case.

If hypercomputable functions or numbers cannot be computed by a Turing Ma-
chine, can they be “computed” at all, and, if so, how? Copeland (2002b) and Copeland
and Sylvan (2000, §8.1, esp. pp. 190–191) cite the following possibilities, among oth-
ers:

• The constraint of data as symbols on paper could be relaxed. For example, Cle-
land’s “mundane” hollandaise-sauce recipe that we looked at in the previous
chapter does not take such symbols as either input or output; instead, the inputs
are certain food ingredients and the output is a certain food preparation. Indeed,
any computer-controlled physical process—including robotics—seems to relax
this symbolic constraint.

• The primitive operations of the “computation” might not be executable by a hu-
man working alone, in the way that Turing’s 1936 paper described. Here, there
seem to be at least two possibilities:

1. The human needs help that can only be given by a machine capable of
doing something that a human could not do even in principle. This might
include a relaxation of the constraints about a finite number of steps or a
finite amount of time, or working with what Copeland and Sylvan (2000,
p. 190) call “newer physics”. (See §11.4.1, below.)

454 CHAPTER 11. WHAT IS HYPERCOMPUTATION?

2. The human needs help in the form of information that is not pre-stored on
the tape: This might include allowing data to be supplied during the com-
putation, rather than requiring it all to be pre-stored on the Turing-machine
tape. This is what happens in “interactive” computing and in Turing’s “or-
acle” machines. (See §§11.4.3 and 11.4.4, below.)

• Copeland and Sylvan identify two kinds of relativity:

1. “Logical” relativity concerns the use of non-classical logics, such as rel-
evance logics (see §2.6.1.1, above). Copeland and Sylvan (2000) suggest
that these might lead to hypercomputation. Perhaps; but it is certainly the
case that classical computers can compute using relevance logics (Shapiro
and Rapaport, 1987; Martins and Shapiro, 1988).

2. “Resource” relativity includes “relativity in procedures, methods or in the
devices available for computing”. This includes the “newer physics” and
oracle machines just mentioned. It also includes analog computing, which
we will not discuss (but see §§6.5.2 and 9.3 for some references). “Relativ-
ity in procedures” might include different basic operations or instructions
(in much the same way that different geometric systems might go “beyond”
straightedge and compass). Does such procedural relativity necessarily go
beyond (or below) Turing computability? We’ll look at this in more detail
in §11.4.4.

Digression on Geometry:
Recall our earlier discussions about geometry (§§3.14.4 and 7.7.1.1). Many interesting ques-
tions in geometry (considered procedurally) concern which geometrical figures can be con-
structed solely with operations enabled by certain basic devices. The standard devices, of course,
are compass and straightedge—more precisely, collapsible compass and unruled straight-
edge. (A collapsible compass is the familiar one that allows you to draw circles of differ-
ent radii. A straightedge is a ruler without markings of inches or centimeters.) But differ-
ent systems of geometry can be studied that allow for measuring devices. Famously, an an-
gle cannot be trisected using only compass and straightedge. This is an impossibility proof
on a par with the Halting Problem: Using only the primitive operations of a Turing Ma-
chine, you cannot write an algorithm for deciding whether an arbitrary algorithm halts. But
if you allow a measuring device (such as a protractor), angle trisection is trivial. (For dis-
cussion, see https://en.wikipedia.org/wiki/Angle trisection.) And, as we will see, if you allow
a hypercomputer, the Halting Problem can be solved! Moreover, just as there are alterna-
tive primitive operations for Turing-like machines, there are alternative primitive operations
for geometry: A collapsible compass can be replaced with a fixed compass. (On this, see
http://en.wikipedia.org/wiki/Compass equivalence theorem.)

11.3. HYPERCOMPUTATION 455

11.3.2 Questions to Think About
There are several basic questions that need to be considered:

• Hilbert’s original constraints (finiteness, etc.) seem to require “computation” to
be humanly possible computation. So, are hypercomputers really alternative
models of humanly effective procedures? (And does ‘effective’ need to mean
“humanly effective”?)

• Are hypercomputers counterexamples to the Computability Thesis?
Or are they just other models of Turing computation?
Or are they models of a more general notion of “computation” that is, neverthe-
less, consistent with the Computability Thesis?

• How realistic are hypercomputers? Can they physically exist?

• Is the mind or brain a hypercomputer (rather than a Turing-machine computer)?

11.3.3 Objections to Hypercomputation
Martin Davis (2004, 2006c) thinks that most of these hypercomputers are either wrong-
headed or just plain silly.

Recall the “garbage in/garbage out” principle: If you allow for incorrect input, you
should expect incorrect output. Similarly, if you allow for non-computable input to
a hypercomputer, you should expect to be able to get non-computable output. Davis
(as we will see) argues that all examples of hypercomputation involve non-computable
input.

Along the same lines, Scott Aaronson (2012) argues against hypercomputation via a
parallel argument that, because Turing Machines can’t toast bread, a toaster-enhanced
Turing Machine that “allows bread as a possible input and includes toasting it as a
primitive operation” would be more powerful than a classic Turing Machine.

Question for the Reader:
Is this similar to Cleland’s argument (see §10.4.1) that a Turing Machine that can produce hol-
landaise sauce is more powerful than a classic Turing Machine?

But might there be some intuitively effective, yet not Turing-machine–effective,
“computations” that don’t take non-computable input? Let’s turn to a more detailed
look at some of these options.

456 CHAPTER 11. WHAT IS HYPERCOMPUTATION?

11.4 Kinds of Hypercomputation and Hypercomputers
Models of hyper-computation tend to be of two general types: One uses oracles or
oracles in disguise, and the other uses infinite computation in finite time.
—Hector Zenil & Franciso Hernández-Quiroz (2007, p. 5)

In this section, we’ll survey a few of these systems, beginning with the second kind.

11.4.1 “Newer Physics” Hypercomputers
According to a 1992 paper, a computer operating in a Malament-Hogarth space-
time or in orbit around a rotating black hole could theoretically perform non-Turing
computations.
—http://en.wikipedia.org/wiki/Hypercomputation

As we saw in §8.8 (and the epigraphs for Chapter 8 on p. 309), Turing’s model of
computation is based on what humans can do. Yet it is an idealized human whom
Turing modeled, for example, one that has no limits on space (recall that the tape is
infinite). Cleland (2004, p. 212) points out that, in that case, one could allow other
idealizations, such as no limits on speed of computation. Copeland (1998, p. 150)
agrees: “Neither Turing nor Post, in their descriptions of the devices we now call Turing
machines, made much mention of time They listed the primitive operations that
their devices perform . . . but they made no mention of the duration of each primitive
operation”.

If we relax temporal restrictions that would limit humans, then we could devise a
machine that could calculate each digit of a real number’s decimal expansion in half
of the time of the previous digit’s calculation. A “Zeus machine” is a Turing Machine
that “accelerates” in this way: Each step is executed in half the time of the previous
step (Boolos and Jeffrey, 1974). Thus, an infinite calculation, including the Halting
Problem, could be computed in a finite amount of time.

However, as Bertrand Russell (1936, p. 143) observed of a very similar exam-
ple, although this is not logically impossible, it is “medically” impossible! And Scott
Aaronson (2018, Slide 19) has observed that it is physically impossible for another
reason:

[O]nce you get down to the Planck time of 10−43 seconds, you’d need so much
energy to run your computer that fast that, according to our best current theories,
you’d exceed what’s called the Schwarzschild radius, and your computer would
collapse to a black hole. You don’t want that to happen.

So, we might choose to ignore or reject Zeus machines on the grounds that they
are “medically” and physically impossible. After all, no (physical, and certainly no
biological) device can really accelerate in that way. But then, by parity of reasoning,
should we reject ordinary Turing Machines, on the grounds that they, too, are physi-
cally impossible, because, after all no (physical) device can really have an infinite tape
or even an arbitrarily extendible tape? If so, and if an abstract Turing Machine is math-
ematically possible, then, surely, so is an accelerating Turing Machine. That would
make a Zeus machine at least as plausible as a Turing Machine.

11.4. KINDS OF HYPERCOMPUTATION AND HYPERCOMPUTERS 457

But what about the physics of the actual world—relativity theory and quantum
mechanics? The relativistic hypercomputer described in the epigraph seems far-fetched
and certainly not practical. Here is what Aaronson (2018, Slides 18, 20) has to say
about these:

We can also base computers on that other great theory of the 20th century,
relativity! The idea here is simple: you start your computer working on some really
hard problem, and leave it on earth. Then you get on a spaceship and accelerate
to close to the speed of light. When you get back to earth, billions of years have
passed on Earth and all your friends are long dead, but at least you’ve got the
answer to your computational problem. I don’t know why more people don’t try
it!

So OK, how about the TIME TRAVEL COMPUTER! The idea here is that,
by creating a loop in time—a so-called “closed timelike curve”—you could force
the universe to solve some incredibly hard computational problem, just because
that’s the only way to avoid a Grandfather Paradox and keep the laws of physics
consistent. It would be like if you went back in time, and you told Shakespeare
what plays he was going to write, and then he wrote them, and then you knew what
the plays were because he wrote them . . . like, DUDE.

As for quantum computation, the issue is whether it allows for the “computa-
tion” of non–Turing-computable functions or merely makes the computation of Turing-
computable functions more efficient, perhaps by efficiently computing NP problems
(Folger, 2016; Aaronson, 2018).

Further Reading:
Copeland (1998, p. 151, fn 2) distinguishes between “accelerating” Turing Machines and “Zeus”
machines. See also Copeland 2002a and Copeland and Shagrir 2011.

Davies 2001 argues that an accelerating computer could be built “in a continuous Newtonian
universe” (as opposed to the Malament-Hogarth spacetime mentioned in the epigraph to this
section), though not “in the real universe”.

However, Cockshott and Michaelson (2007, §2.5, p. 235) reject such relaxations of the laws
of classical physics out of hand. They also give an excellent summary of Turing Machines
and complexity theory, and they argue against a number of other hypercomputation proposals,
including Wegner’s interaction machines (which we’ll discuss in §11.4.3.3, below).

458 CHAPTER 11. WHAT IS HYPERCOMPUTATION?

Further Reading on Quantum Hypercomputation:
We won’t examine quantum computing as an example of hypercomputation. But here are some
readings (in addition to those in §3.5.4 on quantum computing in general) for readers who would
like to pursue the topic:

Deutsch 1985 discusses the Computability Thesis in the context of quantum computation and
proves that quantum computers, although faster than non-quantum computers, are not compu-
tationally more powerful. For brief discussion, see Bernhardt 2016, Ch. 4, especially p. 173,
note 5.

Brassard 1995 is a commentary on Hartmanis 1995a (which we discussed in §3.13.2), arguing
that probabilistic and—especially—quantum computers “may be qualitatively more powerful
than classical machines”; see Hartmanis 1995b for a reply.

Scott Aaronson has written extensively on quantum computation: Aaronson 2006 is part of a
course, “Quantum Computing Since Democritus”. The first part discusses oracles and Turing
reducibility in a very clear (but elementary) way, concluding that hypercomputation is not a
serious objection to the Computability Thesis; later parts discuss AI. Aaronson 2008 says that
“Quantum computers would be exceptionally fast at a few specific tasks, but it appears that for
most problems they would outclass today’s computers only modestly. This realization may lead
to a new fundamental physical principle.” Aaronson 2013a, is a book-length treatment that con-
tains discussions of both quantum computing and hypercomputation. And Aaronson 2014 asks,
“If there’s no predeterminism in quantum mechanics, can it output numbers that truly have no
pattern?”

Hodges 2012b discusses “whether all types of computation—including that of our own minds—
can be modeled as computer programs”, in the context of quantum computation.

Brian Hayes (2014b, p. 24) notes that “The quantum system serves as an ‘oracle,’ answering
questions that can be posed in a format suitable for qubit computations”. (For more on oracles,
see §11.4.4, below.)

11.4. KINDS OF HYPERCOMPUTATION AND HYPERCOMPUTERS 459

Further Reading on Malament-Hogarth Hypercomputation:
And for those of you curious about the epigraph to this section, here are some suggestions:

The 1992 paper cited in the Wikipedia article is Hogarth 1992; his machines turn out to be related
to Zeus machines. The introduction is worth quoting:

Any computer primed to perform an infinite number of computational steps must
take an eternity to complete the task, because completion in a finite time would im-
ply an unbounded signal velocity—conflicting with relativity theory. This would
seem to suggest that the full potential of these computers is available only to im-
mortal computer users. But . . . there is no reason why the computer user must re-
main beside the computer. If he follows a different worldline his clock will tick at
a rate different to that of the computer’s clock, and perhaps an extreme case could
be organized in which the rates are such that the finite proper time as measured
by the computer user “corresponds” to an infinite proper time as measured by the
computer. In this case, and granting also that the computer can always signal to the
computer user, the computer user will take only a finite time to view the eternity
of the computer’s life and with it the results of its computations. (pp. 173–174)

And §2 (“The Story of Dave, HAL, and Goldbach”)—a science fiction tale to illustrate his
argument—is very much worth reading!

Button 2009 argues that Hogarth’s model of hypercomputation is not a counterexample to the
Computability Thesis.

But Manchak 2018 argues that “there [is] a clear sense in which general relativity allows for a
type of machine that can bring about a space-time structure suitable for the implementation of
supertasks”, that is, tasks requiring “infinitely many component steps, but which in some sense is
completed in a finite amount of time.” For more on supertasks, see Manchak and Roberts 2016.

11.4.2 Analog Recurrent Neural Networks

A slightly different model of hypercomputation that falls somewhere between the “newer
physics” and the oracle-related models is that of Hava T. Siegelmann (1995). She pro-
posed a “possibly realizable” “analog shift map” or “analog recurrent neural network”—
a “highly chaotic dynamical system . . . which has computational power beyond the
Turing limit (super-Turing); it computes exactly like neural networks and analog ma-
chines” (p. 545, my italics). ‘Super-Turing’ is her term for hypercomputation.

Two questions to think about in trying to understand her proposal are (1) what, if
anything, neural networks and analog computers might have in common, and (2) how
neural networks are different from Turing Machines—more precisely, if neural-network
computations are implemented on ordinary computers, whose behavior is completely
analyzable in terms of Turing Machines, how would something that “computes exactly
like neural networks” be a hypercomputer? More importantly, Davis (2004, pp. 8–9)
shows how “the non-computability that Siegelmann gets from her neural nets is nothing
more than the non-computability she has built into them”.

460 CHAPTER 11. WHAT IS HYPERCOMPUTATION?

Further Reading:
In addition to reading her paper for the details, there is a clear (but critical) description of her
system in Davis 2004, pp. 6–10. And Zenil and Hernández-Quiroz 2007 offers a mathematical
analysis of analog recurrent neural networks as a way to investigate whether the brain is some
kind of computer.

11.4.3 Interactive Computation
11.4.3.1 Can a Program Have Zero Inputs?

Recall our discussion in §7.5.3.3 about whether an algorithm can have zero inputs. I
suggested that a program to generate the decimal expansion of a real number might not
require any explicit inputs. In Chapter 8, we saw Turing discuss just such algorithms.
But do such algorithms really have no inputs? Or might it be better to say that there
is an ambiguity in what counts as an input? After all, a program that generates the
decimal expansion of a real number doesn’t need any input from the external world,
but—because any function considered as a set of ordered pairs must have an input in
the sense of being the first member of each such pair—there is always an input in that
sense. A program that has no external inputs would still have inputs in the functional
sense. “Interactive” computation concerns programs that do have external inputs.

11.4.3.2 Batch vs. Online Processing

So, let’s turn from physically impossible or unrealistic machines to ones that we ac-
tually deal with on a daily basis. As I have just suggested, there are (at least?) two
kinds of computing: computing with no external inputs and computing with external
inputs, or “batch” processing and “online” processing (Soare, 2009, §1.3, p. 370), or
“computational” programs and “reactive” programs:

Classification of Programs
There are two classes of programs:
Computational Programs: Run in order to produce a final result on termination.
Can be modeled as a black box.

x → � → y

Specified in terms of input/output relations. Example: The program which com-
putes y = 1+3+ . . .+(2x−1) can be specified by the requirement y = x2.

Reactive Programs:
Programs whose role is to maintain an ongoing interaction with their environments.
. . .
Such programs must be specified and verified in terms of their behaviors.
(Amir Pnueli, “Analysis of Reactive Systems”, Lecture 1 slides,
http://www.cs.nyu.edu/courses/fall02/G22.3033-004/index.htm)

11.4. KINDS OF HYPERCOMPUTATION AND HYPERCOMPUTERS 461

“Batch” or “computational” processing can be understood as the behavior of a Tur-
ing Machine (including a universal Turing Machine):

The classic models of computation are analogous to minds without bodies. For
Turing’s machine, a calculation begins with a problem on its tape, and ends with
an answer there. . . . How the initial tape . . . is input, and how the final one is
output, are questions neither asked nor answered. These theories conform to the
practice of batch computing. (Wadler, 1997, pp. 240–241)

“Online” or “reactive” processing has several varieties, all of which involve in-
teraction with the external world—the world outside of the computer: A computer
might have access to a (changeable) “offline” database, it might interact with the ex-
ternal world via sensors or effectors (or both, of course—recall Shapiro’s observations
about them in §3.9.3), it might interact with another computer, it might interact with a
human—or any combination of these.

Arguably, even “batch-processing” Turing Machines have perceptors and effectors
in the sense of having a read-write head. But these are really internal to the Turing
Machine, and don’t necessarily “reach out” to the external world. However,

a computer linked with a human mind is a more powerful tool than an unassisted
human mind. One hope of many computer scientists is to demonstrate . . . that
the computer/human team can actually accomplish far more than a human alone.
(Forsythe, 1967a, p. 3, col. 2).

One might also ask whether such a “computer/human team” could accomplish far more
than a computer alone, say by interacting with the computer while it is computing
(Lohr, 2013; Steed, 2013):

[H]umans are fundamentally social animals. This insures our survival: organisms
working together can do so much more than organisms working apart or in parallel.
The greatest challenge for A.I. is . . . the lack of attention to teaming intelligence
that would allow the pairing of humans’ remarkable predictive powers with A.I.’s
superior bottom-up analysis of data. (Vera, 2018)

Here is the rest of what Wadler has to say:

Today, computing scientists face their own version of the mind-body problem:
how can virtual software interact with the real world? In the beginning, we merely
wanted computers to extend our minds: to calculate trajectories, to sum finances,
and to recall addresses. But as time passed, we also wanted computers to extend
our bodies: to guide missiles, to link telephones, and to proffer menus.

. . .
Eventually, interactive models of computation emerged, analogous to minds in

bodies. . . . A single input at initiation and a single output at termination are now
superseded by multiple inputs and outputs distributed in time and space. These
theories conform to the practice of interactive computing.

Interaction is the mind-body problem of computing.[2]
(Wadler, 1997, pp. 240–241)

2On the mind-body problem in philosophy, see §§2.8 and 12.4.6.

462 CHAPTER 11. WHAT IS HYPERCOMPUTATION?

Weizenbaum (1976, Ch. 5, p. 135) interestingly distinguishes between “computers”
and “robots”, where the latter (but not the former) “have perceptors . . . and effectors”.

So, are interactive computers—“robots”, in Weizenbaum’s sense—hypercomputers?

Terminological Digression and Further Reading:
There are several names for interactive computing, including “coupled” Turing Machines (each
of whose outputs serve as inputs for the other; see Copeland and Sylvan 1999 and Zenil and
Hernández-Quiroz 2007), “concurrent” computation (which we discuss in §11.4.3.4.3, below),
and “reactive systems” (see http://en.wikipedia.org/wiki/Reactive system).

One of the pioneers of reactive systems, Amir Pnueli, characterizes them as

systems whose role is to maintain an ongoing interaction with their environment
rather than produce some final value upon termination. Typical examples of re-
active systems are air traffic control system[s], programs controlling mechanical
devices such as a train, a plane, or ongoing processes such as a nuclear reactor.
(From syllabus of “Analysis of Reactive Systems”, New York University, Fall
2002, http://cs.nyu.edu/courses/fall02/G22.3033-004/)

In Knuth 2014, Question 13, Alfred Aho asks about “reactive distributed systems that maintain
an ongoing interaction with their environment—systems like the Internet, cloud computing, or
even the human brain. Is there a universal model of computation for these kinds of systems?”
Note that phrasing the question this way suggests that ‘computation’ is a very general term that
includes not only Turing computation but other kinds of “computing” as well (perhaps even
hypercomputation). Knuth’s answer identifies “reactive processes” with what he called “com-
putational methods”: non-terminating, single-processor algorithms (Knuth, 1973, p. 4, see §7.5,
above).

Johnson and Verdicchio 2017 discuss the role of sensors and effectors in the context of au-
tonomous AI systems.

11.4.3.3 Peter Wegner: Interaction Is Not Turing-Computable

Peter Wegner (1997) argues that “interaction machines” are strictly more powerful than
Turing Machines. Wegner (1995, p. 45) identifies interaction machines with oracle ma-
chines (which we’ll look at in §11.4.4) and with “modeling reactive processes” (citing
work by Pneuli).

Interaction relaxes one of the “constraints” on Turing’s analysis of computation:
that of being “Isolated[:] Computation is self-contained. No oracle is consulted,
and nobody interferes with the computation either during a computation step or in
between steps. The whole computation of the algorithm is determined by the initial
state” (Gurevich, 2012, p. 4). This certainly suggests that interactive computation is
not Turing computation. On the other hand, it could also be interpreted to mean merely
that computation must be “mechanical” or “automatic”, and surely this could include
the “mechanical” or “automatic” use of input from an external source (including an
oracle).

11.4. KINDS OF HYPERCOMPUTATION AND HYPERCOMPUTERS 463

Further Reading:
Gurevich 1999, pp. 93, 98, talks both about “algorithms that are closed in the sense that they do
not interact with their environments” and about ones that do so interact (§5, pp. 111–115). He
also notes that, in the case of non-deterministic algorithms, “the active environment will make
the choices” (p. 116). But see §11.4.3.3, below, on non-determinism.

For example, Prasse and Rittgen (1998, p. 359) consider a program such as the
following:

let b be a Boolean variable;
let x be an integer variable;
begin

b := true;
while b = true do

input(x);
output(x2);
print(“Should I continue? Enter true or false:”);
input(b)

end

They say of a program such as this:

Neglecting input/output, each iteration can be interpreted as a computation
performed by a Turing machine. However, the influence of the (unknown) user
input on the control flow makes it hard to determine what overall function is com-
puted by this procedure (or if the procedure can be seen as a computation at all).
. . .

The input will be determined only at run-time. The overall function is derived
by integrating the user into the computation, thus closing the system.

It is evident that Turing machines cannot model this behavior directly due to
the missing input/output operations. Therefore, we need models that take into
account inputs and outputs at run-time to describe computer systems adequately.
(Prasse and Rittgen, 1998, p. 359)

Question for the Reader:
We could easily write a Turing Machine program that would be a version of this while-loop.
Consider such a Turing Machine with a tape that is initialized with all of the input (a sequence of
bs and xs, encoded appropriately). This Turing Machine clearly is (or executes) an algorithm in
the classical sense. Now consider a Turing Machine with the same program (the same machine
table), but with an initially blank tape and a user who inscribes appropriate bs and xs on the
tape just before each step of the program is executed (so the Turing Machine is not “waiting” for
user input, but the input is inscribed on the tape just in time). Is there a mathematical difference
between these two Turing Machines? Is there anything in Turing 1936 that rules this out?

464 CHAPTER 11. WHAT IS HYPERCOMPUTATION?

However, Prasse and Rittgen’s point is that this does not violate the Computability
Thesis, despite Wegner’s interpretation:

Interaction machines are defined as Turing machines with input and output. There-
fore, their internal behavior and expressiveness do not differ from that of equivalent
Turing machines. Though Wegner leaves open the question of how the input/output
mechanism works, it can be assumed that input and output involve only data trans-
port, without any computational capabilities. Therefore, the interaction machine
itself does not possess greater computational power than a Turing machine. How-
ever, through communication, the computational capabilities of other machines
can be utilized. Interaction can then be interpreted as a (subroutine) call. (Prasse
and Rittgen, 1998, p. 361)

Wegner and Goldin disagree and suggest that Turing disagreed, too: They dis-
cuss “Turing’s assertion [in Turing 1936] that TMs have limited power and that choice
machines, which extend TMs to interactive computation, represent a distinct form of
computing not modeled by TMs” (Wegner and Goldin, 2006b, p. 28, col. 1). So, what
is a “choice” machine, and how does it differ from a Turing Machine?

C(hoice) machines were introduced in Turing 1936, along with a(utomatic)-machines
(now called ‘Turing Machines’). As we saw in §8.10.1, c-machines are Turing Ma-
chines that allow for “ambiguous configurations”. Recall from §8.9.1 that a “config-
uration” is a line number together with the currently read symbol; in other words, it
is the “condition” part of the condition-action expression of a Turing-machine instruc-
tion. So, an “ambiguous configuration” is a “condition” with more than one possible
“action”. In a c-machine, “an external operator” makes an “arbitrary choice” for the
next action (Turing, 1936, p. 232; see our §8.10.1).

However,

The ‘Choice Machines’ from Turing’s paper are just what we now call nondeter-
ministic Turing machines. In . . . [Turing 1936, p. 252, footnote ‡], Turing showed
that the choice machines can be simulated by traditional Turing machines, contra-
dicting Wegner and Goldin’s claim that Turing asserted his machines have limited
power. (Fortnow, 2006).

In other words, non-deterministic Turing Machines are equivalent to ordinary, or deter-
ministic, Turing Machines. Thus, c-machines are no more powerful than a-machines,
so they don’t provide counterexamples to the Computability Thesis.

Fortnow (2006) notes that there is a difference between modeling and simulating.
Neither of these terms have universally accepted definitions, but we can say that one
way for system S1 to simulate system S2 is simply for their input-output behaviors to
match (in other words, for S1 and S2 to compute the same function). And one way for S1
to model (or emulate) S2 is for their internal behaviors to match as well, that is, for S1 to
simulate S2 and for their algorithms to match (in other words, for S1 and S2 to compute
the same function in the same way). If the only way for a Turing Machine to simulate a
c-machine is by pre-storing the possible inputs, it is arguably not modeling it. The non-
interactive Turing Machine with pre-stored input (what Soare (2009, §§1.3, 9) notes is
essentially a “batch” processor) can simulate the interactive system even if (and here,

11.4. KINDS OF HYPERCOMPUTATION AND HYPERCOMPUTERS 465

perhaps, is Wegner and Goldin’s point)—it does not model it. Yet another pair of terms
can illuminate the relationship: An interactive Turing Machine may be extensionally
equivalent to one with all input pre-stored, but it is not intensionally equivalent.3

Fortnow (2006) goes on to point out that Turing Machines also only simulate but
don’t model many other kinds of computation, such as “random-access memory, ma-
chines that alter their own programs, multiple processors, nondeterministic, probabilis-
tic or quantum computation.” However, “Everything computable by these and other
seemingly more powerful models can also be computed by the lowly one-tape Turing
machine. That is the beauty of the Church-Turing thesis.” The Church-Turing Com-
putability Thesis “doesn’t try to explain how computation can happen, just that when
computation happens it must happen in a way computable by a Turing machine” (Fort-
now, 2006, my italics).

It is important to keep in mind that, when there are two input-output–equivalent
ways to do something, it still might be the case that one of those ways has an advan-
tage over the other for certain purposes. For example, no one would want to program
an airline reservation system using the programming language of a Turing Machine!
Rather, a high-level language (Java?, C++?, etc.) would be much more efficient. Simi-
larly, it is easier to prove theorems about an axiomatic system of logic that has only one
rule of inference (usually modus ponens), but it is easier to prove theorems in a natural-
deduction system of logic, which has many rules of inference (usually at least two for
each logical connective), even if both systems are logically equivalent. (See §16.5,
later in this book, for more on the difference between axiomatic and natural-deduction
systems of logic.)

11.4.3.4 Can Interaction Be Simulated by a Non-Interactive Turing Machine?

11.4.3.4.1 The Power of Interaction. Nevertheless, interaction is indeed ubiqui-
tous and powerful. Consider, for example, the following observation by Donald Knuth:

I can design a program that never crashes if I don’t give the user any options. And
if I allow the user to choose from only a small number of options, limited to things
that appear on a menu, I can be sure that nothing anomalous will happen, because
each option can be foreseen in advance and its effects can be checked. But if I give
the user the ability to write programs that will combine with my own program, all
hell might break loose. (Knuth, 2001, pp. 189–190)

That is, a program does not have to have pre-stored all possible inputs. Here is how
Herbert Simon put it, commenting on the objection to AI . . .

. . . “computers can only do what you program them to do.” That is correct. The
behavior of a computer at any specific moment is completely determined by the
contents of its memory and the symbols that are input to it at that moment. This
does not mean that the programmer must anticipate and prescribe in the program
the precise course of its behavior. . . . [W]hat actions actually transpire depends on

3Stuart C. Shapiro, personal communication.

466 CHAPTER 11. WHAT IS HYPERCOMPUTATION?

the successive states of the machine and its inputs at each stage of the process—
neither of which need be envisioned in advance either by the programmer or by the
machine. (Simon, 1977, p. 1187, my italics)

And those inputs are a function of the computer’s interactions with the external world!
(The objection to AI that Simon quoted is a version of the “Lovelace objection,

which we’ll examine in more detail in a digression in §19.4.3.)

11.4.3.4.2 Simulating a Halting Interaction Machine. Let’s consider Fortnow’s
position first: If an interaction machine halts, then it can be simulated by a universal
Turing Machine by pre-storing all of its inputs. Here’s why:

In the theory of Turing computation, there is a theorem called the
S-m-n Theorem. Before stating it, let me introduce some notation: First, recall from
§8.13 that Turing Machines are enumerable—they can be counted. (In fact, they are
“recursively”—that is, computably—enumerable.) So, Let ‘φn’ represent the nth Tur-
ing Machine (in some numbering scheme for Turing Machines), and let i represent its
input. Here is the S-m-n Theorem:

(∃ Turing Machine s)(∀x,y,z ∈ N)[φx(y,z) = φs(x,y)(z)]

This says that there exists a Turing Machine s (that is, a function s that is computable
by a Turing Machine) that has the following property: For any three natural numbers
x,y,z, the following is true: The xth Turing Machine, when given both y and z as inputs,
produces the same output that the s(x,y)th Turing Machine does when given only z as
input. But what is s(x,y)? It is a Turing Machine that already has x and y “pre-stored”
on its tape!

Here is another way to say this: First, enumerate all of the Turing Machines. Sec-
ond, let φx be the xth Turing Machine. Suppose that it takes two inputs: x and y
(another way to say this is that its single input is the ordered pair 〈x,y〉). Then there ex-
ists another Turing Machine φs(x,y)—that is, we can find another Turing Machine that
depends on φ’s (two) inputs (and the dependence is itself a Turing-computable func-
tion, s)—such that φs(x,y) is input-output–equivalent to φx when y is fixed, and which
is such that φs(x,y) is a Turing Machine with y (that is, with part of φx’s input) stored
internally as data.

Here is an example of these two kinds of Turing Machines (with a program for
φx(y,z) on the left and a program for φs(x,y)(z) on the right:

Algorithm x: Algorithm s(x,y):
begin begin

input(y,z); constant := y;
{y is input from the external world} {y is pre-stored in the program}

output := process(y,z); input(z);
print(output) output := process(constant,z);

end. print(output)
end.

In other words, any Turing Machine that takes input y from the external world (or as
user input) can be simulated by a different Turing Machine that has y pre-stored on its

11.4. KINDS OF HYPERCOMPUTATION AND HYPERCOMPUTERS 467

tape. That is, data can be stored effectively (that is, algorithmically) in programs; the
data need not be input from the external world.4 The Turing Machine that interacts with
the external world can be simulated by a different Turing Machine that doesn’t. So, an
interaction machine that halts is no more powerful than an ordinary, non-interacting
Turing Machine.

But keep in mind the comment at the end of §11.4.3.3 about relative advantages:
The interaction machine might be more useful in practice; the non-interacting machine
might be easier to prove theorems about.

Further Reading:
The S-m-n Theorem was first stated and proved by Kleene (1952, Theorem XXIII, p. 342). It
gets its name from the form that Kleene expressed it in, using a function that he called ‘Sm

n ’. It is
also sometimes called the “Parameter Theorem” or the “Iteration Theorem” (Davis and Weyuker,
1983, p. 64). Rogers (1967, Theorem IV, p. 22) calls it the “enumeration theorem” (but distin-
guishes it from what he calls the “s-m-n theorem” (Rogers, 1967, Theorem V, pp. 23–24)).

My interpretation of the theorem is due to John Case (nd). (In lectures at the University at Buf-
falo in the early 1980s, Case used the mnemonic “Stuff-em-in theorem” to emphasize that the
external inputs could be “stuffed into” the computer program.) Similar interpretations can be
found in Cooper 2004, p. 64, and Homer and Selman 2011, p. 53. And Kfoury et al. 1982, p. 82,
give a version of it stated in terms of computer programs.

Cooper (2004, p. 64) also notes that the existence of the universal Turing Machine can be
expressed—using our notation above (instead of his)—by taking y as a (“hardwired”, non-
universal) Turing Machine and s(x,y) as a universal Turing Machine with y stored on its tape
(as its software). And Rogers (1967, p. 23) notes that it “shows that the computing agent . . .
need not be human”—because the human “computing agent” in Turing’s informal analysis can
be replaced by a universal Turing Machine.

So, any interactive program that halts could, in principle, be shown to be logically
equivalent to a non-interactive program. That is, any interactive program that halts can
be simulated by an “ordinary” Turing Machine by pre-storing the external input:

An interactive system is a system that interacts with the environment via its in-
put/output behavior. The environment of the system is generally identified with
the components which do not belong to it. Therefore, an interactive system can be
referred to as an open system because it depends on external information to ful-
fil its task. If the external resources are integrated into the system, the system no
longer interacts with the environment and we get a new, closed system. So, the dif-
ference between open and closed systems ‘lies in the eye of the beholder’. (Prasse
and Rittgen 1998, p. 359, col. 1, my italics; Teuscher and Sipper 2002, p. 24, make
a similar observation)

The catch here is that you need to know “in advance” what the external input is
going to be. Halting is important here, because, once the interactive machine halts, all

4In our statement of the S-m-n Theorem, the variable z is also being input from the external world, but it
is only there for technical reasons required for the proof of the theorem in the most general case. In practice,
z can also be pre-stored on the tape, or even omitted.

468 CHAPTER 11. WHAT IS HYPERCOMPUTATION?

of its inputs are known and can then be pre-stored on the simulating machine’s tape.
But the S-m-n Theorem does say that, once you know what that input is, you need only
an ordinary Turing Machine, not an interactive hypercomputer.

Philosophical Digression:
“Solipsism”, as defined by Bertrand Russell (1927, p. 398), is “the view that from the events
which I experience there is no valid method of inferring the character, or even the existence, of
events which I do not experience.” It is occasionally parodied as the view that I am the only thing
that exists; you are all figments of my imagination. Note that you cannot make the same claim,
because, after all, if solipsism is true, then you don’t exist! There’s a story that, at a lecture that
Bertrand Russell once gave on solipsism, someone in the audience commented that it was such
a good theory, why didn’t more people believe it? Actually, solipsism is not really the claim that
only I exist. Rather, it is the claim that I live in a world of my own, completely cut off from the
external world, and so do you. This is reminiscent of the philosopher Gottfried Leibniz’s “mon-
ads” (Leibniz 1714, https://en.wikipedia.org/wiki/Monadology), but that’s beyond our present
scope.

“Methodological solipsism” is a view in the philosophy of mind and of cognitive science that
says that, to understand the “psychology” of a cognitive agent, it is not necessary to specify the
details of the external world in which the agent is situated and which impinge on the agent’s
sense organs. This is not to deny that there is such a world or that there is such sensory input—
hence the qualifier ‘methodological’. Rather, it is to acknowledge (or assume) that all that is
of interest psychologically or cognitively can be studied from the surface inwards, so to speak
(Putnam, 1975; Fodor, 1980). That is, cognition can be studied by acting as if the brain (or the
mind) only does “batch processing”. (We’ll come back to this in §§17.9 and 19.6.3.2.)

Consider an AI system that can understand and generate natural-language and that gets its input
from the external world, that is, from a user. The point of methodological solipsism is that we
could simulate this by building in the input (assuming a finite input). Indeed, this can be done for
any partial recursive function, according to the S-m-n Theorem. If we understand methodologi-
cal solipsism as the S-m-n Theorem, we would have an argument for methodological solipsism
from the theory of computation!

11.4.3.4.3 Simulating a Non-Halting Interaction Machine. But suppose that our
interaction machine does not halt—not because of a pernicious infinite loop, but (say)
because it is running an operating system or an automated teller machine; such ma-
chines only halt when they are broken or being repaired.

Interactive computing. Many systems, such as operating systems, Web servers,
and the Internet itself, are designed to run indefinitely and not halt. Halting is an
abnormal event for these systems. The traditional definition of computation is tied
to algorithms, which halt. Execution sequences of machines running indefinitely
seem to violate the definition. (Denning, 2010, p. 5)

Stuart C. Shapiro has said5 that such programs don’t express algorithms, because al-
gorithms, by definition, must halt. But even Turing’s original Turing Machines didn’t

5Personal communication, but see Shapiro 2001 and the discussion in §3.9.3, above.

11.4. KINDS OF HYPERCOMPUTATION AND HYPERCOMPUTERS 469

halt: They computed infinite decimals, after all! The central idea behind the Halting
Problem is to find an algorithm that distinguishes between programs that halt and those
that don’t. Whether halting is a Good Thing is independent of that.

Of course, any stage in the process is a finite (that is, halting) computation. (Recall
Prasse and Rittgen’s first sentence, quoted on p. 463, above.) Even Turing’s computa-
tion of reals is a (non-halting) sequence of halting computations of successive terms of
the decimal expansion.

There are two non-halting cases to consider. In the first case, the unending in-
put stream is a number computable by a universal Turing Machine. In this case, the
interaction machine can also be simulated by a universal Turing Machine. Hence, inter-
action in this case also does not go beyond the Computability Thesis, because—being
computable—the inputs are “knowable—that is, computable—in advance”. So, instead
of pre-storing the individual inputs, we can simply pre-store a copy of the program that
generates those inputs.

In the second case, suppose that, not only does the Turing Machine not halt, but
the unending input stream is not computable by a Turing Machine. Then the inter-
action machine is a hypercomputer. It is only this situation—where the input is non-
computable (hence, not knowable in advance, even in principle)—that we have hyper-
computation.

But is it? Or is it just an oracle machine? We will see in §11.4.4 why it is not
obvious that oracle-machine computation is “hyper” in any interesting sense, either.

Why might such a non-halting, non-computable, interaction machine be a hyper-
computer? Its input stream might be random. Truly random numbers are not com-
putable (Church, 1940). (For a related discussion of randomness and computability, see
Chaitin 2006a.) But de Leeuw et al. 1956 showed that “the computing power of Turing
machines provided with a random number generator . . . could compute only functions
that are already computable by ordinary Turing machines” (Davis, 2004, p. 14).

Even if not random, the input stream of such an interaction machine might be non-
computable. According to Copeland and Sylvan (1999, p. 51), “A coupled Turing
machine is the result of coupling a Turing machine to its environment via one or more
input channels. Each channel supplies a stream of symbols to the tape as the machine
operates.” They give a simple proof (p. 52) that there is a coupled Turing Machine “that
cannot be simulated by the universal Turing machine”. However, the proof involves an
oracle that supplies a non-Turing computable real number, so their example falls prey
to Davis’s objection.

470 CHAPTER 11. WHAT IS HYPERCOMPUTATION?

Further Reading:
van Leeuwen and Wiedermann 2000 takes up the challenge of formalizing Wegner’s ideas about
interaction machines, arguing that “ ‘interactive Turing machines with advice’ . . . are more pow-
erful than ordinary Turing machines.”

For a debate between a hypercomputation skeptic and a believer, see
http://c2.com/cgi/wiki?InteractiveComputationIsMorePowerfulThanNonInteractive (2014).

For more by Wegner and his colleagues, see Wegner 1999 and the following:

1. Wegner and Goldin 1999 (an unpublished attempt at formalizing some of Wegner’s claims
about interaction machines).

2. Wegner and Goldin 2003 discusses “Computation beyond Turing Machines”. Goldin and
Wegner 2004 is a sequel to Wegner 1997 and Wegner and Goldin 2003.

3. Eberbach and Wegner 2003 is a useful survey, but it opens with some seriously misleading
comments about the history of computation and the nature of logic. For example, contrary
to what the authors say, (1) Turing 1936 was not “primarily a mathematical demonstration
that computers could not model mathematical problem solving” (p. 279) (although it did
include a mathematical demonstration that there were some mathematical problems that
a computer could not solve); and (2) Hilbert did not take the Entscheidungsproblem “as
a basis that all mathematical problems could be proved true or false by logic” (p. 279),
simply because mathematical problems cannot be “proved true or false”—rather, mathe-
matical propositions might be provable or not, and they might be true or false, but truth
and falsity are semantic notions incapable of proof, whereas provability is a syntactic
notion.

4. Goldin et al. 2004 “present[s] Persistent Turing Machines (PTMs), a new way of inter-
preting Turing-computation, one that is both interactive and persistent. . . . It is persistent
in the sense that the work-tape contents are maintained from one computation . . . to the
next” (from the abstract).

5. Goldin and Wegner 2008, which claims to refute the Computability Thesis.

Hewitt 2019 argues in favor of interactive computation as a better model of computation than
Turing Machines, and suggests that his version of it (based on his Actor formalism for AI, which
was a predecessor of object-oriented computing and which, he claims, avoids the Halting Prob-
lem) is important for cybersecurity.

11.4.3.4.4 Concurrent Computation. Here is another possibility: “Concurrent
computation” can be thought of in two ways. In the first way, a single computer (say, a
(universal) Turing Machine) executes two different algorithms, not one after the other
(“sequentially”), but in an interleaved fashion, in much the way that a parallel com-
putation can be simulated on a serial computer: On a serial computer (again, think of
a Turing Machine), only one operation can be executed at a given time; on a paral-
lel computer, two (or more) operations can be executed simultaneously. But one can
simulate parallel computation on a serial computer by interleaving the two operations.

The difference between parallel and concurrent computation is that the latter can
also be thought of in a second way: Two (or more) computers (say, non-universal Tur-
ing Machines) can each be executing two different, single algorithms simultaneously
in such a way that outputs from one can be used as inputs to the other. This kind of

11.4. KINDS OF HYPERCOMPUTATION AND HYPERCOMPUTERS 471

concurrent computation is what Copeland calls “coupled Turing machines”.
Is concurrent computation a kind of hypercomputation? It is, if “interactive com-

putation” is the same as that second way of thinking about concurrent computation,
and if interactive computation is hypercomputation. At least one important theoreti-
cian of concurrent computing has said that “concurrent computation . . . is in a sense
the whole of our subject—containing sequential computing as a well-behaved special
area” (Milner, 1993, p. 78) This is consistent with those views of hypercomputation
that take it to be a generalization of (classical) computation. Where (classical) compu-
tation is based on an analysis of mathematical functions, Milner argues that concurrent
computation must be based on a different mathematical model; that also suggests that
it is, in some sense, “more” than mere classical computation. Interestingly, however,
he also says that this different mathematical model must “match the functional cal-
culus not by copying its constructions, but by emulating two of its attributes: It is
synthetic—we build systems in it, because the structure of terms represents the struc-
ture of processes; and it is computational—its basic semantic notion is a step of
computation” (Milner, 1993, p. 82; italics in original, my boldface). Again, it appears
to be a generalization of classical computation.

Unlike certain models of hypercomputation that either try to do something that is
physically (or “medically”) impossible or can only exist in black holes, concurrent
computation seems more “down to earth”—more of a model of humanly possible pro-
cessing, merely analyzing what happens when Turing Machines interact.

In fact, here’s an interesting way to think about it: A single Turing Machine can
be thought of as a model of a human computer solving a single task. But humans
can work on more than one task at a time (concurrently, if not in parallel). And two
or more humans can work on a single problem at the same time. Moreover, there is
no reason why one human’s insights (“outputs”) from work on one problem couldn’t
be used (as “inputs”) in that same human’s work on a distinct problem. And there is
surely no reason why one human’s insights from work on a given problem couldn’t
be used by another human’s work on that same problem. Surely even Hilbert would
have accepted a proof of some mathematical proposition that was done jointly by two
mathematicians. So, insofar as concurrent computation is a kind of hypercomputation,
it seems to be a benign kind.

This suggests that the proper way to consider such interactive (or reactive, coupled,
or concurrent) systems is not as some new, or “hyper”, model of computation, but
simply as the study of what might happen when two or more Turing Machines interact.
There’s no reason to expect that they would not be more powerful in some sense than
a single Turing Machine. Clearly, if a Turing Machine interacts with something that
is not a Turing Machine, then hypercomputation can be the result; this is the gist of
Davis’s objection.

The only case in which an interaction machine differs significantly from a Tur-
ing Machine is when the interactive machine doesn’t halt and its input stream allows
for an oracle-supplied, non-computable number. But this seems to fall under Davis’s
objection to hypercomputation.

472 CHAPTER 11. WHAT IS HYPERCOMPUTATION?

Further Reading:
Frenkel 1993 is a companion piece to Milner 1993, with interesting observations on AI, the
semantics of programming languages, program verification, and the nature of CS.

A 1994 e-mail discussion between Peter Wegner and Carl Hewitt (a major figure in concurrent
computing) is available at http://www.cse.buffalo.edu/∼rapaport/510/actors-vs-church-thesis.txt

Schächter 1999 asks “How Does Concurrency Extend the Paradigm of Computation?”.

For more information on concurrency, see http://en.wikipedia.org/wiki/Concurrent computing
and http://en.wikipedia.org/wiki/Concurrency (computer science).

11.4.4 Oracle Computation
Let us suppose that we are supplied with some unspecified means of solving number-
theoretic problems; a kind of oracle as it were. We shall not go any further into the
nature of this oracle apart from saying that it cannot be a machine. With the help
of the oracle we could form a new kind of machine (call them o-machines), hav-
ing as one of its fundamental processes that of solving a given number-theoretic
problem. More definitely these machines are to behave in this way. The moves of
the machine are determined as usual by a table except in the case of moves from
a certain internal configuration o. If the machine is in the internal configuration o

and if the sequence of symbols marked with l is then the well-formed formula A,
then the machine goes into the internal configuration p or t according as it is or
is not true that A is dual. The decision as to which is the case is referred to the
oracle.[6]
—Alan Turing (1939, pp. 172–173)

An o(racle)-machine is a Turing Machine that can “interrogate an ‘oracle’ (external
database) during the computation” (Soare, 2009, §1.3, p. 370) in order to determine its
action (including its next configuration). Moreover, the database “cannot be a machine”
(Turing, 1939, p. 173). If it were a “machine”—presumably an a-machine—then its
behavior would be computable, and vice versa.

Further Reading:
Oracle machines were first described in Turing’s Ph.D. dissertation at Princeton, which was
completed in 1938, and which he began after his classic 1936 paper was published; Church was
his dissertation advisor. His dissertation can be read online at http://www.dcc.fc.up.pt/∼acm/
turing-phd.pdf; it was published as Turing 1939, from which this section’s epigraph was taken.

However, if the choice made by the oracle were computable, then c-machines could
be considered as a special case of o-machines. If interaction is best modeled by an

6Here is Turing’s explanation of some of the technical terms in this passage: “Every number-theoretic
theorem is equivalent to a statement of the form ‘A(n) is convertible to 2 for every W.F.F. n representing
a positive integer’, A being a W.F.F. determined by the theorem; the property of A here asserted will be
described briefly as ‘A is dual’ ” (p. 170). “Convertibility” is an equivalence relation in Church’s lambda
calculus.

11.4. KINDS OF HYPERCOMPUTATION AND HYPERCOMPUTERS 473

oracle machine, then Wegner and Goldin are incorrect about choice machines being the
ones that “extend” Turing Machines “to interactive computing” (see §11.4.3.3, above).
In fact, according to Davis (1958, pp. 20–24), Turing Machines “deal . . . only with
closed computations. However, it is easy to imagine a machine that halts a computa-
tion at various times and requests additional information.” He then discusses relative
computation and o-machines in the form of Turing Machines that can ask whether a
given integer is an element of a given set, observing that “This provides a Turing ma-
chine with a means of communication with ‘the external world.’ ”

The external database is a “black box” that could contain the answers to questions
that are not computable by an ordinary Turing a-machine. If a function g is computable
by an o-machine whose oracle outputs the value of a (non–Turing-computable) func-
tion f , then it is said that g is computable relative to f .

The computer scientist Solomon Feferman (1992, p. 340, footnote 8) said this:
“Several people have suggested to me that interactive computation exemplifies Turing’s
‘oracle’ in practice. While I agree that the comparison is apt, I don’t see how to state the
relationship more precisely.” However, Bertil Ekdahl has a nice example that illustrates
how interactive computing is modeled by o-machines and relative computability. The
essence of the example considers a simplified version of an airline-reservation program.
Such a program is a standard example of the kind of interactive program that Wegner
claims is not Turing computable, yet it is not obviously an o-machine, because it does
not obviously ask an oracle for the solution to a non-computable problem. Suppose our
simplified reservation program is this:

while true do
begin

input(passenger, destination);
output(ticket(passenger, destination))

end

Ekdahl observes that, although writing the passenger and destination information on the
input tape is computable “and can equally well be done by another Turing machine”,
when our reservation program then “ ‘asks’ for two new” inputs, “which [inputs are]
going to [be written] on the tape is not a recursive process. . . . So, the input of [pas-
senger and destination] can be regarded as a question to an oracle. An oracle answers
questions known in advance but the answers are not possible to reckon in advance”
(Ekdahl, 1999, §3, pp. 262–263, italics in original; my boldface).

Conceivably, the “computation-like process” performed by the physics-challenging
machines described in §11.4.1, above, can also be simulated (if not modeled) by ora-
cle machines. So, the hypercomputation question seems to come down to whether
o-machines violate the Computability Thesis. Let’s look at them a bit more closely.

Feferman (1992, p. 321) notes that o-machines can be “generalized to that of a
B-machine for any set B”. Instead of Turing Machines, Feferman discusses the logi-
cally equivalent register machines of Shepherdson and Sturgis 1963, which we men-
tioned in §9.4.1. Briefly, a register machine consists of “registers” (storage units), each
of which can contain a natural number. In Feferman’s version (1992, p. 316), for each
register ri, the machine has four basic operations:

474 CHAPTER 11. WHAT IS HYPERCOMPUTATION?

1. ri := 0

2. ri := ri +1

3. if ri 6= 0, then ri := ri−1

4. if ri = 0, then go to instruction j else go to instruction k

To turn this into a B-machine, we add one more kind of operation (p. 321):

5. if rk ∈ B, then ri := 1 else ri := 0. In other words, a B-machine is an o-machine:
a Turing Machine together with a set B that plays the role of the oracle. The machine’s
program can consult oracle B to see if it contains some value rk. The fifth operation
puts a 1 or a 0 into register ri if the oracle tells it that the value rk ∈ B.

Essentially, this adds primitive operations to a Turing Machine (or a register ma-
chine). If these operations can be simulated by the standard primitive operations of
the Turing Machine, then we haven’t increased its power, only its expressivity, essen-
tially by the use of named subroutines. (Recall Prasse and Rittgen’s observation that
“interaction can . . . be interpreted as a (subroutine) call”.) Turing’s o-machines are of
this type; the call to a (possibly non-computable) oracle is simply a call to a (possibly
non-computable) subroutine. So, as Prasse and Rittgen say, “the machine itself ” is just
a Turing Machine, and, as Davis would say, if a non-computable input is encoded in B,
then a non-computable output can be encoded on its tape. If B contains the answers to
problems not solvable by the Turing Machine, then, of course, we have increased the
machine’s power.

But does that provide a counterexample to the Computability Thesis?
In fact, Feferman (1992, pp. 339–340) observes that the “built-in functions” of

“actual computers” (for example, the primitive recursive functions or the primitive op-
erations of a Turing Machine) are “given by a ‘black box’—which is just another name
for an ‘oracle’—and a program to compute a function f from one or more of these”
built-in functions “is really an algorithm for computation of f relative to” those built-in
functions.

To say that a set A is Turing computable from (or “Turing reducible to”) a set B
(written: A ≤t B) is to say that x is in A iff the B-machine outputs 1 when its input is
x (where output 1 means “yes, x is in A”). Davis (2006b, p. 1218) notes that, where A
and B are sets of natural numbers, if A ≤t B, and “if B is itself a computable set, then
nothing new happens; in such a case A≤t B just means that A is computable. But if B
is non-computable, then interesting things happen.”7 According to Davis (2006c), one
of the uninteresting things, of course, is that A will then turn out to be non-computable.
The interesting things have to do with “degrees” of non-computability: “can one non-
computable set be more non-computable than another?” (Davis, 2006b, p. 1218).

What does that mean? As we hinted at earlier, Gödel’s Incompleteness Theorem
shows that there is a true statement of arithmetic that cannot be proved from Peano’s
axioms. What if we add that statement as a new axiom? Then we can construct a

7Recall from §11.4.3.4.1, above, Knuth’s expression for a similar situation: “all hell might break loose”!
(Knuth, 2001, pp. 189–190)

11.4. KINDS OF HYPERCOMPUTATION AND HYPERCOMPUTERS 475

different true statement of arithmetic that cannot be proved from this new set of ax-
ioms. And we can continue on in this matter, constructing ever more powerful theories
of arithmetic, with no end. Turing’s dissertation and invention of oracles essentially
applied the same kind of logic to computability:

It is possible to posit the existence of an oracle, which computes a non-computable
function, such as the answer to the halting problem or some equivalent. Interest-
ingly, the halting problem still applies to such machines; that is, although they
can determine whether particular Turing machines will halt on particular inputs,
they cannot determine whether machines with equivalent halting oracles will them-
selves halt. This fact creates a hierarchy of machines according to their Turing
degree, each one with a more powerful halting oracle and an even more difficult
halting problem. . . .

With such a method, an infinite hierarchy of computational power can eas-
ily be constructed by positing the existence of oracles that perform progressively
more complex computations which cannot be performed by machines that incor-
porate oracles of lower power. Since a conventional Turing machine cannot solve
the halting problem, a Turing machine with a Halting Problem Oracle is evidently
more powerful than a conventional Turing machine because the oracle can answer
the halting question. It is straightforward to define an unsolvable halting problem
for the augmented machine with the same method applied to simpler halting prob-
lems that lead to the definition of a more capable oracle to solve that problem.
This construction can be continued indefinitely, yielding an infinite set of concep-
tual machines With such a method, an infinite hierarchy of computational power
can easily be constructed by positing the existence of oracles that perform pro-
gressively more complex computations which cannot be performed by machines
that incorporate oracles of lower power. Since a conventional Turing machine can-
not solve the halting problem, a Turing machine with a Halting Problem Oracle is
evidently more powerful than a conventional Turing machine because the oracle
can answer the halting question. It is straightforward to define an unsolvable halt-
ing problem for the augmented machine with the same method applied to simpler
halting problems that lead to the definition of a more capable oracle to solve that
problem. This construction can be continued indefinitely, yielding an infinite set
of conceptual machines. . . .

In other words, two sets of natural numbers have the same Turing degree when
the question of whether a natural number belongs to one can be decided by a Tur-
ing machine having an oracle that can answer the question of whether a number
belongs to the other, and vice versa. So the Turing degree measures precisely the
computability or incomputability of X . Turing reducibility induces a partial order
on the Turing degrees. (Zenil and Hernández-Quiroz, 2007, pp. 6–7)

Consequently, Feferman (1992, p. 321) observes that

the arguments for the Church-Turing Thesis lead one strongly to accept a rela-
tivized version: (C-T)r [a set] A is effectively computable from [a set] B if (and
only if) A≤T B.

Feferman then says that “Turing reducibility gives the most general concept of relative
effective computability” (p. 321). And here is Feferman on the crucial matter:

476 CHAPTER 11. WHAT IS HYPERCOMPUTATION?

Uniform global recursion provides a much more realistic picture of computing
over finite data structures than the absolute computability picture, for finite data
bases are constantly being updated. As examples, we may consider . . . airline
reservation systems. (Feferman, 1992, p. 342)

He does, however, go on to say that “while notions of relativized (as compared to
absolute) computability theory are essentially involved in actual hardware and software
design, the bulk of methods and results of recursion theory have so far proved to be
irrelevant to practice” (Feferman, 1992, p. 343). That certainly is congenial to Wegner’s
complaints.

On the other hand, Feferman (1992, p. 315) also claims that “notions of relative
(rather than absolute) computability” (that is, notions based on Turing’s o-machines
rather than on his a-machines) have “primary significance for practice” and that these
relative notions are to be understood as “generalization[s] . . . of computability [and “of
the Church-Turing Thesis”] to arbitrary structures”. So this seems to fly in the face of
Wegner’s claims that interaction is something new, while agreeing with the substance of
his claims that interaction is more central to modern computing than Turing Machines
are.

Soare agrees:

Almost all the results in theoretical computability use relative reducibility and
o-machines rather than a-machines and most computing processes in the real world
are potentially online or interactive. Therefore, we argue that Turing o-machines,
relative computability, and online computing are the most important concepts in
the subject, more so than Turing a-machines and standard computable functions
since they are special cases of the former and are presented first only for pedagog-
ical clarity to beginning students. (Soare, 2009, Abstract, p. 368)

This is an interesting passage, because it could be interpreted by hypercomputation ad-
vocates as supporting their position and by anti-hypercomputationalists as supporting
theirs!

In fact, a later comment in the same paper suggests the pro-hypercomputational
reading:

The original implementations of computing devices were generally offline devices
such as calculators or batch processing devices. However, in recent years the im-
plementations have been increasingly online computing devices which can access
or interact with some external database or other device. The Turing o-machine
is a better model to study them because the Turing a-machine lacks this online
capacity. (Soare, 2009, §9, p. 387)

He also says (referring to Turing 1939 and Post 1943),

The theory of relative computability developed by Turing and Post and the
o-machines provide a precise mathematical framework for database [or interactive]
or online computing just as Turing a-machines provide one for offline computing
processes such as batch processing. (Soare, 2009, §1.3, pp. 370–371).

11.4. KINDS OF HYPERCOMPUTATION AND HYPERCOMPUTERS 477

And he notes that oracles can model both client-server interaction as well as commu-
nication with the Web. However, the interesting point is that all of these are extensions
of Turing Machines, not entirely new notions. Moreover, Soare does not disparage,
object to, or try to “refute” the Computability Thesis; rather, he celebrates it (Soare,
2009, §12).

This certainly suggests that some of the things that Copeland and Wegner say
about hypercomputation are a bit hyperbolic; it suggests that both the kind of hy-
percomputation that takes non-computable input (supplied by an oracle) to produce
non-computable output as well as the kind that is interactive are both well-studied and
simple extensions of classical computation theory.

Soare’s basic point on this topic seems to be this:

Conclusion 14.3 The subject is primarily about incomputable objects not com-
putable ones, and has been since the 1930’s. The single most important concept
is that of relative computability to relate incomputable objects. (Soare, 2009, §14,
p. 395)

Turing’s oracle machine was developed by Post into Turing reducibility It
is the most important concept in computability theory. Today, the notion of a
local machine interacting with a remote database or remote machine is central to
practical computing. (Soare, 2012, p. 3290)

This is certainly in the spirit of hypercomputation without denigrating the Computabil-
ity Thesis.

Further Reading:
Dennett 1995, p. 445 suggests that oracles are like his notion of “skyhooks” (which we described
in §3.14.7)—magically going beyond algorithms.

For more on oracles and relative computability, see Post’s original paper (Post, 1944, §11) and
Dershowitz and Gurevich 2008, §5, pp. 329f. An excellent, relatively informal overview for
philosophers of relative computability is Jenny 2018, §2.

Piccinini 2003 is primarily about Turing’s views on AI, but also discusses his theory of compu-
tation and the role of “oracle” machines.

Arkoudas 2008 (especially §3) argues against Copeland that a version of the Computability The-
sis that is immune to hypercomputation objections follows from the “systematic predictability of
observable behavior” and that even o-machines are, in fact, “deterministic digital computers”.

11.4.5 Trial-and-Error Computation
11.4.5.1 Introduction

There is one more candidate for hypercomputaiton that is worth looking at for its in-
trinsic interest. It goes under many names: “trial-and-error computation”, “inductive
inference”, “Putnam-Gold machines”, and “limit computation”. Here, the “constraint”
that is relaxed is that we change our interpretation of what counts as the output of the
“computation”.

478 CHAPTER 11. WHAT IS HYPERCOMPUTATION?

Further Reading:
Philosophers, logicians, and computer scientists have all contributed to this theory. Hilary Put-
nam (1965) originated the term ‘trial-and-error predicate’, and Hintikka and Mutanen (1997)
echoed that in ‘trial-and-error computability’. E. Mark Gold (1967) called such computation
‘inductive inference’. Peter Kugel (2002) claims to have originated the terms ‘trial-and-error
machine’ and ‘Putnam-Gold machine’. Robert I. Soare (2009, §9.2, p. 388) refers to Putnam’s
trial-and-error predicates as “limit computable functions”.

Here is how Putnam introduced “trial and error predicates”: First, a “predicate” can
be thought of as a Boolean-valued function. Next, as in §7.7.2.2, we’ll let the notation
x represent an n-tuple of variables x1, . . . , xn, for some n. Then (paraphrasing Putnam
1965, p. 49) a predicate P is a trial and error predicate =de f there is a computable
function f such that, for every x,

P(x) = 1 iff lim
y→∞

f (x,y) = 1,

and
P(x) = 0 iff lim

y→∞
f (x,y) = 0,

where
lim
y→∞

f (x,y) = k =de f ∃w∀z[z≥ w⊃ f (x,z) = k]

In other words, no matter what initial value (or values) that the function f takes, the
predicate P is true (or false) iff, in the “limit” (that is, at w or “beyond”), the function
f = 1 or (f = 0). As Welch (2007, p. 770) puts it, “the eventual value of” f is 1 or 0.

Clarification:
Function f takes as input an n+ 1-tuple of natural numbers (there are n xs plus 1 y), and that
outputs a natural number. Each value of y (y = 0,1,2, . . .) will, in general, yield a different value
for f , but, at some point (at w, in fact), no matter how large y gets, f will remain constant with
value k.

That is, Putnam “modifies” the notion of Turing computability . . .

. . . by (1) allowing the procedure to “change its mind” any finite number of
times (in terms of Turing Machines: we visualize the machine as being given an
integer (or an n-tuple of integers) as input. The machine then “prints out” a finite
sequence of “yesses” and “nos”. The last “yes” or “no” is always to be the correct
answer.); and (2) we give up the requirement that it be possible to tell (effectively)
if the computation has terminated[.] I.e., if the machine has most recently printed
“yes”, then we know that the integer put in as input must be in the set unless the
machine is going to change its mind; but we have no procedure for telling whether
the machine will change its mind or not.

The sets for which there exist decision procedures in this widened sense are
decidable by “empirical” means—for, if we always “posit” that the most recently
generated answer is correct, we will make a finite number of mistakes, but we will
eventually get the correct answer. (Note, however, that even if we have gotten to

11.4. KINDS OF HYPERCOMPUTATION AND HYPERCOMPUTERS 479

the correct answer (the end of the finite sequence) we are never sure that we have
the correct answer.) (Putnam, 1965, p. 49)

In general, a trial-and-error machine is a Turing Machine with input i that outputs
a sequence of responses such that it is the last output that is “the” desired output of
the machine (rather than the first, or only, output). But you don’t allow any way to tell
effectively if you’ve actually achieved the desired output, that is, if the machine has
really halted.

The philosopher and psychologist William James once said, in a very different
context, that . . .

. . . the faith that truth exists, and that our minds can find it, may be held in two
ways. We may talk of the empiricist way and of the absolutist way of believing
in truth. The absolutists in this matter say that we not only can attain to knowing
truth, but we can know when we have attained to knowing it; whilst the empiricists
think that although we may attain it, we cannot infallibly know when. To know
is one thing, and to know for certain that we know is another. (James, 1897, §V,
p. 465)

To paraphrase James:

The faith that a problem has a computable (or algorithmic) solution exists,
and that our computers can find it, may be held in two ways. We may talk
of the trial-and-error way and of the Turing-algorithmic way of solving
a problem. The Turing algorithmists in this matter say that we (or Tur-
ing Machines) not only can solve computable problems, but we can know
when we (or they) have solved them; while the trial-and-error hypercom-
putationalists think that although we (or our computers) may solve them,
we cannot infallibly know when. For a computer to produce a solution is
one thing, and for us to know for certain that it has done so is another.

Recall from §8.10.2.1 that Turing called the marks printed by a Turing Machine
that were not to be taken as output “symbols of the second kind”, used only for book-
keeping. Peter Kugel (1986a) takes up this distinction:

We distinguish an output from a result. An output is anything M [“an idealized
general-purpose computing machine”] prints, whereas a result is a selection, from
among the things it prints, that we agree to pay attention to. . . . The difference
between a computing procedure and a trial and error procedure is this[:] When we
run Mp [M running under program p] as a computing procedure, we count its first
output as its result. When we run it as a trial and error procedure, we count its last
output as its result. (Kugel, 1986a, pp. 139–140).

(It is interesting to compare such machines to heuristic programming. In §3.15.2.3,
we saw that a heuristic program was one that gave an approximate solution to a prob-
lem. It would seem that trial-and-error machines do just that: Each output is an ap-
proximation to the last output. Ideally, each output is a closer approximation than each
previous output.)

480 CHAPTER 11. WHAT IS HYPERCOMPUTATION?

In a similar vein, Kugel (2002) notes that a distinction can be made between a Tur-
ing machine and Turing machinery. Sub-Turing computation, although not requiring
all the power of a Turing machine, can be accomplished using Turing machinery. As
Hintikka and Mutanen (1997, p. 175) put it, “there is more than one sense in which
the same idealized hardware [that is, Turing machinery] can be used to compute a
function”. (Here, ‘compute’ does not refer to Turing computation, because trial-and-
error computability “is wider than recursivity”.) Gödel made a similar observation
(though he wasn’t talking about trial-and-error machines): “A sometimes unsuccessful
procedure, if sharply defined, still is a procedure, that is a well-determined manner of
proceeding” (quoted in Stewart Shapiro 2013, p. 174).

In a Turing machine, the first output is the result of its computation. But there
is nothing preventing the use of Turing machinery and taking the last output of its
operation as its result. You can’t say that the operation of such Turing machinery is
computation, if you accept the Computability Thesis, which identifies computation
with the operation of a Turing Machine. But if a trial-and-error machine can do super-
Turing “computation”, then it would be a hypercomputer that uses Turing machinery
(and would not require “newer physics”).

Recall our discussion of the Halting Problem from Chapter 7. In §7.8.1, we con-
trasted two alleged algorithms for determining whether a program C halts on input i:

Algorithm A1
H(C, i) : Algorithm A2

H(C, i) :
begin begin

if C(i) halts output ‘loops’;{that is, make an initial guess that C loops}
then output ‘halts’ if C(i) halts
else output ‘loops’ then output ‘halts’;{that is, revise your guess}

end. end.

Algorithm A1
H can be converted to the self-referential A1∗

H and thereby used in order
to show that the Halting Problem is not Turing computable (see §7.8.2.1).

But A2
H could not be so converted. It is an example of a trial-and-error “algorithm”:

It makes an initial guess about the desired output, and then keeps running program C
on a number of “trials”; if the trials produce “errors” or don’t come up with a desired
response, then continue to run more trials.

As Hintikka and Mutanen (1997, p. 181) note, the Halting Problem algorithm in its
trial-and-error form is not computable, “even though it is obviously mechanically de-
termined in a perfectly natural sense.” They also note that this “perfectly natural sense”
is part of the informal notion of computation that the Computability Thesis asserts is
identical to Turing computation, and hence they conclude that the Computability The-
sis “is not valid” (p. 180). (Actually, they’re a bit more cautious, claiming that the
informal notion is “ambiguous”: “We doubt that our pretheoretical ideas of mechani-
cal calculability are so sharp as to allow for only one explication” (p. 180).)

So, a trial-and-error machine uses Turing machinery to perform hypercomputa-
tions. However, trial-and-error computation is equivalent to computations by o-machines
that solve the halting problem!

If the computation is to determine whether or not a natural number n as input
belongs to some set S, then it turns out that sets for which such “trial and error”

11.4. KINDS OF HYPERCOMPUTATION AND HYPERCOMPUTERS 481

computation is available are exactly those . . . that are computable relative to . . . an
oracle that provides correct answers to queries concerning whether a given Turing
machine . . . will eventually halt. (Davis, 2006a, p. 128)

So, trial-and-error computation falls prey to the same objections as other forms of
hypercomputation. However, because trial-and-error computation only requires an or-
dinary, physically plausible Turing Machine and no special oracle, it does have some
other uses, which are worth looking at. Whether these are legitimate kinds of hyper-
computation is something left for you to decide!

11.4.5.2 Does “Intelligence” Require Trial-and-Error Machines?

A trial and error machine can “compute” the uncomputable, but we can’t reliably use
the result. But what if we have to? When we learn to speak, we don’t wait (we can’t
wait) until we fully understand our language before we start (before we have to start) to
use it. Similarly, when we reason or make plans, we must also draw conclusions or act
on the basis of incomplete information. Herbert Simon (1996a) called this “satisficing”
or “bounded rationality” (see §§2.6.1.5 and 5.7, above).

One of the claims of hypercomputationalists is that some phenomena that are not
Turing computable are (or might be) “computable” in some extended sense. And one of
these phenomena is “intelligence”, or cognition. Siegelman’s version that we looked at
in §11.4.1, based on neural networks, is one of these. Another, based on trial-and-error
computation, is what we will look at now.

Terminological Digression:
‘Intelligence’ is the term that many people use—including, famously, Turing (1950)—and it is
enshrined in the phrase ‘artificial intelligence’. However, I prefer the more general term ‘cog-
nition’, because the concept that both terms attempt to capture has little or nothing to do with
“intelligence” in the sense of IQ tests. So, when you see the words ‘intelligence’ or ‘intelligent’
below, try substituting ‘cognition’ or ‘cognitive’ to see whether the meaning differs. In Chap-
ter 19 (especially §19.3.2), we’ll go into much more detail on what I prefer to call “computational
cognition”.

Kugel (2002) argues that AI will be possible using digital computers—and not re-
quiring fancy, quantum computers or other kinds of non-digital computers—by using
those digital computers in only a non–Turing-computational way. He begins his argu-
ment by observing that intelligence in general, and artificial intelligence in particular,
requires “initiative”, which he roughly identifies with the absence of “discipline”, de-
fined, in turn, as the ability to follow orders. (This is reminiscent of Beth Preston’s
views on improvisation, which we discussed in §10.4.2.) Thus, perhaps, intelligence
and AI require the ability to break rules! Computation, on the other hand, requires
such “discipline” (after all, as we have seen, computation certainly includes the ability
to follow orders, or, at least, to behave in accordance with orders).

Moreover, Kugel argues that Turing made the same point. But did he?

482 CHAPTER 11. WHAT IS HYPERCOMPUTATION?

Kugel quotes the following sentence:

Intelligent behaviour presumably consists in a departure from the completely dis-
ciplined behaviour involved in computation, but a rather slight one, which does
not give rise to random behaviour, or to pointless repetitive loops. (Turing, 1950,
p. 459, my italics)

However, the larger context of this passage makes it clear that Turing is thinking of
a learning machine. So the “slight departure” he refers to is not so much a lack of
discipline as it is the universal Turing Machine’s ability to change its behavior, that is,
to change the software that it is running. It can’t change its hardware (that is, its fetch-
execute cycle). But, because the program that a universal Turing Machine is executing
is inscribed on the same tape that it can print on, the universal Turing Machine can
change that program! There is no difference between a program stored on the tape and
the data also stored on the tape. (There is a difference, of course, between a hardwired
program and data.)

This is not to say that computing is not enough for intelligence. Turing (1947)
claimed that infallible entities could not be intelligent, but that fallibility allows for
intelligence:

. . . fair play must be given to the machine. Instead of it sometimes giving no
answer we could arrange that it gives occasional wrong answers. But the human
mathematician would likewise make blunders when trying out new techniques. It
is easy for us to regard these blunders as not counting and give him another chance,
but the machine would probably be allowed no mercy. In other words then, if a
machine is expected to be infallible, it cannot also be intelligent. There are several
mathematical theorems which say almost exactly that. (Turing, 1947, p. 394, my
italics)

A few years later, Turing said something similar:

[O]ne can show that however the machine [that is, a computer] is constructed there
are bound to be cases where the machine fails to give an answer [to a mathematical
question], but a mathematician would be able to. On the other hand, the machine
has certain advantages over the mathematician. Whatever it does can be relied
upon, assuming no mechanical ‘breakdown’, whereas the mathematician makes
a certain proportion of mistakes. I believe that this danger of the mathematician
making mistakes is an unavoidable corollary of his [sic] power of sometimes hit-
ting upon an entirely new method. (Turing, 1951, p. 256)

11.4. KINDS OF HYPERCOMPUTATION AND HYPERCOMPUTERS 483

Digression and Further Reading:
It’s not obvious what Turing was alluding to when he said, “there are bound to be cases where
the machine fails to give an answer, but a mathematician would be able to.” One possibility is
that he’s referring to Gödel’s Incompleteness Theorem (see §6.6, footnote 7, above). If a Turing
Machine is programmed to prove theorems in Peano arithmetic then, by Gödel’s theorem, there
will be a true statement of arithmetic that it cannot prove to be a theorem—that is, to which it
“fails to give an answer” in one sense. A human mathematician, however, could show by other
means (but not prove as a theorem!) that the undecidable statement was true—that is, the human
“would be able to” give an answer to the mathematical question, in a different sense. That is,
there are two ways to “give an answer”: An answer can be given by “syntactically proving a
theorem” or else by “semantically showing a statement to be true”. For more on syntax vs.
semantics, see §19.6.3.3.

Emil Post (1944, p. 295) had this to say about mathematics:

The conclusion is unescapable that . . . mathematical thinking is, and must remain,
essentially creative. To the writer’s mind, this conclusion must inevitably result
in at least a partial reversal of the entire axiomatic trend of the late nineteenth and
early twentieth centuries, with a return to meaning and truth as being of the essence
of mathematics.

For some other remarks on the mathematical abilities of humans vs. machines, see Wang 1957,
p. 92; Davis 1990, 1993 (which challenge Penrose’s 1989 argument that Gödel’s Theorem can be
viewed as a kind of hypercomputation; see the discussion in Copeland 2002b, §§1.18–1.18.1);
Dennett 1995, Ch. 15 (on Penrose); and Copeland and Shagrir 2013. On Gödel, Turing, and
mathematical ability, see Sieg 2007, Feferman 2011, and the excellent summary of the issues in
Koellner 2018.

Sieg’s essay paints the following picture suggested by some of Gödel’s remarks: If individual
brains can be considered to be Turing Machines, and if individual minds are implemented in
brains, then the “other means” that are mentioned above might be obtained from individual
brains (for example, two mathematicians) working together and thus yielding a “larger” “mind”.
(Goodman 1984 explores this concept in the context of modal logic.) That is, each brain—
considered as a formal system—can get information from other brains that it couldn’t have gotten
on its own. Note that this might be modelable as interactive computing or oracle computing!
Dennett (1995, p. 380) makes a similar observation when he notes that “Science . . . is not just
a matter of making mistakes [as Popper suggests; see §4.9.1, above], but of making mistakes in
public . . . in the hopes of getting the others to help with the corrections.”

This gives support to Kugel’s claims about fallibility. Such trade-offs are common:
For example, as Gödel showed, certain formal arithmetic systems can be consistent
(infallible?) or else complete (truthful?), but not both. An analogy is this: In the early
days of cable TV (the late 1970s), there were typically two sources of information
about what shows were on—TV Guide magazine and the local newspaper. The former
was “consistent” or “infallible” in the sense that everything that it said was on TV
was, indeed, on TV; but it was incomplete, because it did not list any cable-TV shows.
The local newspaper, on the other hand, was “complete” in the sense that it included all
broadcast as well as all cable-TV shows, but it was “inconsistent” or “fallible”, because
it also erroneously included shows that were not on TV or cable (but there was no way
of knowing which was which except by being disappointed when an advertised show

484 CHAPTER 11. WHAT IS HYPERCOMPUTATION?

was not actually on).
But the context of Turing’s essays makes it clear that what Turing had in mind was

the ability of both human mathematicians and computers to learn from their mistakes,
so to speak, and to develop new methods for solving problems—that is, to change their
“software”. Turing (1947, p. 394) suggests that this might come about by “allow[ing
the computer] to have contact with human beings in order that it may adapt itself to their
standards”, perhaps achieving such interaction through playing chess with humans.

In a later passage, Turing suggests “one feature that . . . should be incorporated
in the machines, and that is a ‘random element’ ” (p. 259). This turns the computer
into a kind of interactive o-machine that “would result in the behaviour of the machine
not being by any means completely determined by the experiences to which it was
subjected” (p. 259), suggesting that Turing realized that it would make it a kind of
hypercomputer, but, presumably, one that would be only (small) extension of a Turing
Machine.

Question for the Reader:
Wouldn’t the “random element” be one of “the experiences to which it was subjected”? If so,
wouldn’t the machine’s behavior be completely determined by its experiences, even though the
experiences would not be predictable, hence not simulatable by an ordinary Turing Machine?

Digression:
It is also of interest to note that, in the same 1951 essay, Turing envisaged what has come to be
known as “The Singularity”:

[It seems probable that once the machine thinking method had started, it would
not take long to outstrip our feeble powers. There would be no question of the
machines dying, and they would be able to converse with each other to sharpen
their wits. At some stage therefore we should have to expect the machines to take
control, in the way that is mentioned in Samuel Butler’s Erewhon. (Turing, 1951,
pp. 259–260)

There is a vast literature on “The Singularity”. A good place to begin is the Wikipedia article,
https://en.wikipedia.org/wiki/Technological singularity. For philosophical discussion, see Eden
et al. 2012. We’ll return to it in §20.8.

Kugel next argues that Turing computation does not suffice for intelligence, on the
grounds that, if it did, it would not be able to survive! Suppose (by way of reductio) that
Turing computation did suffice for intelligence. And suppose that a mind is a universal
Turing Machine with “instincts” (that is, with some built-in programs) and that it is
capable of learning (that is, capable of computing new programs). To learn (that is, to
compute a new program), it could either compute a total computable program (that is,
one defined on all inputs) or else compute a partial computable program (that is, one
that is undefined on some inputs).

Next, Kugel defines a total machine to be one that computes only total computable
functions, and a universal machine to be one that computes all total computable func-
tions and, presumably, all partial computable functions. Is a universal Turing Machine
“total” or “universal” in Kugel’s sense? According to Kugel, it can’t be both: The set

11.4. KINDS OF HYPERCOMPUTATION AND HYPERCOMPUTERS 485

of total computable functions is enumerable (f1, f2, . . .). Let Pi be a program that com-
putes fi, and let P be a program (machine?) that runs each Pi. Next, let P′ compute
fn +1. Then P′ is a total computable function, but it is not among the Pi, hence it is not
computed by P. That is, if P computes only total functions, then it can’t compute all of
them (Kugel, 2002, p. 577, note 6).

According to Kugel, a universal Turing Machine is a “universal” machine (so it
also computes partial functions). If the mind is a universal Turing Machine, then there
are partial functions whose values it can’t compute for some inputs. And this, says
Kugel would be detrimental to survival. If the mind were total, then there would be
functions that it couldn’t compute at all (namely, partial ones). This would be equally
detrimental.

But, says Kugel, there is a third option: Let the mind be a universal Turing Machine
with “pre-computed” or “default” values for those undefined inputs. Such a machine
is not a Turing Machine; it is a trial-and-error machine, because it relies on interme-
diate outputs when it can’t wait for a final result. That is, it “satisfices”, because its
“rationality” is “bounded”, as Simon might have put it.

In other words, hypercomputation in the form of trial-and-error computation, ac-
cording to Kugel, is necessary for cognition.

Further Reading:
For more on Kugel’s views, see Kugel 1986a,b, 2004, 2005. Wegner and Goldin 2006a is a re-
sponse to Kugel 2005.

Sloman 1996 clarifies how hypercomputation can show how some aspects of human cognition
might not be Turing computable. (Nevertheless, the question remains whether cognition in gen-
eral is Turing computable (or can be approximated by a Turing Machine).)

Shagrir (1999, §2, pp. 132–133) observes that “The Church-Turing thesis is the claim that certain
classes of computing machines, e.g., Turing-machines, compute effectively computable func-
tions. It is not the claim that all computing machines compute solely effectively computable
functions.” That is, if a function is effectively computable, then it is Turing computable. But it
is not the case that, if C is a computing machine that “computes” function f , then f is effectively
computable.

This is consistent with Kugel’s views on trial-and-error machines; it is also consistent with
the view that what makes interaction machines more powerful than Turing Machines is merely
how they are coupled with either other machines or with the environment; it is not the machinery
itself. Shagrir’s goal is to argue for a distinction between algorithms and “computation”, with
the latter being a wider notion. That is, the scare-quoted term ‘computes’ in the last sentence
of the previous paragraph doesn’t refer to Turing computability, but to a more general kind of
processing that can also be done on a Turing Machine.

486 CHAPTER 11. WHAT IS HYPERCOMPUTATION?

11.4.5.3 Inductive Inference

Is there a specific aspect of cognition that is not Turing computable but that is trial-
and-error–computable? Arguably, yes: language learning.

Language learning is an example of learning a function from its values. Such learn-
ing is called “computational learning theory” or “inductive inference”. Given the initial
outputs of a function f — f (1), f (2), . . . ,—try to infer (or guess, or compute, or “com-
pute”) what function f is. This is an abstract way of describing the problem that a child
faces when learning its native language: f (t) is the parts of the language that the child
has heard up to time t, and f is the grammar of the language.

Is learning a language computable (or hypercomputable)? Trial-and-error machines
are appropriate to model this. E. Mark Gold investigated the conditions under which a
class of languages could be said to be “learnable”.

Here is Gold’s Theorem (following the presentation in Johnson 2004, which also
spells out many misinterpretations of the theorem by cognitive scientists): First, a “lan-
guage” is defined as a subset of “all finite strings of elements from” some alphabet
(Gold, 1967, pp. 448–449). Such strings can be considered to be sentences of the lan-
guage. For example, a language could be “the set of meaningful strings of words” (that
is, meaningful sentences (Gold, 1967, p. 449, my italics)), or it could be “the set of
sentences that are grammatical in that language” (Johnson, 2004, p. 573, my italics).

Next, a class C of languages is “learnable” if a “learner” can learn every language
in C in any “environment”. But what does it mean to “learn” a language? What is a
“learner”? And what is an “environment”? These turn out to be mathematical models
of a human acquiring a language. So, how does a human acquire a language? One way
(the usual way for a native speaker of a language—as opposed to someone learning a
second language from, say, a textbook) is for the learner to hear a sequence of sentences
from the language and, using a form of “inductive inference”, make a “guess” as to
what the language is—a guess as to what counts as a grammatical (or meaningful, or
“acceptable”) sentence of the language. The sentences heard are the input; the language
learned is the output. The learner plays the role of a “function” that transforms the input
into the output. Note, however, that as the learner hears more and more sentences, the
learner’s “guess” as to what the language is will change. If the learner’s guesses reach
a point at which there are no more changes, then the learner can be said to have learned
that language. But note that in Gold’s mathematical model, it is not a single language
that is “learnable”, but only a class of languages.

The mathematical model of the learner’s input is called an “environment”: “any
infinite sequence . . . of sentences . . . from the target language to be learned with
the requirement that every sentence of the language appears at least once in the se-
quence” (Johnson, 2004, p. 573). Note that this mathematical model of the input is
much “stronger” than what happens with a real learner; after all, no one has ever heard
all of the sentences of English! However, after hearing the first n sentences, the learner
makes a guess, and the learner’s guess after hearing the (n + 1)st sentence may be
different. The learning is modeled as a

function that takes finite initial sequences of the environment as input, and yields
as output a guess as to the target language. . . . [T]he learner learns [language]
L given [environment] E iff there is some time tn such that at tn and all times

11.4. KINDS OF HYPERCOMPUTATION AND HYPERCOMPUTERS 487

afterward, the learner correctly guesses that L is the target language present in
the environment. (Gold himself called this condition ‘identification in the limit’.)
(Johnson, 2004, p. 574)

Next,

a class C of languages has the Gold Property iff C contains (i) a countable infinity
of languages Li such that Li ⊂ Li+1 for all i > 0, and (ii) a further language L∞

such that for any i > 0, x is a sentence of Li only if x is a sentence of L∞, and x
is a sentence of L∞ only if x is a sentence of L j for some j > 0. (Johnson, 2004,
pp. 574–575)

In other words, L∞ is the union of all of the other languages in C.
Finally, what Gold showed (“Gold’s Theorem”) was that any class of languages

with the Gold Property is unlearnable (Johnson, 2004, p. 575). Why is this significant?
Here is another version of Gold’s Theorem, due to John Case:8

Corollary (Gold ’67) NO learning machine exists which can successfully learn
every infinite, computable numerical sequence!

This corollary makes computational learning theory non-trivial—there is no uni-
versally successful learning machine for the entire class of infinite, computable
numerical sequences.

Case notes that Gold’s Theorem applies to “people too if people are machines”.

Further Reading:
For more on computation learning theory (“COLT”), read “John Case’s COLT Page”, http:
//www.eecis.udel.edu/∼case/colt.html, which has a link to the entire lecture that the above
“Corollary” comes from.

Gold 1965 presents the mathematics behind trial-and-error machines: “A class of problems is
called decidable if there is an algorithm which will give the answer to any problem of the class
after a finite length of time. The purpose of this paper is to discuss the classes of problems that
can be solved by infinitely long decision procedures in the following sense: An algorithm is
given which, for any problem of the class, generates an infinitely long sequence of guesses. The
problem will be said to be solved in the limit if, after some finite point in the sequence, all the
guesses are correct and the same . . . ” (from the abstract, my italics).

For more information on “language learning in the limit”, see Hauser et al. 2002, p. 1577, who
argue for the existence of a specialized “language acquisition device” in the human brain on the
grounds that Gold showed that “No known ‘general learning mechanism’ can acquire a natu-
ral language solely on the basis of positive or negative evidence”. Whether Hauser et al. have
correctly interpreted Gold is discussed in Johnson 2004, §4. See also Nowak et al. 2002 on
“computational and evolutionary aspects of language”.

For an argument that inductive inference in particular, and machine learning in general, is not a
method of “real learning”, see Bringsjord et al. 2018.

8http://www.cis.udel.edu/∼case/slides/colt-handout.ps

488 CHAPTER 11. WHAT IS HYPERCOMPUTATION?

11.5 Summary
There are many kinds of sub-Turing, or “hypo-”, computation. So, if there is any
serious super-Turing, or “hyper-”, computation, that would put classical, Turing com-
putation somewhere in the middle. And no one disagrees that it holds a central place,
given the equivalence of Turing Machines to recursive functions to lambda calculation
to Post-production systems, etc., and also given its modeling of human computing and
its relation to Hilbert’s Entscheidungsproblem.

Hypercomputation seems to come in two “flavors”: what I’ll call “weird” hyper-
computation and what I’ll call “plausible” hypercomputation (to use “neutral” terms!).
In the former category, I’ll put “medically impossible” Zeus machines, relativistic ma-
chines that can only exist near black holes, etc. In the latter category, I’ll put trial-
and-error machines, interactive machines, and o-machines; o-machines are clearly a
plausible extension of Turing Machines, as even Turing knew.

Only the “plausible” kinds of hypercomputation seem useful. But both interaction
machines and trial-and-error machines seem to be only minor extensions of the Tur-
ing analysis of computation, and their behavior is well understood and modelable by
Turing’s o-machines together with the notion of relative computability. Indeed, when
you think of it (and as Feferman (1992, pp. 339–340) pointed out), all notions of com-
putability are relative to (1) what counts as a primitive operation or basic function and
(2) what count as the ways to combine them to create other operations and functions.

Two things make Turing Machines (and their logical equivalents) central: The first
is their power—they are provably more powerful than “hypocomputational” models.
The second is the fact that the different models of (classical) computation are logically
equivalent to each other. Except for the physically “weird” hypercomputers, all other
“plausible” models of hypercomputation can not only be seen as minimal (and natural)
generalizations of the Turing-machine model, but all are logically equivalent to Tur-
ing’s o-machines. And the main “problem” with those is Davis’s “non-computable in”–
“non-computable out” principle.

We might even suggest a generalized Computability Thesis:

A function is “computable” iff it is computable by an o-machine.

Recall that Turing explicitly required that the oracle “cannot” be a Turing Machine. But
if we relax this constraint, then, when the oracle is Turing computable, this generalized
thesis is just the classical one. When the oracle is not Turing computable, we can have
non–Turing-computable—that is, “hypercomputable”—output, but only at the cost of
non-computable input. However, we can analyze different degrees of uncomputability,
as Davis, Feferman, Soare, and many others have noted.

O-machines show us that not all that is studied in computation theory is Turing-
equivalent. (Aizawa, 2010, p. 230)

But note the subtle difference between saying this and saying something like: All com-
putation is equivalent to Turing computation (which is a version of the Computability
Thesis).

Fortnow (2010) nicely refutes three of the major arguments in favor of hypercompu-
tation (including analog computation). Of most interest to us is this passage, inspired

11.5. SUMMARY 489

by Turing’s comment that “The real question at issue is ‘What are the possible pro-
cesses which can be carried out in computing a number?’ ” (Turing, 1936, §9, p. 249;
see §8.8.2.1, above):

Computation is about process, about the transitions made from one state of the
machine to another. Computation is not about the input and the output, point A and
point B, but the journey. Turing uses the computable numbers as a way to analyze
the power and limitations of computation but they do not reflect computation itself.
You can feed a Turing machine an infinite digits [sic] of a real number . . . , have
computers interact with each other . . . , or have a computer that perform an infinite
series of tasks . . . but in all these cases the process remains the same, each step
following Turing’s model. . . . So yes Virginia, the Earth is round, man has walked
on the moon, Elvis is dead and everything computable is computable by a Turing
machine. (Fortnow, 2010, pp. 3, 5, my italics)

Robert Soare makes a similar observation:

Indeed, we claim that the common conception of mechanical procedure and algo-
rithm envisioned over this period is exactly what Turing’s computor [that is, what
we called the “clerk” in §8.8.2.2, footnote 4] captures. This may be viewed as
roughly analogous to Euclidean geometry or Newtonian physics capturing a large
part of everyday geometry or physics, but not necessarily all conceivable parts.
Here, Turing has captured the notion of a function computable by a mechanical
procedure, and as yet there is no evidence for any kind of computability which is
not included under this concept. If it existed, such evidence would not affect Tur-
ing’s thesis about mechanical computability any more than hyperbolic geometry or
Einsteinian physics refutes the laws of Euclidean geometry or Newtonian physics.
Each simply describes a different part of the universe. (Soare, 1999, pp. 9–10, my
italics)

Perhaps the issue is not so much whether it is possible to compute the uncom-
putable (by extending or weakening the notion of Turing computation), but whether it
is practical to do so. Davis (2006a, p. 126) finds this to be ironic:

. . . computer scientists have had to struggle wih the all-too-evident fact that from a
practical point of view, Turing computability does not suffice. . . . With these [NP-
complete] problems Turing computability doesn’t help because, in each case, the
number of steps required by the best algorithms available grows exponentially with
the length of the input, making their use in practice problematical. How strange
that despite this clear evidence that computability alone does not suffice for practi-
cal purposes, a movement has developed under the banner of “hypercomputation”
proposing the practicality of computing the non-computable.

490 CHAPTER 11. WHAT IS HYPERCOMPUTATION?

Further Reading on Hypercomputation:
Three collections—including essays by Bringsjord, Cleland, Copeland, Kugel, and Shagrir—are
Copeland 2002c, 2003; Burgin and Wegner 2003. Cotogno 2003 argues that hypercomputation
does not refute the Computability Thesis; Welch 2004 is a reply. Wells 2004, §3 contains a
discussion of the relation between the Computability Thesis and the P = NP problem. Dresner
2008 clarifies the the difference between Turing’s mathematical model of human computability
and a possibly more extensive notion of physical computability. Parker 2009 argues that “non-
computable behavior in a model . . . [can be] revealed by computer simulation” (which is, of
course, computable). Piccinini 2011, §4 discusses hypercomputational challenges to the “mod-
est” physical Computability Thesis, which states that “any function that is physically computable
is Turing computable” (p. 734). Cooper 2012a is an interesting, illustrated historical survey.

11.6. QUESTIONS FOR THE READER 491

11.6 Questions for the Reader
1. “There are things . . . bees can do that humans cannot and vice versa” (Sloman,

2002, §3.3). Does that mean that bees can do non-computable tasks? Or does
‘do’ mean something different from ‘compute’, such as physical performance? If
“doing” is different from “computing”, how does that affect Cleland’s arguments
(see §10.4.1) against the Computability Thesis?

2. If you don’t allow physically impossible computations, or black-hole computa-
tions, etc., can interactive computation make the Halting Problem “computable”?
Put another way, the Halting Problem is not classically computable; is it interac-
tively “computable”?

3. The n-body problem is the problem of how to compute the behavior of n objects
in space. For example, the 2-body problem concerns the relation of the Earth to
the Sun (or to the Moon). The 3-body problem concerns the relation of Earth,
Sun, and Moon. And so on. Brian Hayes (2015a, esp. pp. 92–93) has suggested
that one technique for simulating solutions to the n-body problem is to use an
ordinary computer linked to a graphics processing unit that is far more powerful
than the ordinary computer. Is such a combination like a Turing Machine with
an oracle?

4. As we will see in §19.4, the Turing Test is interactive. If interaction is not mod-
eled by Turing Machines, how does that affect Turing’s arguments about “com-
puting machinery and intelligence”? (If you are not yet familiar with the Turing
Test, you might want to come back to this question after reading §19.4.)

5. You will probably need to study the mathematics of o-machines, Turing re-
ducibility, etc., in order to give a proper answer to this question and the next,
but they are worth thinking about. As I have presented it, oracles seem to play
several possibly distinct roles: They can be considered to be a kind of subroutine
call. They can be considered to be an input source. And they can be considered
“as miraculous sources of unknowable facts” (at least, unknowable in advance).

Do oracles really play all these roles? Are these roles really all distinct? And
what does this conflation of roles say about my proposed “generalized Com-
putability Thesis” in §11.5?9

9Thanks to Robin K. Hill (personal correspondence) for raising this issue and for the quoted phrase.

492 CHAPTER 11. WHAT IS HYPERCOMPUTATION?

6. As presented in Soare 2016, p. 52, an oracle machine consists, in part, of a Turing
Machine together with

an extra ‘read only’ tape, called the oracle tape, upon which is written the
characteristic function of some set A, called oracle, whose symbols . . . can-
not be printed over

Evaluate the following apparent paradox:

(a) Interactive computing involves inputting information from, and outputting
information to, the external world.

(b) An oracle machine models interactive computing.

(c) It is the oracle that models the external world.

(d) Therefore, the oracle machine must be able to modify the oracle.

(e) But, by definition, the oracle is not modifiable by the Turing machine (be-
cause it is read-only).

Part IV

What Is a Computer Program?

493

495

In Part II, we looked at the nature of computer science, computers, and algorithms,
and in Part III, we looked a bit further at algorithms, focusing on challenges to the
Computability Thesis.

In Part IV, we will look at computer programs—linguistic implementations of al-
gorithms.

• Chapter 12 will look at the relations between algorithms and programs and be-
tween software and hardware.

• Chapter 13 will dig a bit deeper into the software-hardware relationship by con-
sidering whether programs can be copyrighted (if they are software) or patented
(if they are hardware).

• Then, in Chapter 14 we will investigate the nature of the implementation relation.

• In line with the possibility that CS is a science, Chapter 15 will ask whether
computer programs can be considered to be (scientific) theories.

• And in line with the possibility that CS is a mathematical science, Chapter 16
will look at whether computer programs are mathematical objects that can be
logically proved to be “correct”.

• Finally, in Chapter 17, we will consider the important topic of the relation be-
tween computer programs and the real world that they operate and act in, along
with some discussion of the nature of syntax (symbol manipulation) and seman-
tics (meaning).

496

Chapter 12

Algorithms, Programs,
Software, and Hardware

Version of 20 January 2020; DRAFT c© 2004–2020 by William J. Rapaport

program: /n./ 1. A magic spell cast over a computer allowing it to turn one’s input
into error messages. 2. An exercise in experimental epistemology. 3. A form of art,
ostensibly intended for the instruction of computers, which is nevertheless almost
inevitably a failure if other programmers can’t understand it.
—The Jargon Lexicon, http://www.jargon.net/jargonfile/p/program.html

Figure 12.1: http://www.gocomics.com/bloomcounty/2010/3/15,
c©1984?, Washington Post Co.

497

498CHAPTER 12. ALGORITHMS, PROGRAMS, SOFTWARE, AND HARDWARE

12.1 Required Readings
1. Moor, James H. (1978), “Three Myths of Computer Science”, British Journal for the

Philosophy of Science 29(3) (September): 213–222.

• For the purposes of Ch. 12, concentrate on §§1–2.

• §3 is on the analog-digital distinction, which we have mentioned in earlier chapters
(see §§6.5.2, 9.3, and 9.9).

• §4 will be relevant to Ch. 15 on whether computer programs are scientific theories.

2. Suber, Peter (1988), “What Is Software?”, Journal of Speculative Philosophy 2(2): 89–
119.

• Revised version at http://www.earlham.edu/∼peters/writing/software.htm

3. Colburn, Timothy R. (1999), “Software, Abstraction, and Ontology”, The Monist 82(1):
3–19.

• Revised version appears as Colburn 2000, Ch. 12, pp. 198–209.

12.2. WHAT IS A COMPUTER PROGRAM? 499

12.2 What Is a Computer Program?
We have explored what an algorithm is; we are now going to look at computer pro-
grams. In the course of the next few chapters, we will consider these questions:

• What is a computer program?

• Do computer programs “implement” algorithms?

• What is the nature of implementation?

• What are “software” and “hardware”, and how are they related?

• Can computer programs be copyrighted, or should they be patented instead?

• Can (some) computer programs be considered to be scientific theories?

Typically, one tends to consider a computer program as an expression, in some
language, of an algorithm. The language is typically a programming language such
as Java, or Lisp, or Fortran. And a programming language is typically required to be
“Turing complete”, that is, to be able to express the primitive operations of a Turing
Machine, together with all three of the Böhm-Jacopini “grammar” rules: sequence,
selection, and while-loops, as discussed in §7.6.3. (So, “computer languages”, such
as HTML, that lack one or more of these “control structures” are not “programming
languages” in this sense.)

The algorithm is something more “abstract”, whereas the program that expresses
it (or “implements” it in language) is something more “concrete”. A program is more
concrete than an algorithm in two ways: First, a program is a physical object, either
written on paper or “hardwired” in a computer. Perhaps the relationship between an
algorithm and a program is something like the relationship between a number and a
numeral: Just as the number “two” can be expressed with many different numerals
(such as ‘2’ or ‘II’) and many different words (such as ‘two’, ‘deux’, or ‘zwei’), so a
single algorithm, such as the algorithm for binary search, can be expressed in many
different programming languages.

In fact, we can’t really talk about numbers or algorithms without using some kind of
language, so maybe there really aren’t any of these abstract things called ‘algorithms’
(or numbers!), just words for them. This is an ontological view in philosophy called
‘nominalism’ (https://plato.stanford.edu/search/searcher.py?query=nominalism). May-
be the only things that exist are programs, some of which might be written in program-
ming languages that can be directly used to cause a computer to execute the program
(or execute the algorithm?), and some of which might be written in a natural language,
such as English. (The nominalist can still talk about “algorithms”, understanding them
as computer programs. Ask yourself whether a nominalist can still talk about numbers,
understood as numerals: After all, there are infinitely many numbers, but only finitely
many numerals.)

The second way that a program is more concrete than an algorithm is that a pro-
gram is more detailed. Where an algorithm might simply specify how to perform a

500CHAPTER 12. ALGORITHMS, PROGRAMS, SOFTWARE, AND HARDWARE

Quicksort (https://en.wikipedia.org/wiki/Quicksort), a Quicksort program for a partic-
ular computer would have to spell out the details of how that sort would be physcially
implemented in that computer. (We’ll have more to say about this when we discuss
implementation in Chapter 14.)

In the early days of computers, programs were not typically expressed in program-
ming languages; rather they were “hardwired” into the computer (perhaps certain phys-
ical switches were set in certain ways). These programs were physical parts of the com-
puter’s hardware, not texts. The program could be changed by re-wiring the computer
(perhaps by re-setting the switches). Yet computer programs are typically considered
to be “software”, not “hardware”, so was such wiring (or switch-setting) a computer
program?

And what about a program written on a piece of paper? Does it differ from the very
same program written on a computer file? The former just sits there doing nothing. So
does the latter, but the latter can be used as input to other programs on the computer
that will use the information in the program to “set the switches” so that the computer
can execute the program. But is the medium on which the program is written the only
difference between these two programs?

Further Reading:
Gemignani 1981 is a good survey of the issues that arise when trying to say what a computer
program is. Haigh and Priestley 2016 is an interesting history of both programming and the term
‘program’, arguing that Ada Lovelace was probably not the first computer programmer and that
programming computers originally had a lot in common with concert “programming” or radio
“programs”.

12.3 What Is a Program and Its Relation to Algorithms?
In §7.4.1, we saw that a function defined extensionally as a set of input-output pairs sat-
isfying the same-input/same-output constraint could be “implemented”—made more
precise or more explicit—by many different functions defined intensionally by a rule,
each of which is a description of the relationship between the input and the out-
put. Thus, for example, the function f = {(0,0),(1,3),(2,6),(3,9), . . .} can be im-
plemented by the rule f1(x) = 3x or by the rule f2(x) = x+ x+ x, etc.

We also saw that a rule could be implemented by many different algorithms, each
of which spells out the intermediate steps that compute the output according to the rule.
Thus, for example, the rule f1 could be computed by either of the following algorithms:

Algorithm A1
f1(x) Algorithm A2

f1(x)
begin begin

f1 := 3; f1 := x;
f1 := f1 ∗ x f1 := 3∗ f1

end. end.

12.3. WHAT IS A PROGRAM AND ITS RELATION TO ALGORITHMS? 501

And the rule f2 could be computed by either of these algorithms:

Algorithm A1
f2(x) Algorithm A2

f2(x)
begin begin

f2 := x+ x; f2 := x;
f2 := f2 + x f2 := f2 + x;

end. f2 := f2 + x
end.

And so on. Thus, our original function f could be computed by any one of those four
algorithms, among infinitely many others.

One way to consider the relationship between algorithms and programs is to con-
tinue this chain of implementations: An algorithm can be implemented by a computer
program written in a high-level computer-programming language. That program can
then be implemented in assembly language (which is computer-specific, and provides
more detail). The assembly-language program, in turn, can be implemented in ma-
chine language. And, finally, the machine-language program can be implemented in
hardware by “hardwiring” a computer—or, in more modern terminology, by using a
chip designed to perform that function. Arguably, the static, hardwired program is im-
plemented by the dynamic process that is created when the computer executes “the”
program. (A nice description for readers who are not computer scientists can be found
in Colburn 1999, pp. 6–9.)

Both algorithms and programs are normally considered to be “software”, and phys-
ical implementations of them in a computer are normally considered to be “hardware”.
But what exactly is software, and how can it be distinguished from hardware? Many
authors use ‘program’ and ‘software’ as synonyms. But if we view a program as an im-
plementation of an algorithm (in some medium such as language or the switch settings
of a computer), and if we view software as contrasted with hardware, it’s not obvious
that programs and software are exactly the same thing. Programs can be expressed on
paper in a programming language, which seems like software. But they can also be
hardwired in a physical computer, which seems like hardware. And software is not
usually defined in terms of algorithms.

Amnon H. Eden (2005) offers three ways to think about what a computer program
is. The first is as what C.A.R. Hoare (1986, p. 115) called “mathematical expressions”.
This suggests that (at least some kinds of) software are abstract, mathematical entities
(or linguistic expressions thereof, perhaps more along the lines of numerals than of
numbers). An example of the algorithm-program relationship that is along the lines of
the number-numeral relationship is offered by Stewart Shapiro: When trying to study
a dynamic process mathematically,

It is common practice in mathematics . . . [to associate] a class of (static) mathe-
matical objects with the process in question and then ‘transferring’ results about
the mathematical objects to the processes. In mathematical logic, for example, a
process of deductive reasoning is studied through the use of formal deductions; in
mathematical physics, the movement of particles is studied by means of an asso-
ciated class of curves in geometrical space The technique employed in

502CHAPTER 12. ALGORITHMS, PROGRAMS, SOFTWARE, AND HARDWARE

the theory of computability is to associate an algorithm with a written set of in-
structions for computation, usually in a formal language, and to study the class of
algorithmic descriptions syntactically. (Stewart Shapiro 1983, p. 204)

But Eden’s view is a bit different: His idea is that programs themselves are mathemat-
ical objects capable of being studied mathematically. We will return to this theme in
Chapter 16, when we look at ways to mathematically verify programs.

Eden’s second way to think about programs is as a “natural kind”. (We discussed
natural kinds in §3.3.3.) Computer programs exist, so we should study them as we find
them in nature, so to speak. We can try to categorize them, identify their properties,
determine their relative merits, and so on.

The third way is “as an engineered artefact”.1 Whereas the study of programs as
natural kinds is more or less descriptive, the study of them as engineered artifacts is
“normative”: We should try to specify ways in which programs can be designed so as
to be more efficient, more reliable, etc. (We’ll return to this, too, in Chapter 16.)

Finally, Eden offers a fourth way: “as a cognitive artefact: Software is conceived
and designed at a level of abstraction higher than the programming language”. But it is
not clear what he means by that: Does it mean that software is more like an algorithm
than a program? Or perhaps it is something even more abstract, like a specification
for an algorithm (as we discussed in connection with Beth Preston’s views, in §10.4.2).
We’ll come back to this idea in §12.4.2.

Further Reading:
For more on Eden’s views, see Eden 2007; Eden and Turner 2007b; Turner and Eden 2007b.
On the idea that some kinds of software, in particular, computer programs (and the activity of
programming), are mathematical in nature, see Scherlis and Scott 1983 and our earlier discussion
of CS as mathematics in §3.9.1.

12.4 What Is Software and Its Relation to Programs
and to Hardware?

12.4.1 Etymology of ‘Software’
The earliest use of the word ‘software’ in its modern sense has been traced back to the
mathematician John W. Tukey (1958, p. 2):

Today the “software” comprising the carefully planned interpretive routines, com-
pilers, and other aspects of automative [sic] programming are at least as important
to the modern electronic calculator as its “hardware” of tubes, transistors, wires,
tapes and the like.

But the word is older than Tukey’s use of it: The earliest cited use (in 1782, according
to the OED) is for textiles and fabrics—literally “soft wares”. A later use, dating to
1850, equated it with “vegetable and animal matters—everything that will decompose”

1That’s the British spelling of ‘artifact’.

12.4. WHAT IS SOFTWARE AND ITS RELATION TO PROGRAMS AND TO HARDWARE?503

in the realm of “rubbish-tip pickers” (Fred R. Shapiro 2000, p. 69).2 And two years
before Tukey’s paper, Richard B. Carhart (1956, p. 149) equated software with the
people who operate a computer system (where the computer system was identified as
the hardware); programs (or other modern notions of software) were not mentioned.

Further Reading:
For more information on the history of the word, see http://www.oed.com/view/Entry/183938;
Fred R. Shapiro 2000; Mahoney 2011, p. 238, note 20; and http://www.historyofinformation.
com/expanded.php?id=936. Mahoney 2011, Ch. 13 (“Extracts from Software as Science—
Science as Software”), discusses the history of software; the section titled “Extract 3: Software
as Science” is especially interesting.

12.4.2 Software and Music
Is Bach’s written score to the Art of the Fugue, perhaps with a human interpreter
thrown in, the software of an organ?
—Peter Suber (1988, p. 90)

Tukey’s use of the term strongly suggests that the things that count as software are
more abstract than the things that count as hardware. Using a concept very similar to
Eden’s “cognitive artifact”, Nurbay Irmak (2012) argues that software is an “abstract
artifact”, where an “artifact . . . is an intentional product of human activity” (pp. 55–56)
and an “abstract” object is one that is “non-spatial” but that “may or may not have some
temporal properties” (p. 56). Irmak likens software to another abstract (or cognitive?)
artifact: musical works (§2, pp. 65ff). There are close similarities. For instance, a
Turing Machine (or any hardwired computer that can perform only one task) is like a
music box that can play only one tune, whereas a player piano is like a universal Turing
Machine, capable of playing any tune encoded on its “piano roll”.

One difference between software and music that Irmak points out concerns “a
change or a revision on a musical work once composed” (p. 67). This raises some
interesting questions: How should musical adaptations or jazzy versions of a piece of
music be characterized? What about different player’s interpretations? One pianist’s
version of, say, Bach’s Goldberg Variations will sound very different from another’s,
yet, presumably, they are using the same “software”. Are there analogies to these with
respect to computer software? And we looked at the relationships between software
and improvisational music in §10.4.2. (In addition, problems about small changes in
software seem analogous to issues of personal identity through time.)

Irmak (2012, p. 68, my italics) says, “the idea that software and musical works
are created is . . . central to our beliefs”. Perhaps, but here there are similarities with
issues in the philosophy of mathematics: Are theorems or proofs similarly “created”?
“Mathematical Platonism” is a view in the philosophy of mathematics (championed by
Gödel) that mathematical entities are mind-independent (Linnebo, 2018). So, should
we take a mathematically Platonic attitude towards all of these kinds of things, and

2Insofar as decomposition is a form of changeability, this is, as we will see in §12.4.4.1.3, below, consis-
tent with Moor’s definition of ‘software’!

504CHAPTER 12. ALGORITHMS, PROGRAMS, SOFTWARE, AND HARDWARE

revise our ordinary view that computer software and musical works are created in favor
of a view that they are discovered? (The philosopher John Stuart Mill is alleged to
have been depressed when he learned that there were only a finite number of possible
combinations of notes, hence only a finite number of possible musical compositions
(https://philosophynow.org/issues/55/Birthday Special John Stuart Mill.)

Digression and Further Reading:
There are other interesting relationships between software and art. Bond 2005, p. 123, says:
“A programming language is a language after all, albeit a hightly constrained one. As such,
it is a perfect medium for the poet comfortable with other highly constrained poetic forms
like the sonnet or haiku”. On the literary value of programs, see especially Knuth 1984
on “literate programming”. See also Schneider 2007; Chandra 2014, reviewed in Gleick
2014; and Zeke Turner 2015 (on the first art auction of computer code). For some exam-
ples of “aesthetic” or “playful” programs, see (1) “Most Adaptable Programs” (1991, 1996),
http://www2.latech.edu/∼acm/helloworld/multilang.html (two examples of programs that can be
compiled and run in several different programming-language systems, as if there were a sentence
that was grammatical and meaningful in both English and French—is there such a sentence?) and
(2) “dodsond1”, a text-to-“Pig Latin” translator (12th International Obfuscated C Code Contest,
1995, http://www.ioccc.org/1995/dodsond1.c)—which must be seen to be believed! (For more
examples, see http://www.ioccc.org/years-spoiler.html.)

12.4.3 The Dual Nature of Programs
Our first main issue concerns the dual nature of programs: They can be considered to
be both text and machine (or mechanism), both software and hardware. To clarify this
dual nature, consider this problem:

. . . Bruce Schneier authored a book entitled Applied Cryptography, which dis-
cusses many commonly used ciphers and included source code for a number of
algorithms. The State Department decided that the book was freely exportable be-
cause it had been openly published but refused permission for export of a floppy
disk containing the same source code printed in the book. The book’s appendices
on disk are apparently munitions legally indistinguishable from a cluster bomb or
laser-guided missile. . . . [The] disk cannot legally leave the country, even though
the original book has long since passed overseas and all the code in it is available
on the Internet. (Wallich, 1997, p. 42)3

How can a program written on paper be considered a different thing from the very same
program “written” on a floppy disk? What if the paper that the program was written on
was Hayes’s “magic paper” (discussed in §9.6)? But isn’t that similar to what a floppy
disk is, at least, when it is being “read” by a computer?

Is the machine-table program of a Turing Machine software, or is it hardware? It
certainly seems to be hardwired. If you think that it is a kind of category mistake to
talk about whether an abstract, mathematical entity such as a Turing Machine can have

3The case is discussed at length in Colburn 1999, 2000.

12.4. WHAT IS SOFTWARE AND ITS RELATION TO PROGRAMS AND TO HARDWARE?505

software or hardware, then consider this: Suppose you have a physical implementation
of a Turing Machine: a hardwired, single-purpose, physical computer that (let’s say)
does nothing but accept two integers as input and produces their sum as output. Is the
program that runs this adder software or hardware? Because the machine table of such
a (physical implementation of a) Turing Machine is not written down anywhere, but
is part of the (physical) mechanism of the machine, it certainly seems to be more like
hardware than software.

In a universal Turing Machine, is its machine table (that is, its fetch-execute cycle)
software, or hardware? And what about the program that is stored on its tape? By the
logic of the previous paragraph, its fetch-execute machine table would be hardware,
and its stored program would be software. Again, if you prefer to limit the discussion
to physical computers, then consider a smartphone, one of whose apps is a calculator
that can add two integers. Not only can the calculator do other mathematical operations,
the smartphone itself can do many other things (play music, take pictures, make phone
calls, etc.), and it can download new apps that will allow it to do many other things.
So it can be considered to be a physical implementation of a universal Turing Machine.
By our previous reasoning, the program that is the smartphone’s adder (calculator) is
software, and the program that allows the smartphone to do all of the above is hardware.

12.4.4 Three Theories of Software
In this section, we will look at what three philosophers have had to say about software:
James H. Moor (1978) argues that software is changeable. Peter Suber (1988) argues
that it is pure syntax. And Timothy Colburn (1999) argues that it is a concrete abstrac-
tion. Keep in mind that they may be assuming that software and computer programs
are the same things.

12.4.4.1 Moor’s Theory of the Nature of Software

12.4.4.1.1 Levels of Understanding. For very many phenomena, a single entity
can be viewed from multiple perspectives (sometimes called “levels” or “stances”).
According to Moor (1978, p. 213), both computers and computer programs “can be
understood on two levels”: They can be understood as physical objects, subject to the
laws of physics, electronics, and so on. A computer disk containing a program would
be a clear example of this level. But they can also be understood on a symbolic level:
A computer can be considered as a calculating device, and a computer program can be
considered as a set of instructions. The text of the computer program that is engraved
on the disk would be a clear example of this level.

Moor’s two levels—the physical and the symbolic—are close to what Daniel C.
Dennett (1971) calls the physical and design “stances”. Dennett suggested that a chess-
playing computer or its computer program can be understood in three different ways:

• From the physical stance, its behavior can be predicted or explained on the basis
of its physical construction together with physical laws. Thus, we might say that
it made (or failed to make) a certain move because logic gates #5, #7, and #8
were open, or because transistor #41 was defective.

506CHAPTER 12. ALGORITHMS, PROGRAMS, SOFTWARE, AND HARDWARE

• From the design stance, its behavior can be predicted or explained on the basis
of information or assumptions about how it was designed or how it is expected to
behave, assuming that it was designed to behave that way and isn’t malfunction-
ing. Thus, we might say that it made (or failed to make) a certain move because
line #73 of its program has an if-then-else statement with an infinite loop.

• From the intentional stance, its behavior can be predicted or explained on the
basis of the language of “folk psychology”: ordinary people’s informal (and not
necessarily scientific) theories of why people behave the way they do, expressed
in the language of beliefs, desires, and intentions. For instance, I might explain
your behavior by saying that (a) you desired a piece of chocolate, (b) you be-
lieved that someone would give you chocolate if you asked them for it, so (c) you
formed the intention of asking me for some chocolate. Similarly, we might say
that the chess-playing computer made a certain move because (a) it desired to put
my king in check, (b) it believed that moving its knight to a certain square would
put my king in check, and so (c) it formed the intention of moving its knight to
that position.

Each of these “stances” has different advantages for dealing with the chess-playing
computer: If the computer is physically broken, then the physical stance can help us
repair it. If the computer is playing poorly, then the design stance can help us debug
its program. If I am playing chess against the computer, then the intentional stance can
help me figure out a way to beat it.

Further Reading:
For more on the intentional stance, see Dennett 1987, 2009b, and Dennett 2013a, Ch. 18. Miller
2004 contains some interesting follow-ups from the perspective of CS to Dennett’s theory of
different “stances”.

If you are uneasy about the intentional stance’s use of psychological terms to describe comput-
ers, you might treat the terms ‘desired’, ‘believed’, and ‘formed the intention’ as metaphorical
(Lakoff and Johnson, 1980a). We’ll return to this idea in §19.4.3, but see also Dennett 2013a,
Chs. 18, 21, and the discussion of “levels of description” in Newell 1980, §6. One major dif-
ference between Newell and Dennett is that the former holds that “these levels of description do
not exist just in the eye of the beholder, but have a reality in . . . the real world” (Newell, 1980,
p. 173), whereas Dennett (1981, p. 52) says this:

Intentional system theory deals just with the performance specifiations of believers
while remaining silent on how the systems are to be implemented.

See also Dennett 1981, p. 59, where he talks about “realizations or embodiments of a Turing
machine”. We’ll return to implementation in Chapter 14. Figdor 2017 argues that (some of)
these uses are literally true.

12.4. WHAT IS SOFTWARE AND ITS RELATION TO PROGRAMS AND TO HARDWARE?507

12.4.4.1.2 Moor’s Definition of ‘Program’ Moor offers a definition of ‘computer
program’ that is intended to be neutral with respect to the different stances of the
software-hardware duality:

a computer program is a set of instructions which a computer can follow (or at least
there is an acknowledged effective procedure for putting them into a form which
the computer can follow) to perform an activity. (Moor, 1978, p. 214)

Let’s make this a bit more explicit, in order to highlight its principal features:

Definition M1:
Let C be a computer.
Let S be a set of instructions.
Then S is a computer program for C =de f

1. there is an effective procedure for putting S in a form . . .
2. . . . that C can “follow” . . .
3. . . . in order to perform an activity.

We could be even more explicit:

Definition M2:
Let C be a computer.
Let S be a set of instructions.
Let A be an activity.
Then S is a computer program for C to do A =de f

1. there is an effective procedure for putting S in a form . . .
2. . . . that C can “follow” . . .
3. . . . in order to perform A.

Definition M2 makes the “activity” A a bit more perspicuous. In §7.5.3.2, we briefly
looked at the role of an algorithm’s purpose, and we will examine it in more detail
beginning in §17.5. But, for now, it will be easier to focus on Definition 1.

On that definition, being a computer program is not simply a property of some
set of instructions. Rather, it is a binary relation between a set of instructions and a
computer. (On Definition M2, it is a ternary relation among a set of instructions, a
computer, and an activity. But here I just want to focus on the role of the computer,
which is why we’re just going to consider Definition M1.) As a binary relation, a set
of instructions that is a computer program for one computer might not be a computer
program for a different computer, perhaps because the second one lacks an effective
procedure for knowing how to follow it: One computer’s program might be another’s
noise. For instance, the Microsoft Word program that is written for an iMac computer
running MacOSX differs from the Microsoft Word program that is written for a PC
running Windows, because the underlying computers use different operating systems
and different machine languages. This would be so even if the two programs’ “look
and feel” (that is, what the user sees on the screen and how the user interacts with the
program) were identical.

There are some questions we can ask about Moor’s definition:

508CHAPTER 12. ALGORITHMS, PROGRAMS, SOFTWARE, AND HARDWARE

12.4.4.1.2.1 Instructions. What are the instructions? Presumably, they must be
algorithmic, though Moor does not explicitly say so. Is the set of instructions physical,
that is, hardwired? Or are the instructions written in some language? Could they be
drawn, instead—perhaps as a flowchart? Could they be spoken? Here, Moor’s answer
seems to be that it doesn’t matter, as long as there is a way for the computer to “in-
terpret” or “understand” the instructions and thus carry them out. (In §12.4.5, we will
see that Suber makes a similar point.) Importantly, the “way” that the computer “inter-
prets” the instructions must itself be a computable function (“an effective procedure for
putting them into a form which the computer can follow”). Otherwise, it might require
some kind of “built-in”, non-computable method of “understanding” what it is doing.

Terminological Digression:
When I say that the computer has to “interpret” the instructions, I simply mean that the com-
puter has, somehow, to be able to convert the symbols that are part of the program into actions
that it performs on its “switches”. This is different from the distinction in CS between “in-
terpreted” and “compiled” programs. A “compiled” program is translated into the computer’s
machine language all at once, and then the computer executes the machine-language version of
the program, in much the same way that an entire book might be translated from one language to
another. By contrast, an “interpreted” program is translated step by step into the computer’s ma-
chine language, and the computer executes each step before translating the next one, in much the
same way that a UN “simultaneous translator” translates a speech sentence by sentence while the
speaker is giving it. In both cases, the computer is “interpreting”—understanding—the instruc-
tions in the sense in which I used that word in the previous paragraph. That sense of ‘interpret’
is closer to the one in the cartoon in Figure 12.2.

Figure 12.2: http://zitscomics.com/comics/march-14-2009/, c©2009, Zits Partnership

12.4. WHAT IS SOFTWARE AND ITS RELATION TO PROGRAMS AND TO HARDWARE?509

12.4.4.1.2.2 “Following Instructions”. Moor says that computers “follow in-
structions”. And we saw in §9.9 that Stuart C. Shapiro defined a computer as “a
general-purpose procedure-following machine (Shapiro, 2001, p. 2, my italics). But
does a computer “follow” instructions? Or does it merely behave in accordance with
them?

It is common to differentiate between satisfying a rule and following a rule (cf.
Searle (1980); Wittgenstein (1958, §§185–242)). To satisfy a rule is simply to
behave in such a way that fits the description of the rule—merely to conform be-
haviour to the rule. It is in this sense that the motion of the planets satisfy [sic] the
rules embodied by classical physics. On the other hand, following a rule implies a
causal link between the rule and some behaviour, and moreover that the rule is an
intentional object. . . . [M]erely satisfying a rule is not sufficient for following the
rule. (Chow, 2015, p. 1000)

Compare the human use of natural language: When we speak or write, do we “follow”
the rules of grammar, in the sense of consulting them (even if unconsciously) before
generating our speech or writing? Or does it make more sense to say that the rules of
grammar merely describe our linguistic behavior? We probably do both, though the
former predominates:

We learn from psycholinguistics that . . . [understanding language] involves sub-
conscious, subpersonal, automatic, extraordinarily fast processing [that is, what
we referred to as “System 1” in §3.6.1], and that is mostly all that it involves
Where understanding is difficult—for example, with multiple center embedding
[“A mouse that a cat that a dog chased caught ate cheese”]—it may be helped
by “central processor,” relatively slow reasoning, leading to a conscious judgment
about . . . [an] utterance. But such high-level processes are a very small part of
language understanding. (Devitt and Porot, 2018, p. 9, italics in original)

Note, however, that a computer programmed to understand and generate natural lan-
guage might, in fact, speak or write by explicitly following rules of grammar that
are encoded in its suite of natural-language-processing programs (Stuart C. Shapiro
1989; Shapiro and Rapaport 1991, 1995; Jurafsky and Martin 2000). We have also
seen a similar question when we considered whether the solar system “follows” Ke-
pler’s laws of planetary motion or whether the planets’ movements are merely best
described by Kepler’s laws (§9.8.2). As we have seen, Turing Machines—as models
of hardwired, single-purpose computers—merely behave in accordance with their ma-
chine table. They don’t “consult” those “instructions” and then “follow” them. On the
other hand, universal Turing Machines—as models of programmable, general-purpose
computers—can be said to “follow” instructions. Behaving in accordance with their
fetch-execute machine table, they do “consult” the instructions stored on their tape,
and follow them. It might be useful to have a neutral term for what it is that a com-
puter does when it is doing its processing, whether it is a Turing Machine or a universal
Turing Machine; perhaps ‘execute’ could be used for this purpose. So, we could say
that a Turing Machine executes the instructions in its machine table, but doesn’t follow
them, whereas a universal Turing Machine executes the fetch-execute cycle and thereby
follows the program encoded on its tape.

510CHAPTER 12. ALGORITHMS, PROGRAMS, SOFTWARE, AND HARDWARE

Question for the Reader:
Suppose that a universal Turing Machine (or your Mac or PC) is running a program that adds two
integers. What is it doing? Is it adding two integers (that is, is it executing the addition program
stored on its tape)? Or is it carrying out a fetch-execute cycle? Or is it doing both? Or is it doing
one by doing the other? And what exactly does it mean to do one thing “by” doing another?

Searle (1969, §2.5) identifies a related distinction concerning the instructions or
rules themselves: Roughly, constitutive rules determine or define the behavior of some
system, whereas regulative rules “regulate antecedently or independently existing forms
of behavior” (p. 33). For example, the rules of grammar that linguists discover about
the natural languages that we speak are constitutive rules; they are descriptive of the
“innate” rules that we “execute” or use unconsciously, such as “Declarative sentences
of English consist of a noun phrase followed by a verb phrase.” The explicit rules
of grammar that we have to learn in school (or that “grammar Nazis” insist that we
“follow”) are regulative rules; they recommend (or insist upon) a way to do things—
for example, “Prepositions should not be used to end sentences with.” In the theory
of computation, the program for a Turing Machine is a constitutive rule. Because the
program for a universal Turing Machine is its fetch-execute cycle, that program is a
constitutive rule; but the program (the software) inscribed on its tape that a universal
Turing Machine is “following” is a regulative rule.

Further Reading:
Dennett (1995, pp. 372–373) discusses “two profoundly different ways of building dams: the
way beavers do and the way we do.” Recast in the present terminology, beavers merely behave
in accordance with a genetic algorithm, whereas humans follow explicit engineering procedures.

12.4.4.1.3 Moor’s Definitions of Software and Hardware. Next, Moor distin-
guishes between software and hardware. The informal and traditional distinction is
that a computer program is “software” and a computer is “hardware”. But this raises
the problem of whether the “wiring” in a hardwired computer is hardware (because it
involves physical wires) or software (because it is the computer’s program). And, of
course, it gives rise to the problem mentioned by Wallich, cited in §12.4.3. So, Moor
suggests a better set of definitions:

For a given person and computer system the software will be those programs which
can be run on the computer system and which contain instructions the person can
change, and the hardware will be that part of the computer system which is not
software. (Moor, 1978, p. 215)

In line with this, Frank Vahid (2003, p. 27, original italics, my boldface) notes that, in
the early days of computing, “the frequently changing programs, or software, became
distinguished from the unchanging hardware on which they ran.”

12.4. WHAT IS SOFTWARE AND ITS RELATION TO PROGRAMS AND TO HARDWARE?511

Again, let’s make this a bit more explicit, in order to highlight its features:

Definition M3:
Let C be a computer.
Let P be a person (perhaps C’s programmer).
Let S be some entity (possibly a part of C).
Then S is software for C and P =de f

1. S is a computer program for C,4 and

2. S is changeable by P.

and H is hardware for C and P =de f

1. H is (a physical) part of C, and

2. H is not software for C and P.

Note that being software is a ternary relation among three entities: a computer program,
a person, and a computer.5 It is not a simple property such that something either is, or
else it isn’t, software. In other words, software is in the eye of the beholder: One
person’s or one computer’s software might be another’s hardware!

And a physical part of a computer will be hardware for a person and that computer
if either it is not a computer program for that computer or it is not changeable by that
person.

These definitions seem to allow for the following two possibilities: First, suppose
that there is a computer program J written in Java that runs on my computer. Even if
J is changeable by the programmer who wrote it or the lab technician who operates
the computer—and therefore software for that person—it will be hardware for me if I
don’t know Java or don’t have access to the program so that I could change it.

And, second, if a programmer can “rewire” a computer (or directly set its “switches”),
then that computer’s program is software, even if it is a physical part of the computer:
Software can be hardware!

Later writers have made similar observations: Vahid (2003, pp. 27, 31, 32) suggests
that “the processors, memories, and buses—what we previously considered a system’s
unchangeable hardware—can actually be quite soft” (p. 32). What he seems to mean by
this is that embedded systems—“hidden computing systems [that] drive the electronic
products around us” (p. 27)—can be swapped for others in the larger systems that
they are components of, thus becoming “changeable” in much the way that software is
normally considered to be. But this seems to just be the same as the old rewiring of the
early days of programming (except that, instead of changing the wires or switches, it is
entire, but miniaturized, computers that are changed).

And Piccinini (2008, §§3.1.1–3.1.2, p. 40) distinguishes between “hard programma-
bility” and “soft programmability”: The former refers to “the mechanical modification
of . . . [a computer’s] functional organization”; the latter refers to “modification in-
volv[ing] the supply of appropriately arranged digits (instructions)” “without manually

4This would have to be modified to include activity A if we want to use Definition M2 for ‘computer
program’.

5Or it might be a quaternary relation among four things, if we include activity A.

512CHAPTER 12. ALGORITHMS, PROGRAMS, SOFTWARE, AND HARDWARE

rewiring any of the components”. This can be viewed either as a further breakdown of
software into these two kinds, or else as limiting the changeability to “soft” change-
ability.

On Moor’s definition, the machine table of a Turing Machine—even though we
think of it as the Turing Machine’s “program”—is part of its hardware, because it is
not changeable: Were it to be changed (somehow), we would have a different Turing
Machine; its machine table is an “essential” property of the Turing Machine (in the
sense that we discussed in §§2.8 and 9.5.4). It is probably best to think of a Turing
Machine’s machine table, not as a program written in a Turing Machine programming
language such as we used in Chapter 8, but as the way that the “gears” of the Turing
Machine are arranged so that it behaves the way that it does.

This is what Samuel (1953, pp. 1226–1227) called “fixed programming”:

By fixed programming we mean the kind of programming which controls your
automatic dishwasher for example. Here the sequence of operations is fixed and
built into the wiring of the control or sequencing unit. Once started, the dishwasher
will proceed through a regular series of operations, washing, rinsing and drying.
Of course, if one wished, one could change the wiring to alter the program.

Note, however, that modern dishwashers allow for some “programming” by pushbut-
tons that can alter its operations. But perhaps this is more like interactive computing,
as we discussed in §11.4.3.

For the universal Turing Machine’s software (the program stored on its tape), Samuel
has this analogy:

Suppose you wished to give your assistant a large number of instructions for
manual computations all in advance. You could do this by supplying him with
a prepared set of instructions, or you could dictate the instructions and have him
write them down, perhaps at the top of the same sheet of paper on which he is later
to perform the computations. Two different situations are here involved, although
at first glance the distinction appears trivial. In the first case the instructions are
stored on a separate instruction form, while in the second case they are stored by
the same medium which is used for data. Both situations are found to exist in
computing machines. The first case is exemplified by certain machines which use
special program tapes. The second situation is becoming quite common in the
newer machines and is the case usually meant when the term “stored program” is
used. . . .

We can now go back and consider one property of the “stored program” method
of operation which is rather unique and which really must be understood to appre-
ciate the full value of such a concept. This property is that of being able to operate
on the instructions themselves just as if they were ordinary data. This means that
the entire course of a computation can be altered, including the operations them-
selves, the choice of data on which the operations are to be performed, and the
location at which the results are to be stored, and this can all be done on the basis
of results obtained during the course of the calculations through the use of condi-
tional transfer instructions. (Samuel, 1953, pp. 1227–1228)

Shades of Hayes’s “magic paper”! (And for a humorous comment on this, see
Figure 12.3.)

12.4. WHAT IS SOFTWARE AND ITS RELATION TO PROGRAMS AND TO HARDWARE?513

Figure 12.3: http://dilbert.com/strip/2011-08-04, c©2011, Scott Adams Inc.

12.4.5 Suber’s Theory of the Nature of Software
Peter Suber (1988, p. 94) says that he will “use ‘program’ and ‘software’ interchange-
ably”. This is unfortunate, because it seems to beg the question about whether all
programs are software. In what follows, we will ignore this (up to a point, as you
will see), and simply try to understand what he means by ‘software’. His definition is
straightforward and rather different from Moor’s: “software is pattern per se, or syn-
tactical form” (Suber, 1988, online abstract). What does he mean by this, and why does
he think that it is true? Here is his argument:

1. “Software patterns . . . are essentially expressed as arrays of symbols—or texts”.
(Suber, 1988, §2 (“Digital and Analog Patterns”), p. 91)

That is, all software is a text. He notes that this is a generalization of
viewing them as “expressed in binary codes”, and he calls such texts
“digital patterns”. If we think of software as a computer program
written in a programming language, or even expressed as arrays of
‘0’s and ‘1’s, this is plausible. But what about hardwired programs?
He might say that they are not software. But he might also say that,
because there is no significant difference between an array of ‘0’s and
‘1’s and an array of switches in one of two positions, even such a
hardwired program is a text. (But see premise 7, below.)

2. “The important feature of digital patterns here is . . . their formal articulation of
parts” (Suber, 1988, §2, p. 91)

By ‘formal articulation’, I will assume that he means “syntax”. So,
all texts have a syntax. But do they? An array of ‘0’s and ‘1’s that
corresponds to the binary expression of the decimal part of a real
number arguably has a syntax. But what about a random array? Of
course, if the syntax of an array is just the properties and relations of
its elements, then even a random array has a syntax.

514CHAPTER 12. ALGORITHMS, PROGRAMS, SOFTWARE, AND HARDWARE

3. “Each joint of articulation carries information for any machine designed to read
it.” (Suber, 1988, §2, p. 91)

So, the syntax of digital patterns can convey information for appro-
priate readers. This is close to clause 2 of Moor’s Definition M1:
Computers have to be able to “follow” their programs, and, to do
that, a computer must be able to read its program.

4. The Noiseless Principle: “some order may be made of any set of data points;
every formal expression has at least one interpretation. . . . [N]o pattern is noise
to all possible machines and languages.”
(Suber, 1988, §3 (“First Formulation”), p. 94)

This seems to be equivalent to premise 3: If “every joint of articula-
tion carries information”, then “no pattern is noise”, and vice versa.

5. ∴ The executability of software is a function of its syntax, the language that it is
written in, and of the machine that runs it.
(Suber, 1988, §4 (“Executability”), especially p. 97)

This follows from the previous premises: All software is a text; each
text has a(t least one) syntax; each syntax has a(t least one) interpre-
tation. A machine designed to “understand” that syntax can execute
that software.

Suber hypothesizes that all software must be readable and exe-
cutable. Here, he is arguing that any text is executable given an ap-
propriate syntax for it and the right language and machine to interpret
that syntax.

6. Software is readable if and only if (1) it has a “physical representation . . . that
suits the machine that is to read it” and (2) it is “in ‘machine language’.”
(Suber, 1988, §5 (“Readability”), p. 98)

This seems to come down to the same thing as saying that there must
be a machine that is capable of reading it. Just as I can’t read some-
thing written in invisible ink and in Mandarin (because I can neither
see it nor parse it even if I could see it), so the machine has to be able
to “see” the text, and it has to be able to understand it. Perhaps this is
best taken as a definition of ‘readable’. In any case, it does not seem
to add anything over and above the previous conclusion.

7. The Sensible Principle: “any pattern can be physically embodied”.
(Suber, 1988, §5, p. 100)

So, even if hardwired programs are not “texts” (as we wondered in
premise 1), they are “physical embodiments” of texts.

8. The Digital Principle: Any “pattern”—that is, any text, including an analog
pattern—“can be reproduced by a digital pattern to an arbitrary degree of ac-
curacy”. (Suber, 1988, §6 (“Pattern Per Se Again”), p. 91)

12.4. WHAT IS SOFTWARE AND ITS RELATION TO PROGRAMS AND TO HARDWARE?515

9. ∴ Any text is readable. (Follows from the Sensible and the Digital Principles.)

10. ∴ Any text is executable. (Follows from line 5 and premise 6, clause (2).)

But you should ask yourself how a text that does not contain any in-
structions might be executable. ‘Instructions’ and ‘executable’ might
not be the best terms here. Some programming languages speak, in-
stead, of “functions” (Lisp) or “clauses” (Prolog) that are “evaluated”.
The question to be asked is how a text that is not an algorithm might
be “executable”.

11. ∴ Any text is software.

There are two things to note here. First, recall premise 1: All software
is text. Suber seems to have argued from that premise to its converse.
So “software” and “text” are the same thing. Second, you might
ask yourself how this relates to Searle’s claim that everything is a
computer!

Suber also notes that “software is portable”. That is, “one can run the same piece
on this machine and then on that machine” (Suber, 1988, §7 (“Liftability”), p. 103).
Moreover, because it is essentially unembodied text, software “can be ported from
one substratum to another. It is liftable” (Suber, 1988, §7, pp. 103–104). And it is
“alterable” (Suber, 1988, §8 (“The Softness of Software”), p. 105). These are what
distinguish it from hardware (Suber, 1988, §8). Alterability, of course, is what Moor
cites as the essence of software. For Suber, that seems to follow from its being “pattern
per se”.

Does Suber really mean that every text is software—even random bits or “noise”?
He claims that “software patterns do not carry their own meanings” (Suber, 1988, §6,
p. 103). In other words, they are purely formal syntax, meaningless marks, symbols
with no intrinsic meanings. If a computer can give meaning to a text, then it can read
and execute it, according to Suber. But can any text be given a meaning by some
computer? Yes, according to the Noiseless Principle.

We can summarize Suber’s argument as follows: Software is text. As such, it has
syntax, but no intrinsic semantics. For to be “meaningful”—readable and executable—
it has to be interpreted by something else (for example, a computer) that can ascribe
meaning to it (and that can execute its instructions). What about texts that are not
programs (or that are not intended to be programs)? Consider a text such as this book,
or random noise. If there is a device that can ascribe some meaning to such a text, then
it, too, is readable and has the potential to be executable. (But what woud it mean to
“execute” the chapter you are now reading?)

But texts need to be interpreted by a suitable computer: “They need only make a
fruitful match with another pattern (embodied in a machine) [which] we create” (Suber,
1988, §6, p. 103, my italics). So, software is pure syntax and needs another piece of
syntax to interpret it.

How can one piece of syntax “interpret” another? Recall from §9.5.1 that syntax
is the study of the properties of, and relations among, symbols or uninterpreted marks.

516CHAPTER 12. ALGORITHMS, PROGRAMS, SOFTWARE, AND HARDWARE

Roughly, semantics is the study of meaning, and—again, roughly—to say that a piece
of syntax has a meaning is to say that it is related to that meaning.6 On this view,
semantics is the study of the relations between two sets of entities: the syntactic objects
and their meanings. But the meanings have their own properties and relations; that is,
the meanings also have a syntax. So the syntax of the meanings can “interpret” the
syntax of the software.

This is not far from Moor’s definition: Both Moor and Suber require someone (or
something) to interpret the syntax. Could a hardwired program and a written program
both be software, perhaps because they have the same syntactic form? I think the
answer is ‘yes’. Here is a possible refinement: Software is a pattern that is readable
and executable by a machine. This is roughly Moor’s definition of computer program.
But, for Suber, all patterns are readable and executable. The bottom line is that Suber’s
notion of software is closer to Moor’s notion of computer program. The idea that
software is pure syntax is consistent with the claim of Tenenbaum and Augenstein
1981, p. 6, that information has no meaning; recall their statement cited in §3.8. We’ll
come back to this idea in §14.3.3.

12.4.6 Colburn’s Theory of the Nature of Software
Finally, Timothy R. Colburn (1999, 2000) argues that software is not “a machine made
out of text”. Thus, he would probably disagree with Hayes’s definition of a computer as
“magic paper”. Colburn says this because he believes that there is a difference between
software’s “medium of description” and its “medium of execution”. The former is the
text in a formal language (something relatively abstract). The latter consists of circuits
and semi-conductors (which are concrete). Consequently, Colburn says that software
is a “concrete abstraction”. But is this a single thing (a “concrete abstraction”) or two
things (a “medium of description” that is abstract and something else—a “medium of
execution”—that is concrete)?

Colburn borrows the phrase from the title of an introductory CS textbook (Hailperin
et al., 1999), which doesn’t define it. All that Hailperin et al. say is that abstractions
can be thought of “as actual concrete objects”, and they give as an example a word
processor, which they describe as an abstraction that is “merely [a] convenient way of
describing patterns of electrical activity” and a “thing that we can buy, sell, copy, and
use” (p. ix). Part of Colburn’s goal is to explicate this notion of a thing that can be both
abstract and concrete.

To do so, he offers several analogies to positions that philosophers have taken on the
mind-body problem (see §2.8), so we might call this the “abstract-program/concrete-
program problem”. These positions are illustrated in Figure 12.4.

Consider various theories of monism, views that there is only one kind of thing:
either minds or else brains, but not both. The view that there are only minds is called
‘idealism’, associated primarily with the philosopher George Berkeley. The view that
there are only brains is called ‘materialism’ (or sometimes ‘physicalism’). Similarly,
a monist with respect to software might hold that either software is abstract or else

6That’s a controversial claim among philosophers. Some philosophers deny the existence of things that
are meanings. Others would say that the meaning of a piece of syntax is the role that it plays in the language
that it is part of. We’ll discuss this further in §14.2.2.

12.4. WHAT IS SOFTWARE AND ITS RELATION TO PROGRAMS AND TO HARDWARE?517

Figure 12.4: Positions on the mind-body problem (Chisholm, 1974, p. 19),
c©1974, Prentice-Hall

518CHAPTER 12. ALGORITHMS, PROGRAMS, SOFTWARE, AND HARDWARE

it is concrete, but it cannot be both. No matter how strong the arguments for, say,
materialism might be as the best answer so far to the mind-body problem, monism as a
solution to the abstract-concrete problem fails to account for its dual nature (according
to Colburn).

So let’s consider various theories of dualism, views that there are both minds and
brains. In the mind-body problem, there are several versions of dualism, differing in
how they explain the relationship between minds and brains. The most famous version
is called ‘interactionism’, due to Descartes. This says that (1) there are minds (sub-
stances that think, but that are not physical, obeying only psychological laws); (2) there
are brains (substances that are physically extended in space and that obey only physical
and biological laws); and (3) minds and brains interact. The problem for interactionism
as a solution to the mind-body problem is that there is no good explanation of how they
interact. After all, one is physical and the other isn’t. So you can’t give a physical
explanation of how they would interact, because the laws of physics don’t apply to the
mind. And you can’t give a psychological explanation of how they interact, because
the laws of psychology don’t apply to the brain (according to Cartesian interactionism).
Similarly, according to Colburn, when applied to the abstract-concrete problem, an in-
teractionist perspective fails to account for the relation between abstractions and con-
crete things, presumably because the relations themselves are either abstract, in which
case they don’t apply to concrete things, or they are concrete and, so, don’t apply to
abstractions. (There is, however, a possible way out, which we will explore in depth in
Chapter 14, namely, perhaps the relationship between them is one of implementation,
or semantic interpretation, not unlike Suber’s theory.)

A theory intermediate between monism and dualism is called the ‘dual-aspect’ the-
ory, due to Spinoza. Here, instead of saying that there are two different kinds of “sub-
stance”, mental substance and physical substance, it is said that there is a single, more
fundamental kind of substance of which minds and brains are two different “aspects”.
(For Spinoza, this more fundamental substance—which he believed had more than
just the two aspects that we humans are cognizant of—was “nature”, which he iden-
tified with God.) As a solution to the abstract-concrete problem, Colburn points out
that we would need some way to characterize that more fundamental underlying “sub-
stance”, and he doesn’t think that any is forthcoming. Again, however, one alternative
possibility is to think of how a single abstraction can have multiple implementations.
Yet another alternative is a dual property view: Certain physical objects (in particular,
brains) can have both physical and psychological properties (Chalmers, 1996a).

Finally, another family of dualisms is known as ‘parallelism’: There are minds, and
there are brains; they are not identical (hence this is a dualistic theory); and they do not
interact. Rather, they operate in parallel, and so there is no puzzle about interaction.
One version of parallelism called ‘occasionalism’, says that God makes sure that, on
every “occasion” when there appears to be interaction, every mental event corresponds
to a parallel brain event (this keeps God awfully busy on very small matters!).

“Pre-established harmony”—which seems to be Colburn’s favored version—says
that God initially set things up so that minds and their brains work in parallel, much in
the way that two clocks can keep the same time, even though neither causally influences
the other. That way, God does not have to keep track of things once they have been set
in motion. For Colburn, this seems to mean that implementation of an algorithm as a

12.4. WHAT IS SOFTWARE AND ITS RELATION TO PROGRAMS AND TO HARDWARE?519

textual program parallels its implementation in the hardware of a physical computer:

For the abstract/concrete problem we can replace God by the programmer who, on
the one hand, by his [sic] casting of an algorithm in program text, describes a world
of multiplying matrices, or resizing windows, or even processor registers; but on
the other hand, by his act of typing, compiling, assembling, and link-loading, he
causes a sequence of physical state changes that electronically mirrors his abstract
world. (Colburn, 1999, p. 17, my italics)

He puts this slightly differently in Colburn 2000, p. 208 (my italics), where he
says that the “sequence of physical state changes . . . structurally matches his ab-
stract world”, and he adds that “the abstract world of the computer programmer can
be thought of as ticking along in preestablished synchrony with the microscopic phys-
ical events within the machine”. The idea that the textual program and the physical
state changes share a common structure is consistent with a view that a single abstrac-
tion can have two “parallel” implementations. But it is hard to imagine that the textual
program (or even the abstract algorithm) can “tick along”, because text—unlike the
physical events—is static, not dynamic: It doesn’t “tick”.

Question for the Reader:
Do you think that “pre-established harmony” explicates “concrete abstraction”?
Is the mind a “concrete abstraction”?

A more modern take on the mind-body problem (not considered by Colburn) is
“functionalism”. Roughly, this is the view that certain abilities or purposes of the brain
(“functions”, but not in the sense of input-output pairs) are mental and are describable
by the laws of psychology in addition to the laws of physics and biology (Putnam,
1960; Fodor, 1968; Levin, 2018). Rather than taking a position on the existence (or
“ontological status”) of something called “the mind”, functionalism holds that what
makes certain brain activity mental in addition to being physical is the role that it
plays—its “function”—in the overall activity of the brain or the person.

Question for the Reader:
What would a functional solution to the abstract-concrete problem look like?
Might we say that some hardware functions as a computer program?

Further Reading:
Duncan 2017 surveys Moor, Suber, and Colburn, but argues that a formal ontology is needed
before a useful distinction between hardware and software can be made, and that, on the Ba-
sic Formal Ontology (http://ifomis.uni-saarland.de/bfo/), “a piece of computational hardware is
an ontologically independent entity, whereas a software program is an ontologically dependent
entity.”

520CHAPTER 12. ALGORITHMS, PROGRAMS, SOFTWARE, AND HARDWARE

12.5 Summary
Algorithms—which are abstract—can be implemented as programs (that is, as texts
written in a computer-programming language). Programs, in turn, can be implemented
as part of the hardware of a computer. A given algorithm can be implemented differ-
ently in different programs, and a program can be implemented differently in different
computers. Both Suber’s and Colburn’s theories of software focus on this implemen-
tational aspect. Moor’s theory focuses on the changeability of software. Presumably,
the more abstract an entity is, the easier it is to change it. So the software-hardware
distinction may be more of a continuum than something with a sharp boundary. More-
over, you can’t really talk about a program or software by itself , but you have to bring
in the computer or other entity that interprets it: Programs and software are relational
notions.

We need to explore the notion of implementation in more detail, which we will
do in Chapter 14, but first we are going to consider another ontological puzzle that
arises from the dual nature of software, this time in the legal realm: Can programs be
copyrighted? Or should they be patented instead? After all, if a program is a written
text, then it can be copyrighted, but, if it is a machine, then it can be patented—yet
nothing can (legally) be both copyrighted and patented!

12.6. QUESTIONS FOR THE READER 521

12.6 Questions for the Reader
1. Turing’s work clearly showed the extensive interchangeability of hardware

and software in computing.
—Juris Hartmanis (1993, p. 11)

Tanenbaum 2006, p. 8, points out that hardware and software are “logically
equivalent” in the sense that anything doable in hardware is doable in software,
and vice versa. Similar or analogous cases of such logical equivalence of dis-
tinct things are Turing Machines, the lambda-calculus, and recursive functions.
Also, such an equivalent-but-different situation corresponds to the intensional-
extensional distinction: Two intensionally distinct things can be extensionally
identical.

How does this equivalence or “interchangeability” relate to Moor’s or Col-
burn’s definitions of software and hardware?

2. Academically and professionally, computer engineering took charge of the
hardware, while computer science concerned itself with the software
—Michael Sean Mahoney (2011, p. 108)

If software and hardware cannot easily be distinguished, does that mean that
neither can computer engineering and computer science?

3. Find a (short) article on the mind-body problem (for example, the Wikipedia
article at http://en.wikipedia.org/wiki/Mind-body problem). Replace all words
like ‘mind’, ‘mental’, etc., with words relating to ‘software’; and replace all
words like ‘body’, ‘brain’, etc., with words like ‘hardware’, ‘computer’, etc.
Discuss whether your new paraphrased article makes sense, and what this says
about the similarities (or differences) between the mind-body problem and the
software-hardware problem.7

4. Recall from §11.4.3.2 that Wadler (1997, pp. 240–241) said that “Interaction
is the mind-body problem of computing.” He was not referring to the kind of
interaction that Descartes’s dualism requires; rather, he was referring to comput-
ers that interact with the real world or with an oracle, such as we discussed in
Chapter 11.

Nevertheless, how do the various positions on the mind-body problem relate
to Wadler’s observation?

5. In line with Suber’s view that any text—even noise—is readable and executable,
consider the presentation in Denning and Martell 2015, p. 40, Fig. 3.3, of Shan-
non’s theory of the communication of information, which suggests that the en-
coding of a message is communicated along a channel to be decoded by a re-
ceiver. This is very similar to the idea of input being converted into output. Of
special interest is the idea that “noise is any disruption that alters the signal”.
Wouldn’t a computation performed on an input signal alter it? In that case, could

7Thanks to James Geller for this idea.

522CHAPTER 12. ALGORITHMS, PROGRAMS, SOFTWARE, AND HARDWARE

one consider such a computation to be noise? Or could one consider noise to be
a computation?

6. Recall the discussion in §12.4.2 on the relationship of software to music, art, and
literature.

What do you think Moor or Suber might say about it? Would Moor disagree?
After all, art is not usually changeable. Would Suber be more sympathetic? And
what about Colburn? Are any art forms “concrete abstractions”?

Chapter 13

Should Software Be
Copyrighted or Patented?

Version of 20 January 2020; DRAFT c© 2004–2020 by William J. Rapaport

Figure 13.1: https://www.cartoonstock.com/cartoonview.asp?catref=shrn153;
c©2010, American Scientist

523

524 CHAPTER 13. COPYRIGHT VS. PATENT

13.1 Readings:
1. Required:

(a) Newell, Allen (1985-1986), “The Models Are Broken, the Models Are Broken”,
University of Pittsburgh Law Review 47: 1023–1031, http://digitalcollections.library.
cmu.edu/awweb/awarchive?type=file&item=356219

• For follow-up (including links to commentary by Donald Knuth), see:
”Newell 1986: The Models Are Broken”,
https://web.archive.org/web/20120527101117/http://eupat.ffii.org/papers/uplr-newell86/
index.en.html

(b) Samuelson, Pamela; Davis, Randall; Kapor, Mitchell D.; & Reichman, J.H. (1994),
“A Manifesto Concerning the Legal Protection of Computer Programs”, Columbia
Law Review 94(8, December): 2308–2431, http://scholarship.law.duke.edu/cgi/viewcontent.
cgi?article=1783&context=faculty scholarship

• From a special issue of the Columbia Law Review on the legal protection of
computer programs. A summary version appears as Davis et al. 1996. Other
articles in that special issue elaborate on, or reply to, Samuelson et al. (1994).

• §1 is a good overview; §2 (especially §2.2) is also good, as are §5 and the
Conclusion section.

2. Recommended:

• PolR (2009), “An Explanation of Computation Theory for Lawyers”, Groklaw
(11 November), http://www.groklaw.net/article.php?story=20091111151305785,
http://www.groklaw.net/staticpages/index.php?page=20091110152507492,
and http://www.groklaw.net/pdf2/ComputationalTheoryforLawyers.pdf

– “Computers don’t work the way some legal documents and court precedents
say they do.”

– “The phrase ‘effective method’ is a term of art [in mathematics and philoso-
phy]. This term has nothing to do with the legal meaning of ‘effective’ and
‘method’. The fact that these two words also have a meaning in patent law is
a coincidence.”

13.2. INTRODUCTION 525

13.2 Introduction
We are trying to understand what algorithms, computer programs, and software are,
and how they are related to each other. One way to approach these questions is by
considering the legal issues of whether any of them can be copyrighted or patented.
The issue of whether software can or should be patented or copyrighted is not merely
an ontological issue. It is also, perhaps even more so, an economic issue (Galbi, 1971).
However, in this chapter, we are concerned more with the ontology of software than
with legal or economic issues in themselves.

One of the first questions is what kind of entity might be copyrighted or patented:

algorithms?
These seem to be abstract, mathematical entities. Can abstract, mathematical
entities—such as numbers, formulas, theorems, proofs, etc.—be copyrighted or
patented?

computer programs?
These seem to be “implementations” of algorithms, expressed in a programming
language. We have seen that programs might be analogous to numerals, whereas
algorithms might be analogous to numbers—can numerals be copyrighted or
patented?

programs written on paper?
These might seem to be “literary works”, like poems or novels, which can be
copyrighted but not patented. (Recall the discussion on software and art in
§12.4.2.)

programs implemented in hardware (that is, “machines”)?
If programs are linguistic implementations of algorithms, then are hardware im-
plementations of programs thereby implementations of implementations of algo-
rithms? And physical implementations might seem to be the kind of thing that is
patentable but not copyrightable.

software?
‘Software’ might be a neutral term covering both algorithms and programs, or
software might be a more controversial entity not necessarily indistinguishable
from certain kinds of hardware, as we saw in the previous chapter. But only the
former might be copyrightable, and only the latter might be patentable.

526 CHAPTER 13. COPYRIGHT VS. PATENT

Because ‘copyright’ and ‘patent’ are legal terms, we need to look at their “official”,
legal definitions. Note what these definitions say about computer programs, proce-
dures, methods, and processes. First, here is a lengthy excerpt from a definition of
‘copyright’ in an informational brochure published by the US Copyright Office:

Copyright is a form of protection provided by the laws of the United States[1] to
the authors of “original works of authorship” that are fixed in a tangible form of
expression. An original work of authorship is a work that is independently created
by a human author and possesses at least some minimal degree of creativity. A
work is “fixed” when it is captured (either by or under the authority of an author) in
a sufficiently permanent medium such that the work can be perceived, reproduced,
or communicated for more than a short time. . . .

What Works Are Protected?
Examples of copyrightable works include

• Literary works

• Musical works, including any accompanying words

• Dramatic works, including any accompanying music

• Pantomimes and choreographic works

• Pictorial, graphic, and sculptural works

• Motion pictures and other audiovisual works

• Sound recordings, which are works that result from the fixation of a series
of musical, spoken, or other sounds

• Architectural works

These categories should be viewed broadly for the purpose of registering your
work. For example, computer programs . . . can be registered as “literary works”;
. . .

What Are the Rights of a Copyright Owner?
Copyright provides the owner of copyright with the exclusive right to

• Reproduce the work in copies or phonorecords . . .

• Prepare derivative works based upon the work

• Distribute copies or phonorecords of the work to the public by sale or other
transfer of ownership or by rental, lease, or lending

• Perform the work publicly if it is a literary, musical, dramatic, or choreo-
graphic work; a pantomime; or a motion picture or other audiovisual work

• Display the work publicly if it is a literary, musical, dramatic, or choreo-
graphic work; a pantomime; or a pictorial, graphic, or sculptural work. This
right also applies to the individual images of a motion picture or other au-
diovisual work.

• Perform the work publicly by means of a digital audio transmission if the
work is a sound recording . . .

1Title 17, U.S.Code, https://www.copyright.gov/title17/

13.2. INTRODUCTION 527

What Is Not Protected by Copyright?
Copyright does not protect

• Ideas, procedures, methods, systems, processes, concepts, principles, or dis-
coveries

• Works that are not fixed in a tangible form (such as a choreographic work
that has not been notated or recorded or an improvisational speech that has
not been written down)

• Titles, names, short phrases, and slogans

• Familiar symbols or designs

• Mere variations of typographic ornamentation, lettering, or coloring

• Mere listings of ingredients or contents

(“Copyright Basics”, September 2017, https://www.copyright.gov/circs/circ01.pdf)

And here is a definition of ‘patent’ from the US Patent and Trademark Office’s website
(https://www.uspto.gov/):

What is a Patent?
A patent for an invention is the grant of a property right to the inventor, issued
by the United States Patent and Trademark Office. . . . The right conferred by the
patent grant is, in the language of the statute and of the grant itself,[2] “the right
to exclude others from making, using, offering for sale, or selling” the invention
in the United States or “importing” the invention into the United States. What is
granted is not the right to make, use, offer for sale, sell or import, but the right
to exclude others from making, using, offering for sale, selling or importing the
invention. . . .

There are three types of patents:

1. Utility patents may be granted to anyone who invents or discovers any new
and useful process, machine, article of manufacture, or composition of mat-
ter, or any new and useful improvement thereof;

2. Design patents may be granted to anyone who invents a new, original, and
ornamental design for an article of manufacture; and

3. Plant patents may be granted to anyone who invents or discovers and asex-
ually reproduces any distinct and new variety of plant.

(United States Patent and Trademark Office, “General information concerning
patents”, https://www.uspto.gov/patents-getting-started/general-information-concerning-patents)

2The relevant laws are the US Constitution, Article I, §8; and various laws cited under “Patent Laws” at
https://www.uspto.gov/patents-getting-started/general-information-concerning-patents

528 CHAPTER 13. COPYRIGHT VS. PATENT

On the website for utility patents, we find this:

Specification
The specification is a written description of the invention For inventions in-
volving computer programming, computer program listings may be submitted as
part of the specification (“Nonprovisional (Utility) Patent Application Filing
Guide”, https://www.uspto.gov/patents-getting-started/patent-basics/types-patent-applications/
nonprovisional-utility-patent)

Further Reading:
For general discussion of the issues, see: Forester and Morrison 1994, Ch. 3, pp. 57–68;
D. Johnson 2001a, Ch. 6, pp. 137–167 (“Property Rights in Computer Software”); Klemens
2006; Boyle 2009.

A more detailed discussion of computer patents can be found in “Computer Systems Based on
Specific Computational Models”,
https://www.uspto.gov/web/patents/classification/cpc/pdf/cpc-definition-G06N.pdf.

In addition to copyrights and patents, there is also a legal notion of “trade-secret pro-
tection”, which we will not explore. See https://www.uspto.gov/patents-getting-started/
international-protection/trade-secret-policy; Bender 1986; and Samuelson et al. 1994, §§2.2.1
and 5.3.3.

Shaw et al. 2012 is a psychological study of children’s views on the ownership of ideas:

Adults apply ownership not only to objects but also to ideas. But do people come
to apply principles of ownership to ideas because of being taught about intellectual
property and copyrights? . . . [L]ike adults, children as young as 6 years old apply
rules from ownership not only to objects but to ideas as well. (p. 1383)

13.3 Preliminary Considerations
Let’s begin by trying to distinguish between algorithms and “corresponding” computer
programs. Recall that algorithms specify how to compute functions. So let us begin by
considering a function, that is, a set of input-output pairs that are functionally related.
That function can be “implemented” by different algorithms.

What do I mean by ‘implemented’? As promised, we’ll explore that in Chapter 14.
A synonym for ‘implemented’ is ‘realized’ (that is, made real; in French, a film director
is a “réalisateur”—a “realizer”). For now, we will just say that “implementation” is the
relation between a function and an algorithm that computes it: Any such algorithm
“implements” that function.

Take a look at Figure 13.2. In that figure, merely as an example, I consider a func-
tion being implemented by two different serial algorithms and one parallel algorithm.
For a concrete example, consider a sorting function that takes as input a set of students’
names and that yields as output a sequence of those names sorted alphabetically. One
serial algorithm that implements this function is Quicksort; another is merge sort. A
parallel algorithm that implements the function might be a parallel version of merge
sort.

13.3. PRELIMINARY CONSIDERATIONS 529

 F
UN
CT
IO
N
(I
/O
 P
AI
RS
)_
__
__

 /

|

_
__
_

 _
__
__
__
__
__
__
__
__
__
__
__
__
/

|i
mp
le
me
nt
ed
 b
y

 \

/

|

\

se
ri
al
 a
lg
 1

 s
er
ia
l
al
g
2

 p
ar
al
le
l
al
g
3

 /

\

 |

 |

/

 \

/

 \

 |

 |

 /

\

 /

\

 |

 |

/

 \

se
ri
al
 a
lg
 1

 s
er
ia
l
al
g
1

 |

 |

pa
ra
ll
el
 a
lg
 3

 p
ar
al
le
l
al
g
3

ex
pr
es
se
d
in

 e
xp
re
ss
ed
 i
n

 .
..

..
.

ex
pr
es
se
d
in

 e
xp
re
ss
ed
 i
n

pa
ra
ll
el

 s
er
ia
l

se
ri
al

 p
ar
al
le
l

pr
og
la
ng
 1

 p
ro
gl
an
g
2

pr
og
la
ng
 3

pr
og
la
ng
 4

__
__
__
__
__
__
/
|
 |

\
 \

 |

 |

/\

 /

|
 |

 \

\

 |

 |

 /

\

/

 /

 |

\
 \
__
__
__
__
__

 |

 |

/

 \

 /

/

 |

 \

\

 |

 |

 /

\

/

_/

 |

\

 \

 |

 |

/

 \

 /

 /

 |

 \

\

 |

 |

 /

\

/

/

 |

\

 \

 |

 |

 |

 \

 /

 /

 |

 \

\

 |

 |

 |

 |

/

/

 |

\

 \

..
.

..
.

 |

 |

vi
rt
ua
l

ac
tu
al

 s
er
ia
l
al
g
1

se
r.
al
g
1

se
r.
al
g
1

pa
ra
ll
el

pa
ra
ll
el

ma
ch
in
e:

co
mp
ut
er

 i
n
se
ri
al

in
 s
er
ia
l

in
 s
er
ia
l

al
g
3
in

al
g
3
in

th
eo
re
ti
ca
l

w/
 s
er
ia
l

 p
ro
gl
an
g
2

pr
og
la
ng
 2

pr
og
la
ng
 2

pr
og
la
ng
 4

pr
og
la
ng
 4

mo
de
l
of

pr
og
la
ng
 2

 c
om
pi
le
d

co
mp
il
ed

co
mp
il
ed

co
mp
il
ed

co
mp
il
ed

co
mp
ut
at
io
n

as
 i
ts

 i
nt
o
se
ri
al

in
to

in
to

in
to

in
to

fo
r
se
ri
al

ma
ch
in
e

 m
ac
h.
la
ng
 1

se
ri
al

pa
ra
ll
el

se
ri
al

pa
ra
ll
el

pr
og
la
ng
 2

la
ng

ma
ch
.l
an
g
2

ma
ch
.l
an
g
3

ma
ch
.l
an
g
5

ma
ch
.l
an
g
6

 -
-
--
 -
-
 E
TC
.
--
 -
-
--

WH
IC
H
(I
F
AN
Y)
 O
F
TH
ES
E
SH
OU
LD
 B
E
CO
PY
RI
GH
TA
BL
E?

WH
IC
H
(I
F
AN
Y)
 O
F
TH
ES
E
SH
OU
LD
 B
E
PA
TE
NT
AB
LE
?

C
op

yr
ig

ht
 ©

 2
01

0
by

 W
ill

ia
m

 J
. R

ap
ap

or
t (

ra
pa

po
rt@

bu
ffa

lo
.e

du
)

ht
tp

://
w

w
w

.c
se

.b
uf

fa
lo

.e
du

/~
ra

pa
po

rt/
58

4/
S1

0/
cv

sp
at

.h
tm

l-2
01

00
31

9

Figure 13.2:

530 CHAPTER 13. COPYRIGHT VS. PATENT

Take a look at serial algorithm 1 in that figure. The figure suggests that it might be
expressable in two different programming languages: a parallel programming language
and a serial programming language.

Consider now our original function implemented by serial algorithm 1 and that is,
in turn, expressed in serial programming language 2. There might be several ways in
which that program might itself be implemented:

• on a virtual machine—a theoretical model of computation for our serial program-
ming language 2,

• on an actual computer that uses our serial programming language 2 as its ma-
chine language,

• compiled into a serial machine language,

• compiled into a different serial machine language,

• compiled into a parallel machine language.

And now consider parallel algorithm 3 that implements our original function. It might
be expressed in a serial programming language 3, which itself might be implemented
in a virtual machine, an actual computer, or compiled into several different machine
languages. Or it might be expressed in a parallel programming language 4, which
itself might be compiled into serial machine language 5 or else into a parallel machine
language. And so on.

• Which (if any) of these should be copyrightable?

• Which (if any) of these should be patentable?

(On virtual machines, see the Further Readings in §9.2.)

13.4. COPYRIGHT 531

13.4 Copyright

Figure 13.3: https://www.gocomics.com/jumpstart/2007/12/17, c©2007, UFS, Inc.

What does it mean to copyright something? For a person to copyright a text is to give
that person the legal right to make copies—hence the term ‘copyright’—of that text for
the purpose of protecting the expression of ideas. An idea cannot be copyrighted; only
the expression of an idea can be copyrighted. Ideas are abstract, perhaps in the way that
algorithms are abstract. But if you express that idea in language—if you “implement”
it in language—then the expression of that idea in that language can be copyrighted,
perhaps in the way that a computer program that implements an algorithm might be
copyrightable.

In an essay on software copyrights published in a computing journal, Calvin N.
Mooers (1975, p. 50) distinguishes between an uncopyrightable idea and a copyrightable
expression of an idea:

Where does the “expression” leave off, and the “idea” take over? The best in-
sight into this matter comes from discussions of copyright as applied to novels and
dramatic productions. In these, “expression” is considered to include the choice
of incident, the personalities and development of character, the choice of names,
the elaboration of the plot, the choice of locale, and the many other minor details
and gimmicks used to build the story. In other words, “expression” is considered
to include not only the marks, words, sentences, and so on in the work, but also
all these other details or structures as they aggregate into larger and larger units to
make up the expression of the entire story.

In other words, after the bare abstract “idea” has been chosen (e.g., boy meets
girl, boy loses girl, boy wins girl), the “expression” to which copyright applies
covers the remaining elements of original choice and artistry which are supplied
by the author in order for him [sic] to develop, express, and convey his version of
the bare idea.

Consider some domain W of things in the world, together with their properties and
the relations among the things. And consider a description D of this world in some
language L. The things, properties, and relations of W can be taken as a semantic in-
terpretation of D in L (its nouns, verbs, and modifiers). Perhaps copyright is something

532 CHAPTER 13. COPYRIGHT VS. PATENT

that applies only to the realm of language and syntax, whereas patents are things that
apply only to entities in the world.

Algorithms, construed abstractly, seem more like “ideas” than like “expressions”,
which would suggest that they cannot be copyrighted. On this view, it would be a
computer program—a text written in some language—that would be copyrightable.
Programs are definitely expressions: They are “non-dramatic literary works”. Why
“literary”? After all, they don’t seem to read like novels! (But recall the Digression
in §12.4.2 on “literate computing”.) But all that ‘literary’ means in this context is
that they can be written and read. Moreover, programs can be “performed”, that is,
executed, just like lectures, plays, movies, or music. The relation of a process (that is,
a program being executed; see §3.9) to a program is similar to the relation of a script
to a play or movie, a score to a musical performance, or (perhaps) a set of slides to a
lecture.

I posed the following question to a friend who is a lawyer specializing in entertain-
ment law. First, I explained the ontological puzzle:

Some people argue that programs are like the scripts of plays; because plays
can be copyrighted (and not patented), so should programs. Others argue that pro-
grams are more like machines; because machines can be patented (but not copy-
righted), so should programs. Finally, others argue that programs are unlike play
scripts (because it’s not just the text that matters—it’s what they can do—and,
anyway, most people can’t read the “text” of a program, as they can for a play)
and that they are unlike machines (because a computer without a program can’t do
anything); hence, there should be some new kind of legal protection mechanism.

Presumably, if I go to a bookstore and buy a copy of the script for, say, Okla-
homa, I’m not liable for copyright infringement if I read it, or even if I act it out
with some friends (as long as I don’t charge admission). Similarly, if I buy a DVD
of the movie version, I’m not liable for copyright infringement if I watch it, even
if I watch it with some friends (again, as long as I don’t charge admission?). But,
if I decide to mount a production of it for my local little theater group, I’d have to
get permission.

Now, my question: What is the legal basis for that permission requirement? Is
it the copyright law? Or is it some other legal protection mechanism?

Here is her reply:

Terrific question. Two things. First of all, under the copyright law, permis-
sion is required and royalties may be charged for a public performance even if no
admission is charged. If you read a play with friends in your living room, that
is probably not public, but if you do it anywhere else and people come to see it,
even just people you know, with no admission charge, I consider that a public
performance, requiring authors’ permission. The legal basis for the permission re-
quirement is in the Copyright Act (Section 106), which gives the Copyright Owner
the exclusive right to “do and authorize any of the following: . . . (4) in the case
of literary, musical, dramatic and choreographic works, pantomines, and motion
pictures and other audiovisual works, to perform the copyrighted work publicly.”

Section 117 relates to Limitations on exclusive rights; Computer programs.[3]

3http://www.law.cornell.edu/uscode/text/17/117

13.4. COPYRIGHT 533

I hope this is helpful.
(Victoria G. Traube, personal email, 23 September 2014)

On the other hand, there is an entity that is even more abstract than an algorithm,
and with respect to which it is the algorithm that appears to be a detailed “expression”,
namely, the function that the algorithm computes. So, one could argue that it is a
function that is more like a “bare abstract idea” (boy meets girl, etc.) and that it is an
algorithm—which would have to specify how the boy meets the girl, etc.—that is more
like an expression (in this case, an “expression” of a function). On this view, it is the
algorithm that would be copyrightable!

So, here are two problems to think about:

Problem #1
Consider the input-output behavior of a program-being-executed (a “process”.
That is, consider how the process “looks and feels” to a user. A clever program-
mer could create a new algorithm (or recreate an old one) and then implement a
new program that will have the same look and feel. Should that new program be
separately copyrightable?

Consider two computer design companies; call them ‘Pear Computers’ and
‘Macrohard’. Pear Computers might write an operating system with “windows”,
“icons”, and a “mouse”. Macrohard, seeing how this operating system works,
might write their own operating system that also uses “windows”, “icons”, and a
“mouse” and that would have the same (or almost the same) functionality and the
same (or almost the same) “look and feel”, but it would be a different expression
of that same (or almost the same) idea, hence separably copyrightable. Or would
it?

Further Reading:
This is not far from the actual situation that allegedly existed between the Xerox Palo Alto
Research Center and Apple Computer, on the one hand, and (later) between Apple and Microsoft,
on the other. The story is that Apple “borrowed” or was inspired by Xerox PARC’s creation
of the graphical user interface and used it for its Mac OS, and that Microsoft “borrowed” or
was inspired by Apple’s version and used it for Windows. See Fisher 1989; Samuelson et al.
1994, pp. 2334–2335; Gladwell 2011; and http://en.wikipedia.org/wiki/Apple Computer, Inc.
v. Microsoft Corp. (note: the period after ‘Corp’ is part of this URL!).

More recently, Apple successfully sued Samsung for a similar infringement of its design for
smartphones. See:
https://www.nytimes.com/2018/05/24/business/apple-samsung-patent-trial.html,
https://en.wikipedia.org/wiki/Apple Inc. v. Samsung Electronics Co., and
https://finance.yahoo.com/news/apple-google-samsung-steals-ideas-151723862.html

Dennett’s (1995, pp. 372–373) two ways of building a dam (the beaver’s and the human’s, which
we discussed briefly in §12.4.4.1.2.2) arguably have the same “look and feel” even though the
behaviors are very different.

534 CHAPTER 13. COPYRIGHT VS. PATENT

Problem #2
It is part of copyright law that you cannot copyright an “article of utility”; that’s
something that can only be patented. But surely an executable program is useful;
that is, it is an “article of utility”. But, according to Mooers, it is a translation of
a copyrightable text; hence, it, too, is copyrightable.

One diagnosis of these problems is that there is no legal definition of “look and
feel” (Samuelson, 1989). Another diagnosis is that the distinction between an idea and
its expression may not be applicable in the realm of software (Samuelson, 1991). We
will explore this in §13.7.

It’s one thing to wonder whether software in the form of a computer program is
legally protected (whether by copyright, patent, or something else). But what about the
programming language that the program is written in? On the one hand, a program-
ming language can itself be viewed as a form of software (it’s surely not hardware).
On the other hand, while an author of a novel written in English can copyright that
novel, English itself cannot be copyrighted. (But what about “created” languages, like
Esperanto or Klingon?)

In a 2012 legal case, Oracle sued Google for Google’s use of the Java program-
ming language, which Oracle claimed to own the copyright on. Google’s defense was
that programming languages are not copyrightable. The first decision was in favor
of Google, but, on appeal, Oracle seems to have won (https://www.wired.com/story/
the-case-that-never-ends-oracle-wins-latest-round-vs-google/).

Unfortunately, the issues aren’t as clear cut as they might be, because it’s not so
much the Java language that is in question, as its “application programming interfaces”
(API), which may, or may not, be considered to be part of the language itself (as op-
posed to software written in the language). And, to further the complications, Google
apparently used an “open-source” (that is, not copyright-protected) version of the Java
APIs.

Further Reading:
The original briefs by Oracle and by Google can be found at Oracle America 2012 and Google,
Inc. 2012. Good overviews are Macari 2012, McAllister 2012, McSherry 2014, Samuel-
son 2015, and Sprigman 2015; see also https://en.wikipedia.org/wiki/Oracle America, Inc. v.
Google, Inc.

Samuelson 2007a suggests that copyright law needs to be reformed. Menand 2014 surveys the
history of copyright laws, especially as they apply to works of art.

AI researcher David Touretzky (2008) notes that “If code that can be directly compiled and
executed may be suppressed under the DMCA [Digital Millenium Copyright Act], as Judge
[Lewis A.] Kaplan asserts in his preliminary ruling, but a textual description of the same algo-
rithm may not be suppressed, then where exactly should the line be drawn? This web site was
created to explore this issue, and point out the absurdity of Judge Kaplan’s position that source
code can be legally differentiated from other forms of written expression.” For example, the
website used to offer a copy of otherwise suppressed code on a T-shirt!

13.5. PATENT 535

13.5 Patent
Patents are weird: Not just anything can be patented, but lots of strange things can
be! I have read patents for devices or techniques that claim to be based on carefully
developed scientific theories, but that I know, from personal experience, are not based
on any such thing, and I have read patents that claim to provide mechanisms for com-
pletely solving problems that have not yet been solved, and may never be—such as
fully automatic, high-quality machine translation.

The purposes of a patent are to foster invention and to promote the disclosure of
an invention. So, the inventor’s ideas must be made public. (Does that mean that they
have to be implemented?)

It follows that you cannot patent something that would inhibit invention, namely,
you cannot patent any of the following:

• abstract ideas

• mathematical processes

• scientific principles

• laws of nature (and yet genes have been patented!)

• mental processes

But you can patent “any new and useful process, machine, article of manufacture,
or composition of matter, or any new and useful improvement thereof” (see the defi-
nition of ‘utility patent’ in §13.2, above). Does “process” here include software, or a
program being executed?

Here are some problems to consider:

• Each step of certain cognitive algorithms (such as those used in reasoning, per-
ception, or natural-language generation and understanding) are mental processes.
Does that mean that some algorithms cannot be patented, even if others can? If
so, how does one distinguish between these two kinds of algorithms?

• Lots of software are mathematical processes. Does this mean that some, but not
all, software cannot be patented?

• If too much software is patented, would that impede invention? If so, that would
be contrary to one of the explicit purposes of patent law.

In any case, algorithms cannot be patented, so copyright would seem to be the only
option:

Abstract ideas are not patentable subject matter. In order to prevent abstract ideas
from being indirectly patented, there are exceptions in the law that will not allow
patenting an “invention” made of printed text based on the content of the text.
The implication of Gödel [numbering] . . . is that the symbols that represent an
abstract idea need not be printed text. The symbols can be something abstract like
exponents of prime numbers. They can be something physical like electromagnetic

536 CHAPTER 13. COPYRIGHT VS. PATENT

signals or photonic signals. . . . Does the law exempt abstract ideas from patenting
only when they are written in text or does it exempt all physical representations?
(“PolR”, 2009, §“Symbols and Reducibility”)

This seems to be another version of the software-hardware paradox that we explored in
§12.4.3. Here’s another:

Now consider the Church-Turing thesis that computer programs are the same
thing as recursive functions. . . . Would this be of consequence to the patentabil-
ity of software? Developing a computer program that fulfills a specific purpose is
mathematically the same thing as finding a number that has some specific proper-
ties. Can you patent the discovery of a number?

Another way to look at it is that there is a list of all the possible programs.[4]
We can make one by listing all possible programs in alphabetic order. Any program
that one may write is sitting in this list waiting to be written. In such a case,
could a program be considered an invention in the sense of patent law? Or is it
a discovery because the program is a preexisting mathematical abstraction that is
merely discovered?

This idea that programs are enumerable numbers is supported by the hardware
architecture of computers. Programs are bits in memory. Strings of 0s and 1s are
numbers written in binary notations. Every program reads as a number when the
bits are read in this manner. Programming a computer amounts to discovering a
number that suits the programmer’s purpose. (“PolR”, 2009, §“Enumerability”)

Further Reading:
Written in a sarcastic manner by a well-known novelist, Crichton 2006 presents “A case for re-
forming the way we grant patents”, on the grounds that natural laws should not be patentable. For
follow-ups, see “LabCorp. v. Metabolite”, http://www.oyez.org/cases/2000-2009/2005/2005 04
607, and Edwards 2013.

Petroski 2008b discusses the role of implementation: “As with any well-written patent, in the
one granted to McHenry he is careful not to restrict his invention to only one ‘embodiment’ . . . ”
(p. 192).

Samuelson 2008 asks, “Is everything under the sun made by humans patentable subject matter?”,
and Samuelson 2013 looks at the patentability of software.

For general comments on patents, see: Thatcher and Pingry 2007 (with commentary in Oldehoeft
et al. 2007), the blog “Time to Abolish Software Patents?” (Slashdot, 29 February 2008, http:
//yro.slashdot.org/story/08/02/29/0344258/time-to-abolish-software-patents), and New York
Times 2009.

4Recall Mill’s observation about there being only a finite number of musical compositions, mentioned in
§12.4.2, above.

13.6. VIRTUAL MACHINES 537

13.6 Virtual Machines
Some of the issues involved in the copyright-vs.-patent debate concern the notion of a
virtual machine. We have considered these before (in Chapter 9), but now it is time to
ask what exactly a virtual machine is.

According to Denning and Martell (2015, p. 212), “A virtual machine is a simula-
tion of one computer by another. The idea comes from the simulation principle behind
Alan Turing’s Universal Machine.” That is, a virtual machine is a (single-purpose)
Turing Machine that is simulated by a universal Turing Machine: Let t be a Turing
Machine. Let u be a universal Turing Machine. Encode all Turing Machines using,
say, Turing’s coding scheme. Then encode t’s code onto u’s tape, along with t’s data,
and let u simulate t. As Copeland (1998, p. 153) says, “the universal machine will
perform every operation that t will, in the same order as t (although interspersed with
sequences of operations not performed by t)”. The virtual t machine is a software
version (a software implementation?) of the hardware t machine.

Digression:
Of course, nothing prevents the Turing Machine that is being simulated by the universal Turing
Machine from itself being a universal Turing Machine! This was the case with the “P88 Assem-
bly Language Simulator” mentioned in §9.2. In fact, that was a virtual universal Turing Machine
simulated on another virtual universal Turing Machine that was simulated on a real, physical
Mac—yet another universal Turing Machine!

If software, generally speaking, is copyrightable (but not patentable), and if hard-
ware, generally speaking, is patentable (but not copyrightable), what about a virtual
machine, which is a software implementation of a piece of hardware?

Pamela Samuelson et al. (1994) argue “that programs should be viewed as virtual
machines” (p. 2324), and they discuss the notion in terms of “conceptual metaphors”,
such as the metaphor of “paper” for a word-processing program (§1.3):

Cutting and pasting (in a virtual sense) is so easily accomplished in a word proces-
sor that one soon begins to think of the text as a physical entity that can be picked
up and moved around. (p. 2325)

By ‘virtual’ here, they mean “metaphorical”. Note, in connection with our discussion
of magic in §3.14.7, that this “virtual” paper is an “illusion”: As Samuelson et al. note,
we have the illusion that, when inserting text, “the old text obligingly moves over to
make room for the new words” (p. 2324).

The automated spreadsheet metaphor has so fundamentally changed the experience
of using a computer that users feel they are using a spreadsheet, not just a computer.
(p. 2325)

They go on to argue that, because “conceptual metaphors” (that is, virtual machines)
“are remote from the program text . . . and partly because of their abstract character,
they would likely be regarded as unprotectable by copyright law” (p. 2326). So, does
that mean that they are patentable?

538 CHAPTER 13. COPYRIGHT VS. PATENT

Initially, “a computer operating in accordance with a particular program” was
patentable “if the program is new, useful, and unobvious” (Galbi, 1971, p. 274). That
is, it was the physical machine executing the program that was patentable. This was
later modified to allow the “method or algorithm for solving certain problems” to
be patentable “irrespective of what apparatus is used to solve the problem” (Galbi,
1971, p. 274)—a clear move away from the patentability of a piece of hardware to the
patentability of its software instead. Arguably, though, this could be seen as a move
to say that it is still a machine that is patentable, but it doesn’t have to be a specific
machine: It could be any machine that is executing the program under consideration.

In other words, the virtual machine might not be patentable, but—because all vir-
tual machines must be implemented in a physical machine—the physical machine that
implements the virtual machine might be patentable. But this only makes sense if the
physical machine is a special-purpose one that does nothing except implement that
virtual machine. If it were, instead, a universal Turing Machine, then it would only
be patentable as, perhaps, some new kind of universal Turing Machine, but not as an
implementation of the virtual machine.

However, Dennett (1995, p. 232) tells of a dedicated word processor—that is, what
appears to the user to be a single-purpose Turing Machine that does nothing but word
processing. In fact, though, it is powered “by an all-purpose CPU”—that is, by a
universal Turing Machine. But the user has no access to the universal machine’s other
capabilities. (It turned out to be less expensive to have the word processor run on a
univeral machine than to develop a special-purpose one.)

Related to this is the following excerpt from a footnote to a 1969 ruling in a case
called Prater and Wei:

In one sense, a general purpose digital computer may be regarded as a storeroom
of parts and/or electrical components. But once a program has been introduced,
the general purpose digital computer becomes a special purpose digital computer
(i.e. a specific electrical circuit with or without electromechanical components)
which along with the process by which it operates, may be patented, subject, of
course, to the requirements of novelty, utility and nonobviousness. (Galbi, 1971,
p. 275)

But think of a smartphone capable of running multiple “apps” or a computer capable of
running multiple programs—more generally, of a universal Turing Machine capable of
simulating multiple Turing Machines. Might (a physical implementation of) a universal
Turing Machine running one program be patentable, whereas the very same machine
running a different program not be patentable? Is it one machine, or many?

13.7 Samuelson’s Analysis

Pamela Samuelson (1990, p. 23) points out that computer scientists differ on what is
the proper object of legal protection: Algorithm? Code (or program)? “Look and feel”?
So, these need to be distinguished. By now, you should have a pretty good idea what
algorithms and programs are. But what is “look and feel”? Is it related (or identical) to

13.7. SAMUELSON’S ANALYSIS 539

the “process”, that is, the program as it is being executed? Or is it merely the output of
the program?

According to Samuelson and her colleagues,

Although programs are texts and their texts can be valuable, the most important
property of programs is their behavior (i.e., the set of results brought about when
program instructions are executed). . . .

. . . the primary source of value in a program is its behavior, not its text.
(Samuelson et al., 1994, p. 2314–2315)

Does this mean that it’s the “idea”, not its “expression” that counts? If so, then pro-
grams might not be copyrightable! I don’t think so, simply because the “behavior” of a
program is more than merely the “idea”. (The “idea” might be more akin to the “speci-
fications”, or the input-output behavior.) But “behavior” here might be something akin
to “look and feel”. So, what exactly do the authors mean by “behavior”?

A second feature of programs is that the behavior of one program can be precisely
reproduced by a textually entirely different program, so “program text and behavior are
independent” (Samuelson et al., 1994, p. 2315).

And a third feature is that

programs are, in fact, machines (entities that bring about useful results, i.e., be-
havior) that have been constructed in the medium of text (source and object code).
The engineering designs embodied in programs could as easily be implemented in
hardware as in software, and the user would be unable to distinguish between the
two. (Samuelson et al., 1994, p. 2316)

A “machine constructed in text” sounds like a virtual machine. Samuelson et al. (1994,
p. 2320) go on to say that “Physical machines . . . produce a variety of useful behaviors,
and so it is with programs.” And then they add, in a footnote: “Traditional texts may
tell humans how to do a task; they do not, however, perform the task.” But the same is
true for a program, whether written in ink on paper, engraved on a CD-ROM, entered
as source code into a computer, or expressed as object code after compilation: It still
takes a “physical machine” to do what the program tells it to do. A program can’t be
executed without some kind of machine that can interpret its text and that can behave
(for example, by printing output)—in short, that can execute the program. So, it’s not
really the program by itself that can “bring about useful results”, but the combination
of a program and an interpreting-plus-behaving device—in short, program + execu-
tor. And it is that combination, when turned on and running, that produces the virtual
machine. The physical machine translates or associates parts of the program text (how-
ever inscribed) with “switch settings” in the computer. Once those switches are set in
accordance with the program, the computer—the physical machine—will perform the
task.

This is related to the question that we asked in §12.4.4.1.2.2: What tasks do pro-
grammed computers perform? In particular, what does a universal Turing Machine that
is implementing, say, a calculator doing? Is it adding? Or is it fetching-and-executing?
Is it doing both? Or is it doing something even more specific? After all, at bottom, all
that a Turing Machine can do is print, erase, and move. More sophisticated computers

540 CHAPTER 13. COPYRIGHT VS. PATENT

can, of course, do many other things: anything that can be decomposed into those prim-
itive actions. At bottom, however, all they’re doing are forms of “printing” (including
“printing” certain pixels on a screen), “erasing”, and “moving”. It’s worth recalling our
discussion of “procedural abstraction” (§7.6.6), however, the point of which is to make
it easier for programmers to tell a computer what they want to do without having to
break it into these smaller parts—more precisely, without having to “implement” such
higher-level instructions in terms of the bottom-level instructions more than once:

The motivation behind . . . [programming with abstract data types, not to mention
procedural abstraction] in very-high-level languages is to ease the programming
task by providing the programmer with a language containing primitives or ab-
stractions suitable to his [sic] problem area. (Liskov and Zilles, 1974, p. 50, my
italics)

We’ll return to this idea in Chapter 14.
The point in the previous quotation about the indistinguishability of hardware and

software is, of course, the point about the relation of a Turing Machine to a universal
Turing Machine, which is a separate issue from the question about whether a program
is a machine. This is clarified a bit later:

Not only do consumers not value the text that programmers write (source code),
they do not value any form of program text, not even object code. Computer sci-
ence has long observed that software and hardware are interchangeable: Any be-
havior that can be accomplished with one can also be accomplished with the other.
In principle, then, it would be possible for a puchaser of, say, a word processor to
get a piece of electronic hardware that plugged into her computer, instead of a disk
containing object code. When using that word processor, the purchaser would be
unable to determine whether she was using the software or the hardware imple-
mentation. (Samuelson et al., 1994, p. 2319)

This is the point about universal Turing Machines: They can simulate any (other) Tur-
ing Machine, in the sense that the behavior—better: the look and feel—of a dedicated
Turing Machine would be indistinguishable from that of a universal Turing Machine
that simulated it.

Question for the Reader:
In §19.4.2, we will discuss Turing’s “imitation-game” test for distinguishing a computer from a
human. Could there be a Turing Test-like imitation game to distinguish between a single-purpose
Turing Machine and a universal Turing Machine that is simulating it?

Related to this, “PolR” (2009, §“A Universal Algorithm”) notes that if

I am sued for infringement on a software patent[,] I may try defending myself ar-
guing I did not implement the method that is covered by the patent. I implemented
the lambda-calculus algorithm which is not covered by the patent. And even if it
did, lambda-calculus is old. There is prior art. What happens to software patents
then?

Anyone that argues in favor of method patents on software must be aware that
the current state of technology permits this possibility.

13.7. SAMUELSON’S ANALYSIS 541

Samuelson et al. (1994, §§1.1.1 and 1.1.3) remark that no one can read the object
code on a CD-ROM, which marks a difference between software and, say, the script
of a play. But that may be the wrong analogy. What about a movie on a DVD? We
can’t read the DVD any more than we can read a CD-ROM (in both cases, we need
a machine to interpret them, to convert them to a humanly perceivable form). This is
true even in the non-digital world: We don’t typically look at the individual frames of
a movie on film (except, of course, when we’re editing it). But when we’re watching it
as it is intended to be watched, we need those frames to be projected at a certain speed.

All this stands in sharp contrast to traditional literary works which are valued be-
cause of their expression Programs have almost no value to users as texts.
Rather, their value lies in behavior. (Samuelson et al., 1994, p. 2319)

Yes, but this is a misleading analogy. A better analogy is not between, say, a program
and a novel, but between a program and musical score or a play script, and between
a program’s behavior and a performance of that music or play. Only musicians and
literary or theatrical people would be interested in the score or the script (just as only
programmers would be interested in a program text). Audiences are more interested in
the performance (in all cases).

There is one major difference between programs and behavior on the one hand and
scores (or scripts) and performances on the other: The very same play or score will
be performed (interpreted) very differently by different performers. But the very same
program should be executed identically by different computers. That, however, may
have more to do with the amount of detail in the instructions than with the nature of the
interpreters. (Recall our discussion about recipes in §10.4.2.)

While conceiving of programs as texts is not incorrect, it is seriously incomplete. A
crucially important characteristic of programs is that they behave; programs exist
to make computers perform tasks. (Samuelson et al., 1994, p. 2316)

I agree with the first sentence. For reasons cited above, I disagree with the claim that
the program itself behaves. But I agree with the final claim: It is the computer that
behaves, that does something, that “performs a task”. And it does so in virtue of its
program. But the program by itself is static, not dynamic.

Behavior is not a secondary by-product of a program, but rather an essential part of
what programs are. To put the point starkly: No one would want to buy a program
that did not behave, i.e., that did nothing, no matter how elegant the source code
“prose” expressing that nothing. (Samuelson et al., 1994, p. 2317)

But, as we saw in §7.5, there can certainly be programs that have no output. Indeed,
they say:

Hence, every sensible program behaves. This is true even though the program has
neither a user interface nor any other behavior evident to the user. (Samuelson
et al., 1994, p. 2317)

542 CHAPTER 13. COPYRIGHT VS. PATENT

In a footnote, they define “user interface” as “the means by which the user and the
program interact to produce the behavior that will accomplish the user’s tasks.” So, I
suspect that Samuelson et al. are using ‘program’ not to refer to text but to a product
intended to be installed in a computer and executed. This becomes clearer later, when
they point out that:

People pay substantial sums of money for a program not because they have any
intrinsic interest in what its text says, but because they value what it does . . . (its
behavior). The primary proof that consumers buy behavior, rather than text, is that
in acquiring a program, they almost never get a readable instance of the program
text. (Samuelson et al., 1994, p. 2318)

A “sensible” program (that is, the program-as-product that I described above) with
no user interface might be akin to a Turing Machine that simply computes with no input
other than what is pre-printed on its tape. Having a user interface would seem to turn
a “sensible” program into an interactive program or an o-machine (as we discussed in
Chapter 11).

Two programs with different texts [such as Microsoft’s Excel and Apple’s Num-
bers, to use a contemporary example] can have completely equivalent behavior. A
second comer can develop a program having idential behavior, but completely dif-
ferent text through . . . “black box” testing. This involves having a programmer run
the program through a variety of situations, with different inputs, making careful
notes about its behavior. A second programmer can use this description to develop
a new program that produces the specified behavior (i.e., functionally identical to
the first program) without having access to the text of the first program, let alone
copying anything from it. A skilled programmer can, in other words, copy the
behavior of a program exactly, without appropriating any of its text. (Samuelson
et al., 1994, pp. 2317–2018)

Let’s grant that Excel and Numbers don’t have exactly the same input-output behavior
or even look-and-feel. But black-box testing could, indeed—in theory, at least—allow
two completely textually different programs to have exactly the same input-output be-
havior (and look-and-feel), for the simple, mathematical reason that there can be more
than one algorithm for implementing a function.

Note, however, that, in practice, such black-box testing is really akin to the kind
of inductive inference that underlies trial-and-error machines: Unless the second pro-
grammer has a complete input-output specification, that programmer is limited to re-
constructing potentially infinite behavior on the basis of a finite number of examples.

The independence of text and behavior is one important respect in which programs
differ from other copyrighted works. Imagine trying to create two pieces of music
that have different notes, but that sound indistinguishable. Imagine trying to create
two plays with different dialogue and characters, but that appear indistinguishable
to the audience. Yet, two programs with different texts can be indistinguishable to
users. (Samuelson et al., 1994, p. 2318)

13.7. SAMUELSON’S ANALYSIS 543

This is interesting. If true, it suggests that the analogies between score and perfor-
mance, or between script and play, etc. (see §14.3 for more such analogies), might not
be as close as I have suggested. But is it true? First, consider a play and its script.
Suppose that I write a version of Hamlet that incorporates all of Shakespeare’s lines
but adds material that is specifically designed not to be uttered during a performance
(perhaps extra characters who are always offstage and silent). That would seem to be
a counterexample to Samuelson et al. Second, consider two different algorithms that
both compute GCDs. Is it not conceivable that, when the operations in each are decom-
posed to the primitive operations of a Turing Machine or the basic recursive functions,
the algorithms would be identical? Or consider a musical score for, say, a choral work
for four voices. I could produce two different written scores simply by re-ordering the
parts (or, by writing them in different musical notations). Yet their performances would
not differ.

All of these quibbles notwithstanding, Samuelson et al. (1994, p. 2323) do make
an interesting point about the appropriateness of copyright for legal protection of pro-
grams:

Program text is, thus, like steel and plastic, a medium in which other works can be
created. A device built in the medium of steel or plastic, if sufficiently novel, is
patentable; an original sculpture built of steel or plastic is copyrightable. In these
cases, we understand quite well that the medium in which the work is made does
not determine the character of the creation. The same principle applies to software.
The legal character of a work created in the medium of software should no more be
determined by the medium in which it was created than would be a work made of
steel or plastic. In this respect, it makes no more sense to talk about copyrighting
programs than to talk about copyrighting plastic or steel; it confuses the medium
of creation and the artifact created. In the case of software, the artifact created is
some form of innovative behavior, whether utilitarian or fanciful.

This suggests that patent is more appropriate than copyright. But what about a program
whose sole purpose is to produce an image on a screen, such as a painting or a film?
Wouldn’t copyright be more appropriate then? Still, the point remains that it’s the
behavior of the program (when executed by a machine) that is more important than the
text.

We suggest that programs should be viewed as virtual machines and that this has
interesting consequences for the proper form of protection. (Samuelson et al.,
1994, p. 2324)

Unfortunately, they don’t define what they mean by “virtual machine”. But if they
mean that a virtual machine is a Turing Machine being simulated on a universal Turing
Machine (as we suggested in §13.6), and if machines are patentable, then it would seem
that programs understood as virtual machines should be patentable, not copyrightable.

544 CHAPTER 13. COPYRIGHT VS. PATENT

This is the basis of their argument against the appropriateness of copyright law
(Samuelson et al., 1994, p. 2350):

1. “computer programs are machines whose medium of construction is text”

2. “Copyright law does not protect the behavior of physical machines (nor their
internal construction)”

3. ∴ “program behavior . . . is unprotectable by copyright law on account of its
functionality” (p. 2351).

But far from arguing that programs, because not copyrightable, should be patentable,
they also think that patentability is inappropriate:

The predominantly functional nature of program behavior and other industrial de-
sign aspects of programs precludes copyright protection, while the incremental
nature of innovation in software largely precludes patent protection. (Samuelson
et al., 1994, p. 2333)

They offer two arguments against patentability. Here is the first (Samuelson et al.,
1994, p. 2346):

1. “Patent law requires an inventive advance over the prior art”

2. But the innovations in “functional program behavior, user interfaces, and the
industrial design of programs . . . are typically of an incremental sort.”

3. ∴ Programs do not fall under patent law.

A similar argument applies to chip design: A form of legal protection other than patent
and copyright was needed, recognized, and implemented; as a result, “Congress passed
the Semiconductor Chip Protection Act of 1984”.

And here is their second argument against patentability (Samuelson et al., 1994,
p. 2345):

1. Patents are given for “methods of achieving results”,

2. Patents are not given “for results themselves”.

3. “It is . . . possible to produce functionally indistinguishable program behaviors
through use of more than one method.”

4. ∴ A patent could be given for one method of producing a result, but that would
not “prevent the use of another method”.

5. If it is the result, not the method, that is the “principal source of value” of a
program, then the patent on the one method would not protect the result produced
by the other method

On Samuelson et al.’s suggestion that it is the virtual machine that should be legally
protected (whether by copyright, patent, or something sui generis), compare this:

13.8. ALLEN NEWELL’S ANALYSIS 545

For example consider this sentence from In re Alappat:[5]

We have held that such programming creates a new machine, because
a general purpose computer in effect becomes a special purpose com-
puter once it is programmed to perform particular functions pursuant
to instructions from program software.

In a single sentence the court tosses out the fundamental principle that makes it
possible to build and sell digital computers. You don’t need to create a new ma-
chine every time you perform a different computation; a single machine has the
capability to perform all computations. This is what universal Turing machines are
doing. (“PolR”, 2009)

But the “new machine” mentioned in the ruling is a virtual machine.

Further Reading:
Samuelson 1988 is an excellent overview of the copyright-vs.-patent dispute, arguing in favor of
patent protection for software. Samuelson 1991 notes that “Six characteristics of digital media
seem likely to bring about significant changes in the law”: ease of replication, ease of transmis-
sion and multiple use, plasticity (related to Moor’s §12.4.4.1 notion of software’s changeability),
equivalence of works in digital form (referring to the fact that, when digitized, different kinds
of copyrightable works all get implemented in the same medium), compactness (digitized works
take up little space, hence are more prone to theft), and nonlinearity (due to the availability of hy-
perlinks, for instance). Samuelson 2003 discusses “Attempting to stretch existing laws to address
previously unforeseen technological issues.” Samuelson 2007b, pp.15–16, observes that

Microsoft argues that neither the intangible sequence of ones and zeros of the ob-
ject code, nor the master disks onto which the object code has been loaded, should
be considered a component of a patented invention Only when object code has
actually been installed on a . . . computer does it become a physical component of
a physical device . . .

13.8 Allen Newell’s Analysis
We’ll close with another person’s analysis of these problems. But it is not just any
one person; it is a well-respected computer scientist. And it is not just any computer
scientist; it is one of the founders of the fields of AI and of cognitive science, and
a winner of the Turing Award—Allen Newell—whom we have already mentioned in
several previous chapters. In a paper written for a law journal, Newell (1986) argues
that the “conceptual models” of algorithms and their uses are “broken”, that is, that
they are “inadequate” for discussions involving patents (and copyrights).

Newell’s definition of ‘algorithm’ is very informal, but “perfectly reasonable, not
arcane; we can live with it”: An algorithm is “an unambiguous specification of a con-
ditional sequence of steps or operations for solving a class of problems”. This is obvi-
ously an oversimplification. But it might suffice for Newell’s purposes.

5See http://digital-law-online.info/cases/31PQ2D1545.htm

546 CHAPTER 13. COPYRIGHT VS. PATENT

Further Reading:
In addition to our discussion in §7.5, see Chisum 1986, “The Definition of an Algorithm”, §B,
pp. 974–977, for other definitions. For some of these, see http://www.cse.buffalo.edu/∼rapaport/
584/c-vs-pat.html, item 3.

Algorithms are mathematical objects, but there are non-mathematical algorithms,
so, Newell points out, you cannot make a decision on the patentability of algorithms on
the basis of a distinction between mathematical processes and non-mathematical ones.

Moreover, “humans think by means of algorithms” (Newell, 1986, p. 1025, my
italics). This is a very strong version of a thesis in the philosophy of mind called
“computationalism”. It is, in fact, one reason why Newell is so famous: Newell and
Nobel-prize winner Herbert Simon wrote one of the first AI programs, which they
interpreted as showing that “humans think by means of algorithms” (Newell et al.,
1958). Note that Newell doesn’t say what kind of algorithms he has in mind here,
nor does he say whether they are Turing Machine-equivalent. His point is that some
algorithms are sequences of mental steps; so, you can’t make patentability decisions
based on any alleged distinction between mental processes and algorithms.

He also points out that you cannot patent natural laws or mathematical truths (for
instance, you cannot patent the integers, or addition). Are algorithms natural laws? In
§§3.9.3 and 10.3, we saw that Stuart C. Shapiro and many others think that they are
at least entities that are part of the natural world, if not laws. Are they mathemati-
cal truths? They are certainly among the items that some mathematicians study. In
either case, algorithms would not be patentable. On the other hand, they are “applica-
ble”, hence patentable. Arguably, all of CS concerns application, and algorithms are
certainly part of CS’s theoretical foundations.

In addition, Newell points out, it is difficult to distinguish an algorithm (an abstract
program) from a computer program (which adds implementation details that are not,
strictly speaking, part of the algorithm), because there are only degrees of abstraction.
For example, you could have a really good interpreter that would take an algorithm (or
even a functional—input-output—specification) and execute it directly. In a sense, this
is a holy grail of programming: to talk to a computer in English and have it understand
you without your having to program it to understand you. (The Star Trek computer is
the model for this; devices such as Siri, Alexa, et al., are baby steps in that direction.)

But, contrary to his own definition, Newell points out that algorithms need only be
“specifications that determine the behavior of a system”, not necessarily sequences of
steps. Programs in Prolog or Lisp, for instance, are sets, not sequences, of statements.
So, you can’t identify whether something is an algorithm just by looking at it.

The bottom line is that there are two intellectual tasks: A computer-scientific and
philosophical task is to devise good models (“ontologies”) of algorithms and other
computer-scientific items. A legal task is to devise good legal structures to protect
these computational items.

13.8. ALLEN NEWELL’S ANALYSIS 547

Further Reading:
The ontological task is investigated by Eden 2007; Turner and Eden 2007b; and Brian Cantwell
Smith (1996, 2002). On ontologies more generally, see the work by philosopher Barry Smith and
his colleagues at http://ontology.buffalo.edu/smith/, which includes Duncan’s (2017) ontology of
software vs. hardware cited at the end of §12.4.6.

I’ll close this chapter with a quotation from Newell (1986, p. 1035, my boldface):

I think fixing the models is an important intellectual task. It will be difficult. The
concepts that are being jumbled together—methods, processes, mental steps, ab-
straction, algorithms, procedures, determinism—ramify throughout the social and
economic fabric The task is to get . . . new models. There is a fertile field to
be plowed here, to understand what models might work for the law. It is a job for
lawyers and, importantly, theoretical computer scientists. It could also use some
philosophers of computation, if we could ever grow some.

Readers of this book, take note!

548 CHAPTER 13. COPYRIGHT VS. PATENT

Chapter 14

What Is Implementation?

Version of 21 January 2020; DRAFT c© 2004–2020 by William J. Rapaport1

“I wish to God these calculations had been executed by steam!”
—Charles Babbage (1821), quoted in Swade 1993, p. 86.

What . . . [Howard H. Aiken, who built the Harvard Mark I computer] had in mind
. . . was the construction of an electromechanical machine, but the plan he outlined
was not restricted to any specific type of mechanism; it embraced a broad coor-
dination of components that could be resolved by various constructive mediums.
—George C. Chase (1980, p. 226)

[W]hy wasn’t Mark I an electronic device? Again, the answer is money. It was
going to take a lot of money. Thousands and thousands of parts! It was very clear
that this thing could be done with electronic parts, too, using the techniques of the
digital counters that had been made with vacuum tubes, just a few years before
I started, for counting cosmic rays. But what it comes down to is this: if [the]
Monroe [Calculating Machine Co.] had decided to pay the bill, this thing would
have been made out of mechanical parts. If RCA had been interested, it might
have been electronic. And it was made out of tabulating machine parts because
IBM was willing to pay the bill.
—Howard H. Aiken (quoted by I. Bernard Cohen in Chase 1980, p. 200)

. . . Darwin discovered the fundamental algorithm of evolution by natural selection,
an abstract structure that can be implemented or “realized” in different materials
or media.
—Daniel C. Dennett (2017, p. 138)

1Portions of this chapter are adapted from Rapaport 1999, 2005b.

549

550 CHAPTER 14. WHAT IS IMPLEMENTATION?

14.1 Readings:
1. Required:

(a) Liskov, Barbara; & Zilles, Stephen (1974), “Programming with Abstract Data Types”,
ACM SIGPLAN Notices 9(4) (April): 50–59, http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.136.3043&rep=rep1&type=pdf

(b) Chalmers, David J. (1993), “A Computational Foundation for the Study of Cogni-
tion”, Journal of Cognitive Science (South Korea) 12(4) (October-December 2011):
323–357, http://j-cs.org/gnuboard/bbs/board.php?bo table= vol012i4&wr id=2

i. Read §§1–2; skim the rest.

• §2 of this paper was published (in slightly different form) as
Chalmers 1995.

ii. Originally written in 1993, the 2011 version was accompanied by commen-
taries (including Egan 2012; Rescorla 2012b; Scheutz 2012; Shagrir 2012a)
and a reply (Chalmers, 2012b).

(c) Rapaport, William J. (1999), “Implementation Is Semantic Interpretation”,
The Monist 82(1): 109–130.

• This essay alludes to a sequel “in preparation”, which was later published as
Rapaport 2005b

2. Strongly Recommended:

(a) Putnam, Hilary (1988), Appendix, Representation and Reality (Cambridge, MA:
MIT Press): 121–125.

i. “Theorem. Every ordinary open system is a realization of every abstract finite
automaton.”

ii. Putnam’s argument for this “theorem” is related to Searle’s (1990) argument
about the wall behind me implementing Wordstar (which we discussed in
§9.5.6), but it is much more detailed.

(b) Chalmers, David J. (1993), “Does a Rock Implement Every Finite-State Automa-
ton?”, Synthese 108 (1996): 309–333, http://consc.net/papers/rock.html.

i. This is a reply to Putnam’s argument, above.
ii. Chalmers corrects “an error in my arguments” in this paper in Chalmers 2012b,

pp. 236–238.

3. Recommended:

(a) Rescorla, Michael (2012), “Are Computational Transitions Sensitive to Seman-
tics?”, Australian Journal of Philosophy 90(4) (December): 703–721,
http://www.philosophy.ucsb.edu/docs/faculty/papers/formal.pdf

(b) Rescorla, Michael (2013), “Against Structuralist Theories of Computational Im-
plementation”, British Journal for the Philosophy of Science 64(4) (December):
681–707, http://philosophy.ucsb.edu/docs/faculty/papers/against.pdf

(c) Rescorla, Michael (2014), “A Theory of Computational Implementation”,
Synthese 191: 1277–1307,
http://philosophy.ucsb.edu/docs/faculty/papers/implementationfinal.pdf

14.2. INTRODUCTION 551

14.2 Introduction
On the one hand, we have a very elegant set of mathematical results ranging from
Turing’s theorem to Church’s thesis to recursive function theory. On the other
hand, we have an impressive set of electronic devices which we use every day.
Since we have such advanced mathematics and such good electronics, we assume
that somehow somebody must have done the basic philosophical work of connect-
ing the mathematics to the electronics. But as far as I can tell that is not the
case. On the contrary, we are in a peculiar situation where there is little theoretical
agreement among the practitioners on such absolutely fundamental questions as,
What exactly is a digital computer? What exactly is a symbol? What exactly is a
computational process? Under what physical conditions exactly are two systems
implementing the same program?
—John Searle (1990, p. 25, my italics)

One concept that has repeatedly cropped up in our discussions is that of “implementa-
tion”:

• In §3.13.1, we read that Loui (1987, p. 176) said that CS studies (among other
things) the ‘implementations of . . . algorithms in hardware and in software”.

• In §7.6.8, we discussed the Implementation Insight: that the binary-representation,
Turing Machine, and structured-programming insights can all be physically
implemented.

• In Chapter 8, we cited several implementations of Turing Machines: using peb-
bles and toilet paper, railroad and subway trains, the Game of Life, and even
business cards!

• In §9.4.1, we investigated the extent to which (physical) computers were imple-
mentations of (abstract) Turing Machines.

• In §9.5.6, we saw Searle (1990) saying that “the wall behind my back is right
now implementing the Wordstar program”, and we talked about “physical im-
plementations of Turing Machines” and “human cognition . . . implemented by
neuron firings”.

• In §10.4.2, we saw that “to implement a plan is to copy an abstract design into
reality”.

• In Chapter 12, we talked about functions being implemented by algorithms,
which can be implemented by programs written in high-level computer program-
ming languages, which, in turn, can be implemented by assembly-language pro-
grams, which, in their turn, can be implemented by machine-language programs,
which can, finally, be implemented in hardware. And besides such “chained”
implementations of implementations, we looked at the idea of there being “mul-
tiple” implementations of a single item.

• In Chapter 13, we looked at how copyright only applies to implementations in
the medium of language of abstract ideas.

552 CHAPTER 14. WHAT IS IMPLEMENTATION?

• And computer programmers talk about data structures in a particular program-
ming language implementing abstract data types (Liskov and Zilles 1974; Aho
et al. 1983, §1.2). We’ll go into more detail on this in §14.2.3.

So, what is an implementation?

14.2.1 Implementation vs. Abstraction
Let’s begin by contrasting “implementation” with “abstraction”. Abstractions are usu-
ally thought of as being non-physical; the opposite is usually said to be something that
is “concrete”. But, more generally, something is abstract if it omits some details.

What we desire from an abstraction is a mechanism which permits the expression
of relevant details and the suppression of irrelevant details. (Liskov and Zilles,
1974, p. 51)

And, precisely because abstractions omit details, they are also more general than
something that has those details filled in. The more details that are omitted, the more
abstract (and the more general) something is. For example, “geology” is (literally) the
study of the Earth and its physical structure, and “selenology” is (literally) the study
of the Moon and its physical structure (Clarke, 1951, p. 42). If you abstract away from
the particular heavenly body that is being studied (Earth or Moon), the result would be
a more general science that studies the physical structure of a(n unspecified) heavenly
body (even if it might still be called ‘geology’).

When you fill in some of the details that were omitted in an abstraction, you get an
implementation of it. Indeed, the word ‘implement’ comes from a Latin word meaning
“to fill up, to complete”.2 An implementation does not have to be “concrete”; it can
itself be abstract if it doesn’t fill in all the details. As Rosenblueth and Wiener (1945,
p. 320) put it, implementation (what they call ‘embodiment’) is the “converse” of ab-
straction. But I think that it is better to say that an implementation and the abstraction
that it implements lie along a spectrum.

Rosenblueth and Wiener observe that, in order to understand some part of the
complex universe, scientists replace it “by a model of similar but simpler structure”
(p. 316)—this is the technique of abstraction. Thus, one mark of being an abstraction
is to be simpler than what it’s an abstraction of; what it’s an abstraction of (in this case,
a part of the universe) will have “extra” features. These extra features might be quite
important ones that are being ignored merely temporarily or for the sake of expediency,
or they might be “noise”—irrelevant details, or details that arise from the medium of
implementation. In such cases, the extra features that are not in the abstraction are often
referred to as “implementation-dependent details”. For example, Rescorla (2014b, §2,
p. 1280) says: “A physical system usually has many notable properties besides those
encoded by our computational model: colors, shapes, sizes, and so on.”

There are, according to Rosenblueth and Wiener, two kinds of models: formal and
material, both of which are abstractions (p. 316). Formal models are like mathematical
models: They are formal symbol systems expressed in formal languages and under-
stood in terms of their syntax. Recall from §9.5.1 that syntax is usually considered to

2For more on the etymology of ‘implement’, see Rapaport 1999, §2, pp. 110–111; and §4, pp. 115–116.

14.2. INTRODUCTION 553

Figure 14.1: c©1991 Bil Keane, Inc.

be the study of the properties of, and the relations among, the symbols of a language;
for example, the grammar of a language is its syntax. Let’s call a formal system that is
understood in terms of its syntax a “syntactic domain”.

Material—that is, physical—models, however, are more like scale models (p. 317)
than like symbol systems. Because such models omit some details (for example, scale
models are smaller and usually made of different materials than what they are models
of), they are “abstract”, even though they are “concrete”, or physical. But a material
model can also be “more elaborate” than that which it models (p. 318). This suggests
that “implementation-dependent details”—that is, parts of the model that are not (or are
not intended to be) representations of the complex system—are ignored. For instance,
the physical matter that the model is made of, or imperfections in it, would be ignored:
One does not infer from a plastic scale model of the solar system that the solar system
is made of plastic, nor from a globe that the Earth has writing on it (as in Figure 14.1).

Typically, implementations are physical “realizations” or “embodiments” of non-
physical “abstractions”. That is, implementation is typically understood as a relation
between an abstract specification and a concrete, physical entity or process. But a
real, physical airplane could be considered to be an implementation of a physical scale
model “of” it. the former is complete in all details—it really flies and carries passen-
gers, but the scale model, even though physical, lacks these abilities.

14.2.2 Implementations as Role Players

There can be multiple, different implementations of a single abstraction: Some merely
fill in more or different details, but others might do so using different (usually physical)
“stuff”—different media. For example, in the fairy tale, the three little pigs can be

554 CHAPTER 14. WHAT IS IMPLEMENTATION?

thought of as having used a single abstract blueprint to build three different versions
of the “same” house out of three different materials (in three different media): straw,
sticks, and bricks.

So, abstractions can be “multiply realized”—implemented in more than one way,
just as many different actors can play the same role in different productions (imple-
mentations!) of the same play. Hamlet is a role; Richard Burton occupied that role
in the 1964 Broadway production of Hamlet, and Laurence Olivier occupied it in the
1948 film. Alternatively, we could say that Burton and Olivier “implemented” Hamlet
in the “medium” of human being (and a drawing of Hamlet implements Hamlet in the
medium of an animated cartoon version of the play).

The implementation-abstraction distinction is also mirrored in the “occupant”-“role”
distinction made in functionalist theories of the mind (Lycan, 1990, p. 77). Accord-
ing to those theories, mental states and processes are “functional roles” played—or
implemented—by neuron firings in brains (or perhaps computational states and pro-
cesses in AI computer programs; we’ll come back to this idea in §20.3).

And mathematical “structuralists” have argued that numbers are not “things” (ex-
isting in some Platonic heaven somewhere), but are more like “roles” in a mathemati-
cal structure (defined, say, by Peano’s axioms) that can be “played” by many different
things, such as different sets, Arabic numerals, etc. (Benacerraf, 1965). Recall our brief
mention in §9.5.6 of structuralism: The natural numbers can be considered a “role” that
can be “played” by any “countably infinite (recursive) set . . . arranged to form an ω-
sequence” (Swoyer, 1991, p. 504, note 26). In the rest of that passage, Swoyer goes on
to say that “a concrete realization [that is, an implementation of the natural numbers]
would be obtained by adding a domain of individuals and assigning them as extensions
[that is, as semantic interpretations] to the properties and relations in the structure”.
In other words, an implementation of the natural numbers is the same as a semantic
interpretation of them.

14.2.3 Abstract Data Types

Computer scientists also use the term ‘implementation’ to refer to the relation between
an abstract data type and its “implementation” or “representation” by an abstract data
structure in a programming language. Although it is not entirely abstract, a data struc-
ture is also not entirely physical: It is part of the software, not the hardware. Moreover,
one abstract data type could even be implemented in a different abstract data type.

What is an “abstract data type”?

An abstract data type defines a class of abstract objects which is completely char-
acterized by the operations available on those objects. This means that an abstract
data type can be defined by defining the characterizing operations for that type.
(Liskov and Zilles, 1974, p. 51)

So, an abstract data type is a kind of abstract noun—an indefinite description of the
form: “an entity that can perform actions A1, . . . ,Ak, and that actions Ak+1, . . . ,An can
be performed on”, where the Ai are new, abstract “verbs”. The actual entities that
satisfy such a description are implementations of the abstract data type.

14.2. INTRODUCTION 555

Let me a bit more precise. Some programming languages, such as Lisp, do not have
stacks as a built-in data structure. So, a programmer who wants to write a program that
requires the use of stacks must find a substitute. In Lisp, whose only built-in data
structure is a linked list, the stack would have to be built out of a linked list: Stacks in
Lisp can be implemented by linked lists. Here’s how:

First, a stack is a particular kind of abstract data type, often thought of as consisting
of a set of items structured like an ordinary, physical stack of cafeteria trays: New items
are added to the stack by “pushing” them on “top”, and items can be removed from the
stack only by “popping” them from the top. Thus, to define a stack, one needs (i) a
way of referring to its top and (ii) operations for pushing new items onto the top and
for popping items off the top. That, more or less (mostly less, since this is informal), is
a stack defined as an abstract data type.

Second, a linked list (‘list’, for short) is itself an abstract data type. It is a sequence
of items whose three basic operations are:

1. f irst(l), which returns the first element on the list l,

2. rest(l), which returns a list consisting of all the original items except the first,

and

3. make-list(i, l), which recursively constructs a list by putting item i at the begin-
ning of list l.

Finally, a stack s can be implemented as a list l, where top(s) := f irst(l), push(i,s) :=
make-list(i, l), and pop(s) returns top(s) and redefines the list to be rest(l).

As another example of an “abstract implementation”, consider a top-down-design,
stepwise-refinement (that is, a recursive development) of a computer program (see
§6.5.3): Each level (each refinement) is an abstract implementation of the previous,
higher-level one. Eachy of the more detailed implementation levels is less abstract
than the previous one. A “concrete implementation” would be an implementation in a
physical medium.

Question for the Reader:
Could this be related to what Colburn might have had in mind when he talked about a “concrete
abstraction”? (Recall our discussion in §12.4.6.)

14.2.4 The Structure of Implementation

As we have seen, abstractions omit details and can be thought of as roles. Implemen-
tations fill in some of those details and can be thought of as things that play the role
specified by the abstraction. Some implementations may add details (“implementation-
dependent details”) that do not belong to the abstraction. For example, Hamlet’s age is
not specified in Shakespeare’s play (though he was supposed to be a college student),
but Burton was about 39 when he played the role, and Olivier was about 41; those are

556 CHAPTER 14. WHAT IS IMPLEMENTATION?

implementation-dependent details. Furthermore, there can be multiple implementa-
tions of a given abstraction, which differ in the “stuff” that the implementation is made
of. (These are also implementation-dependent details.)

To sum up, implementation is best thought of as a three-place relation:

I is an implementation in medium M of abstraction A.

And there are two fundamental principles concerning this relation:

Implementation Principle I: For every implementation I, there is an abstraction A
such that I implements A.

Implementation Principle II: For every abstraction, there can be more than one im-
plementation of it.

Principle I actually follows from the nature of the three-place relation; Principle II is
a generalization of the principle of “multiple realizability” (Bickle, 2019). (We will
return to these two principles in §19.6.2.2.)

In the next two sections, we will look at two theories that spell out more of the
details about the nature of implementation. One will use the relation between syntax
and semantics to illuminate implementation. The other, due to David Chalmers, was
designed to reply to Searle (1990).

14.3 Implementation as Semantic Interpretation
A theory of implementation tells us which conditions the physical system needs
to satisfy for it to implement the computation. Such a theory gives us the truth
conditions of claims about computational implementation. This serves not only as
a semantic theory but also to explicate the concept (or concepts) of computational
implementation as they appear in the computational sciences.
—Mark Sprevak (2018, §2, original italics, my boldface)

14.3.1 What Kind of Relation Is Implementation?
One main point of the previous section is that not all examples of implementation
concern the implementation of something abstract by something concrete. As we have
just seen, sometimes one abstract thing can implement another abstract thing, and one
concrete thing can implement another concrete thing. What we need is a more general
notion. There are several candidates:

• individuation:

This is the relation between the lowest level of a genus-species tree
(such as “dog” or “human”) and individual dogs or humans: For ex-
ample, my cat Bella “individuates” the species Felis catus). Individu-
ation seems to be a kind of implementation: We could say that Bella is
an implementation of Felix catus. But not all cases of implementation
are individuations.

14.3. IMPLEMENTATION AS SEMANTIC INTERPRETATION 557

• instantiation:

This is the relation between a specific instance of something and the
kind of thing that it is: For example, the specific redness of my note-
book cover is an instance of the color “red”). Instantiation seems to be
a kind of implementation: We could say that the specific instance of
red that is my notebook’s color is an implementation of the (abstract)
color “red”. But not all implementations are instantiations.

• exemplification:

This is the relation between a (physical) object and a property that it
has: For example, Bertrand Russell exemplifies the property of being
a philosopher). Exemplification seems to be a kind of implementa-
tion: We could say that Bertrand Russell is an implementation of a
philosopher. But not all implementations are exemplifications.

• reduction:

This is the relation between a higher-level object and the lower-level
objects that it is made of: For example, water is reducible to a molecule
consisting of two atoms of hydrogen and one atom of oxygen, or, per-
haps, the emotion of anger is reducible to a certain combination of
neuron firings). This kind of reduction3 seems to be a kind of imple-
mentation: We could say that water is implemented by H2O, or that
my anger is implemented by certain neuron firings in my brain and
nervous system. But not all implementations are reductions.

Each of these may be implementations, but not vice versa. In other words, implemen-
tation is a more general notion than any of these. But all of them can be viewed as
semantic interpretations (Rapaport, 1999, 2005b).

Let A be an “abstraction” (that is, something that spells out a role to be played or
a generalization of the notion of an abstract data type). And let M be any abstract or
concrete “medium”. Then we can say that

I is an implementation in medium M of A

iff

I is a semantic interpretation in semantic domain M of syntactic domain A

Implementation I could be either an abstraction itself or something concrete, depending
on M.

And, as we have seen, there could be a sequence of implementations (or what Brian
Cantwell Smith (1987) calls a “correspondence continuum”; for discussion, see Rapa-
port 1995, §2): A stack can be implemented by a linked list, which, in turn, could
be implemented in the programming language Pascal, which, in turn, could be im-
plemented (that is, compiled into) some machine language L, which, in turn, could be

3There are others; see Dennett 1995, Ch. 3, §5 for a useful discussion.

558 CHAPTER 14. WHAT IS IMPLEMENTATION?

implemented on my Mac computer. (We saw this same phenomenon in another, though
related, situation back in §9.2. Sloman 1998, §2, p. 2 makes the same point about what
he calls “implementation layers”.) But it could also be more than a mere sequence of
implementations, because there could be a tree of implementations, much as in the pre-
vious chapter’s Figure 13.2: The very same linked list could be implemented in Java,
instead of Pascal, and the Java or Pascal program could be implemented in some other
machine language on some other kind of computer.

The ideas that abstractions can implement other abstractions and that there can be
“continua” of implementations is a consequence of what the philosopher William G.
Lycan (1990, p. 78), refers to as the “relativity” of implementation:

. . . “software”/“hardware” talk encourages the idea of a bipartite Nature, divided
into two levels, roughly the physiochemical and the (supervenient) “functional” or
higher-organizational—as against reality, which is a multiple hierarchy of levels
of nature See Nature as hierarchically organized in this way, and the “func-
tion”/“structure” distinction goes relative: something is a role as opposed to an
occupant, a functional state as opposed to a realizer, or vice versa, only modulo a
designated level of nature.

14.3.2 What Is Semantic Interpretation?

14.3.2.1 Formal Systems

[T]he formal character of [a] system . . . makes it possible to abstract from the
meaning of the symbols and to regard the proving of theorems (of formal logic) as
a game played with marks on paper according to a certain arbitrary set of rules.
—Alonzo Church (1933, p. 842, my italics)

Let’s begin with the concept of a “formal system”. These are sometimes called “symbol
systems”, “theories” (understood as a set of sentences), or “formal languages”. A
formal system consists of:

1. primitive (or atomic) “symbols” (sometimes called “tokens” or “markers”, which
can be thought of as being like the playing pieces in a board game such as
Monopoly)

These are assumed to have no interpretation or meaning, hence my
use of the term ‘marker’, rather than ‘symbol’, which many writers
use to mean a marker plus its meaning (as when we say, “a wedding
ring is a symbol for marriage” (Levesque, 2017, p. 108). The racecar
token in Monopoly isn’t interpreted as a racecar in the game; it’s just
a token that happens to be racecar shaped, so as to distinguish it from
the token that is top-hat shaped. (And the top-hat token isn’t inter-
preted as a top hat in the game: Even if you think that it makes sense
for a racecar to travel around the Monopoly board, it makes no sense
for a top hat to do so!)

14.3. IMPLEMENTATION AS SEMANTIC INTERPRETATION 559

Examples of such atomic markers include the letters of an alpha-
bet, (some of) the vocabulary of a language, (possibly) neuron firings,
or even states of a computation.

2. (recursive) rules for forming new (complex, or molecular) markers, sometimes
called ‘well-formed formulas’ (wffs)—that is, grammatically correct formulas—
from “old” markers (that is, from previously formed markers), beginning with
the atomic markers as the basic “building blocks”.

These rules might be spelling rules (if the atomic markers are alphabet
letters), or grammar rules (if the atomic markers are words), or bun-
dles of synchronous neuron firings (if the atomic markers are single
neuron firings).

The molecular markers can be thought of as “strings” (that is,
sequences of atomic markers), or words (if the atomic markers are
letters), or sentences (if the atomic markers are words).

3. a “distinguished” (that is, singled-out) subset of wffs

These are usually called ‘axioms’. But having axioms is optional. If
English is considered as a formal system (Montague, 1970), it doesn’t
need axioms. But if geometry is considered as a formal system, it
usually has axioms.

4. recursive rules (called ‘rules of inference’ or ‘transformation rules’) for forming
(“proving”) new wffs (called ‘theorems’) from old ones (usually, but not always,
beginning with the axioms).

Digression: Formal Systems and Turing Machines.
Turing Machines can be viewed as (implementations of) formal systems: Roughly, (1) the atomic
markers correspond to the ‘0’s and ‘1’s of a Turing Machine, (2) the wffs correspond to the
sequences of ‘0’s and ‘1’s on the tape during a computation, (3) the axioms correspond to the
initial string of ‘0’s and ‘1’s on the tape, and (4) the recursive rules of inference correspond to
the instructions for the Turing Machine. See Suber 1997a for details. Saul Kripke (2013, p. 80)
has also advocated for this point of view:

[A] computation is a special form of mathematical argument. One is given a set
of instructions, and the steps in the computation are supposed to . . . follow de-
ductively . . . from the instructions as given. So a computation is just another
mathematical deduction . . .

14.3.2.2 Syntax

The “syntax” of such a system is the study of the properties of the markers of the
system and the relations among them (but not any relations between the markers and
anything outside of the system). Among these (internal) relations are the “grammati-
cal” relations, which specify which strings of markers are well formed (according to
the rules of grammar), and the “proof-theoretic” (or “logical”) relations, which specify

560 CHAPTER 14. WHAT IS IMPLEMENTATION?

which sequences of wffs are proofs of theorems (that is, which wffs are derivable by
means of the rules of inference).

Here is an analogy: Consider a new kind of toy system, consisting of Lego-like
blocks that can be used to construct Transformer monsters. (This wouldn’t be a very
practical real toy, because things made out of Legos tend to fall apart. That’s why
this is a thought experiment, not a real one!) The basic Lego blocks are the primitive
markers of this system. Transformer monsters that are built from Legos are the wffs of
the system. And the sequences of moves that transform the monsters into trucks (and
back again) are the proofs of theorems.

Further Reading:
For more on formal systems, see Kyburg 1968, Ch. 1, “The Concept of a Formal System”.
Real examples of formal systems include propositional logic, first-order logic, Douglas Hofs-
tadter’s “MIU” system (Hofstadter, 1979), Peter Suber’s “S” (Suber, 1997a, 2002), and my own
“mark system” L ′ (Rapaport, 2017b, §2.2). Sometimes, the entities of such systems are called
‘constructive objects’; see https://www.encyclopediaofmath.org/index.php/Constructive object.
There is a nice discussion of “marks” and “mark manipulation” systems in Kearns 1997, §2,
pp. 273–274.

14.3.2.3 Semantic Interpretation

An important fact about a formal system and its syntax is that there is no mention
of truth, meaning, reference, or any other “semantic” notion. These are all relations
between the markers of a formal system and things that our external to the system.
Such external relations are not part of the formal system. (They are also not part
of the system of things that are outside of the formal system!) We came across this
idea in §8.9.1, when we discussed Hilbert’s claim that geometry could be as much
about tables, chairs, and beer mugs as about points, lines, and planes. Tenenbaum and
Augenstein (1981, p. 1), note that “the concept of information in computer science is
similar to the concepts of point, line, and plane in geometry—they are all undefined
terms about which statements can be made but which cannot be explained in terms of
more elementary concepts.”

But sometimes we want to “understand” a formal system. There are two ways
to do that (Rapaport, 1986f, 1995). One way is to understand the system in terms
of itself —to become familiar with the system’s syntax. This can be called “syntactic
understanding”. Another way is to understand the system in terms of another system
that we already understand. This can be called “semantic understanding”:

Material models [that is, semantic interpretations] . . . may assist the scientist in
replacing a phenomenon in an unfamilar field by one in a field in which he [sic] is
more at home. (Rosenblueth and Wiener, 1945, p. 317, my italics)

The “semantics” of a formal system is the study of the relations between the mark-
ers of the system (on the one hand) and something else (on the other hand). The “some-
thing else” might be what the markers “represent”, or what they “mean”, or what they
“refer to”, or what they “name”, or what they “describe”. Or it might be “the world”.

14.3. IMPLEMENTATION AS SEMANTIC INTERPRETATION 561

Figure 14.2: c©2/14/1987, Universal Press Syndicate

(For a humorous take on the relation of syntax to semantics, see Figure 14.2.) If the
formal system is a language, then semantics studies the relations between, on the one
hand, the words and sentences of the language and, on the other hand, their meanings.
If the formal system is a (scientific) theory, then semantics studies the relations be-
tween the markers of the theory and the world—the world that the theory is a theory
of . (We’ll come back to this theme in the next chapter, when we consider whether
(some) computer programs are scientific theories.)

Semantics, in general, requires three things:

1. a syntactic domain; call it ‘SYN’—typically, but not necessarily, a formal sys-
tem,

2. a semantic domain; call it ‘SEM’—characterized by an “ontology”,

• An ontology is, roughly, a theory or description of the things in the seman-
tic domain. It can be understood as a (syntactic!) theory of the semantic
domain, in the sense that it specifies (a) the parts of the semantic domain
(its members, categories, etc.) and (b) their properties and relationships
(structural, as well as inferential or logical). Such an ontology is some-
times called a “model theory”.

3. a semantic interpretation mapping from SYN to SEM. SEM is a “model” or “in-
terpretation” of SYN; SYN is a “theory” or a “description” of SEM. Description
is a semantic notion:

562 CHAPTER 14. WHAT IS IMPLEMENTATION?

Physical system P realizes/implements computational model M just in case
[c]omputational model M accurately describes physical system P. (Rescorla,
2014b, §2, p. 1278; my italics)

Here are several examples of semantic domains that are implementations of syn-
tactic domains:

SYNTAX SEMANTICS
algorithms are implemented by computer programs

(in language L)

computer programs are implemented by computational processes
(in language L) (on machine m)

abstract data types are implemented by data structures
(in language L)

musical scores are implemented by performances
(by musicians)

play scripts are implemented by performances
(by actors)

blueprints are implemented by buildings
(made of wood, bricks, etc.)

formal theories are implemented by (set-theoretic) models

14.3. IMPLEMENTATION AS SEMANTIC INTERPRETATION 563

Digression: Syntax, Semantics, and Puzzles:
We can illustrate the difference between syntax and semantics by means of jigsaw puzzles. The
typical jigsaw puzzle that one can buy in a store consists of a (usually rectangular) piece of heavy
cardboard or wood, with a picture printed on it, and which has been “jigsawed” into pieces. The
object of the puzzle is to put the pieces back together again to (re-)form the picture. The pieces
are usually stored in a box that has a copy of the picture on it (put together, but without the
boundaries of the pieces indicated).

There are at least two distinct ways to solve the puzzle, that is, to put the pieces back together:

Syntactically:
Each piece has a distinct shape and a fragment of the original picture on it. Furthermore,
the shapes of the pieces are such that they can be put together in (usually) only one way.
In other words, any two pieces are completely unrelated in terms of their shape, or else
they are such that they fit together to form part of the completed puzzle. A map of the US
can be used as an example of this “fitting together”: The boundaries (that is, the shape) of
New York State and Pennsylvania fit together across New York’s southern boundary and
Pennsylvania’s northern boundary, but New York and California are unrelated in this way.
These properties (shapes and picture fragments) and relations (fitting together) constitute
the syntax of the puzzle.

One way of putting the puzzle together is to pay attention only to the syntax of the
pieces. In a rectangular puzzle, one strategy is to first find the outer boundary pieces, each
of which has at least one straight edge, and then to fit them together to form the “frame”
of the puzzle. Next, one would try to find pieces that fit either in terms of their shape or
in terms of the pattern (picture fragment) on it.

This method makes no use of the completed picture as shown on the box. If that
picture is understood as a semantic interpretation of the pieces, then this syntactic method
of solving the puzzle makes no use of semantics.

Semantically:
But by using that semantic information, one can solve the puzzle solely by matching the
patterns on the pieces with the picture on the box, and then placing the pieces together
according to that external semantic information.

Of course, typically, one uses both techniques. But the point I want to make is that this is a nice
example of the difference between syntax and semantics.

564 CHAPTER 14. WHAT IS IMPLEMENTATION?

14.3.3 Two Modes of Understanding

Figure 14.3: https://www.gocomics.com/bloomcounty/2010/08/06,
c©2010, Washington Post Co.

Figure 14.4: https://www.gocomics.com/bloomcounty/2010/08/09,
c©2010, Washington Post Co.

Note that semantic understanding is a two-way street (or, to switch metaphors, seman-
tic understanding is Janus faced):4 Typically, we already understand SEM; thus, we can
use SEM to help us understand SYN. For example, knowing something about the his-
tory and culture of an ancient civilization can help us understand its written language.
But we can also use SYN to understand SEM. For example, language and scientific
theories expressed in language enable us to describe and understand the world (as we
discussed in Chapter 4). Rosenblueth and Wiener (1945, p. 317) observe that, in the
18th and 19th centuries, mechanical models were used to understand electrical prob-
lems, but that, in the 20th century, electrical models were used to understand mechani-
cal problems! Swoyer (1991, p. 482) notes that a semantic interpretation of a language
is a mapping “from the syntax to the semantics” (from SYN to SEM). But in note 27

4http://en.wikipedia.org/wiki/Janus

14.3. IMPLEMENTATION AS SEMANTIC INTERPRETATION 565

(p. 504), he observes that in other structural representations, the mapping “runs in the
opposite direction”, from SEM to SYN to use our terminology.

Data types are another example: In §14.2.3, we said that an abstract data type can
be implemented by a data structure:

A data type is an abstract concept defined by a set of logical properties. Once
such an abstract data type is defined and the legal operations involving that type
are specified, we may implement that data type An implementation may be a
hardware implementation, in which the circuitry necessary to perform the required
operations is designed and constructed as part of a computer. Or it may be a soft-
ware implementation, in which a program consisting of already existing hardware
instructions is written to interpret bit strings in the desired fashion and to perform
the required operations. (Tenenbaum and Augenstein, 1981, p. 8)

But an abstract data type can itself be viewed as an implementation:

A method of interpreting a bit pattern is often called a data type. . . .
. . . a type is a method for interpreting a portion of memory. When a variable

identifier is declared as being of a certain type, we are saying that the identifier
refers to a certain portion of memory and that the contents of that memory are
to be interpreted according to the pattern defined by the type. (Tenenbaum and
Augenstein, 1981, pp. 6, 45)

What matters is the existence of a mapping; its direction is a matter of which system
is being used to understand the other. The crucial issue is which system (SYN or SEM)
is antecedently understood. One person’s antecedently understood domain is another’s
that needs to be understood.

Digression: A Recursive Definition of Understanding
We can combine the two kinds of understanding into a recursive definition of ‘understand’. After
all, if one understands a domain semantically in terms of an antecedently understood domain,
we might wonder how that antecedently understood domain is understood. If it is understood
in terms of yet another antecedently understood domain, we run the risk of an infinite regress,
unless there is one domain that is understood in terms of itself , rather than in terms of another
domain. But, if a domain is going to be understood in terms of itself, it would have to be
understood in terms only of its properties and internal relations, and that means that it would have
to be understood syntactically. So, the base case of understanding is to understand something
syntactically—in terms of itself. The recursive case of understanding is to understand something
semantically, in terms of something else that is already understood. (See Rapaport 1995 for
further discussion. Linnebo and Pettigrew 2011 introduce a notion of “conceptual autonomy”:
A theory “T1 has conceptual autonomy with respect to T2 if it is possible to understand T1 without
first understanding notions that belong to T2” (Assadian and Buijsman, 2019, p. 566). Using this
terminology, we could say that syntactic understanding is conceptually autonomous with respect
to semantic understanding, but not vice versa.)

566 CHAPTER 14. WHAT IS IMPLEMENTATION?

The antecedently understood domain can be viewed as an implementation of the
domain that needs to be understood. So, (typically) SEM is an implementation of
SYN. But, in line with our comments above, sometimes SYN is best understood as an
implementation of SEM.

Consider a program written in a high-level programming language. Suppose that
the program has a data structure called a “person record”, containing information about
(that is, a representation of) a person, something like the record in the Bloom County
cartoons in Figures 14.3 and 14.4. For instance, Howard L. Jones’s record might look
something like this:

(person-record:
(name "Howard L. Jones")
(age 36)
(height (feet 6))
(race Black)
(ssn 003-15-9003)
(serial-number 66-77-1140)
(license-number 3476140)
(duck-hunting-permit 78103)

)

This is merely a piece of syntax: a sequence of markers. You and I reading it might
think that it represents a person named ‘Howard L. Jones’, whose age is 36, whose
height is 6 feet, and so on. But as far as the computer (program) is concerned, this
record might just as well have looked like this (McDermott, 1980):

(PR:
(g100 n456)
(g101 36)
(g102 (u7 6)))
(g103 r7)
(g104 003159003)
(g105 66771140)
(g106 3476140)
(g10778103)

)

And, in fact, the machine-language version of this record looks much like this (Colburn,
1999, p. 8). As long as the program ‘knows” how to input new data, how to compute
with these data, and how to output the results in a humanly readable form, it really
doesn’t matter what the data look like to us. That is, as long as the relationships among
the symbols are well specified, it doesn’t matter—as far as computing is concerned—
how those symbols are related to other symbols that might be meaningful to us. That
is why it is syntax, not semantics.

Now, there are at least two ways in which this piece of syntax could be imple-
mented. One implementation, of course, might be Jones himself in the real world:5 A

5Yes; I’m aware that this Jones is a cartoon character, hence not a real person!

14.3. IMPLEMENTATION AS SEMANTIC INTERPRETATION 567

person named ‘Howard L. Jones’, who is 36 years old, etc. Jones—the real person—
implements that data structure; he is also a semantic interpretation of it.

Another implementation is the way in which that data structure is actually repre-
sented in the computer’s machine language. That is, when the program containing
that data structure is compiled into a particular computer’s machine language, that data
structure will be represented in some other data structure expressed in that machine
language. That will actually be another piece of syntax. And that machine-language
syntax will be an implementation of our original data structure.

But when that machine-language program is being executed by the computer, some
region of the computer’s memory will be allocated to that data structure (to the com-
puter’s representation of Jones, if you will), which will probably be an array of ‘0’s and
‘1’s, more precisely, of bits in memory. These bits will be yet another implementation
of the original data structure, as well as an implementation of the machine-language
data structure.

Question for Discussion:
What is the relation between the human (Jones himself) and this region of the computer’s mem-
ory? Does the memory location “simulate” Jones? (Do bits simulate people?) Does the memory
location implement Jones? (Do bits implement people?) Also: The ‘0’s and ‘1’s in memory can
be thought of as the ‘0’s and ‘1’s on a Turing Machine tape, and Jones can be thought of as an
interpretation of that Turing Machine tape. Now, recall from §10.4.1 what Cleland said about
the difference between Turing Machine programs and mundane procedures: The former can be
understood independently of any real-world interpretation (that is, they can be understood purely
syntactically, to use the current terminology)—understood in the sense that we can describe the
computation in purely ‘0’/‘1’ terms. (Can we? Don’t we at least have to interpret the ‘0’s and
‘1’s in terms of a machine-language data structure, interpretable in turn in terms of a high-level
programming-language data structure, which is interpretable, in turn, in terms of the real-world
Jones?) Mundane procedures, on the other hand, must be understood in terms of the real world
(that is, the causal world) that they are manipulating.

568 CHAPTER 14. WHAT IS IMPLEMENTATION?

14.4 Chalmers’s Theory of Implementation

Figure 14.5: http://dilbert.com/strip/2015-04-22, c©2015, Scott Adams Inc.

14.4.1 Introduction
It is one thing to spell out the general structure of implementation as we did in §14.2,
and another to suggest that the notion of semantic interpretation is a good way to under-
stand what implementation is, as we did in §14.3.2. But we still need a more detailed
theory of implementation: What is the nature of the relation between an abstraction
and one of its implementations?

One reason we need such a theory is in order to refute Searle’s (1990) claim that
“any given [physical] system can be seen to implement any computation if interpreted
appropriately” (Chalmers, 2011, p. 325, my italics). David Chalmers’s essay, “A Com-
putational Foundation for the Study of Cognition” (2011; see also Chalmers 1996b)
concerns both implementation and cognition, but, here, we will focus only on what he
has to say about implementation.

One of his claims is that we need a “bridge” between the abstract theory of com-
putation and physical systems that “implement” them. Besides ‘bridge’, other phrases
that he mentions as synonyms for ‘implement’ are: ‘realize’ (that is, make real) and
‘described by’, as in this passage:

Certainly, I think that when a physical system implements an a-computation [that
is, a computation abstractly conceived], the a-computation can be seen as a de-
scription of it. (Chalmers, 2012b, p. 215)

That is, the physical system that implements the abstract computation is described by
that computation. (Here, Chalmers seems to agree with what we quoted Rescorla as
saying; see §14.3.2.3.)

14.4. CHALMERS’S THEORY OF IMPLEMENTATION 569

14.4.2 An Analysis of Chalmers’s Theory
According to the simplest version of Chalmers’s theory of implementation,

A physical system implements a given computation when the causal structure of
the physical system mirrors the formal structure of the computation. (Chalmers,
2011, p. 326)

Almost every word of this needs clarification! For convenience, let P be a “physical
system”, and let C be a “computation”:

• What kind of physical system is P?

It need not be a computer, according to Chalmers.

• What kind of computation is C?

Is it merely an abstract algorithm? Is it more specifically a Turing
Machine program? Is it a program being executed—a “process”? In
any case, it would seem to be something that is more or less abstract
(because it has a “formal structure”; recall our discussion in §3.13.2
of the meaning of ‘formal’).

• What is a “formal structure”?

• What is a “causal structure”?

• What does ‘when’ mean?

Is this intended to be just a sufficient condition (“when”), or is it sup-
posed to be a stronger biconditional (“when and only when”)?

• And the most important question: What does ‘mirror’ mean?

So, here is Chalmers’s “more detail[ed]” version (2011, p. 326, my interpolated numer-
als), which begins to answer some of these questions:

A physical system implements a given computation when there exists [1] a group-
ing of physical states of the system into state-types and [5a] a one-to-one mapping
from formal states of the computation to physical state-types, such that [3] formal
states related by an abstract state-transition relation are mapped [5b] onto physical
state-types [2] related by a [4] corresponding causal state-transition relation.

Let me try to clarify this. (The numerals that I have inserted into the passage above
correspond to the following list.) According to Chalmers, P implements C when (and
maybe only when):

570 CHAPTER 14. WHAT IS IMPLEMENTATION?

1. the physical states of P can be grouped into (physical-)state types,6

2. the physical-state types of P are related by a causal state-transition relation,

3. the formal states of C are related by an abstract state-transition relation,

4. the abstract state-transition relation of C corresponds to the causal state-transition
relation of P,

and

5. there is (a) a 1–1 and (b) onto map from the formal states of C to the physical-
state types of P.

We still need some clarification: We have already defined “1–1” and “onto” maps
in §7.7.1.2. A state is “formal” if it’s part of the abstract—that is, non-physical—
computation C, and a state is “causal” if it’s part of the physical system P: Here, ‘for-
mal’ just means “abstract”, and ‘causal’ just means “physical”. But what are abstract
and causal “state-transition relations”? And what does ‘correspond’ mean?

Figure 14.6 might help to make some of this clear. In this figure, the physical
system P is represented as a set of dots, each of which represents a physical state of P.
These dots are partitioned into subsets of dots, that is, subsets containing the physical
states. Each subset represents a state-type, that is, a set of states that are all of the same
type. (That takes care of part 1 of Chalmers’s account.)

The computation C is also represented as a set of dots. Here, each dot represents
one of C’s formal states. The arrows that point from the dots in C (that is, from C’s
formal states) to the subsets of dots in P (that is, to the state-types in P) represent the
1–1 map from C to P. To make it a 1–1 map, each formal state of C must map to a
distinct physical state-type of P. (That takes care of part 5a of Chalmers’s account.)

The arrows in set C represent the abstract state-transition relation among C’s for-
mal states (that’s part 3). And the arrows in set P among P’s subsets represent the
causal state-transition relation among P’s state-types (that’s part 2). Finally, because
C’s formal states are mapped onto P’s physical-state types, the 1–1 map is a 1–1 corre-
spondence (this is part 5b).

Chalmers (2011, p. 326) seems to be aware of the two-sided nature of understand-
ing; as we have seen, he says that P implements C when there is an isomorphism from
C to P; yet, on the very next page, he says that P implements a finite-state automaton
M if there is a mapping from P to M! (Of course, the mapping is a 1–1 correspondence,
and therefore it has an inverse!)

Chalmers also says that C’s abstract state-transition relations “correspond” to P’s
causal state-transition relations. I take it that this means that the 1–1 correspondence
is a “homomorphism”, that is, a structure-preserving map (that’s part 4).

6A word on punctuation. Chalmers calls them ‘physical state-types’. This looks as if he is talking about
“state-types” that are “physical”. But he is really talking about “types” of P’s “physical states”. In other
words, ‘-types’ has wide scope over ‘physical state’, even though it doesn’t look like that. So, I prefer to call
them ‘physical-state types’—note the position of the hyphen, which I think clarifies that, no matter how you
hyphenate it, what’s being discussed are “types of physical states”. The types themselves are not physical;
“types” are collections of things, and so they are abstract, even though the things that they are collections of
are physical.

14.4. CHALMERS’S THEORY OF IMPLEMENTATION 571

Figure 14.6: A pictorial representation of Chalmers’s analysis of implementation; see
text for explanation.

572 CHAPTER 14. WHAT IS IMPLEMENTATION?

Digression: Homomorphism:
Suppose that c1, . . . , cn are entities that stand in relation R. Then a function f is a homomor-
phism =de f f (R(c1, . . . , cn)) = f (R)(f (c1), . . . , f (cn)). That is, if the ci are related by some
relation R, and if that relationship is mapped by f , then the image of R(c1, . . . , cn) will be the
image of R applied to the images of the ci. That’s what it means to preserve structure.

Because the map is also “onto”, it is an “isomorphism”. (An isomorphism is a structure-
or “shape”-preserving 1–1 correspondence.) So, P and C have the same structure.

We can then say that a physical system (perhaps a process) P implements an abstract
computation C (which might be a Turing Machine, or a less-powerful finite automaton
(recall our discussion of these in §11.2), or a “combinatorial-state automaton” (see the
Digression below) if and only if there is a “reliably causal” isomorphism f : C → P.
(‘Reliably’ probably means something like “you can always count on it”.) Such an
f is a relation between an abstract, computational model and something in the real,
physical, causal world. This f is 1–1 and onto—a structure-preserving isomorphism
such that the abstract, input-output and processing relations in C correspond to reliably
causal processes in P. Michael Rescorla (2013, §1, p. 682) dubs Chalmers’s view
of implementation “structuralism about computational implementation”. It is the fact
that the structure of the physical system matches (“mirrors”, in Chalmers’s terms; more
precisely, is isomorphic to) the structure of the computational system that matters. Note
that P can be viewed as a semantic interpretation of C, and C can be viewed as a
description of P.

Digression: Combinatorial-State Automata:
According to Chalmers (2011, p. 328),

Simple finite-state automata are unsatisfactory for many purposes, due to the
monadic nature of their states. The states in most computational formalisms have
a combinatorial structure: a cell pattern in a cellular automaton, a combination
of tape-state and head-state in a Turing machine, variables and registers in a Pas-
cal program, and so on. All this can be accommodated within the framework
of combinatorial-state automata . . . , which differ from . . . [finite automata] only
in that an internal state is specified not by a monadic label S, but by a vector
[S1,S2,S3, . . .]. The elements of this vector can be thought of as the components
of the overall state, such as the cells in a cellular automaton or the tape-squares in
a Turing machine.

See the rest of Chalmers 2011, §2.1, for more details.

It follows from this analysis that:

• Every physical system implements some computation.

That is, for every physical system P, there is some computation C
such that P implements C. Does this make the notion of computation
vacuous? No, because the fact that some P implements some C is not
necessarily the reason why P is the kind of physical process that it
is. (But, in the case of cognition, it might be the reason! We’ll come
back to this in Chapter 19.)

14.4. CHALMERS’S THEORY OF IMPLEMENTATION 573

• But not every physical system implements any given computation.

That is, it is not the case that, for every P and for every C, P imple-
ments C. That is, there is some P and there is some C such that P
does not implement C (because there are computations that cannot be
mapped isomorphically to P). For example, it is highly unlikely that
the wall behind me implements Wordstar, because the computation is
too complex.

• A single physical system can implement more than one computation.

That is, for any P, there might be two different computations C1 6=C2
such that P implements both C1 and C2. For example, my com-
puter, right this minute as I type this, is implementing the “vi” text-
processing program, a clock, Powerpoint, and several other computer
programs, because each of these computations map to different parts
of P.

14.4.3 Rescorla’s Analysis of Chalmers’s Theory

There is one aspect of Chalmers’s analysis that we have not yet considered: “when”
vs. “only when”. Taken literally, Chalmers has offered only a sufficient condition for
P being an implementation of C: When (that is, “if”) there is a 1–1 correspondence
from C to P as described above, then P implements C. But is this also a necessary
condition—is P an implementation of C only when (that is, only if) there is such a 1–1
correspondence? (That is: When (or if) P is an implementation of C, then there is such
a 1–1 correspondence.)

Interestingly, Rescorla (2013) agrees that such structural identity is necessary for a
physical system to implement a computation, but he denies that it is sufficient! That is,
although any physical system that implements a computation must have the same struc-
ture as the computation, there are (according to Rescorla) physical systems that have
the same structure as certain computations but that are not implementations of them
(§1, p. 683). This is because semantic “relations to the social environment sometimes
help determine whether a physical system realizes a computation” (Abstract, p. 681).
The key word here is ‘sometimes’: “On my position, the implementation conditions
for some but not all computational models essentially involve semantic properties”
(§2, p. 684).

Roughly, the issue concerns the “intentionality” of implementation: Must P some-
how be “intended” (by whom?) to implement C? Or could P be, so to speak, an “acci-
dental” implementation of C?7 (Recall our discussion in §3.3.3.2.1 of “chauvinism” vs.
“liberalism” when trying to formalize informal notions.) In that case, Rescorla might
say that P wasn’t really an implementation of C. But Rescorla’s position is rather more
subtle. A year earlier, he had said:

7Perhaps in the same way that a fictional character might only “coincidentally resemble” a real person
(Kripke, 2011, pp. 56, 72).

574 CHAPTER 14. WHAT IS IMPLEMENTATION?

Mathematical models of computation, such as the Turing machine, are abstract
entities. They do not exist in space or time, and they do not participate in causal
relations. Under suitable circumstances, a physical system implements or phys-
ically realizes an abstract computational model. Some philosophers hold that a
physical system implements a computational model only if the system has seman-
tic or representational properties [. . . Ladyman 2009]. Call this the semantic view
of computational implementation. In contrast, [Chalmers 1995; Piccinini 2006a],
and others deny any essential tie between semantics and physical computation. I
agree with Chalmers and Piccinini. (Rescorla, 2012a, §2.1, p. 705, my italics)

But in Rescorla 2013, p. 684, after reciting the semantic and non-semantic passage
just quoted in almost the same words, he says that he “reject[s] both the semantic and
the non-semantic views of computational implementation” (my italics). We will in-
vestigate this issue in more detail in Chapter 17. But in Rescorla 2013, he provides
a “counterexample to the non-semantic view” (§1, p. 684): an example of a physical
implementation that—he claims—requires a representational (that is, a semantic) fea-
ture. (It is not enough to find an implementation that merely has a semantics; there are
plenty of those, because a semantic interpretation can always be given to one.) One ex-
ample that he gives is a Scheme program for Euclid’s algorithm for computing GCDs
(§4, p. 686):

(define (gcd a b)
(if (= b 0)

a
(gcd b (remainder a b))))

This is a recursive algorithm that we can paraphrase in English as follows:

To compute the GCD of integers a and b, do the following:
If b = 0,

then output a
else compute the GCD of b and the remainder of dividing a by b.8

Rescorla points out that “To do that, the machine must represent numbers. Thus, the
Scheme program contains content-involving instructions . . . ” (§4, p. 687, my italics).
A “content-involving instruction is [one that] is specified, at least partly, in semantic
or representational terms” (§3, p. 685; he borrows this notion from Peacocke 1995).
So, the Scheme program is specified in semantic terms (specifically, it is specified in
terms of integers). Therefore, if a physical system is going to implement the program,

8Or, if you prefer:

To compute the GCD of a and b, do:
If b = 0,

then output a
else begin:

divide a by b;
let r be the remainder;
compute the GCD of b and r

end

14.4. CHALMERS’S THEORY OF IMPLEMENTATION 575

that physical system must represent integers; that is, it requires semantics. Hence,
“The Scheme program is a counter-example to the non-semantic view of computational
implementation” (§4, p. 687).

I can see that the machine does represent numbers (or can be interpreted as repre-
senting them). But why does he say that it must represent them? I can even see that for
an agent to use such a physical computer to compute GCDs, the agent must interpret
the computer as representing numbers. But surely an agent could use this computer,
implementing this program, to print out interesting patterns of uninterpreted markers.
(Recall the computer-in-the-desert of §3.9.5.)

To respond to this kind of worry, Rescorla asks us to consider two copies of this
machine, calling them M10 and M13. The former uses base-10 notation; the latter uses
base-13. When each is given the input pair of numerals (‘115’, ‘20’), each outputs
the numeral ‘5’. But only the former computes the GCD of the numbers 115 and 20.
(The latter was given the integers 187 and 26 as inputs; but their GCD is 1.) So M10
implements the program, but M13 does not; yet they are identical physical computers.

One possible response to this is that the semantics lies in the user’s interpretation
of the inputs and outputs, not in the physical machine. Thus, one could say that both
machines do implement the program, but that it is the user’s interpretation of the inputs,
outputs, and that program’s symbols that makes all the difference. After all, consider
the following Scheme program:

(define (MYSTERY a b)
(if (= b 0)

a
(MYSTERY b (remainder a b))))

If we are using base-10 notation, then we can interpret ‘MYSTERY’ as GCD; if we are
using base-13 notation, then we might either be able to interpret ‘MYSTERY’ as some
other numerical function or else not be able to interpret it at all. In either case, our two
computers both implement the MYSTERY program.

One possible conclusion to draw from this is that any role that semantics has to
play is not at the level of the abstract computation, but at the level of the physical
implementation. Rescorla’s response to this might be incorporated in these remarks:

The program’s formal structure does not even begin to fix a unique semantic in-
terpretation. Implementing the program requires more than instantiating a causal
structure that mirrors relevant formal structure. (Rescorla, 2013, §4, p. 688)

I agree with the first sentence: We can interpret the MYSTERY program in many
ways. I disagree with the term ‘requires’ in the second sentence: I would say that
implementing the program only requires “instantiating the mirroring causal structure”.
But I would go on to say that if one wanted to use the physical implementation to
compute GCDs, then one would, indeed, be required to do something extra, namely,
to provide a base-10 interpretation of the inputs and outputs (and an interpretation of
‘MYSTERY’ as GCD).

In fact, Rescorla agrees that the semantic interpretation of ‘MYSTERY’ as GCD
is required: “there is more to a program than meaningless signs. The signs have an

576 CHAPTER 14. WHAT IS IMPLEMENTATION?

intended interpretation . . . ” (§4, p. 689). But it is notoriously hard (some would say
that it is logically impossible)9 to pin down what “the intended interpretation” of any
formal system is.

We will return to this debate and to Rescorla’s example in Chapter 17. Till then,
here are some questions to consider: Are the inputs to the Euclidean GCD algorithm
numerals (like ‘10’) or numbers (like 10 or 13)?10 What about the inputs to a com-
puter program written in Scheme that implements the Euclidean algorithm: Are its
inputs numerals or numbers? (It may help to consider this analogous question: Is the
input to a word-processing program the letter ‘a’ or an electronic signal or ASCII-code
representing ‘a’?)

Rescorla (2012b, p. 12; italics in original) gives another example of semantic com-
putation, in the sense of a computation that requires numbers, not (merely) numerals:

A register machine contains a set of memory locations, called registers. A program
governs the evolution of register states. The program may individuate register
states syntactically. For instance, it may describe the machine as storing numerals
in registers, and it may dictate how to manipulate those syntactic items. Alterna-
tively, the program may individuate register states representationally. Indeed, the
first register machine in the published literature models computation over natural
numbers [Shepherdson and Sturgis 1963, p. 219]. A program for this numerical
register machine contains instructions to execute elementary arithmetical opera-
tions, such as add 1 or subtract 1. A physical system implements the program
only if [it] can execute the relevant arithmetical operations. A physical system
executes arithmetical operations only if it bears appropriate representational rela-
tions to numbers. Thus, a physical system implements a numerical register ma-
chine program only if it bears appropriate representational relations to numbers.
Notably, a numerical register machine program ignores how the physical system
represent[s] numbers. It applies whether the system’s numerical notation is unary,
binary, decimal, etc. The program characterizes internal states representationally
(e.g. a numeral that represents the number 20 is stored in a certain memory lo-
cation) rather than syntactically (e.g. decimal numeral “20” is stored in a certain
memory location). It individuates computational states through denotational rela-
tions to natural numbers. It contains mechanical rules (e.g. add 1) that characterize
computational states through their numerical denotations.

I agree that this is a semantic computation. Note that it is not a Turing Machine (which
would be a purely syntactic computation). And note that there cannot be a physical
numerical register machine,11 only a syntactic one. This is not because there are no
numbers, but because (if numbers do exist) they are not physical!

These are important questions, and we will return to them in Chapter 17. But there
are two issues concerning the nature of computer programs that we need to look at first:
In the next chapter, we’ll consider whether any computer programs can be considered

9In part because of something called the Löwenheim-Skolem Theorem. For discussion, see Suber 1997b.
10Note that the base-10 numeral ‘10’ represents the number 10, but the base-13 numeral ‘10’ represents

the number 13.
11Numerical as opposed to numeral!

14.4. CHALMERS’S THEORY OF IMPLEMENTATION 577

to be scientific theories. Then, in Chapter 16, we’ll discuss whether computer programs
can be “verified” (or proved “correct”).

Further Reading:
Eden and Turner 2007b, §4, discusses “concretization . . . a process during which an entity or
entities of one category are synthesized (come into being) from entities of a more abstract cate-
gory”.

Sloman 2008, 2019b explores implementation and its relationship to the concept of a virtual ma-
chine.

Ladyman 2009, p. 379, critiques the kind of relationship that Chalmers sees between his formal
and his causal mappings.

Dresner 2010 examines “the association between numbers and the physical world that is made in
measurement” and argues that implementation “and (measurement-theoretic) representation” are
“a single relation (or concept) viewed from different angles” (p. 276). Note that “representation”
is a semantic concept.

Shagrir 2012b takes on almost everyone: He critiques Putnam (1988); Searle (1990); Chalmers
(1996b); Scheutz (2001); and Piccinini (2006a), arguing that there can be “systems that simulta-
neously implement different complex automata” (p. 137).

The philosopher and computer scientist Matthias Scheutz has written extensively on implemen-
tation: Scheutz 1998 analyzes Searle’s and Putnam’s arguments, concluding that “a better notion
of implementation is . . . [needed] that avoids state-to-state correspondences between physical
systems and abstract objects.” To refute Putnam (1988), Scheutz (1999) replaces the notion of
“implementation of a computation” with “realization of a function”. His view is not inconsis-
tent with the “semantic” theory that was presented in §14.3, at least when he says (§7, p. 174):
“what is the same [in the case of two realizations] is the syntactic structure of . . . the function”;
that is, they are different semantic interpretations of the same syntactic structure. §3 is an espe-
cially good discussion of Putnam’s argument. Scheutz approaches implementation by way of its
inverse, abstraction (from a physical system); see §7. The problem of the nature of implementa-
tion is closely related to the mind-body (or the mind-brain) problem: Very roughly, (how) is the
mind implemented in the brain? For a nice discussion of this, see Scheutz 2001, §1; the rest of
that paper critiques Chalmers’s theory of implementation and introduces a new theory of imple-
mentation based on a notion of “bisimulation”. And Scheutz 2012, p. 75 argues that Chalmers’s
“definition of implementation still allows for unwanted implementations”.

Finally, Sprevak 2018 is an excellent survey and critique of various arguments for
“pancomputationalisms”—the family of views (including those of Searle 1990 and Putnam 1988)
that everything is a computer.

578 CHAPTER 14. WHAT IS IMPLEMENTATION?

Chapter 15

Are Computer Programs
Theories?

Version of 22 January 2020; DRAFT c© 2004–2020 by William J. Rapaport

. . . within ten years most theories in psychology will take the form of computer
programs, or of qualitative statements about the characteristics of computer pro-
grams.
—Herbert A. Simon and Allen Newell (1958, pp. 7–8)

Figure 15.1: https://www.gocomics.com/nonsequitur/2014/11/07,
c©2014, Wiley Ink, Inc.

579

580 CHAPTER 15. ARE PROGRAMS THEORIES?

15.1 Readings:
1. Required:

(a) Simon, Herbert A.; & Newell, Allen (1956), “Models: Their Uses and Limita-
tions”, in Leonard D. White (ed.), The State of the Social Sciences (Chicago: Uni-
versity of Chicago Press): 66–83, http://digitalcollections.library.cmu.edu/awweb/
awarchive?type=file&item=356856.

(b) Simon, Herbert A. (1996), “Understanding the Natural and Artificial Worlds”, Ch. 1,
pp. 1–24 of Simon’s The Sciences of the Artificial, Third Edition (Cambridge, MA:
MIT Press).

• Originally written in 1969; updated in 1996.
• Chapter 1 also has interesting things to say about whether CS is a science.

(c) Moor, James H. (1978), “Models and Theories”, §4 of his “Three Myths of Com-
puter Science”, British Journal for the Philosophy of Science 29(3) (September):
213–222.

(d) Thagard, Paul (1984), “Computer Programs as Psychological Theories”, in O. Neu-
maier (ed.), Mind, Language, and Society (Vienna: Conceptus-Studien): 77–84.

2. Recommended:

(a) Weizenbaum, Joseph (1976), Computer Power and Human Reason:
From Judgment to Calculation (New York: W.H. Freeman).

• Ch. 5 (“Theories and Models”), pp. 132–153.
• Ch. 6 (“Computer Models in Psychology”), pp. 154–181.

– Ch. 6 discusses computer programs as theories and the potential evils of
AI, as well as presenting Weizenbaum’s objections to Simon.

(b) Wilks, Yorick (1990), “One Small Head: Models and Theories”, pp. 121–134, in
§4 (“Programs and Theories”) of Derek Partridge & Yorick Wilks (eds.), The Foun-
dations of Artificial Intelligence: A Sourcebook (Cambridge, UK: Cambridge Uni-
versity Press).

• An earlier version appeared as Wilks 1974.
• Has a useful, if sometimes confusing, overview of the many meanings of

‘theory’ and ‘model’.

(c) Daubert v. Merrell Dow Pharmaceuticals (92-102), 509 U.S. 579 (1993),
http://openjurist.org/509/us/579

• A Supreme Court case concerning what counts as “generally accepted” relia-
bility by the scientific community. Has interesting observations on the nature
of scientific theories and expertise.

15.2. INTRODUCTION 581

15.2 Introduction
I haven’t formalized my theory of belief revision, but I have an algorithm that does
it.
— Frances L. Johnson (personal communication, February 2004).

The issue raised in this epigraph (from a former graduate student in my department) is
whether an algorithm or a computer program—both of which are pretty formal, precise
things—is different from a formal theory. Some might say that her algorithm is her
theory. Others might say that they are distinct things and that her algorithm (merely)
expresses—or implements—her theory. Does it really make sense to say that you don’t
have a formal theory of something if you do have a formal algorithm that implements
your (perhaps informal) theory? Roger Schank, an AI researcher famous for taking a
“scruffy”—that is, non-formal—approach to AI used formal algorithms to express his
non-formal theories. That sounds paradoxical.

As part of our investigation into the nature of computer programs, we have seen
that algorithms are said to be implemented in computer programs. If implementation is
semantic interpretation (as I suggested in §14.3), then computer programs are semantic
interpretations of algorithms, in the medium of some programming language. However,
some philosophers have argued that computer programs are theories; yet theories are
more like abstractions than they are like implementations. After all, if an algorithm
(merely) expresses a theory, then a theory is akin to an abstract idea, as in our discussion
in §13.4 of copyrights. And others have argued that computer programs are simulations
or models of real-world situations, which sounds more like an implementation than an
abstraction.

In §4.7, we briefly discussed the nature of scientific theories. In this chapter, we
will look further into the nature of theories, models, and simulation, and whether pro-
grams are (scientific) theories. And we will begin an investigation into the relation of
a program to that which it models or simulates. (We’ll continue that investigation in
Chapter 17.)

15.3 Simulations, Theories, and Models

15.3.1 Simulations
Simulations are sometimes contrasted with “emulations”. And sometimes a simulation
is taken to be an “imitation”. Let’s look at these distinctions.

15.3.1.1 Simulation vs. Emulation

There is no standard, agreed-upon definition of either ‘simulation’ or ‘emulation’. This
sort of situation occurs unfortunately all too frequently. Therefore, it is always impor-
tant for you to try to find out how a person is using such terms before deciding whether
to agree with what they say about them.

Here is one definition of ‘simulate’, from the Encyclopedia of Computer Science
(R. Smith 2000):

582 CHAPTER 15. ARE PROGRAMS THEORIES?

x simulates y means (roughly): y is a real or imagined system, and x is a
model of y, and we experiment with x in order to understand y.

This is only a rough definition, because I have not said what is meant by ‘system’,
‘model’, or ‘understand’, not to mention ‘real’, ‘imagined’, or ‘experiment’! Typically,
a computer program (x) is said to simulate some real-world situation y when program
x stands in for y, that is, when x is a model of situation y. If we want to understand
the situation, we can do so by experimenting with the program. In the terminology of
§14.3.3, presumably the program is antecedently understood—at least it is more un-
derstandable than the situation that it simulates, because it is designed by someone.
Perhaps the program is easier to deal with or to manipulate than the real-world situa-
tion. In an extreme case, x simulates y if and only if x and y have the same input-output
behavior, but they might differ greatly in some of the details of how they work.

And, following another Encyclopedia of Computer Science definition (Habib, 2000),
let’s say that

x emulates y means (roughly)

either:
x and y are computer systems, and x interprets and executes
y’s instruction set by implementing y’s operation codes in x’s
hardware—that is, hardware y is implemented as a virtual ma-
chine on x,

or:
x is some software feature, and y is some hardware feature, and
x simulates y, doing what y does “exactly” as y does it.

In general, x emulates y if and only if x and y not only have the same input-output be-
havior (x not only simulates y), but x also uses the same algorithms and data structures
as y.

It is unlikely that being a simulation and being an emulation are completely distinct
notions. More likely, they are the ends of a spectrum, in the middle of which are xs
and ys that differ in the level of detail of the algorithms and data structures that x uses
to do y’s job. At the “pure” simulation end of the spectrum, only x’s and y’s external,
input-output behaviors agree; at the “pure” emulation end, all of their internal behaviors
also agree. Perhaps, then, the only pure example of emulation of y would be y itself!
Perhaps, even, there is no real distinction between simulation and emulation except for
the degree of faithfulness to what is being simulated or emulated.

Further Reading:
On emulation as simulation by a virtual machine, see Denning and Martell 2015, p. 212.

15.3. SIMULATIONS, THEORIES, AND MODELS 583

15.3.1.2 Simulation vs. Imitation

In many cases, y is only an imagined situation, whereas x will always be something
real. On the other hand, it is often said that x is “merely” a simulation, which suggests
that y is real but that x is not. That is, the word ‘simulation’ has a connotation of
“imitation” or “unreal”. For example, it is often argued that a simulation of a hurricane
is not a real hurricane, or that a simulation of digestion is not real digestion.

But there are cases where a simulation is the real thing. (Or would such simulations
be better called ‘emulations’?) For example, although a scale model of the Statue of
Liberty is not the real Statue of Liberty, a scale model of a scale model (of the Statue of
Liberty) is itself a scale model (of the Statue of Liberty). A Xerox copy or PDF or faxed
copy of a document is that document, even for legal purposes (although perhaps not
for historical purposes;1 see Korsmeyer 2012). Some philosophers and computational
cognitive scientists have argued that a computational simulation of cognition really is
cognition (Edelman, 2008a; Rapaport, 2012b). In general, it seems, a simulation of
information is that information.

There are also cases where it is difficult or impossible to tell if something is a simu-
lation or not, such as Bostrom’s argument that we are living in a Matrix-like simulation
(which we briefly mentioned in §9.8.2.2). After all, if a program could be a scientific
theory, then the process that comes into being when the program is executed could be
a model of what the program is a theory of, and if some models are the kind of thing
that they model, then a simulation of the real world could be a real world.

Questions for the Reader:
Does a universal Turing Machine that is executing a program for some algorithm A simulate
(or emulate) a (dedicated) Turing Machine for A?

Is that universal Turing Machine “really” executing A, or is it “merely” simulating (or emulating)
it?

1Unless a PDF is the original document!

584 CHAPTER 15. ARE PROGRAMS THEORIES?

Further Reading:
Peschl and Scheutz 2001b argues that computer programs are good simulations (and even im-
plementations) of cognition, but only as long as they respect “the temporal metric imposed by
physics”. See also Peschl and Scheutz 2001a, and this passage from Simonite 2009:

Despite the increasing sophistication of computer simulations, finding ways to
show complex air flows visually is critical to understanding aerodynamics . . . and
new ways to do that in large wind tunnels are valuable. “You cannot solve every-
thing completely in space and time on a computer,” [Alex] Liberzon [of Tel Aviv
University] told New Scientist. “Simulations do not capture the full complexity of
wakes and other features, which can exhibit large changes in behaviour caused by
very small changes.”

Nick Bostrom (2003) argues that if “the human species is [not] likely to go extinct before reach-
ing a [technologically advanced] posthuman stage” and if “any posthuman civilization is . . .
likely to run a significant number of simulations of their evolutionary history”, then “we are
almost certainly living in a computer simulation”. (We’ll return to this in §20.8.) And Donald
Hoffman (2009) argues that our internal mental image of the external world need not bear any
resemblance to the actual external world, any more than the graphical user interface for an oper-
ation system need bear a resemblance to the “diodes, resistors, voltages and magnetice fields in
the computer”, on the grounds that what is important from the standpoint of evolution is not ac-
curacy but fitness. “The very evolutionary processes that endowed us with our interfaces might
also have saddled us with the penchant to mistake their contents for objective reality” (§1.6).
This seems to be consistent with Bostrom’s theory. See also Papakonstantinou 2015 and Roth-
man 2016. We’ll discuss this a bit more in Chapter 20.

Shieh and Turkle 2009 is an interview with sociologist of science Sherry Turkle: “Computer
simulations have introduced some strange problems into reality.”

15.3.2 Theories
Simulations are one thing; theories are another. Recall our discussion in §4.7 of the
term ‘theory’. When people say, in ordinary language, that something is a “theory”,
they often mean that it is mere speculation, that it isn’t necessarily true. But scientists
and philosophers use the word ‘theory’ in a more technical sense. (For a humorous
illustration of this, see the cartoon in Figure 15.1 at the beginning of this chapter.)

This is one reason that people who believe in the “theory” of evolution and those
who don’t are often talking at cross purposes, with the former saying that evolution is
a true, scientific theory:

Referring to biological evolution as a theory for the purpose of contesting it would
be counterproductive, since scientists only grant the status of theory to well-tested
ideas. (Terry Holliday, Kentucky education commissioner, 2011; cited in Science
337 (24 August 2012): 897)

and the latter saying that, if it is only a theory—if, that is, it is mere speculation—then
it might not be true:

The theory of evolution is a theory, and essentially the theory of evolution is not
science—Darwin made it up. (Ben Waide, Kentucky state representative, 2011;

15.3. SIMULATIONS, THEORIES, AND MODELS 585

cited in Science 337 (24 August 2012): 897)

They are using the word in very different senses.
Further complicating the issue, there are at least two views within the philosophy

of science about what scientific theories are:

• On the syntactic approach to theories (due to a group of philosophers known as
the “Logical Positivists”; see Uebel 2012), a theory is an abstract description
of some situation (which usually is, but need not be, a real-world situation) ex-
pressed in a formal language with an axiomatic structure. That is, a theory is
a formal system (see §14.3.2.1). Such a “theory” is typically considered to be
a set of sentences (linguistic expressions, well-formed formulas) that describe
a situation or that codify (scientific) laws about a situation. (This is the main
sense in which the theory of evolution is a “theory”.) Such a description, of
course, must be expressed in some language. Typically, the theory is expressed
in a formal, axiomatic language that is semantically interpreted by rules linking
the sentences to “observable” phenomena. These phenomena either are directly
observable—either by unaided vision or with the help of devices such as mi-
croscopes and telescopes—or are theoretical terms (such as ‘electron’) that are
definable in terms of directly observable phenomena (such as a vapor trail in a
cloud chamber).

• On the semantic approach to theories (due largely to the philosopher Patrick Sup-
pes; see Frigg and Hartmann 2012), theories are the set-theoretic models of an
axiomatic formal system. Such models are isomorphic to the real-world situation
being modeled. (Weaker semantic views of theories see them as “state spaces”
(http://en.wikipedia.org/wiki/State space) or “prototypes” (http://en.wikipedia.
org/wiki/Prototype), which are merely “similar” to the real-world situation.) A
theory viewed semantically can clearly resemble a simulation (or an emulation).

Further Reading:
Partridge and Wilks 1990—an anthology on the foundations of AI—has two sections on the
nature of theories: §3 (“Levels of Theory”, pp. 95–118) contains Marr 1977, Boden 1990a, and
Partridge 1990. And §4 (“Programs and Theories”, pp. 119–164) contains Wilks 1974, Bundy
and Ohlsson 1990, and T. Simon 1990.

15.3.3 Models
. . . computational models are better able to describe many aspects of the universe
better than any other models we know. All scientific theories can, for example, be
modeled by programs.
—Donald E. Knuth (2001, p. 168)

Both simulation and semantic theories are said to be “models”. So, what is a model?
The notion of model is associated with what I have called “The Muddle of the

Model in the Middle” (Wartofsky, 1966, 1979; Rapaport, 1995). As with theories, there

586 CHAPTER 15. ARE PROGRAMS THEORIES?

are two different uses of the term ‘model’: It can be used to refer to a syntactic domain,
as in the phrase ‘mathematical model’ of a real-world situation. And it can be used
to refer to a semantic domain, as in the phrase ‘set-theoretic model’ of a mathematical
theory. And, of course, there is the real-world situation that both of them refer to in
some way. The “muddle” concerns the relationships among these.

We saw the dual, or Janus-faced, nature of models in §14.3.3, when we briefly
considered what Brian Cantwell Smith (1987) called a “correspondence continuum”
(§14.3.1): Scientists typically begin with data that they then interpret or model using
a formal theory; so, the data are the syntactic domain in need of understanding, and
the formal theory is its semantic domain in terms of which it can be understood. The
formal theory can then be modeled set-theoretically or mathematically; so, the formal
theory now becomes the syntactic domain, and the set-theoretic or mathematical model
is its semantic domain. But that set-theoretic or mathematical model can be interpreted
by some real-world phenomenon; so, the model is now the syntactic domain, and the
real world is the semantic domain. To close the circle, that real-world phenomenon
consists of the same kind of data that we started with! (Compare the example in §14.3.3
of person records and persons.) Hence my phrase “the muddle of the model in the
middle”.

No one seems to deny that computer programs can be simulations or models. But
can they be theories?

15.4 Computer Programs as Theories

15.4.1 Introduction
Computational cognitive scientists such as Philip N. Johnson-Laird, Allen Newell,
Zenon Pylyshyn, and Herbert Simon have all claimed that (some) computer programs
are theories, in the sense that the programming languages in which they are written
are languages for theories and that the programs are ways to express theories. First,
consider these passages from their writings (my italics):

Simon and Newell (1962, p. 97):

1. Computers are quite general symbol-manipulating devices that can be pro-
grammed to perform nonnumerical as well as numerical symbol manipula-
tion.

2. Computer programs can be written that use nonnumerical symbol manip-
ulating processes to perform tasks which, in humans, require thinking and
learning.

3. These programs can be regarded as theories, in a completely literal sense, of
the corresponding human processes. These theories are testable in a number
of ways: among them, by comparing the symbolic behavior of a computer
so programmed with the symbolic behavior of a human subject when both
are performing the same problem-solving or thinking tasks.

15.4. COMPUTER PROGRAMS AS THEORIES 587

Johnson-Laird (1981, pp. 185–186):

Computer programming is too useful to cognitive science to be left solely in the
hands of the artificial intelligenzia [sic]. There is a well established list of advan-
tages that programs bring to a theorist: they concentrate the mind marvelously;
they transform mysticism into information processing, forcing the theorist to make
intuitions explicit and to translate vague terminology into concrete proposals; they
provide a secure test of the consistency of a theory and thereby allow complicated
interactive components to be safely assembled; they are “working models” whose
behavior can be directly compared with human performance. Yet, many research
workers look on the idea of developing their theories in the form of computer pro-
grams with considerable suspicion. The reason . . . [i]n part . . . derives from the
fact that any large-scale program intended to model cognition inevitably incorpo-
rates components that lack psychological plausibility The remedy . . . is not to
abandon computer programs, but to make a clear distinction between a program
and the theory that it is intended to model. For a cognitive scientist, the single most
important virtue of programming should come . . . from the business of developing
[the program]. Indeed, the aim should be neither to simulate human behavior . . .
nor to exercise artificial intelligence, but to force the theorist to think again.

Pylyshyn (1984, p. 76):

[T]he . . . requirement—that we be able to implement [a cognitive] process in terms
of an actual, running program that exhibits tokens of the behaviors in question, un-
der the appropriate circumstances—has far-reaching consequences. One of the
clearest advantages of expressing a cognitive-process model in the form of a com-
puter program is, it provides a remarkable intellectual prosthetic for dealing with
complexity and for exploring both the entailments of a large set of proposed prin-
ciples and their interactions.

Johnson-Laird (1988, p. 52):

[T]heories of mind should be expressed in a form that can be modelled in a com-
puter program. A theory may fail to satisfy this criterion for several reasons: it
may be radically incomplete; it may rely on a process that is not computable; it
may be inconsistent, incoherent, or, like a mystical doctrine, take so much for
granted that it is understood only by its adherents. These flaws are not always so
obvious. Students of the mind do not always know that they do not know what
they are talking about. The surest way to find out is to try to devise a computer
program that models the theory.

Simon (1996a, p. 160):

In the late 1950s, the hypothesis was advanced that human thinking is information
processing, alias symbol manipulation. . . . [T]hese ideas [were translated] into
symbolic (nonnumerical) computer programs that simulated human mental activity
at the symbolic level. The traces of these programs could be compared in some
detail with data that tracked the actual paths of human thought (especially verbal
protocols) in a variety of intellectual tasks, and the programs’ veracity as theories
of human thinking could thereby be tested.

588 CHAPTER 15. ARE PROGRAMS THEORIES?

The basic idea is that a theory must be expressed in some language. As an old
saying has it, “How can I know what I think till I see what I say?” (Wallas, 1926,
p. 54). If you don’t express a theory in a language, how do you know what it is? And
if you don’t write your theory down in some language, no one can evaluate it.

Scientific theories, on this view, are sets of sentences. And the sentences have to be
in some language: Some theories are expressed in a natural language such as English,
some in the language of mathematics, some in the language of formal logic, some in
the language of statistics and probability. The claim here is that some theories can be
expressed in a programming language.

One advantage of expressing a theory as a computer program is that all details
must be filled in. That is, a computer program must be a full “implementation” of the
theory. Of course, there will be implementation-dependent details. There is certainly a
difference between a theory and the part of the world that it is a theory of. One such
difference is this:

Why should theories of all kinds make irrelevant statements—possess properties
not shared by the situations they model? The reason is clearest in the case of elec-
tromechanical analogues. To operate at all, they have to obey electromechanical
laws—they have to be made of something—and at a sufficiently microscopic level
these laws will not mirror anything in the reality being pictured. If such analogies
serve at all as theories of the phenomena, it is only at a sufficiently high level of
aggregation. (Simon and Newell, 1956, p. 74)

For another example, if the theory is expressed in Java, there will be details of Java
that are irrelevant to the theory itself. This is an unavoidable problem arising whenever
an abstraction is implemented. It is only at the more abstract levels (“sufficiently high
level[s] of aggregation”) that we can say that an implementation and a corresponding
abstract theory are “the same”. So, one must try to ensure that such details are indeed
irrelevant. One way to do so is to make sure that two computer programs expressing
the same theory but that are written in two different programming languages—with
different implementation-dependent details—have the same input-output, algorithmic,
and data-structure behavior (that is, that they fully emulate each other).2

Another advantage of expressing a theory as a computer program is that you can
run the program to see how it behaves and what predictions it makes. So, in a sense, the
theory becomes its own model and can be used to test itself. As Joseph Weizenbaum
(1976, pp. 144–145) says:

. . . theories are texts. Texts are written in a language. Computer languages are lan-
guages too, and theories may be written in them. . . . Theories written in the form
of computer programs are ordinary theories as seen from one point of view. . . . But
the computer program has the advantage [over “a set of mathematical equations”
or even a theory written in English] not only that it may be understood by anyone
suitable trained in its language, . . . but that it may also be run on a computer. . . . A

2In alternative terminolgy, by implementing the theory in two different programming languages, you
“divide out” the irrelevant implementation-dependent details. See Rapaport 1999, §3.2; Rapaport 2005b,
p. 395.

15.4. COMPUTER PROGRAMS AS THEORIES 589

theory written in the form of a computer program is thus both a theory and, when
placed on a computer and run, a model to which the theory applies.

Further Reading:
Apostel 1961, pp. 1–2, suggests that a computer can be a model of the central nervous system,
and that that model might be easier to study than the system itself. If it is the computer that is
the model, then it makes sense to say that the computer’s program expresses the theory that the
model is a model of. (Keep in mind, however, that there is an ambiguity over whether the model
is a model of a theory or of some real-world phenomenon.)

Let’s look at three explicit arguments for the conclusion that computer programs can
be scientific theories—two due to Herbert Simon, and one from the Supreme Court.

15.4.2 Simon & Newell’s Argument from Analogies
An analogue A of a thing B is a different thing that is similar, or parallel, or in some
way equivalent (but not equal or identical) to B. Analogues, in this sense—and this
spelling—are related to analogies. (‘Analog’—spelled without the ‘ue’—is the typical
(American) spelling for a mathematically continuous concept, usually contrasted with
‘discrete’; see §6.5.2, above.)

Further Reading:
The distinction between the two kinds of “analog(ue)s” may not be a sharp one. Simon and
Newell 1956, p. 71, suggest that analog computers (my spelling, not theirs!) work by creating
analogues (again, my spelling) of the phenomenon that they “represent”. For more on analogy,
see Hofstadter and Sander 2013.

Simon and Newell 1956 argued as follows: First, “All theories are analogies, and
all analogies are theories” (p. 82). That is,

1. x is a theory of y iff x is an analogue of y.

More precisely, the content of a theory of y is identical to the
content of an analogue of y. The only difference between them
is the way in which they are expressed. We could equally well
say that a syntactic theory of y (for example, a verbal or math-
ematical theory of y) is an analogue of y (p. 75).

In fact, we only need the right-to-left direction of this premise:
All analogies are theories.

Next, a digital “computer is programed [sic] to carry out the arithmetic computations
called for in . . . [a] mathematical theory. Thus, the computer is an analogue for the
arithmetic process” (p. 71; see also pp. 79–82). That is,

2. (Some) computer programs are analogies.

590 CHAPTER 15. ARE PROGRAMS THEORIES?

Therefore,

3. (Some) computer programs are theories.

But what kind of theory is a computer program? According to Simon and Newell, a
theory is a set of statements, but those statements could be:

verbal:
“Consumption increases linearly with income, but less than proportionately”
(p. 69).

mathematical: “C = a+bY ; a > 0; 0 < b < 1” (p. 70, col. 1)

or

analog:

The idea that the flows of goods and money in an economy are somehow ana-
logical to liquid flows is an old one. There now exists a hydraulic mechanism
. . . one part of which is so arranged that, when the level of the colored water
in one tube is made to rise, the level in a second tube rises . . . , but less than
proportionately. I cannot “state” this theory here, since its statement is not in
words but in water. (p. 70)

Presumably, they would classify programming languages as being of the mathematical
kind, from which it would follow that computer programs are theories expressed in
that language. Alternatively, there seems to be no reason not to admit a fourth kind of
theory, namely, one expressed computationally, that is, in procedural language.

Here is a reason why theories expressed as computer programs may be better than
theories expressed in mathematics or in English (“verbally”): It has to do with the idea
that such computational theories are analogies:

. . . what is the particular value of the computer analogy? Why not work directly to-
ward a mathematical (or verbal) theory of human problem-solving processes with-
out troubing about electronic computers? . . . it is at least possible, and perhaps
even plausible, that we are dealing here with systems of such complexity that we
have a greater chance of building a theory by way of the computer program than
by a direct attempt at mathematical formulation. (p. 81)

Note first that they seem to consider (some) computer programs as analogy theories,
not mathematical theories! Second, computation is perhaps the best way of managing
complexity (as we saw in §3.14.3).

There are two advantages of expressing a theory in a programming language. “First,
we would experiment with various modifications of the . . . program to see how closely
we could simulate in detail the observable phenomena” (pp. 81–82). In other words,
we can run the program to see how it behaves—to see how good a theory it is—and we
can then modify the program (and then run the modified version) in order to make it a
better theory.

15.4. COMPUTER PROGRAMS AS THEORIES 591

Second, the program can (or, at least, should) be written in such a way that it
explains what it is doing: “The computer, however complex its over-all program, could
be programed [sic] to report, in accurate detail, a description of any part of its own
computing processes in which we might be interested” (p. 82). This, of course, can
make it easier not only to debug and improve the program, but also to correct and
improve the theory.

Further Reading:
The ability—and the desirability—of a program to explain its own behavior is also important
for the ethical use of computer programs; recall §3.15.2.5; we’ll return to this in §18.8.2. In
the context of ethical computing, Neumann 1993 contains useful, real-life examples of ways in
which simulations (and theories) can fail to be precise models of reality, and it discusses “the
illusion that the virtual is real” (quoting Rebecca Mercuri).

15.4.3 Simon’s Argument from Prediction
In a later essay, Simon said:

These programs, which predict each successive step in behavior as a function of the
current state of the memories together with the current inputs, are theories, quite
analogous to the differential equation systems of the physical sciences. (Simon,
1996a, pp. 161–162)

This is more a statement that (some) computer programs are scientific theories than an
argument for that conclusion. But an argument for it can, perhaps, be constructed from
it:

1. Differential equation systems of the physical sciences predict successive steps
in physical processes as a function of the current state together with the current
inputs.

2. Anything that allows prediction (of successive steps in some process as a func-
tion of the current state together with the current inputs) is a theory.

3. Therefore, differential equation systems are theories (in physics).

4. Cognitive computer programs predict successive steps in human cognitive be-
havior as a function of the current state of the memories together with the current
inputs.

5. Therefore, (cognitive) computer programs are theories (in psychology).

The point is that the reason that we consider differential equation systems to be theo-
ries is the same reason that we should consider computer programs (cognitive ones in
particular, but other kinds of programs as well) to be theories.

Well, maybe not all computer programs. Arguably, a computer program for adding
two numbers or for computing income tax is not a theory. But maybe they should be

592 CHAPTER 15. ARE PROGRAMS THEORIES?

considered to be theories expressed computationally: a theory of addition in the first
case, a theory of taxation in the second!

Simon believes that computer programs are simultaneously both theories and sim-
ulations:

Thus the digital computer provided both a means (program) for stating precise
theories of cognition and a means (simulation, using these programs) for testing
the degree of correspondence between the predictions of theory and actual human
behavior. (Simon, 1996a, p. 160)

Thus, for Simon, computer programs are a very special kind of theory. Not only are
they statements, but they are simultaneously models—instances of the very thing that
they describe. Well, perhaps not quite: They only become such instances when they
are being executed.

This duality gives them the ability to be self-testing theories. And their precision
gives them the ability to pay attention to details in a way that theories expressed in
English (and perhaps even theories expressed in mathematics) lack.

Simon hedges a bit, however:

. . . a program was analogous to a system of differential (or difference) equations,
hence could express a dynamic theory. (Simon, 1996a, p. 161, my italics)

So, is it the case that a program is a theory? Or is merely the case that a program
expresses a theory? Perhaps this distinction is unimportant. After all, it hardly seems
to matter whether a system of equations is a theory or merely expresses a theory. (The
distinction is roughly akin to that between a sentence and the proposition that it ex-
presses.)

Further Reading:
Downes 1990 is a critique of Simon’s views on the philosophy of science in general, and of
programs as theories in particular.

15.4.4 Daubert vs. Merrell-Dow
As we have seen, there are several questions to consider:

• Is a computational theory (of X) a theory?

• Is a computational theory (of X) a scientific theory?

• What is a computational theory (of X)?

Daubert vs. Merrell-Dow Pharmaceuticals, Inc. (http://openjurist.org/509/us/579) was
a 1993 Supreme Court case “determining the standard for admitting expert testimony in
federal courts”. (See https://en.wikipedia.org/wiki/Daubert v. Merrell Dow Pharmaceuticals,
Inc. for an overview.) My colleague Sargur N. Srihari recommended Daubert to me,

after his experience being called as an expert witness on handwriting analysis, on the
grounds that his computer programs that could recognize handwriting were scientific
theories of handwriting analysis.

15.4. COMPUTER PROGRAMS AS THEORIES 593

Presumably, a computer scientist is an expert on CS. But is a computer scientist
who writes a computer program about (or who develops a computational theory of) X
(where X 6= CS) thereby an expert on X? Or must that computer scientist become, or
work with, an expert on X? (Recall question 13 in §3.17 about who counts as being a
computer scientist.)

Two points that we have made about the nature of science were (1) Popper’s view
that a statement was scientific to the extent that it was falsifiable (§4.9.1.1) and
(2) Simon’s views about bounded rationality (§3.15.2.3). These are nicely summarized
in three comments in Daubert:

. . . scientists do not assert that they know what is immutably ‘true’—they are
committed to searching for new, temporary theories to explain, as best they can,
phenomena. (Brief for Nicolaas Bloembergen et al. as Amici Curiae 9, cited in
Daubert at II.B.24 in the online version, my italics)

Science is not an encyclopedic body of knowledge about the universe. Instead, it
represents a process for proposing and refining theoretical explanations about the
world that are subject to further testing and refinement. (Brief for American Asso-
ciation for the Advancement of Science and the National Academy of Sciences as
Amici Curiae 7–8, cited in Daubert at II.B.24)

. . . there are important differences between the quest for truth in the courtroom
and the quest for truth in the laboratory. Scientific conclusions are subject to per-
petual revision. Law, on the other hand, must resolve disputes finally and quickly.
(Daubert, at III.35)

Justice Harry Blackmun, writing in Daubert at II.B.24, citing the first two of these
quotes, states that “in order to qualify as ‘scientific knowledge,’ an inference or asser-
tion must be derived by the scientific method”. So, if a computer program that can, say,
identify handwriting is a good scientific theory of handwriting, is its creator a scientific
expert on handwriting?

There are two concerns with this: First, a computer program that can identify hand-
writing need not be a good scientific theory of handwriting. It might be a “lucky guess”
not based on any scientific theory, or it might not even work very well outside carefully
selected samples. Second, even if it is based on a scientific theory of handwriting and
works well on arbitrary samples, the programmer need only be a good interpreter of
the theory, not necessarily a good handwriting scientist.

However, if a computer scientist studies the nature of handwriting and develops
a scientific theory of it that is then expressed in a computer program capable of, say,
identifying handwriting, then it would seem to be the case that that computer scientist
is (also) a scientific expert in handwriting.

Blackmun, writing in Daubert at II.C.28, suggests four tests of “whether a theory or
technique is scientific knowledge”. Note that this could include a computer program,
whether or not such programs are (scientific) theories:

594 CHAPTER 15. ARE PROGRAMS THEORIES?

Testability (and falsifiability) (II.C.28):
Computer programs would seem to be scientific on these grounds, because they
can be tested and possibly falsified, by simply running the program on a wide
variety of data to see if it behaves as expected.

Peer review (II.C.29):
Surely, a computer program can (and should!) be peer reviewed.

Error rate (II.C.30):
It’s not immediately clear what Blackmun might have in mind here, but per-
haps it’s something like this: A scientific theory’s predictions should be within
a reasonable margin of error. To take a perhaps overly simplistic example, a
polling error of 5± 4 points is not a very accurate (“scientific”) measurement,
nor is a measurement error of 5.00000± 0.00001 inches if made with an ordi-
nary wooden ruler. In any case, surely a computer program’s errors should be
“reasonable”.

General acceptance (II.C.31):
A computer program that is not based on a “generally accepted” scientific theory
or on “generally accepted” scientific principles would not be considered scien-
tific.

Whether or not Blackmun’s four criteria are complete or adequate is not the point
here. The more general point is that, whatever criteria are held to be essential to a
theory’s being considered scientific should also apply to computer programs that are
under consideration.

Further Reading:
Tymoczko 1979 discusses whether a computer program can be (part of) a proof of a mathematical
theorem. For a survey of critiques of Tymoczko’s arguments, see Scherlis and Scott 1983, §3.

And Ray Turner has argued that programming languages are mathematical theories:

That computer science is somehow a mathematical activity was a view held by
many of the pioneers of the subject, especially those who were concerned with its
foundations. At face value it might mean that the actual activity of programming
is a mathematical one. Indeed, at least in some form, this has been held. But
here we explore a different gloss on it. We explore the claim that programming
languages are (semantically) mathematical theories. This will force us to discuss
the normative nature of semantics, the nature of mathematical theories, the role
of theoretical computer science and the relationship between semantic theory and
language design. (Turner, 2010, Abstract)

15.5. COMPUTER PROGRAMS AREN’T THEORIES 595

15.5 Computer Programs Aren’t Theories
However, philosophers James Moor (1978, §4) and Paul Thagard (1984) argue that
computer programs are not theories, on the grounds that they are neither sets of (declar-
ative) sentences nor set-theoretic models of axiom systems.

15.5.1 Moor’s Objections
Moor (1978, pp. 219–220) says that computer models simulate phenomena in the real
world and that models “help [us] understand and test theories”. He also warns that

computer scientists often speak as if there is no distinction among programs, mod-
els, and theories; and discussions slide easily from programs to models and from
models to theories. (p. 220)

There is no question that this is the case, as might be clear from our earlier discussion,
but what picture does Moor himself provide? Presumably, a theory is a kind of descrip-
tion of part of the real world. A model helps us understand the theory, hence it only
indirectly helps us understand the world. Yet a (computer) model is said to simulate
the world. Here is one way to make sense of this: A theory is a syntactic domain that
has two semantic interpretations: One semantic domain is the real world; the other is
a (computer) model of the real world. Presumably, the computer model is easier to
understand (and to manipulate) than the real world, which is why it can help us test the
theory.

This is consistent with what Moor says next:

One can have a theory, i.e., a set of laws used to explain and predict a set of events,
without having a model except for the subject matter itself. Also, one can have
a model of a given subject matter, i.e., a set of objects or processes which have
an isomorphism with some portion of the subject matter, without having a theory
about the subject matter. (p. 220)

So, for Moor, there are three independent things: a portion of the real world (the
“subject matter”); a theory about the real world, which offers explanations, predictions,
and (presumably) descriptions of (a portion of) the real world; and a model of the real
world, which could be a set-theoretic object that is isomorphic to (a portion of) the real
world. But, if the theory describes the real world, then it also describes a model that is
isomorphic to the real world. That’s why I said, above, that the syntactic domain that
is the theory has both the real world and the model of the real world as two semantic
interpretations of it.

Now, what about computer programs as models? Moor says that a computer model
“is . . . more than just a computer program” (p. 220, my italics): To turn a computer
program into a computer model, he says, you need a semantic interpretation function
between the program and the portion of the real world that it is modeling. I think that
makes sense: The program is merely a syntactic object; the parts of the program need
not “wear their meanings on their sleeve”, so to speak. We saw this in §14.3.3, when
we noted that a “person record” that had slots for things like “name” and “age” (hence

596 CHAPTER 15. ARE PROGRAMS THEORIES?

“obviously” modeling a real person, at least “obviously” to a user of the program)
would work just as well as a “PR” record that had slots unobviously labeled ‘g100’ or
‘g101’. To know that such a computer program modeled a person, one would have to
know that ‘g100’ was to be semantically interpreted as a name and that its value (n456,
in our example) was to be semantically intepreted as the name ‘Howard L. Jones’.

So far, so good. But Moor goes on to say that it is a “myth” that a computer program
that is a model of a real-world phenomenon is therefore a theory of that phenomenon:

The model/theory myth occurs in computer science when the model/theory dis-
tinction is blurred so that programming a computer to generate a model of a given
subject matter is taken as tantamount to producing a theory about the subject matter
or at the very least an embodiment of a theory. (pp. 220–221)

One of his reasons for this conclusion that programs are not theories is that “The the-
ory must be statable independently of the computer model” (p. 221). He has already
marked the distinction between a theory, a program, and a model. And he allows that
programs can be models (of the world) if they have a semantic interpretation in terms
of the world.

But why couldn’t a program also be a theory? Theories, for Moor, must explain and
predict. Wouldn’t a computer program be able to do that? Suppose that we want to have
a scientific understanding of some portion of the real world in which we observe that
certain causes always have certain effects. Suppose that we have a computer program
in which computer analogs of those causes always computationally yield computer
analogs of those effects. Would not the program itself explain how this occurs? And
would we not be able to use the program to make predictions about future effects from
future causes? More to the point, why would we need a separate (“independent”) “set
of laws” (presumably expressed in declarative sentences)?

Another reason that Moor offers for why a computer program that successfully
models the real world is not thereby a theory of the world is that the program might
be “ad hoc” (p. 221). He gives as an example Joseph Weizenbaum’s Eliza program
that simulates a Rogerian psychotherapist, not by embodying a theory of Rogerian
psychotherapy, but by “superficial analysis of semantic and syntactic cues” (p. 221).
But all that that shows is that not all computer programs are theories. The question of
whether a computer program can be a theory remains open.

There is still one more reason that he provides:

The program will be a collection of instructions which are not true or false, but the
theory will be a collection of statements which are true or false.
(pp. 221–222, my italics)

And this, I think, is his real reason for arguing that programs are not theories: They are
procedural, not declarative. They tell you how to do things, not how things are. But
why must theories be declarative? Recall our earlier discussion in §3.14.4 of procedural
vs. declarative language. There, we saw not only that those two kinds of language can
(often) be intertranslatable, but—more to the point—that the statements of program-
ming languages such as Prolog can be interpreted both procedurally and declaratively.
Arguably, a declarative theory expressed in Prolog would also be a computer program.

15.5. COMPUTER PROGRAMS AREN’T THEORIES 597

15.5.2 Thagard’s Objections
Thagard (1984, p. 77) argues that, on both the “syntactic” and the “semantic” con-
ceptions of what a theory is, computer programs are not theories. He also argues that
programs are not “models”. Rather, “a program is a simulation of a model which
approximates to a theory”. So, on Thagard’s view, we have:

R = some aspect of the real word
T (R) = a theory about R
M(T (R)) = a model of T
P(M(T (R))) = a program that simulates M

On the syntactic theory of theories, a theory is a set of sentences (perhaps expressed
as a formal system with axioms). On the semantic theory of theories, a theory is a
“definition of a kind of system”. Presumably, he will argue that a program is neither
a set of sentences nor a definition (of a kind of system). He has not yet said what a
“model” is.

Along with Moor, Thagard argues that, because programs are sets of instructions,
which do not have truth values and hence are not sentences, programs cannot be theo-
ries in the syntactic sense (pp. 77–78). As we just saw, one question that can be raised
about this is whether programs written in a programming language such as Prolog,
whose statements can be interpreted as declarative sentences with truth values, could
be considered to be theories. If so, then why couldn’t any program that was equivalent
in some sense to such a Prolog program also be considered a theory?

Another question that can be raised is this: Suppose that we are looking for a buried
treasure. I might say, “I have a theory about where the treasure is buried: Walk three
paces north, turn left, walk 5 paces, and then dig. I’ll bet that you find the treasure.”
Is this not a theory? I suppose that Thagard might say that it isn’t. But isn’t there a
sentential theory that is associated with it—perhaps something like “The treasure is
buried at a location that is three paces north and 5 paces west of our current location”.
Doesn’t my original algorithm for finding the treasure carry the same information as
this theory, merely expressing it differently?

The argument that Thagard makes that programs can’t be theories because they are
not sets of declarative sentences just seems parochial. They are surely sets of (im-
perative) statements that have the additional benefit that they can become an instance
of what they describe (alternatively: that they can control a device that becomes an
instance of what they describe).

Thagard (1984, p. 78) considers a model to be “a set-theoretic interpretation of
the sentences in a [syntactic] theory a system of things . . . which provide an
interpretation of the sentences”. But “a program is not . . . a system of things, nor does
it . . . provide an interpretation for anything”. Hence, a program is not a model.

But a program being executed—a process—can be considered to be a system of
(virtual) things that are interpretations of data structures in the program. If a process
might be a model, then why couldn’t the program be a theory?

On the semantic or “structuralist” (p. 78) view of theories, a theory “is a definition
of a kind of natural system” (p. 79). Given some scientific laws (which, presumably,
are declarative, truth-functional sentences, perhaps expressed in the language of math-

598 CHAPTER 15. ARE PROGRAMS THEORIES?

ematics), we would say that something is a certain kind of natural system “if and only
if it is a system of objects satisfying” those laws. (The system is defined as being
something that satisfies those laws.)

But this seems very close to what a model is. In fact, Thagard says that a “real
system R is a system of the kind defined by the theory T ” (p. 79). But how is that
different from saying that R is an implementation of (that is, a model of) T ?

Thagard’s response is that, first, “a program simulates a system: it does not define
a system” and that, second, programs contain “a host of characteristics which we know
to be extraneous” to the real system that they are supposed to be like (p. 79). He says
this because simulations aren’t definitions: A simulation of the solar system, to use his
example (recall our discussion of this in §9.8.2), doesn’t define the solar system. This
seems reasonable, but it also seems to support the idea that a process (not necessarily a
program) is a model (and hence that a program would be a theory).

As for the problem of implementation-dependent details, Thagard says that

if our program [for some aspect of human cognition] is written in LISP, it consists
of a series of definitions of functions. The purpose of writing those functions is
not to suggest that the brain actually uses them, but to simulate at a higher level
the operation of more complex processes such as image . . . processing. (p. 80)

In other words, the real system that is being simulated (modeled?) by the program (pro-
cess?) need not have Lisp functions. But, as he notes, it will have “complex processes”
that do the same thing as the Lisp functions. But isn’t this also true of any theory com-
pared to the real system that it is a theory of? A theory of cognitive behavior expressed
in declarative sentences will have, say, English words in it, but the brain doesn’t. A
similar point is made by Humphreys (1990, p. 501):

Inasmuch as the simulation has abstracted from the material content of the system
being simulated, has employed various simplifications in the model, and uses only
the mathematical form, it obviously and trivially differs from the ‘real thing’, but
in the respect, there is no difference between simulations and any other kind of
mathematical model

Thagard does admit that he “shall take models to be like theories (on the semantic
conception) as being definitions of kinds of systems” (p. 80). And he notes that “a
model contains specifications which are known to be false of the target real system”—
that is, implementation-dependent details! According to Thagard, the problem with
this is that, if you try to make a prediction about the real system based on the model,
then you might erroneously make it based on one of these implementation-dependent
details (pp. 80–81). But that seems to be a problem endemic to any model (or any
theory, for that matter).

If you make a prediction that turns out to be false, you may have to change your
theory or your model. Perhaps you have to eliminate that implementation-dependent
detail. But others will always crop up; otherwise, your theory or model will not merely
describe or simulate the real system; it will be the real system. But there are well-
known reasons why a life-sized map of a country is not a very good map! (We’ll return
to this in §17.3.2.)

15.5. COMPUTER PROGRAMS AREN’T THEORIES 599

However, Thagard’s final summary is not really the wholesale rejection of programs
as theories that it might first appear to be. It is more subtle:

a program P, when executed on a computer, provides a simulation of a system of a
kind defined by a model M, where M defines systems which are crude versions of
the systems defined by a theory T , and the set of systems defined by T is intended
to include the real system R. (p. 82)

I can live with this: The process and R are both implementations of T .

Further Reading:
Paul Humphreys (1990, 2002) discusses computer simulations and computer models.

Green 2001 analyzes the use of connectionist (or neural-network) computer programs as models
of cognition, and argues that

Just because two things share some properties in common does not mean that one
models the other. Indeed, if it did, it would mean that everything models everything
else. There must be at least a plausible claim of some similarity in the ways in
which such properties are realized in the model and the thing being modeled. (§IV,
final paragraph)

Coward and Sun 2004 discusses a computational theory of consciousness, that is, a theory of
consciousness that is implemented as a computer program.

Frigg et al. 2009 is a special issue of the philosophy journal Synthese on models and simulations.

600 CHAPTER 15. ARE PROGRAMS THEORIES?

15.6 Questions for the Reader
1. Must a syntactic theory be expressed in declarative sentences? (A declaritive

sentence is a sentence that is either true or else false.)

2. Must a computer program be expressed in imperative language? (An imperative
sentence is a sentence that says “Do this!”; it has no truth value.)

3. Must a semantic theory be a set-theoretic model of a real-world situation?

4. Could a computer process—that is, a program being executed—be a model of a
real-world situation?

Chapter 16

Can Computer Programs Be
Verified?

Version of 23 January 2020; DRAFT c© 2004–2020 by William J. Rapaport

Mechanical computers should, Babbage thought, offer a means to eliminate at a
stroke all the sources of mistakes in mathematical tables. . . . A printed record
could . . . be generated . . . , thereby eliminating every opportunity for the genesis
of errors. . . . Babbage boasted that his machines would produce the correct result
or would jam but that they would never deceive.
—Doron D. Swade (1993, pp. 86–87)

We talk as if these parts [of a machine] could only move in this way, as if they could
not do anything else. How is this—do we forget the possibility of their bending,
breaking off, melting, and so on?
—Ludwig Wittgenstein (1958, §193, p. 77e)

Present-day computers are amazing pieces of equipment, but most amazing of all
are the uncertain grounds on account of which we attach any validity to their out-
put. It starts already with our belief that the hardware functions properly.
—Edsger W. Dijkstra (1972, p. 3)

The history of program verification . . . has now expanded to be about nothing
less than the nature of the relationship between abstract logical systems and the
physical world.
—Selmer Bringsjord (2015, p. 265)

601

602 CHAPTER 16. CAN COMPUTER PROGRAMS BE VERIFIED?

16.1 Readings:
1. Required:

• Fetzer, James H. (1988), “Program Verification: The Very Idea”, Communications
of the ACM 31(9) (September): 1048–1063, https://pdfs.semanticscholar.org/712f/
8ed1ba1ecec1c7f548fb094eacbb62cf5b40.pdf; reprinted in Colburn et al. 1993, pp. 321–
358.

– A highly controversial essay!

2. Very Strongly Recommended:

(a) De Millo, Richard A.; Lipton, Richard J.; & Perlis, Alan J. (1979), “Social Pro-
cesses and Proofs of Theorems and Programs”, Communications of the ACM 22(5):
271–280, https://www.cs.umd.edu/∼gasarch/BLOGPAPERS/social.pdf; reprinted in
Colburn et al. 1993, pp. 297–319.

• The equally controversial “prequel” to Fetzer 1988.

(b) Ardis, Mark; Basili, Victor; Gerhart, Susan; Good, Donald; Gries, David; Kem-
merer, Richard; Leveson, Nancy; Musser, David; Neumann, Peter; & von Henke,
Friedrich (1989), “Editorial Process Verification” (letter to the editor, with replies
by James H. Fetzer and Peter J. Denning), ACM Forum, Communications of the
ACM 32(3) (March): 287–290.

• The first of many sequels to Fetzer 1988. This one includes (1) a strongly
worded letter to the editor of CACM, signed by 10 computer scientists, protest-
ing the publication of Fetzer 1988; (2) a reply by Fetzer; and (3) a self-defense
by the editor.

3. Strongly Recommended:

(a) Any of the following 4 essays that started the current field of program verification.
Hoare’s is the most important.

i. McCarthy, John (1963), “Towards a Mathematical Science of Computation”,
in C.M. Popplewell (ed.), Information Processing 1962: Proceedings of DFIP
Congress 62 (Amsterdam: North–Holland): 21–28, http://www-formal.stanford.
edu/jmc/towards.html; reprinted in Colburn et al. 1993, pp. 35–56.

ii. Naur, Peter (1966), “Proof of Algorithms by General Snapshots”, BIT 6: 310–
316; reprinted in Colburn et al. 1993, pp. 57–64.

iii. Floyd, Robert W. (1967), “Assigning Meanings to Programs”, in Mathemati-
cal Aspects of Computer Science: Proceedings of Symposia in Applied Math-
ematics, Vol. 19 (American Mathematical Society): 19–32, http://www.cs.
tau.ac.il/∼nachumd/term/FloydMeaning.pdf; reprinted in Colburn et al. 1993,
pp. 65–81.

iv. Hoare, C.A.R. (1969), “An Axiomatic Basis for Computer Programming”,
Communications of the ACM 12: 576–580, 583, https://www.cs.cmu.edu/
∼crary/819-f09/Hoare69.pdf; reprinted in Colburn et al. 1993, pp. 83–96.

16.1. READINGS: 603

(b) Dijkstra, Edsgar W. (1975), “Guarded Commands, Nondeterminacy and Formal
Derivation of Programs”, Communications of the ACM 18(8): 453–457, http://
citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.90.97&rep=rep1&type=pdf

• An example of program verification in action.

(c) Gries, David (1981), The Science of Programming (New York: Springer-Verlag).

• A classic textbook. Contrast its title with that of Knuth’s (1973) The Art of
Computer Programming.

4. Recommended:

(a) Any of the following articles, which are representative of the battle that resulted
from Fetzer 1988 and Ardis et al. 1989.

i. Pleasant, James C.; AND Paulson, Lawrence; Cohen, Avra; & Gordon, Michael;
AND Bevier, William R.; Smith, Michael K.; & Young, William D.; AND
Clune, Thomas R.; AND Savitzky, Stephen (1989), “The Very Idea” (5 letters
to the editor), Technical Correspondence, Communications of the ACM 32(3)
(March): 374–377.

ii. Fetzer, James H. (1989), “Program Verification Reprise:
The Author’s Response” (to the above 5 letters), Technical Correspondence,
Communications of the ACM 32(3) (March): 377–381.

iii. Dobson, John; & Randell, Brian (1989), “Program Verification: Public Image
and Private Reality”, Communications of the ACM 32(4) (April): 420–422.

iv. Müller, Harald M.; AND Holt, Christopher M.; AND Watters, Aaron (1989),
”More on the Very Idea” (3 letters to the editor, with reply by James H. Fetzer),
Technical Correspondence, Communications of the ACM 32(4) (April): 506–
512.

v. Hill, Richard; AND Conte, Paul T.; AND Parsons, Thomas W.; AND Nelson,
David A. (1989), “More on Verification” (4 letters to the editor), ACM Forum,
Communications of the ACM 32(7) (July): 790–792.

vi. Tompkins, Howard E. (1989), “Verifying Feature-Bugs” (letter to the editor),
Technical Correspondence, Communications of the ACM 32: 1130–1131.

(b) Barwise, Jon (1989), “Mathematical Proofs of Computer System Correctness”,
Notices of the American Mathematical Society 36: 844–851.

• A cooler head prevails. An admirably clear and calm summary of the Fetzer
debate.

• See also:
Dudley, Richard (1990), “Program Verification” (letter to Jon Barwise (ed.),
Computers and Mathematics column, with a reply by Barwise), Notices of the
American Mathematical Society 37: 123–124.

604 CHAPTER 16. CAN COMPUTER PROGRAMS BE VERIFIED?

Figure 16.1: http://phdcomics.com/comics/archive.php?comicid=1693,
c©2014, Jorge Cham

16.2 Introduction

The Halting Problem (§7.8) tells us that it is not possible to have a single computer pro-
gram that can tell us in advance whether any given computer program will halt. How-
ever, given a specific computer program, there might be ways of determining whether
that particular program will halt.

What about other problems that computer programs might have? It would be useful
to be able to know in advance whether a given computer program will work. But
what does it mean to say that a program “works”? It could mean that it successfully
transforms its input into output in the sense that, when you start it up, it finishes. It
could mean that it not only finishes, but has no logical “bugs” (such as dividing by
0 or having an infinite loop) that would cause it to “crash”. It could mean that it not
only finishes without bugs, but yields the correct output. It could mean that it not only
finishes without bugs or incorrect output, but also does what it was intended to do.

Further Reading:
On the history of the term ‘bug’, see Hopper 1981; Krebs and Thomas 1981. The idea that
the first computer bug was really a bug (actually, a moth) is an urban legend, because the term
was used in the non-entomological sense as early as 1875; see F.R. Shapiro 1985 and the OED
online at http://www.oed.com/view/Entry/24352. For a photo of the allegedly first “bug”, see
http://www.catb.org/jargon/html/B/bug.html, which traces the term back to Shakespeare!

16.2. INTRODUCTION 605

Digression, Questions for the Reader, and Further Reading:
On the TV show “Chopped” (a cooking competition), a chef is sometimes “chopped” (is elimi-
nated from competition) because the chef tells the judges that the dish they just prepared is, say,
a puttanesca, but the judge says that it isn’t, on the grounds that it includes some ingredient that
it shouldn’t (or vice versa). Yet the dish might be delicious. Had the chef not said that it was a
puttanesca, the chef might not have been chopped. Does it matter what the chef calls the dish?
Is a delicious dish unsuccessful because it has a misleading name?

A similar problem can occur with computer programs. Consider this:

. . . we cannot, by observing its output behavior, acquire the knowledge that a phys-
ical computer is operating normally, that it is correctly computing the values of a
function F, that it is executing program P, and that it is using data structure D. . . .
[P]hysical computers can break down in various ways, and when they do, they
might not physically realize the . . . function which the computer would correctly
compute if it did not break down. . . . When a physical computer is functioning
normally in the computation of the values of some function F, it will output the
correct range value for F when it is given as input a domain value for F. However,
there might be another function G which the same physical computer might be
computing. When the physical computer is operating normally in the computa-
tion of F it is suffering a breakdown in the computation of G. By examining only
its output behavior, one cannot determine whether it is operating normally (in the
computation of F) or suffering a breakdown (in the computation of G). Similarly,
by examining only its output behavior, one cannot determine whether it is operat-
ing normally (in the computation of G) or suffering a breakdown (in the compu-
tation of F). The problem is that what is breakdown behavior in the computation
of F is normal behavior in the computation of G. Whether this physical computer
is operating normally or suffering a breakdown is relative to which it is actually
computing. (Buechner, 2018, pp. 496–497)

Does this mean that we might not ever be able to decide if a computer is doing what it is “sup-
posed” to be doing? Is this an even more serious problem than merely determining whether a
program “works” (in any of the senses of ‘works’ that we just mentioned)? What if we are not
limited to examining only the output? On the other hand, what if that is the only thing that can
be examined (as might be the case with some “black box” machine-learning algorithms, as dis-
cussed earlier in §3.9.5 and later in §18.8.2)?

Buechner 2011 also discusses this problem in connection with human cognition, arguing that the
argument above, which he attributes to the philosopher Saul Kripke, also “rules out any scientific
study of the mind that envisions it as an information-processing device, which is the core idea
underlying cognitive science” (p. 362).

Many of these issues concern the relationship of mathematics to the real world (see
§4.10.2, above, and Wigner 1960; Hamming 1980a) and also touch on ethical prob-
lems:

1. Many, if not most, errors in software engineering occur when bridging the
gap between the informal, real world and the formal world of mathematical
specifications. . . .

2. Even if software engineers have a clear-cut specification of how they intend
their software to behave, they will at best be able to prove that a mathematical

606 CHAPTER 16. CAN COMPUTER PROGRAMS BE VERIFIED?

model of their software satisfies this specification, not that the software will
have the desired effects in the real world. (Daylight, 2016, p. viii)

Is there a way to logically prove that a computer program “works”?
Recall our discussions in §§3.9.1 and 3.10 of the dual mathematical and engineer-

ing natures of CS: Is computer programming like mathematics? Or is it more like
engineering? Many people identify computer programming with “software engineer-
ing”. Yet many others think of a program as being like a mathematical proof: a formal
structure, expressed in a formal language. For example, Peter Suber (1997a) compares
programs to proofs this way: A program’s input is analogous to the axioms used in a
proof; the program’s output is analogous to the theorem being proved; and the program
itself is like the rules of inference that transform axioms into theorems, with the pro-
gram transforming the input into the output.1 Or perhaps a program is more like the
endpoint of a proof, namely, a mathematical theorem. In that case, just as theorems can
be proved (and, indeed, must be proved before they are accepted), perhaps programs
can be proved (and, perhaps, should be proved before they are used). (We’ll explore
these analogies further in §16.3.2.)

Can we prove things about programs? What kinds of things might be provable
about them? Two answers have been given to the first of these questions: yes and no.
(Did you expect anything else?)

One of the most influential proponents of the view that programs can be the subjects
of mathematical proofs is Turing Award winner C.A.R. (Tony) Hoare (the developer of
the Quicksort sorting algorithm):

Computer programming is an exact science in that all the properties of a pro-
gram and all the consequences of executing it in any given environment can, in
principle, be found out from the text of the program itself by means of purely
deductive reasoning. . . .

. . . When the correctness of a program, its compiler, and the hardware of the
computer have all been established with mathematical certainty, it will be possible
to place great reliance on the results of the program, and predict their properties
with a confidence limited only by the reliability of the electronics. (Hoare, 1969,
pp. 576, 579; my italics)

I hold the opinion that the construction of computer programs is a mathematical
activity like the solution of differential equations, that programs can be derived
from their specifications through mathematical insight, calculation, and proof, us-
ing algebraic laws as simple and elegant as those of elementary arithmetic. (Hoare,
1986, p. 115, my italics)

Among those arguing that programs are not like mathematical proofs are the com-
puter scientists Richard DeMillo, Richard Lipton, and Alan Perlis:

. . . formal verifications of programs, no matter how obtained, will not play the
same key role in the development of computer science and software engineering
as proofs do in mathematics. (De Millo et al., 1979, p. 271)

1Suber makes a stronger claim, that computers are physical implementations of formal systems. This
would require the rules of inference to satisfy the constraints of being an algorithm, but not all formal
systems require that.

16.2. INTRODUCTION 607

One reason that they give for this is their view that formal proofs are long and tedious,
and don’t always yield acceptance or belief. (My college friend Alan Arkawy always
advised that you had to believe a mathematical proposition before you should try to
prove it.) Hence, they argue, it is not worthwhile trying to formally verify programs.

The epigraph to their essay (slightly incorrectly cited) is the following quotation
from J. Barkley Rosser’s logic textbook:

“I should like to ask the same question that Descartes asked. You are proposing to
give a precise definition of logical correctness which is to be the same as my vague
intuitive feeling for logical correctness. How do you intend to show that they are
the same?” . . . [T]he average mathematician . . . should not forget that intuition is
the final authority (Rosser, 1978, pp. 4, 11)

Note the similarity to the Church-Turing Computability Thesis, which also states an
equivalence between a “precise” notion and a “vague intuitive” one. This is not acci-
dental: Recall from §7.5.2 that Rosser—a pioneer in computability theory—was one
of Church’s Ph.D. students.

The “Descartes” mentioned in the passage is not the real Descartes, but a fictional
version visited by a time-traveling mathematician who tries to convince him that the
modern and formally “precise”, ε-δ definition of a continuous curve is equivalent to
the fictional Descartes’s “vague intuitive” definition as something able to be drawn
without lifting pencil from paper. Rosser observes that “the value of the ε-δ defini-
tion lies mainly in proving things about continuity and only slightly in deciding things
about continuity” (p. 2, my italics). “Descartes” then says this to the time-traveling
mathematician:

“I have here an important concept which I call continuity. At present my notion
of it is rather vague, not sufficiently vague that I cannot decide which curves are
continuous, but too vague to permit of careful proofs. You are proposing a precise
definition of this same notion. However, since my definition is too vague to be the
basis for a careful proof, how are we going to verify that my vague definition and
your precise definition are definitions of the same thing?” (Rosser, 1978, p. 2)

The time traveler and “Descartes” then agree that, despite the informality of one def-
inition and the formality of the other, the two definitions can be “verified”—but not
“proved”—to be equivalent by seeing that they agree on a wide variety of cases. When
the mathematician returns to the present, a logician points out that the mathematician’s
intuitive notion of proof bears the same relation to the logician’s formal notion of proof
as the fictional Descartes’s intuitive notion of continuity bears to the mathematician’s
formal definition of continuity. The passage that De Millo et al. (1979, p. 271) quote is
the mathematician’s response to the logician in the story. (It is the real logician Rosser,
in his own voice, who comments that “intuition is the final authority”!)

So, Hoare says that programs can and should be formally verified. DeMillo et
al. (and Rosser, perhaps) suggest that they can, but need not be. Along comes the
philosopher James Fetzer, who argues that they cannot. More precisely, he argues that
the things that we can prove about programs are not what we think they are:

608 CHAPTER 16. CAN COMPUTER PROGRAMS BE VERIFIED?

. . . there are reasons for doubting whether program verification can succeed as a
generally applicable and completely reliable method for guaranteeing the perfor-
mance of a program. (Fetzer, 1988, p. 1049)

We’ll come back to DeMillo et al. in §16.4.3. But, first, what does it mean to formally
verify a program? Before we can answer that, we need to be clear about what it means
to verify—that is, to prove—a theorem.

Further Reading:
Dijkstra 1972, pp. 9–11, has a discussion about the nature and value of formal proofs of “ob-
vious” theorems that is relevant to the issues raised by De Millo et al. (1979) and Rosser’s
time-traveler.

Devlin 1992 (which serves as an introduction to MacKenzie 1992) contains a dialogue between
a math professor who defends De Millo et al. (1979)’s notion of “social” proof and a philosophy
student who defends the more formal, logical notion of proof.

For an interesting contrast to Suber (1997a) on the relationship between computer programs and
mathematical proofs, see Thurston 1994.

Davis and Hersh 1998, “The Ideal Mathematician”, pp. 34–44 (http://babel.ls.fi.upm.es/∼pablo/
Jumble/ideal.pdf), is a partly facetious description of the behavior of (some) mathematicians,
including a discussion of the nature of proof as carried out by mathematicians. For an antidote
to their characterization of mathematicians, read Frenkel 2013.

Lipton 2019 is a more recent commentary on De Millo et al. 1979 by one of its authors.

16.3 Theorem Verification

16.3.1 Theorems and Proofs

A formal proof in logic or mathematics can be thought of as a sequence of propositions.
A proposition is what computer scientists call a “Boolean statement”, that is, a state-
ment that is either true or else false. The proofs themselves (the sequences of proposi-
tions beginning with axioms and ending with a theorem) are not Boolean-valued: They
are neither “true” nor “false”; rather, they are either “correct” (the technical terms are
‘valid’ and ‘sound’) or “incorrect” (technically, ‘invalid’ or ‘unsound’).

16.3.1.1 Syntax

However, the actual truth values of the propositions in a proof are irrelevant to the
structure of the proof. From a purely syntactic point of view, a proof of a theorem T
has the general form:

〈A1, . . . ,An,P1, . . . ,Pm,C1, . . . ,Cl ,T 〉

where:

16.3. THEOREM VERIFICATION 609

• T —the last item in the sequence of propositions that constitutes the proof—is
the theorem to be proved.

• The Ai are axioms, that is, propositions that are “given” or “assumed without ar-
gument”. They are the starting points—the “basic” or “primitive” propositions—
of any proof, no matter what the subject matter is. From a strictly syntactic point
of view, the axioms of a formal system need not be (semantically) “true”. (For
example of “axioms” that are not “true”, see some of the formal systems that we
mentioned in the Further Reading box in §14.3.2.2.)

• The Pj are premises, that is, propositions about some particular subject matter
that is being formalized. They are also “starting points”, though only for the
current topic of the proof.

• The Ck are propositions that logically follow from previous propositions in the
sequence by a “rule of inference”. A rule of inference can be thought of as a
“primitive proof” in the same sense as the “primitive” operations of a Turing
Machine or the “basic” functions in the definition of recursive functions. A rule
of inference has the form:

From propositions Q1, . . . ,Qr
you may infer proposition R

(See §2.6.1.1 for an example.) Just as with axioms, the rules of inference are
given by fiat. The rules of inference are syntactically valid by definition. Note
that if n = 0 (that is, if there are no axioms, and, especially, if m = 0 also—that
is, if there are no premises), then there will typically have to be lots of rules of
inference, and the demonstration is then said to be done by “natural deduction”
(because it is the way that logicians “naturally” prove things—see Pelletier 1999
for a history of natural deduction).

A more complex proof is then recursively defined in terms of successive applica-
tions of rules of inference. Then, to say that the sequence

〈A1, . . . ,An,P1, . . . ,Pm,C1, . . . ,Cl ,T 〉

is a proof of T from the axioms and premises means (by definition) that both each
Ck and T follow from previous propositions in the sequence by a (syntactically valid)
rule of inference. A proof is syntactically valid iff the final conclusion T and every
intermediate conclusion Ck results from a correct application of a rule of inference to
preceding propositions in the proof.

16.3.1.2 Semantics

What about truth? Surely, we want our theorems to be true! From a semantic point
of view, the axioms are typically considered to be necessarily true by virtue of their
meanings (or assumed to be true for the time being); they are usually logical tautolo-
gies. Premises, on this account, are contingently or empirically assumed to be true
(but they would normally require some justification). For example, often you need to

610 CHAPTER 16. CAN COMPUTER PROGRAMS BE VERIFIED?

justify a premise Pj by providing a proof of Pj or at least some empirical evidence in
its favor. Just as, normally, we want our axioms and premises to be (semantically) true,
so, normally, we want our rules of inference to be (semantically) truth-preserving. A
rule of inference of the form

From propositions Q1, . . . ,Qr
you may infer proposition R

is truth-preserving =de f if each of Q1, . . . ,Qr is true, then R is true. This does not
mean that R is true; all it means is that R is true relative to Q1, . . . ,Qr. As we saw
with axioms, from a purely syntactic point of view, rules of inference do not have to
be truth-preserving; again, see some of the formal systems cited in §14.3.2.2. A truth-
preserving rule of inference is said to be semantically valid. In order for theorem T
to be true, each rule of inference (and therefore the entire proof) must be semantically
valid, that is, it must be truth-preserving: Its conclusion must be true if its axioms and
premises are true. But, of course, the axioms and premises of an argument might not be
true. If they are true, and if the argument is semantically valid, then its conclusion must
be true. Such a truth-preserving argument with true premises is said to be sound; it is
unsound iff either one or more of its axioms or premises is false or it is syntactically
invalid. Roughly, a syntactically valid argument that is unsound because of a false
axiom or premise is like a correct program whose input is “garbage”; the output of
such a program is also “garbage” (this is the famous saying: “garbage in, garbage
out”). And the final conclusion of a syntactically valid but semantically invalid proof
need not be true.

But, for a syntactically valid proof to also be semantically valid, the rules of infer-
ence must be truth-preserving. And, for it to be sound, the axioms must be true. (For
more on this, recall §§2.6.1.1 and 2.10.)

It is strictly speaking incorrect to say that a theorem is “proved to be true”. ‘The-
orem’ is a syntactic notion, while ‘truth’ is a semantic notion. Theorems do not have
to be true: A syntactically valid proof that began with a false axiom or a false premise
might end with a theorem that is also false (or it might end with a theorem that is true!).
And a truth need not be a theorem: Gödel’s Incompleteness Theorem shows that there
are true propositions of arithmetic that are not provable. The conclusion of any formal
proof—that is, any theorem—is only true relative to the axioms (and premises) of the
formal theory (Rapaport, 1984b, p. 613). Of course, if all of the axioms (and premises)
are true, and if all of the rules of inference are truth-preserving, then the theorem that
has been (syntactically) proved will be (semantically) true. (We’ll come back to this
point in §16.5.1.)

16.3.2 Programs and Proofs
How is all of this applicable to programs? That depends on how the logical parapher-
nalia (axioms, rules of inference, proofs, theorems, etc.) line up with the computational
paraphernalia (specifications, input, programs, output, etc.). Several different analogies
can be made:

16.3. THEOREM VERIFICATION 611

A1: Fetzer’s and Suber’s Analogy (Fetzer 1988, p. 1056, col. 1; Suber 1997a)

Logic Computation
axioms, premises ≈ input
rules of inference ≈ program
theorem ≈ output

On this analogy, verifying a program would be like proving the inference rules!
But inference rules are not propositions, so they can’t be proved. So, a slight
modification of this is analogy A2:

A2:

Logic Computation
axioms, premises ≈ input
intermediate conclusions ≈ program
theorem ≈ output

Both intermediate conclusions and program are a sequence (or at least a set) of
expressions that begin with something given and that end with a desired result.
But you are trying to prove the theorem; you are not trying to prove the interme-
diate conclusions. And you verify an entire program, not just its output. So, let’s
consider analogy A3:

A3: Scherlis & Scott’s Analogy (Scherlis and Scott, 1983, p. 207)

Logic Computation
problem ≈ specification
proof ≈ program derivation (or verification)
theorem ≈ program

On this analogy, proving a theorem is like verifying or deriving a program. But
the role of axioms (and premises) and rules of inference are not made clear. So,
let’s try a slightly different modification of A2:

A4:

Logic Computation
axioms, premises ≈ input
proof ≈ program
theorem ≈ output

Just as, when you prove (or derive) a theorem, you transform the axioms into the
theorem, so a program transforms input into output. To verify a program is to
prove that it will, indeed, transform the input into the expected output—that is,
that it will satisfy its specification. This analogy seems closer to what program
verification is all about.

612 CHAPTER 16. CAN COMPUTER PROGRAMS BE VERIFIED?

A5: There is one more analogy: The idea behind this one is that a theorem usually has
the form “if antecedent A, then consequent C”. And most programs can be put
into the form “if you execute program P, then you will accomplish goal G”. So,
proving a theorem is analogous to verifying that P accomplishes G. One issue
that this analogy highlights is whether the goal of a program is an essential part
of it. We’ll return to this issue beginning in §17.5.

Further Reading:
Scherlis and Scott 1983, p. 207, say that all such analogies must “be taken with a big grain of
salt, since all these words can mean many things”.

Avigad and Harrison 2014 discusses the history and nature of formal proofs in math, and then
turns the relationship between theorem proving and program verification around: “With the help
of computational proof assistants, formal verification could become the new standard for rigor
in mathematics” (from the introductory blurb, p. 66).

16.3.3 Programs, Proofs, and Formal Systems
There is another way to think about rules of inference that clarifies the relationship
between programs, proofs, and formal systems.

First, consider Gödel’s observation about the importance of Turing’s analysis of
computation. (Although here I only want to focus on Gödel’s first sentence, it is worth
quoting the rest because of his observations on other topics that we have discussed.)

[D]ue to A.M. Turing’s work, a precise and unquestionably adequate definition of
the general concept of formal system can now be given Turing’s work gives an
analysis of the concept of “mechanical procedure” (alias “algorithm” or “compu-
tation procedure” . . .). this concept is show to be equivalent with that of a “Turing
machine”. A formal system can simply be defined to be any mechanical proce-
dure for producing formulas, called provable formulas. For any formal system in
this sense there exists one in the sense . . . [of “a system of symbols with rules for
employing them”—p. 41] that has the same provable formulas (and likewise vice
versa) [The “essence” of] the concept of formal system . . . is that reason-
ing is completely replaced by mechanical operations on formulas. (Note that the
question of whether there exist finite non-mechanical procedures . . . not equivalent
with any algorithm, has nothing whatsoever to do with the adequacy of the defini-
tion of “formal system” and of “mechanical procedure”.) (Gödel, 1964, pp. 71–72,
my italics, original underlining)

In what sense is a Turing Machine the same as a formal system?
As we have seen, a rule of inference tells you what kind of proposition can be in-

ferred from other kinds. So, for instance, the rule modus ponens (also sometimes called
“→ elimination”) tells us that a proposition of the form Q (that is, any proposition what-
soever) can be inferred from propositions of the forms (P→Q) and P. And the rule of
addition (sometimes also called “and-introduction” or “∧ introduction”) tells us that a
proposition of the form (P∧Q) can be inferred from any two propositions P and Q.

16.3. THEOREM VERIFICATION 613

Each of these can also be thought of as functions: Modus ponens is the function
MP((P→ Q), P) = Q; addition is the function ADD(P, Q) = (P∧Q). A proof of a
theorem T from axioms (and premises) A1, . . . ,An can then be thought of as successive
applications of such inference-rule functions to the axioms and to the previous outputs
of such applications. Are these functions (these rules of inference) computable? If so,
then a proof can be thought of as a kind of program.

Further Reading:
Haugeland 1981b is a good description of the syntax and semantics of formal systems and their
relationship to Turing Machines.

Exercise for the Reader:
Show that a typical rule of inference is, indeed, computable. Hint: Can you write a Turing
Machine program that has the inputs to a rule of inference encoded on its tape, and that, when
executed, has the output of the rule encoded on the tape?

But this raises an interesting question: Do any of our analogies capture this rela-
tionship? Is verifying a program really like proving a theorem? The relationship I have
just outlined suggests that, if a program is like a proof, then verifying a program is
actually more like checking a proof to show that it is syntactically valid. To check a
proof for validity is to check whether each proposition in the sequence of propositions
that constitutes the proof is either a basic proposition (an axiom) or else follows from
previous propositions in the sequence by a rule of inference (by the application of an
inference-rule function). In verifying a program of the form

{P1} S1 {Q1}, . . . ,{Pn} Sn {Qn}

P1 plays the role of an axiom, and each proposition of the form

If Pi is the case, and if Si is executed, then Qi is the case

plays the role of an application of a rule of inference to the “inputs” Pi and Si. The
final state of the computation—Qn— plays the role of the theorem to be proved. Any
theorem is really of the form (Ai → T) (if the axioms are the case, then the theorem
is the case). Similarly, a program can be thought of as taking the form “If P1 is input,
then Qn is output”, which is a high-level specification of the program. To verify the
program is to check that it satisfies the specification.

This gives us a refinement of analogy A4, above:

A4.1:

Logic Computation
axioms ≈ input
rules ≈ computable functions
theorem ≈ output
proof ≈ program
valid proof ≈ verified program

614 CHAPTER 16. CAN COMPUTER PROGRAMS BE VERIFIED?

16.4 Program Verification

16.4.1 Introduction and Some History
“Program verification” is a subdiscipline of CS. It can be thought of as theoretical
software engineering, or the study of the logic of software. It is also a subissue of the
question concerning the relation of software to hardware that we looked at in §12.4.

But it is not a new idea: Nowadays, we think of Euclidean geometry as a formal
axiomatic system in which geometric theorems are stated (in declarative language)
and proved to follow logically from the axioms. However, as we saw in §3.14.4, each
proposition of Euclid’s original Elements actually consisted of an algorithm (expressed
in a procedural language for constructing a geometric figure using only compass and
straightedge) and a proof of correctness of the algorithm—that is, a “verification” that
the compass-and-straightedge “program” actually resulted in a geometic figure with
the desired properties. (See, for example, the statement of Euclid’s Proposition 1 at
http://tinyurl.com/kta4aqh.2)

Similarly, a program verification typically consists of taking an algorithm expressed
in a (procedural) language for computing a function using only primitive computable
(that is, recursive) operations (as in §7.7), and then providing a proof of correctness
of the algorithm—that is, a verification that the algorithm satisfies the input-output
specification of the function (as in analogies A3 and A4).

In practice, there is a preliminary step, which will occupy us for much of Chap-
ter 17: Typically, one begins with a problem (or “goal”), perhaps informally stated,
that is then formally modeled by a function. So, another possible goal of program veri-
fication might be to show that the program that implements the function actually solves
the problem (as in analogy A5).

Another historical antecedent—perhaps the earliest example of program verification—
is due to Turing himself. His 1949 essay (“Checking a Large Routine”) “is remarkable
in many respects. The three . . . pages of text contain an excellent motivation by anal-
ogy, a proof of a program with two nested loops, and an indication of a general proof
method very like that of Floyd [1967]” (Morris and Jones, 1984, p. 139).

2http://www.perseus.tufts.edu/hopper/
text?doc=Perseus%3Atext%3A1999.01.0086%3Abook%3D1%3Atype%3DProp%3Anumber%3D1

16.4. PROGRAM VERIFICATION 615

16.4.2 Program Verification by Pre- and Post-Conditions
The idea behind program verification is to augment, or annotate, each statement S of a
program with:

1. a proposition P expressing a “pre-condition” of executing S, and

2. a proposition Q expressing a “post-condition” of executing S.

A pre-condition P of a program statement S is a description (of a situation, either
in the world in which the program is being executed or in the computer that is executing
the program) that must be true in order for S to be able to be executed; that is, P must
be true before S can be executed. (And, according to the correspondence theory of truth
(§2.4.1), P will be true iff the situation that it describes “exists”, that is, really is the
case.)

A post-condition Q of S is a description (of a situation) that will necessarily be true
after S is executed. That is, the situation that Q describes will come into “existence”
(come to be the case) after S is executed: S changes the computer (or the world) such
that Q becomes true.

So, such annotations describe both how things must be if S is to be executed suc-
cessfully and how things should be if S has been executed successfully. They are
typically written as comments preceding and following S in the program. Letting com-
ments be signaled by braces, the annotation would be written as follows:

{P} S {Q}

Such an annnotation is semantically interpreted as saying:

If P correctly describes the state of the computer (or the state of the world)
before S is executed,

and if S is executed,
then Q correctly describes the state of the computer (or the state of the

world) after S is executed.

The “state of the computer” includes such things as the values of all registers (that is,
the values of all variables).

So, if we think of a program as being expressed by a sequence of executable state-
ments:

begin S1;S2; . . . ;Sn end.

then the program annotated for program verification will look like this:

begin {I & P1}S1{Q1}; {P2}S2{Q2}; . . . ;{Pn}Sn{Qn & O} end.

where:

• I is a proposition describing the input,

• P1 is a proposition describing the initial state of the computer (or the world),

616 CHAPTER 16. CAN COMPUTER PROGRAMS BE VERIFIED?

• For each i, Qi logically implies Pi+1. (Often, Qi = Pi+1.)

• Qn is a proposition describing the final state of the computer (or the world), and

• O is a proposition describing the output.

The claim of those who believe in the possibility of program verification is that we
can then logically prove whether the program does what it’s supposed to do without
having to run the program. We would construct a proof of the program as follows:

premise: The input of the program is I.
premise: The initial state of the computer is P1.
premise: If the input is I and the initial state is P1,

and if S1 is executed,
then the subsequent state will be Q1.

premise: S1 is executed.
conclusion: ∴ The subsequent state is Q1.

premise: If Q1, then P2.
conclusion: ∴ P2.

premise: If the current state is P2,
and if S2 is executed,
then the subsequent state will be Q2.

conclusion: ∴ The subsequent state is Q2.

.

conclusion: ∴ The final state is Qn.

premise: If Qn, then O.
conclusion: ∴ O.

The heart of the proof consists in verifying each premise. If the program isn’t a
“straight-line” program such as this, but is a “structured” program with separate mod-
ules, then it can be recursively verified by verifying each module (Dijkstra, 1972).

16.4.3 The Value of Program Verification
If debugging a program by running it, and then finding and fixing the bugs, is part
of practical software engineering, then you can see why program verification can be
thought of as theoretical software engineering.

One reason why program verification is argued to be an important part of software
engineering is that this annotation technique can also be used to help develop pro-
grams that would thereby be guaranteed to be correct. Dijkstra (1975b) shows how to
“formally derive” a program that satisfies a certain specification. And Gries 1981 is
a textbook that shows how to use logic to “develop” programs simultaneously with a
proof of their correctness.

16.4. PROGRAM VERIFICATION 617

Scherlis and Scott (1983) argue that program verification and development should
go hand-in-hand, rather than verification coming after a program is complete. Their
notion—“inferential programming”—differs from “program derivation”: Whereas “pro-
gram derivations [are] highly structured justifications for programs[,] inferential pro-
gramming [is] the process of building, manipulating, and reasoning about program
derivations” (p. 200, my italics). A “ ‘correctness’ proof [shows] that a program is
consistent with its specifications” (p. 201), where “Specifications differ from programs
in that they describe aspects or restrictions on the functionality of a desired algorithm
without imposing constraints on how that functionality is to be achieved” (p. 202).
For instance, a specification might just be an input-output description of a function.
To prove that a program for computing that function is “correct”—that is, to “verify”
the program—is to prove that the program has the same input-output behavior as the
function.

Scherlis and Scott (1983, p. 204) take issue with De Millo et al. (1979). First, they
observe that the claim that “Mathematicians do not really build formal proofs in prac-
tice; why should programmers?” is fallacious, because “formalization plays an even
more important rôle in computer science than in mathematics”, and this, in turn, be-
cause “computers do not run ‘informal’ programs”. Moreover, formalization in math-
ematics has made possible much advancement independent of whether “there is any
sense in looking at a complete formalization of a whole proof. Often there is not.”

They advocate, not for a complete proof of correctness of a completed program,
but for proofs of correctness of stages of development, together with a justification that
“derivation steps preserve correctness”. This is exactly the way in which proofs of
theorems are justified: If the axioms and premises are true, and if the rules of inference
are truth-preserving, then the conclusions (theorems) will be true (relative to the truth
of the axioms and premises).

Further Reading:
In Chapter 3, we considered some of Dijkstra’s positions on the nature of CS. For some other
things he has had to say about program verification, see Dijkstra 1974, in which he argues “that
the correctness of programs could and should be established by proof”, that structured programs
are simpler to prove than unstructured ones (Dijkstra, 1968), that theorems about programs make
program proofs easier, and that “to prove the correctness of a given program was . . . putting the
cart before the horse. A much more promising approach turned out to be letting correctness
proof and program grow hand in hand” (pp. 609–610). See also Dijkstra 1983 (included as part
of Verity 1985, which contains interviews with Dijkstra, Hoare, and Gries).

Mili et al. 1986, §1, contains a formal presentation of program correctness. Tam 1992 and Arnow
1994 show how to use program-verification techniques to develop programs.

618 CHAPTER 16. CAN COMPUTER PROGRAMS BE VERIFIED?

16.5 The Fetzer Controversy
In many creative activities the medium of execution is intractable. Lumber splits;
paint smears; electrical circuits ring. These physical limitations of the medium
constrain the ideas that may be expressed, and they also create unexpected diffi-
culties in the implementation.
—Frederick P. Brooks (1975, p. 15)

The transition function for a finite-state automaton specifies everything there is
to know about it. From this it does not follow that we know everything about
the behavior of a PCM [physical computing machine] that physically realizes the
abstract diagram of a finite-state automaton, since the physical realization may be
imperfect.
—Jeff Buechner (2011, p. 349)

16.5.1 Fetzer’s Argument against Program Verification
Nonsense!, said philosopher James H. Fetzer (1988), thus initiating a lengthy contro-
versy in the pages of the Communications of the ACM and elsewhere. Several strongly
worded letters to the editor chastised the editor for publishing Fetzer’s paper; support-
ive letters to the editor praised the decision to publish; and articles in other journals
attempted to referee the publish-or-not-to-publish controversy as well as the more sub-
stantive controversy over whether programs can, or should, be verified.

What did Fetzer say that was so controversial? Here is the abstract of his essay:

The notion of program verification appears to trade upon an equivocation. Al-
gorithms, as logical structures, are appropriate subjects for deductive verification.
Programs, as causal models of those structures, are not. The success of program
verification as a generally applicable and completely reliable method for guaran-
teeing program performance is not even a theoretical possibility. (Fetzer, 1988,
p. 1048)

Despite the analogies between proofs of theorems and verifications of programs, Fet-
zer focuses on one significant disanalogy, which he expresses in terms of a difference
between “algorithms” and “programs”: Algorithms, for Fetzer, are abstract, formal
(mathematical or logical) entities; programs, for Fetzer, are physical (“causal”) entities
(Fetzer, 1988, pp. 1052, note 6; 1056, col. 2; and §“Abstract Machines versus Target
Machines” (pp. 1058–1059)).

A “program”, for Fetzer is a “causal model of” an algorithm (p. 1048), an “im-
plementation of an algorithm in a form that is suitable for execution by a machine”
(p. 1057, col. 2). In other worlds, whereas an “algorithm” (in Fetzer’s terminology) is
a formal entity susceptible to logical investigation, a “program” is a real-world, phys-
ical object that is not susceptible to logical—but only empirical—investigation. The
analogies we discussed in §16.3.2 hold for “algorithms”, but not for “programs” in
Fetzer’s senses. (Fetzer prefers A1 to A3; Fetzer 1988, p. 1056, col. 2.)

The computer historian Edgar G. Daylight (2016, p. 97), makes a similar distinc-
tion between a “mathematical program” and a “computer program”: The former is an

16.5. THE FETZER CONTROVERSY 619

algorithm expressed in a formal language; the latter “resides electronically in a spe-
cific computer and is what most of us would like to get ‘correct’ ”. (You should also
keep in mind the difference between a static “computer program [that] resides elec-
tronically in a computer”—perhaps as a specific arrangement of switch-settings—and
the dynamic process, that is, the actually running program.) Even the very “same”
program as implemented in text or as implemented in a computer might have different
behaviors depending on how its numerical-valued variables are interpreted: A “math-
ematical program” for computing the square root of an integer can be “correct” to any
decimal place, whereas the program implemented in a computer can only have a finite
accuracy; yet, in a perfectly reasonable sense, they are the “same” program (Dijkstra
1972, §6; Daylight 2016, p. 102).

As Fetzer (1988, p. 1059, col. 1) observes, algorithms (Fetzer’s terminology) or
mathematical programs (Daylight’s terminology) “can be conclusively verified, but . . .
[this] possesses no significance at all for the performance of any physical system”,
whereas “the performance of” programs (Fetzer) or computer programs (Daylight)
“possesses significance for the performance of a physical system, but it cannot be con-
clusively verified”. Fetzer (1988, p. 1060, col. 1) quotes Einstein (1921):

As far as the laws of mathematics refer to reality, they are not certain; and as far as
they are certain, they do not refer to reality.

Recall Chomsky’s competence-performance distinction from §10.4.1: Even if program-
verification techniques can prove that a program is correct (“competent”), there may
still be performance limitations. The point, according to Fetzer, is that we must dis-
tinguish between the program and the algorithm that it implements. A program is
a causal model of a logical structure, and, although algorithms might be capable of
being absolutely verified, programs cannot.

Consider program statements that specify physical output behaviors. For example,
some programming languages have a command BEEP whose intended behavior is to
ring a bell. Or suppose that you have a graphical programming language one of whose
legal instructions is DRAW CIRCLE(x,y,r), whose intended behavior is to draw a cir-
cle at point (x,y) with radius r. How can you prove or verify that the program will ring
the bell or draw the circle? How can you mathematically or logically prove that the
(physical) bell will (actually) ring or that a (physical) circle will (actually) be drawn?
How can you logically prove that the (physical) bell works or that the pen has ink in
it? Fetzer’s point is that you can’t. And the controversy largely focused on whether
that’s what’s meant by program verification. Recall our discussion in Chapter 10 about
Cleland’s interpretation of the Church-Turing Computability Thesis: Is preparing hol-
landaise sauce, or physically ringing a bell, or physically drawing a circle a computable
task?

But, according to Fetzer, it’s not just real-world output behaviors like ringing bells,
drawing circles, or, for that matter, cooking that’s at issue. What about the mundane
PRINT command? According to Fetzer, it’s not just a matter of causal output, because
you can replace every PRINT(x) command with an assignment statement: p := x. But
even this is a causal statement, because it instructs the computer to physically change
the values of bits in a physical register p, and so Fetzer’s argument goes through: How

620 CHAPTER 16. CAN COMPUTER PROGRAMS BE VERIFIED?

can you logically prove that the physical computer will actually work? Indeed, the his-
tory of early modern computers was largely concerned with ensuring that the vacuum
tubes would be reliable (Dyson, 2012b). Recall Babbage’s boast and Wittgenstein’s
warning, cited in the epigraph to this chapter.

In Fetzer’s terminology, a theorem T is “absolutely verifiable” =de f T follows only
from (logical) axioms (and not from empirical premises), and T is “relatively verifi-
able” =de f T follows from (logical) axioms together with (empirical) premises. That
is, T is “relatively” verifiable iff it is a logical consequence of some of the premises
about the particular subject matter; it is “verifiable relative to” the premises. As Donald
MacKenzie puts it,

. . . mathematical reasoning alone can never establish the “correctness” of a pro-
gram or hardware design in an absolute sense, but only relative to some formal
specification of its desired behavior. —MacKenzie (1992, p. 1066, col. 2)

Although an “absolutely verifiable” theorem T is not relative to the premises, even what
Fetzer calls ‘absolute verifiability’ is still a kind of relative verifiability, except that the
verifiability is relative to the axioms (not to the premises), as we saw in §16.3.1.

Given all of this terminology, Fetzer phrased the fundamental question of program
verification this way: Are programs absolutely verifiable? That is, can programs be
verified directly from axioms, with no empirical premises? (One question that you
should keep in mind as you read the papers involved in this controversy is this: Do the
pro-verificationists claim that programs are absolutely verifiable, in Fetzer’s terminol-
ogy?)

To be “absolutely verifiable” requires there to be program rules of inference that
are truth-preserving, or it requires there to be program axioms that are necessarily true
about “the performance that a machine will display when such a program is executed”
(Fetzer, 1988, p. 1052, my italics). Verification that requires axioms about performance
is different from program verification in the Hoare-Dijkstra-Gries tradition, because of
a difference between logical relations and causal relations, according to Fetzer. The
former are abstract; the latter are part of the real world. It might be replied, on behalf
of the pro-verificationists, that we can still do relative verification: verification relative
to “causal axioms” that relate these commands to causal behaviors. So, we can say
that, if the computer executing program P is in good working order, and if the world
(the environment surrounding the computer) is “normal”, then P is verified to behave
in accordance with its specifications.

No, says Fetzer: Algorithms and programs that are only intended for abstract ma-
chines can be absolutely verified (because there is nothing physical about such ma-
chines; they are purely formal). But programs that can be compiled and executed on
physical machines can only be relatively verified.

Further Reading:
MacKenzie 1992 discusses a legal challenge to a claim that a certain computer program had
been verified. The claim was that the verification was of the relatively informal, De Millo et al.
1979-style variety of proof; the challenge was that a formal, mathematical proof was necessary.

16.5. THE FETZER CONTROVERSY 621

16.5.2 The Controversy
The reaction to Fetzer’s paper was explosive, beginning with a letter to the editor signed
by 10 distinguished computer scientists arguing that it should never have been pub-
lished, because it was “ill-informed, irresponsible, and dangerous” (Ardis et al., 1989,
p. 287, col. 3)! The general tone of the responses to Fetzer also included these objec-
tions:

• So what else is new? We program verificiationists never claimed that you could
logically prove that a physical computer would not break down.

• Verification techniques can find logical faults; it is logically possible to match a
program or algorithm to its specifications.

• You can minimize the number of rules of the form “input I causes output O” such
that they only apply to descriptions of logic gates and the physics of silicon.

• Many programs are incorrect because, for example, of the limits of accuracy in
using real numbers.

• Verifiably incorrect programs can be better than verifiably correct programs if
they have better average performance. (Moor 1979 makes a similar argument
in the context of whether we should trust decisions made by computers; we’ll
discuss this in Chapter 18.

Let’s look at some of these.
Ardis et al. (1989) claimed that program verification was not supposed to “provide

an absolute guarantee of correctness with respect to the execution of a program on
computer hardware” (p. 287, col. 1, my italics). This is interestingly ambiguous: On
one reading, they might have been claiming that program verification only provides a
relative guarantee of correctness; if so, they are actually in agreement with Fetzer! On
another reading, they might have been claiming that program verification does provide
an absolute guarantee, but not of hardware execution; if so, that is also consistent with
Fetzer’s arguments!

They also claimed that it was not the case that “verification can be applied only to
abstract programs written in high level languages” (Ardis et al., 1989, p. 287, col. 2).
For example, they said, it can be applied to assembly languages, contrary to what
Fetzer (1988, p. 1062, col. 2) claimed. But Fetzer didn’t have to claim that: There
can be abstract, formal assembly languages. What Fetzer perhaps should have said
was that program verification cannot be applied to assembly-language programs that
“reside electronically in a computer” (to use Daylight’s characterization). As Parsons
(1989, p. 791, col. 1) later observed, their “rage” might have been indicative of a lack
of evidence for their belief.

Other critics responded to Fetzer’s paper by saying “So what else is new?”: Pleas-
ant (1989, p. 374, col. 1, my italics) observed that Fetzer’s complaint “belabor[s] the
rather obvious fact that programs which are run on real machines cannot be completely
reliable, as though advocates of verification thought otherwise.”

And Paulson et al. (1989, p. 375, col. 1, my italics) said that “Fetzer makes one
important but elementary observation and takes it to an absurd conclusion. . . . [M]ost

622 CHAPTER 16. CAN COMPUTER PROGRAMS BE VERIFIED?

systems . . . do not need to work perfectly. . . . A physical fault can usually be repaired
quickly, replacing the damaged part; then the job can be run again.” It is interesting to
note, especially in connection with topics that we will look into in Chapter 17, that the
passage that I omitted after “most systems” concerned one major exception: SDI—the
Strategic Defense Initiative—a program to defend the US using a computer-controlled
missile defense system; that system, of course, needed to “work perfectly”! (On pro-
gram verification of SDI, see Myers 1986.)

Or this from Holt (1989):

No one expects a computer to work properly if someone pulls the plug out [p. 508,
col. 2]. . . . Errors in programs due to inaccurate scientific theories, omissions in
specifications, and implementation failures are inevitable; those due to program-
ming mistakes should not be [p. 509, cols. 1–2].

An interesting variation on this came from Conte (1989), who called “Fetzer’s article
. . . an over-inflated treatment of a principle most children learn by the age of ten—no
matter how perfect your cookie recipe is, if the oven thermostat fails, you may burn
the cookies”. How do you think Carol Cleland, whose objections to the Computability
Thesis we examined in Chapter 10, would respond if she were told that, no matter how
perfect her Hollandaise-sauce recipe is, if it is prepared on the Moon, it may not work?

16.5.3 Barwise’s Attempt at Mediation

The logician Jon Barwise (1989b) attempted to mediate the controversy. In doing so, he
also discussed many other issues that we have looked into (or will in future chapters),
including the relation between algorithms and programs, the possibility of finding fault
with an argument yet believing its conclusion (see §2.10 of this book), the nature of
“philosophy of X” (see §2.8 of this book), and the difference between the truth of a
premise and agreeing with it (see §2.10 of this book).

Barwise saw the issue between Fetzer and his opponents as being a special case
of the more general question of how mathematics can be applied to the real world,
given that the former is abstract and purely logical, whereas the latter is concrete and
empirical (p. 846, col. 2). (See also Wigner 1960 and §§4.10.2 and 17.9.) But there is
another aspect to that issue in the philosophy of math, namely, the relation between the
syntax of a formal mathematical expression and its semantic interpretation in the real
world:

The axiomatic method says that our theorems are true if our axioms are. The
modeling method says that our theorems model facts in the domain modeled if
there is a close enough fit between the model and the domain modeled. The sad
fact of the matter is that there is usually no way to prove—at least in the sense of
mathematical proof—the antecedent of a conditional of either of these types.
(Barwise, 1989b, p. 847, col. 2, italics in original, my boldface)

This is a point made by Brian Cantwell Smith (1985), which we’ll look at in the next
chapter. Barwise cites Smith, noting that

16.6. SUMMARY 623

Computer systems are not just physical objects that compute abstract algorithms.
They are also embedded in the physical world and they interact with users. . . .
Thus, . . . our mathematical models need to include not just a reliable model of the
computer, but also a reliable model of the environment in which it is to be placed,
including the user. (Barwise, 1989b, p. 850, col. 1)

Barwise noted that Fetzer was only willing to talk about the causal (that is, physical)
role of computers, which is not susceptible of mathematical verification, whereas the
field of program verification only concerns abstract programs (p. 848, col. 2). So it
really seems that both sides are not only talking past each other, but might actually be
consistent with each other!

Question for the Reader:
In remarks given at the 40th Anniversary celebration of the founding of the SUNY Buffalo
Department of Computer Science & Engineering (April 2007), Bruce Shriver, former president
of the IEEE Computer Society, said, “Hardware does not have flaws; only software does.”

What do you think he might have meant by this?

Further Reading:
For Fetzer’s later writings on the controversy, see Fetzer 1991 (a summary, reply to objections,
and further discussion of the relation of software to hardware), Fetzer 1993 (an encyclopedia-
style article on program verification, but written from Fetzer’s perspective), Fetzer 1996 (“. . . in
the real world, the operation of computer systems is inherently uncertain, which raises profound
problems for public policy” (from the Abstract)), and Fetzer 1998 (“The reliability of computer
systems . . . depends on the . . . interaction of hardware and software . . . and the accuracy and
completeness of the knowledge upon which they are based. . . . The reliability of computer-based
systems is necessarily uncertain . . . [and] must not be taken for granted” (from the Abstract)).

Burkholder 1999 uses Fetzer 1988 and Barwise 1989b to argue that AI is an empirical science.
MacKenzie 2001, Ch. 6, “Social Processes and Category Mistakes”, concerns the De Millo et al.
1979–Fetzer 1988 controversy. For a review, see B. Hayes 2002. Glass 2002 is a historical
survey, with some useful references, arguing that the controversies over program verification are
“extremely healthy for the field” of computing, roughly for the same reasons that (as we argued
in §2.5) philosophy is important: the challenging of assumptions.

16.6 Summary
Recall from §9.4.1 that Kleene claimed that Turing Machines, unlike physical com-
puters, were “error free” (Kleene, 1995, p. 27). As noted in that section, if the Turing
Machine were poorly programmed, it wouldn’t be error free! Indeed, fifty years earlier,
von Neumann said:

The remarks . . . on the desired automatic functioning of the device [that is, von
Neumann’s definition of a computer, as quoted in Ch. 9, §9.3.2] must, of course,
assume that it functions faultlessly. Malfunctioning of any device has, however,
always a finite probability—and for a complicated device and a long sequence of

624 CHAPTER 16. CAN COMPUTER PROGRAMS BE VERIFIED?

operations it may not be possible to keep this probability negligible. Any error
may vitiate the entire output of the device. For the recognition and correction of
such malfunctions intelligent human intervention will in general be necessary.

However, it may be possible to avoid even these phenomena to some extent.
The device may recognize the most frequent malfunctions automatically, indicate
their presence and location by externally visible signs, and then stop. Under cer-
tain conditions it might even carry out the necessary correction automatically and
continue. (von Neumann, 1945, §1.4, p. 1).

One way to read this is as a recognition or anticipation of Fetzer’s point. Given this
inevitability, the focus presumably has to be on the elimination of logical errors, so
that program verification still has a role to play. The second paragraph suggests that
some machine “verification” might be automated, but that just leads to an endless
regress: Even if the logical structure of that automation is guaranteed, the physical
device that carries it out will itself be subject to some residual malfunction possibilities
(Bringsjord, 2015).

Of course, another way to read von Neumann’s remarks (as well as the entire pro-
gram verification debate) is to recognize that no one, and no thing, is perfect. There’s
always the chance of error or malfunction: Complete elimination of error is physically
impossible, so the point is, at least, to minimize it.

Thus, the entire issue of program verification might be considered as a subset of
the more general engineering issue of reliability. Allen Newell (1980, p. 159), for
example, assumes that a symbol system should be “totally reliable, nothing in its or-
ganization reflecting that its operators, control or memory could be erroful” [sic!]. He
goes on to say that “universality is always relative to physical limits, of which reli-
ability is one” (p. 160), where ‘universality’ is defined as the ability to “produce an
arbitrary input-output function” (p. 147). This suggest that, even if a program could be
proved mathematically to be correct, the process that executes it would still be limited
by physical correctness, so to speak, and that, presumably, cannot be mathematically
proved.

From a methodological point of view, it might be said that programs are conjec-
tures, while executions are attempted—and all too frequently successful—refutations
(in the spirit of Popper . . .). (Fetzer, 1988, p. 1062, col. 2)

And, in addition to the slippages between the real world, models of it, algorithms
that simulate the models, programs that implement the algorithms, and physical pro-
cesses that implement the programs (the real world again), Carhart (1956, p. 149) calls
for “a total systems approach” that would include not only the physical components
(hardware) but also the people who operate it (whom he called ‘software’—recall our
discussion in §12.4).

Note how the issue that we discussed in Chapter 12 about the nature of software
vs. hardware is relevant to the issue of program verification. Does a formal proof of a
program’s “correctness” apply to the program as software or to the program as hard-
ware (perhaps to the process that comes into existence when the program is executed)?
This is also relevant to a discussion we will have in the next chapter about the relation
between computers and the world.

16.6. SUMMARY 625

The bottom line is that programs as hardware need causal rules of inference of the
form: input I causes output O. Perhaps the BEEP command would have to be annotated
something like this:

{The bell is in working order.} BEEP {A sound is emitted.}

If such causal rules are part of the definition of an abstract machine, then we can have
“absolute” verification of the program. But if they are merely empirical claims, then
we can only have “relative” verification of the program.

Even so, absolute verification is often thought to be too tedious to perform and can
lure us into overconfidence. The problem of tediousness seems to me not to be overly
serious: It’s tedious to prove theorems in mathematics, too. In any case, techniques
are being devised to automate program verification. The problem of overconfidence
is more important, for precisely the reasons that Fetzer adduces. Just because you’ve
proved that a program is correct is no reason to expect that the computer executing it
will not break down.

But, in addition to the relativity to axioms (logical relativity) and to premises
(subject-matter relativity), there is another “level” of relativity:

Mathematical argument can establish that a program or design is a correct imple-
mentation of that specification, but not that implementation of the specification
means a computer system that is “safe”, “secure”, or whatever. (MacKenzie, 1992,
p. 1066, col. 2)

There are two points to notice here. First, a mathematical argument can establish the
correctness of a program relative to its specification, that is, whether the program sat-
isfies the specification. But, second, not only does this not necessarily mean that the
computer system is safe (or whatever), it also does not mean that the specification is
itself “correct”:

Human fallibility means some of the more subtle, dangerous bugs turn out to be
errors in design; the code faithfully implements the intended design, but the design
fails to correctly handle a particular “rare” scenario. (Newcombe et al., 2015, p. 67)

Presumably, a specification is a relatively abstract outline of the solution to a problem.
Proving that a computer program is correct relative to—that is, satisfies—the specifi-
cation does not guarantee that the specification actually solves the problem!

This is the case for reasons that Smith (1985) discusses and that we will look at
in the next chapter. Once more, it is not unrelated to the Computability Thesis and to
Rosser’s debate between “Descartes” and the time-traveling mathematician: You can’t
show that two systems are the same, in some sense, unless you can talk about both
systems in the same language. In the case of the Computability Thesis, the problem
concerns the informality of the language of algorithms versus the formality of the lan-
guage of Turing Machines or recursive functions. In the present case, the problem
concerns the mathematical language of programs versus the non-linguistic, physical
nature of the hardware. Only by describing the hardware in a (formal, mathematical)
language, can a proof of equivalence be attempted. But then we also need a proof that
that formal description is correct; and that can’t be had (as Barwise noted):

626 CHAPTER 16. CAN COMPUTER PROGRAMS BE VERIFIED?

. . . what can be proven correct is not a physical piece of hardware, or program
running on a physical machine, but only a mathematical model of that hardware or
program. (MacKenzie, 1992, p. 1066, col. 2).

The abstraction that produced the design (the specification) can be in error, and that is
precisely the kind of error that Smith warns about. It is time to look into this possibility.
How do programs relate to the real world?

Further Reading:
Colburn et al. 1993 is an anthology containing many of the papers discussed in this chapter, as
well as an extensive bibliography on program verification. And Colburn himself, some of whose
views on the philosophy of CS we have examined in earlier chapters, has two papers on program
verification that are worth reading (Colburn, 1991, 1993).

Frenkel 1993, which was cited in §11.4.3.4.3, is an interview with Turing Award winner Robin
Milner that discusses program verification, among other topics.

Long after the Fetzer controversy, articles for and against program verification continue to be
published. Neumann 1996 discusses the use of formal methods to reduce risks. Henzinger 1996
and Hinchey et al. 2008 give arguments in favor of program verification. Tedre 2007a, p. 108,
says that “one cannot formally prove either that an engineered product has the intended qualities
or that an engineered product will not fail . . . ”. Dewar and Astrachan 2009 is a debate over the
teaching of formal reasoning in computer science, including program-verification techniques.
For Hoare’s later views, see Hoare 2009 and an interview with him in Shustek 2009. Leroy 2009
offers a “Formal Verification of a Realistic Compiler”; see also the introductory editorial (Mor-
risett, 2009), containing philosophical remarks on the value of program verification. Lamport
(2015) argues that “the main reason for writing a formal spec[ification] is to apply tools to check
it”, that “the math needed for most specifications is quite simple: predicate logic and elementary
set theory”, that “a specification can and should be embedded as a comment within the code it
is specifying”, and—perhaps most importantly—that “thinking does not guarantee that you will
not make mistakes. But not thinking guarantees that you will.”

16.6. SUMMARY 627

Digression: Program Verification and Argument Analysis:
Fetzer’s paper makes some comments about the nature of logical reasoning and about knowledge
and belief that are relevant to the argument-analysis exercises in Appendix A.

1. On p. 1050, column 1, he says:

[W]hat makes . . . a proof a proof is its validity rather than its acceptance (by
us) as valid, just as what makes a sentence true is [that] what it asserts to
be the case is the case, no[t] merely that it is believed (by us) and therefore
referred to as true.

Note that I allow you to evaluate the truth-value of the premises of an argument, not
by trying to demonstrate whether they are true, but by trying to say whether and why
you believe them. According to Fetzer’s quote, it would follow that you are not really
evaluating the premises.

He’s correct! Whether a statement (or premise) is true or not does not depend on
whether you (or anyone) believes it to be true. It is (or isn’t) true iff what it states corre-
sponds (or fails to correspond) to reality.

Nevertheless, that’s very hard (if not impossible) to prove. And that’s why I allow you
to do something that is a bit easier, and a bit more realistic, and—for our purposes—just
as useful, namely, to try to explain whether and why you believe the statement.

2. In the same column, at the beginning of the next section, Fetzer says:

Confidence in the truth of a theorem (or in the validity of an argument) . . .
appears to be a psychological property of a person-at-a-time

It’s that “confidence” that I ask you to examine, explain, and defend. Because it’s a
“psychological property of” you now, I only grade you on how well you explain and
defend your confidence, not on what you are confident about.

3. Finally, in column 2 on the same page, he says:

[A]n individual z who is in a state of belief with respect to a certain formula f
. . . cannot be properly qualified as possessing knowledge that f is a theorem
unless his belief can be supported by means of reasons, evidence, or warrants
. . . .

This is a complicated way of making the following important point: If you believe a state-
ment f , that belief doesn’t count as knowing that f is the case unless you have a reason
for your belief. In other words, knowledge is belief plus (at least) a reason. (Actually,
most philosophers agree that knowledge also requires a third thing: knowledge is belief,
plus a reason, plus f being true: You can’t “know” something that’s false.)

This need to justify your beliefs is what turns a mere opinion, or an expression of
feeling, into a claim that is worthy of holding and of convincing others of. It’s why we
have arguments to justify conclusions, and why we have to also justify all the premises of
the arguments. (And it’s why we have to justify, recursively, all the justifications, until we
reach some starting point that is a self-justifying belief. But it’s not clear that there really
are any, which means that our investigations may never end!)

628 CHAPTER 16. CAN COMPUTER PROGRAMS BE VERIFIED?

Chapter 17

How Do Programs Relate to the
World?

Version of 7 January 2020;1 DRAFT c© 2004–2020 by William J. Rapaport

Today, computing scientists face their own version of the mind-body problem:
how can virtual software interact with the real world?
—Philip Wadler (1997, p. 240)

Figure 17.1: https://www.gocomics.com/doonesbury/1985/11/19;
c©1985, Universal Press Syndicate

1Portions of this chapter are adapted from Rapaport 2017a.

629

630 CHAPTER 17. HOW DO PROGRAMS RELATE TO THE WORLD?

17.1 Readings:
1. Required:

• Smith, Brian Cantwell (1985), “Limits of Correctness in Computers”,
ACM SIGCAS Computers and Society 14-15 (1-4) (January): 18–26,
https://www.student.cs.uwaterloo.ca/∼cs492/11public html/p18-smith.pdf

– Reprints:

∗ Technical Report CSLI-85-36 (Stanford, CA: Center for the Study of Lan-
guage and Information)

∗ Dunlop, Charles; & Kling, Rob (eds.), Computerization and Controversy
(San Diego: Academic Press, 1991): 632–646.

∗ Colburn, Timothy R.; Fetzer, James H.; & Rankin, Terry L. (eds.) (1993),
Program Verification: Fundamental Issues in Computer Science (Dor-
drecht, Holland: Kluwer Academic Publishers): 275–293.

2. Highly Recommended:

(a) Piccinini, Gualtiero (2006), “Computation without Representation”, Philosophical
Studies 137(2): 204–241, http://www.umsl.edu/∼piccininig/Computation without
Representation.pdf

(b) Rescorla, Michael (2007), “Church’s Thesis and the Conceptual Analysis of Com-
putability”, Notre Dame Journal of Formal Logic 48(2): 253–280,
http://www.philosophy.ucsb.edu/people/profiles/faculty/cvs/papers/church2.pdf

(c) Egan, Frances (2010), “Computational Models: A Modest Role for Content”, Stud-
ies in History and Philosophy of Science 41(3) (September): 253–259.

(d) Hill, Robin K. (2016) “What an Algorithm Is”, Philosophy and Technology 29:
35–59.

3. Recommended:

(a) Egan, Frances (1995), “Computation and Content”, Philosophical Review 104(2)
(April): 181–203.

(b) Peacocke, Christopher (1999), “Computation as Involving Content: A Response to
Egan”, Mind & Language 14(2) (June): 195–202.

(c) Piccinini, Gualtiero (2004), “Functionalism, Computationalism, and Mental Con-
tents”, Canadian Journal of Philosophy 34(3) (September): 375–410, http://www.
umsl.edu/∼piccininig/Functionalism Computationalism and Mental Contents.pdf

(d) Piccinini, Gualtiero (2008), “Computers”, Pacific Philosophical Quarterly 89: 32–
73, http://www.umsl.edu/∼piccininig/Computers.pdf

(e) Rescorla, Michael (2012), “Are Computational Transitions Sensitive to Seman-
tics?”, Australian Journal of Philosophy 90(4) (December): 703–721, http://www.
philosophy.ucsb.edu/docs/faculty/papers/formal.pdf

(f) Rescorla, Michael (2013), “Against Structuralist Theories of Computational Im-
plementation”, British Journal for the Philosophy of Science 64(4) (December):
681–707, http://philosophy.ucsb.edu/docs/faculty/papers/against.pdf

17.1. READINGS: 631

(g) Rescorla, Michael (2014), “The Causal Relevance of Content to Computation”,
Philosophy and Phenomenological Research 88(1) (January): 173–208, http://www.
philosophy.ucsb.edu/people/profiles/faculty/cvs/papers/causalfinal.pdf

(h) Rescorla, Michael (2015), “The Representational Foundations of Computation”,
Philosophia Mathematica 23(3): 338–366, http://www.philosophy.ucsb.edu/docs/
faculty/michael-rescorla/representational-foundations.pdf

(i) Shagrir, Oron; & Bechtel, William (2015), “Marr’s Computational-Level Theories
and Delineating Phenomena”, in D.M. Kaplan (ed.), Integrating Psychology and
Neuroscience: Prospects and Problems (Oxford: Oxford University Press), http://
philsci-archive.pitt.edu/11224/1/shagrir and bechtel.Marr’s Computational Level
and Delineating Phenomena.pdf

(j) Shagrir, Oron (2018), “In Defense of the Semantic View of Computation”, Syn-
these, https://doi.org/10.1007/s11229-018-01921-z

632 CHAPTER 17. HOW DO PROGRAMS RELATE TO THE WORLD?

17.2 Introduction
In the previous chapter, we looked at arguments to the effect that, roughly, a computer
program might succeed in theory but fail in practice. In this chapter, we continue
our examination of the relationship between a program and the world in which it is
executed.

Science, no matter how conceived, is generally agreed to be a way of understanding
the world (as we saw in Chapter 4). So, CS as a science should be a way of understand-
ing the world computationally. And engineering, no matter how conceived, is generally
agreed to be a way of changing the world, preferably by improving it (as we saw in
Chapter 5). So, CS as an engineering discipline should be a way of changing (improv-
ing?) the world via computer programs that have physical effects. One of CS’s central
questions is “What can be computed physically?”, which merges the (theoretical) sci-
entific and (real-world practical) engineering aspects of CS (§3.15.2). Thus, CS deals
with the real world by trying to understand the world computationally, and to change
the world by building computational artifacts.

In this chapter, we will focus on two questions:

1. Is computing directly concerned with the world?

2. Or is computing only indirectly concerned with the world by directly dealing
only with descriptions or models of the world?

In other words, is computation primarily concerned with the internal workings of a
computer, both abstractly in terms of the theory of computation—for example, the way
in which a Turing machine works—as well as more concretely in terms of the internal
physical workings of a physical computer? This is an aspect of question 2.

Or is computation primarily concerned with how those internal workings can reach
out to the world in which they are embedded? As Philip Wadler noted (see the epigraph
for this chapter), this is related to the question of how the mind (or, more materialisti-
cally, the brain) reaches out to “harpoon” the world (Castañeda, 1989, p. 114). This is
an aspect of question 1.

Those who say that computing is directly concerned with the world sometimes de-
scribe computing as being “external”, “global”, “wide”, or “semantic”. And those who
say that computing is only directly concerned with descriptions or models of the world
sometimes describe computing as being “internal”, “local”, “narrow”, or “syntactic”.
As you should expect by now, of course, it might be both! After all, even if computing
is “narrow”, it is embedded in—and interacts with—the “wider” world. In that case,
the question is how these two positions are related.

We have been considering these issues throughout the book. So, we’ll continue
where we left off in the last chapter, with program verification. We’ll then revisit other
topics, and suggest some conclusions that might be drawn from our survey so far.

17.3. PROGRAM VERIFICATION, MODELS, AND THE WORLD 633

17.3 Program Verification, Models, and the World
The goal of software development is to model a portion of the real world on the
computer. . . . That involves an understanding not of computers but of the real-
world situation in question. . . . That is not what one learns in studying computer
science; that is not what computer science is about.
—Michael Mahoney (2011, p. 117)

17.3.1 “Being Correct” vs. “Doing What’s Intended”
Recall that one objection to program verification is that a program can be “proven
correct” yet not “do what you intend”. One reason, as we saw in the previous chapter,
might be that the computer on which the program is run might fail physically. That
is, the computer system might fail at the hardware level (for a humorous take, see
Figure 17.1).

A second reason might be that the world is inhospitable. There are two ways in
which this latter problem might arise. There might be a physical problem with the
connection between the computer and the environment: At a simple level, the cables
connecting the computer to the world (say, to a printer) might be flawed. Or the world
itself—the environment—might not provide the correct conditions for the intended out-
come, as in Cleland’s hollandaise-sauce case (§10.4.1).

A third reason is related to the possible “hyper”-computability of interactive pro-
grams, which might depend on the unpredictable and non-verifiable behavior of an
“oracle” or human user (§§11.4.3–11.4.4).

What does ‘correct’ mean in this context? Does it mean that the program has been
logically verified? Does it mean that it “does what was intended”? Perhaps a better
way of looking at things is to say that there are two different notions of “verification”:
an internal one (logical verification) and an external one (doing what was intended)
(Tedre and Sutinen, 2008, pp. 163–164).

But, to the extent that doing what was intended is important, then we need to ask
whose intent counts? Here is computer scientist and philosopher Brian Cantwell Smith
on this question:

What does correct mean, anyway? Suppose the people want peace, and the Presi-
dent thinks that means having a strong defense, and the Defense department thinks
that means having nuclear weapons systems, and the weapons designers request
control systems to monitor radar signals, and the computer companies are asked to
respond to six particular kinds of radar pattern, and the engineers are told to build
signal amplifiers with certain circuit characteristics, and the technician is told to
write a program to respond to the difference between a two-volt and a four-volt
signal on a particular incoming wire. If being correct means doing what was in-
tended, whose intent matters? The technician’s? Or what, with twenty years of
historical detachment, we would say should have been intended?
(B.C. Smith 1985, §2, p. 20, col. 1)

According to Smith, the cause of these problems lies not in the relation of programs to
the world, but in the relation of models to the world. Let’s see what he means.

634 CHAPTER 17. HOW DO PROGRAMS RELATE TO THE WORLD?

17.3.2 Models: Putting the World into Computers
What the conference [on the history of software] missed was software as model, . . .
software as medium of thought and action, software as environment within which
people work and live. It did not consider the question of how we have put the world
into computers.
—Michael Mahoney (2011, pp. 65–66, my italics)

According to Smith (1985, §3, p. 20, col. 1), to design a computer system to solve a
real-world problem, we don’t directly “put the world into computers”. Rather, we must
do two things:

1. Create a model of the real-world problem.

2. Create a representation of the model in the computer.

17.3.2.1 Creating a Model of the World

Moreover, “to build a model is to conceive of the world in a certain delimited way”
(Smith, 1985, §3, p. 20, col. 1). The model that we create has no choice but to be
“delimited”, that is, it must be abstract—it must omit some details of the real-world
situation. Abstraction, as we saw in §14.2.1, is the opposite of implementation: It is
the removal of “irrelevant” implementation details.

Why must any real-world information be removed? Why are models necessar-
ily partial? One reason is that it is methodologically easier to study a phenomenon
by simplifying it, coming to understand the simplified version, and then adding some
complexities back in, little by little. If models weren’t partial, there would be too much
complexity, and we would be unable to use them as a basis for action. You can’t use,
much less have, a map of Florida that is the size of Florida and that therefore can show
everything in Florida. Such a map might be thought to be more useful than a smaller,
more manageable one, in that it would be able to show all the detail of Florida itself.
But the life-sized version’s lack of manageability is precisely its problem.

Further Reading:
The earliest discussion of a map that is the same size as what it maps is due to Lewis Car-
roll (of Alice in Wonderland fame); see Carroll 1893, Ch. 11, http://etc.usf.edu/lit2go/211/
sylvie-and-bruno-concluded/4652/chapter-11-the-man-in-the-moon/. Other discussions of the
idea can be found in Royce 1900, pp. 502–507ff; Rosenblueth and Wiener 1945, p. 320; Rapa-
port 1978, §5; Borges 1981, p. 234; and Eco 1982. All of these concern space, but there is an
analogous problem for time: Weather prediction is based on models of the world that have to be
“capable of scrolling ahead to the future faster than time can progress” (Fry, 2019).

Can we eat our cake but keep it, too? Perhaps we can use the real world as a
representation of itself. The computer scientist Rodney Brooks (1991, §1) suggested
that we should “use the world as its own model”: A Roomba robotic vacuum cleaner
doesn’t need a map showing where there is a wall; if it bumps into one, it will know
that it’s there. But even this is only a part of the real world.

17.3. PROGRAM VERIFICATION, MODELS, AND THE WORLD 635

In any case, the usual first step in solving a problem is to create a “delimited”
(abstract, simplified) model of it. For example, Figure 17.2 is a picture showing (in a
2-dimensional way, of course!) a 3-dimensional, real-world house and a 2-dimensional
model of it.

Figure 17.2: Right: 3D, real-world house; Left: 2D model of it

17.3.2.2 Creating a Computer Representation of the Model

A second step is to use logical propositions or programming-language data structures
to represent, not the real-world situation, but the model. Figure 17.3 adds to the house
and the house’s model a computer representation of the model.2

Figure 17.3: Right: 3D, real-world house;
Middle: 2D model of 3D real-world house;
Left: computer representation of 2D model

Smith’s point is that computers only deal with their representations of these ab-
stract models of the real world. As Paul Thagard (1984, p. 82, citing Zeigler 1976)
notes, computers are twice removed from reality, because “a computer simulates a
model which models a real system”.

Is that necessarily the case? Can’t we skip the intermediate, abstract model, and
directly represent the real-world situation in the computer? Perhaps, but this won’t help

2Note to readers of the draft of this chapter: I am not an expert on illustrations. The intention of these
figures is to show three things: a 3D picture of a house; a 2D drawing of it in the same colors (please imagine
the 2D drawing as being yellow and red, not blue!); and a computer representation of the 2D drawing. Please
use your imagination to create a better set of figures. Smith’s original is in Figure 17.4.

636 CHAPTER 17. HOW DO PROGRAMS RELATE TO THE WORLD?

Figure 17.4: From Colburn et al. 1993, p. 283

us avoid the problem of partiality (or abstraction, or idealization, or simplification).
The only rational way to deal with (real-world) complexity is to analyze it, that is, to
simplify it, that is, to deal with a partial (abstract) representation or model of it.

We are condemned to do this whenever we act or make decisions: If we were to hold
off on acting or making a decision until we had complete and fully accurate information
about whatever situation we were in, we would either be paralyzed into inaction or
else the real world might change before we had a chance to complete our reasoning.
(As Alan Saunders—and, later, John Lennon—said, “Life is what happens to us while
we are making other plans.”)3 This is the problem that Herbert Simon recognized
when he said that we must always reason with uncertain and incomplete (even noisy)
information: Our rationality is “bounded”, and we must “satisfice” (Simon, 1996b,
p. 27). And this holds for computation as well as thinking.

Further Reading:
We discussed the role of CS in managing complexity in §§3.14.3, 4.5.2, and 15.4.2. See also
Simon 1962, 1996b; Dijkstra 1972.

But action is not abstract: You and the computer must act in the complex, real
world, even though such real-world action must be based on partial models of the real
world, that is, on incomplete and noisy information. Moreover, there is no guarantee
that the models are correct.

3http://quoteinvestigator.com/2012/05/06/other-plans/

17.3. PROGRAM VERIFICATION, MODELS, AND THE WORLD 637

Action can help: It can provide feedback to the computer system, so that the system
won’t be isolated from the real world. Recall the blocks-world program that didn’t
“know” that it had dropped a block, but “blindly” continued to faithfully execute its
program to put the block on another (§10.4.1). If it had had some sensory device that
would have let it know that it no longer was holding the block that it was supposed to
move, and if the program had had some kind of error-handling procedure in it, then it
might have worked much better (it might have worked “as intended”). Did the blocks-
world program behave as intended?

17.3.2.3 Model vs. World

The problem, as Smith sees it, is that mathematical model theory only discusses the
relation between the model and a description of the model. It does not discuss the
relation between the model and the world. A model is like eyeglasses for the computer,
through which it sees the world. The model is the world as the computer sees it. The
problem is that computers have to act in the real world on the basis of a model of it.

Philosophical Digression:
Immanuel Kant said that the same thing is true about us: Our concepts are like eyeglasses that
distort reality; our only knowledge of reality is filtered through our concepts, and we have no way
of knowing how things “really” are “in themselves”, unfiltered by our concepts (as illustrated in
Figure 17.5). (Recall our earlier discussions of Kant in §§3.12 and 4.5.1.)

Similarly, to prove a program correct, we need both (a) a specification (a model
of the real-world problem) that says (declaratively) what the computer systems should
do and (b) a program (a computer model of the specification model) that says (usually
procedurally) how to accomplish this. A correctness proof, then, is a proof that any
system that obeys the program will satisfy the specification. But this is a proof that two
descriptions are compatible. The program is proved correct relative to the specification:

. . . what can be proven correct is not a physical piece of hardware, or program
running on a physical machine, but only a mathematical model of that hardware or
program. (MacKenzie 1992, p. 1066; see also Turner 2018, §4.4)

Suppose the proof fails to show “correctness”; what does this mean? It means either
that the program is wrong, or that the specification is wrong (or both). And, indeed,
often we need to adjust both specification and program.

The real problems lie in the model-world relation, which correctness does not ad-
dress. This is one of the morals of Cleland’s and Fetzer’s claims. That is, programs can
fail because the models can fail to correspond to the real world in “appropriate” ways.
But that italicized clause is crucial, because all models abstract from the real world, but
each of them does so in different ways.

This is the case for reasons that are related to the Church-Turing Computability
Thesis: You can’t show that two systems are the same, in some sense, unless you can
talk about both systems in the same language. (Recall Rosser’s time-traveling mathe-
matician, from §16.2.) In the case of the Computability Thesis, the problem concerns
the informality of the language of algorithms versus the formality of the language of

638 CHAPTER 17. HOW DO PROGRAMS RELATE TO THE WORLD?

Figure 17.5: A cognitive agent looking at a real-world object that the agent categorizes
as a house. Light reflecting off the house (the “thing-in-itself”) enters the agent’s eyes
and the resulting neural signals are “filtered” through the agent’s mental concepts, pro-
ducing a mental image of the house. The mental image may, or may not, be a “perfect”
representation of the house, but the agent has no way to directly compare the mental
image with the real house, independent of the agent’s concepts. Figure 17.4 is Smith’s
version of both Figure 17.3 and Figure 17.5.

Turing machines. In the present case, the problem concerns the mathematical lan-
guage of programs versus the non-linguistic, physical nature of the hardware. Only by
describing the hardware in a (formal, mathematical) language, can a proof of equiva-
lence be attempted. But then we also need a proof that that formal description of the
hardware is correct; and that can’t be had. It can’t be had, because, to have it, we would
need another formal description of the hardware to compare with the formal descrip-
tion that we were trying to verify. And that leads to a Zeno-like infinite regress. (We
can come “close, but no cigar”.)4

Both Smith and Fetzer agree that the program-verification project fails, but for
slightly different reasons: For Fetzer (and Cleland), computing is about the world; it
is external and wide. Thus, computer programs can’t be (“absolutely” or “externally”)
verified, because the world may not be conducive to “correct” behavior: A physical part

4Note to philosophers: It’s actually closer to a Bradley-like regress (Perovic, 2017), which was one of
Royce’s points in his discussion of maps; see also Rapaport 1995, §2.5.2, p. 64.

17.3. PROGRAM VERIFICATION, MODELS, AND THE WORLD 639

might break; the environment might prevent an otherwise-perfectly-running, “correct”
program from accomplishing its task (such as making hollandaise sauce on the Moon
using an Earth recipe); and so on.

For Smith, computing is done on a model of the world; it is internal and narrow.
Thus, computer programs can’t be verified, because the model might not match the
world. Smith also notes that computers must act in the real world. But their abstract
narrowness isolates them from the concrete, real world at the same time that they must
act in it. Smith’s gap between model and world is due, in part, to the fact that specifi-
cations are abstract:

A specification is an abstraction. It should describe the important aspects and omit
the unimportant ones. Abstraction is an art that is learned only through practice.
. . . [A] specification of what a piece of code does should describe everything one
needs to know to use the code. It should never be necessary to read the code to
find out what it does. (Lamport, 2015, p. 39, my italics)

How does one know if s omething that has been omitted from the specification is im-
portant or not? This is why “abstraction is an art” and why there’s no guarantee that
the model is correct (in the sense that it matches reality).

640 CHAPTER 17. HOW DO PROGRAMS RELATE TO THE WORLD?

Further Reading:
On what I am calling “Smith’s gap” between the model and the world, see:

1. M. Jackson 2003, which discusses “the interplay between the formal world of the com-
puter and its programming language with the informal world where the problem to be
solved is located” (from the abstract, p. 13).

2. van Fraassen 2006, which discusses the relation between formal, mathematical models
of reality and the reality of which they are models, arguing that what I call Smith’s gap
presents difficulties for scientific realism (which we discussed in §4.6).

3. Rescorla 2015, which identifies “a gap between the domain of items manipulated by the
Turing machine and our desired domain of computation” (§1). From the existence of this
gap—which seems clearly akin to Smith’s—Rescorla argues “that computability theory
is an intensional enterprise . . . : it studies entities as represented in certain ways, rather
than entities detached from any means of representing them” (§1). (On “intenSionality”
with an ‘s’, see our §3.4, above, and Rapaport 2012a.) We’ll come back to this in §17.5.

Smith’s gap is also related to the issues surrounding attempts to prove the Computability Thesis
from axioms that are intended to capture the informal notion of computability (such as Der-
showitz and Gurevich 2008; Sieg 2008):

. . . how [can] we tell whether a given piece of live mathematical reasoning corre-
sponds to a given actual or envisioned formal proof . . . How does one guarantee
that the stated axioms or premises of the formal proof are in fact necessary for the
intuitive, pre-theoretic notions invoked in the informal text? That is, how do we
assure ourselves that the formalization is faithful? This question cannot be settled
by a formal derivation. That would start a regress, at least potentially. We would
push our problem to the axioms or premises of that derivation. Moreover, any
formalization of a real-life argument reveals missing steps, or gaps, and plugging
those would sometimes require theses much like Church’s thesis. (Stewart Shapiro
2013, pp. 158–159.)

Fetzer 1999 is a clearly written summary and critique of Smith’s essay, arguing that there are
more than merely the two models that Smith considers (a specification as a model of the world
and a program as a model of the specification).

Smith’s essay begins with a discussion of a real event, in which the Moon was mistaken for a
Soviet missile attack. The Associated Press report on the moon-missile mistake is “Canadian Is
Praised over Missile Scare”, New York Times (23 December 1960), p. 6, https://timesmachine.
nytimes.com/timesmachine/1960/12/23/99831694.pdf. For more examples like this, only with
more dire consequences, see Neumann 1993. B. Hayes 2007a is another interesting article on
computational modeling (and what can go wrong). And Cerf 2013 suggests “that we should
treat as robots any programs that can have real-world . . . effect. . . . [T]hose of us who live in
and participate in the creating of software-based ‘universes’ might wisely give thought to the
potential impact that our software might have on the real world”, a thought that echoes Smith’s
essay.

17.4. INTERNAL VS. EXTERNAL BEHAVIOR: SOME EXAMPLES 641

17.4 Internal vs. External Behavior: Some Examples
So, internal models diverge from the external world. In earlier chapters, we saw several
examples of programs whose internal (local, narrow, syntactic) behavior differed from
their external (global, wide, semantic) behavior. Let’s briefly review these, plus a few
new ones.

17.4.1 Successful Internal Behavior
but Unsuccesful External Behavior

The first two examples concern the kinds of situations that Fetzer and Smith were con-
cerned with, in which the computer program behaves exactly as was expected—there
are no logical program bugs, and the program does not crash—yet it fails to accomplish
its stated task. That is, it exhibits “successful” internal behavior but “unsuccessful” ex-
ternal behavior.

17.4.1.1 The Blocks-World Robot

The blocks-world program of §10.4.1 worked “correctly”, in the sense that it performed
each step without crashing. Yet it did not do what was intended, because it acciden-
tally dropped a block, and was therefore unable to put it where it was supposed to go.
“Narrowly”, perhaps, it did what was intended; “widely”, however, it didn’t: After all,
it didn’t actually manipulate the blocks.

17.4.1.2 Cleland’s Recipe for Hollandaise Sauce

Recall Cleland’s recipe for hollandaise sauce, which we also discussed in §10.4.1. Sup-
pose that we have an algorithm (a recipe) that tells us to mix eggs, butter, and lemon
juice, and that is supposed to output hollandaise sauce. On Earth, the recipe results in
an emulsion that is, in fact, hollandaise sauce. But, on the Moon, it does not result in
an emulsion, so that no hollandaise sauce is output; instead, the output is a messy mix-
ture of eggs, butter, and lemon juice. (On whether recipes really are algorithms, recall
§§3.9.3 and 10.4.2.) In Cleland’s case, is making hollandaise sauce computable (on
the “narrow” view) or not (on the “wide” view)? Can a Turing machine or a physical
computer make hollandaise sauce?

17.4.2 Same Internal Behavior but Different External Behavior
The second set of examples concern situations in which a single internal behavior gen-
erates different external behaviors, depending on context.

17.4.2.1 Fodor’s Chess and War Programs

Recall also from §10.4.1 that the philosopher Jerry Fodor (1978, p. 232) asked us to
consider two computer programs: one that simulated the Six Day War and another that
simulated (or actually plays?) a game of chess, but which were such that “the internal

642 CHAPTER 17. HOW DO PROGRAMS RELATE TO THE WORLD?

career of a machine running one program would be identical, step by step, to that of
a machine running the other”. In programs like this war-chess case, do we have one
algorithm (the “narrow” view), or two (the “wide” view)?

Question for the Reader:
Is there a difference between simulating playing a chess game and really playing one? (Recall
our discussion of simulation vs. “the real thing” in §15.3.1.2. We’ll return to this in Chapter 19.)

A real example along the same lines is “a method for analyzing x-ray diffraction
data that, with a few modifications, also solves Sudoku puzzles” (Elser, 2012). Or
consider a computer version of the murder-mystery game Clue that exclusively uses the
Resolution rule of inference, and so could be a general-purpose, propositional theorem
prover instead.5 A more recent version is the program AlphaZero, “a single algorithm
[that] can learn to play three hard board games” (Campbell, 2018): When supplied
with the rules of chess, it becomes the world’s best chess player; when supplied with
the rules of shogi (Japanese chess), it becomes the world’s best shogi player; and when
supplied with the rules of Go, it becomes the world’s best Go player (Silver et al., 2018;
Kasparov, 2018).

Similar examples abound, notably in applications of mathematics to science, and
these can be suitably “computationalized” by imagining computer programs for each.
For example,

Nicolaas de Bruijn once told me roughly the following anecdote: Some chemists
were talking about a certain molecular structure, expressing difficulty in under-
standing it. De Bruijn, overhearing them, thought they were talking about mathe-
matical lattice theory, since everything they said could be—and was—interpreted
by him as being about the mathematical, rather than the chemical, domain. He
told them the solution of their problem in terms of lattice theory. They, of course,
understood it in terms of chemistry. Were de Bruijn and the chemists talking about
the same thing? (Rapaport, 1995, §2.5.1, p. 63)

A related issue is that a single action in the real world can be described in different
ways:

Recovering motives and intentions is a principal job of the historian. For without
some attribution of mental attitudes, actions cannot be characterized and decisions
assessed. The same overt behavior, after all, might be described as “mailing a
letter” or “fomenting a revolution”. (Richards, 2009, p. 415)

And Figure 17.6 presents a humorous one.

5Robin Hill, personal communication.

17.4. INTERNAL VS. EXTERNAL BEHAVIOR: SOME EXAMPLES 643

Figure 17.6: https://www.gocomics.com/luann/2015/04/08; c©2015, GEC Inc.

Further Reading:
Other examples, concerning, for example, the applicability of group theory to physics are dis-
cussed in Frenkel 2013. And the mathematician Paul Halmos (1973, p. 384) points out that, once
aspects of Hilbert spaces are seen to be structurally identical to aspects of quantum-mechanical
systems, “the difference between a quantum physicist and a mathematical operator-theorist be-
comes one of language and emphasis only”. Eugene Wigner’s classic essay on “The Unreason-
able Effectiveness of Mathematics in the Natural Sciences” (1960) is also relevant; computer
scientists should be sure to read R.W. Hamming’s response (1980a).

17.4.2.2 Rescorla’s GCD Computers

Rescorla’s GCD computers (see §14.4.3, above) fall under this category but also offer
an example reminiscent of Cleland’s hollandaise sauce, but less “physical”. A Scheme
program for computing GCDs of two numbers is implemented on two computers, one
(M10) using base-10 notation and one (M13) using base-13 notation. Rescorla argued
that only M10 executes the Scheme program for computing GCDs, even though, in a
“narrow” sense, both computers are executing the “same” program. When the numer-
als ‘115’ and ‘20’ are input to M10, it outputs the numeral ‘5’; “it thereby calculates
the GCD of the corresponding numbers” (Rescorla, 2013, p. 688). But the numbers ex-
pressed in base-13 by ‘115’ and ‘20’ are 18710 and 2610, respectively, and their GCD
is 110, not 510. So, in a “wide” sense, the two machines are doing “different things”, in
one case behaving “correctly”, in the other, behaving “incorrectly”. Are the two GCD
computers doing different things?

17.4.2.3 AND-Gates or OR-Gates?

In the Digression on Conjunction and Disjunction in §10.4.1, we saw that the truth table
for conjunction could also be used as the truth table for disjunction by reinterpreting
‘0’s and ‘1’s. Another version uses a single truth table:

A A A
A B A
B A A
B B B

644 CHAPTER 17. HOW DO PROGRAMS RELATE TO THE WORLD?

This could be interpreted as the truth table for conjunction if A is interpreted as ‘false’,
and B as ‘true’. And it could be interpreted as the truth table for disjunction if A is
interpreted as ‘true’, and B as ‘false’.

Oron Shagrir (2018b, §3.1) offers a third version. Consider the following function:

Input 1 Input 2 Output
H H H
H M M
H L M
M H M
M M M
M L M
L H M
L M M
L L L

(Actually, he uses physical voltages, labeled H(igh), M(edium), and L(ow). I am using
the more abstract version.) He then gives two different (external semantic) interpre-
tations of these symbols. On the first interpretation, H is mapped to 1 (or “true”),
and both L and M are mapped to 0 (or “false”), thus implementing conjunction. (In
Shagrir’s original version, the physical device that inputs and outputs certain voltages
becomes an AND-gate). On the second interpretation, both H and M are mapped to 1,
and L is mapped to 0, thus implementing disjunction (or an OR-gate).

Question for the Reader:
In Shagrir’s example, we have two different computers (and AND-gate and an OR-gate) that are
implemented in the same way. Would two AND-gate computers be the same even if they were
implemented differently?

Thus, there are at least three possible answers to the question of what this device
computes: conjunction, disjunction, and the function given by the table above. One
way of phrasing the puzzle here is this: What is the basic computational structure of
this system (or these systems)? Is it conjunction? Disjunction? The H-M-L function?
(Or something else? After all, one of the points made by Buechner (2011, 2018, see
§16.2, above) is that there might not be any fact of the matter!)

Alternatively, one could say that, in order to compute conjunction, execute an al-
gorithm for the table above, but use the first intepretation, and, in order to computer
disjunction, execute that very same algorithm, but use the second interpretation. How
crucial is that external interpretation to the computation? Arguably, the difference con-
cerns, not the computation, but how that computation is “plugged in” to the external
environment. But, arguably, such external relations don’t change the computation any
more than the external fact that a person’s sibling has had a child (thus making the
person an aunt or uncle) changes that person. As in Figure 17.6, the girl held up 10
fingers, irrespective of whether she intended (or the boy understood) “ten yeses or five
noes”.

17.5. TWO VIEWS OF COMPUTATION 645

Further Reading:
Dennett (2013a, pp. 159–164) discusses a similar example with a vending machine that, when
used in the US, works on US quarters, but when used in Panama, works equally well with
Panamanian quarter-balboas.

17.5 Two Views of Computation
A computer program is a message from a man [sic] to a machine. The rigidly
marshaled syntax and the scrupulous definitions all exist to make intention clear to
the dumb engine. —Frederick P. Brooks (1975, p. 164)

If computation is “narrow”, “local”, “internal”, or “syntactic”, then it is concerned only
(or at least primarily) with such things as the operations of a Turing machine (print,
move) or the basic recursive functions (successor, predecessor, projection). On the
other hand, if computation is “wide”, “global”, “external”, or “semantic”, then it must
involve things like chess pieces and a chess board (for a chess program), or soldiers
and a battlefield (for a war simulator). Is computation narrow and independent of the
world, or is it wide and world-involving?

A related question asks whether programs are purely logical, or whether they are
“intentional” (Hill, 2016b) or “teleological” (Anderson, 2015). Recall from §7.5.3.2
that something can be said to be “intentional” if it is related to goals or purposes.
‘Teleological’ is another adjective with roughly the same meaning. So we can ask
whether programs are goal-oriented.

Philosophical Digression:
Rescorla’s argument that computation is “intensional” (with an ‘s’, not a ‘t’)—recall item 3 of
the Further Reading at the end of §17.3.2—is related, but slightly different. In earlier chapters,
we distinguished being “extensional” from being “intensional” (with an ‘s’). There is also a
difference between being “intensional” (with an ‘s’) and being “intentional” (with a ‘t’). Very
briefly, in a technical philosophical sense, a phenomenon is said to be “intentional” (with a ‘t’)
if it is directed to a goal or an object. The 19th-century philosopher Franz Brentano claimed
that all mental phenomena were “intentional” in the sense that, when you think, there is always
an object that you are thinking about. In another, but non-technical, sense, an act is performed
“intentionally” if the actor meant to do it—that is, it wasn’t an accident; it was done on purpose.
Finally, there is also Dennett’s technical notion of the “intentional stance”, which we introduced
in §12.4.4.1.1. See also Jacob 2019.

Let’s distinguish between an algorithm A and a goal (or purpose) G. Let A be
either a primitive computation (such as “print” and “move”, or such as the “successor”,
“predecessor”, and “projection” functions), or else a set of computations recursively
structured by sequence, selection, and repetition (as in Chapter 7). And let G be a goal
(or “purpose”, or “intended use”) of A. Then our question can be formulated more
precisely as follows: Which of the following two forms does a computer program
take?:

646 CHAPTER 17. HOW DO PROGRAMS RELATE TO THE WORLD?

Do A

or

In order to accomplish goal G, do A

If the former, then computation is “narrow”; if the latter, then it is “wide”.
This enables us to reformulate some earlier issues: For example, does the “correct-

ness” of a computer program refer to algorithm A or to goal G? The goal of a program
can be expressed in its specification. This is why you wouldn’t have to read the code
to find out what it does. Of course, if the specification has been internalized into the
code, you might be able to (see §17.8.2.4, below). But it’s also why you can have a
chess program that is also a war simulator: They might have different specifications
but the same code. So, perhaps a correctness proof is a proof that algorithm A satisfies
specification G.

As another example, Cleland argued that “Make hollandaise sauce” was not a
Turing-computable function. Can we view “Make hollandaise sauce” as a high-level
procedure call that can be substituted for A? Or should it be viewed as a goal that can
be substituted for G? In the latter case, only its expansion into a set of (more basic)
computations structured by sequence, selection, and repetition would be a suitable sub-
stitute for A. And, in that latter case, A might be computable on the Moon even if G
fails there.

We’ll refer to these two formulations throughout the rest of the chapter.

Further Reading:
The two formulations “Do A” and “In order to accomplish goal G, do A” echo something that
Herbert Simon said three quarters of a century ago. According to Reva Brown (2004, p. 1247,
my italics),

In his exposition of science, Simon . . . divides it into two kinds: practical and
theoretical. Scientific propositions are practical if they are stated in some such
form as “In order to produce such and such a state of affairs, such and such must
be done” (Simon, 1947, p. 248). The equivalent theoretical proposition with the
same conditions of verification can be stated in a purely descriptive form: “Such
and such a state of affairs is invariably accompanied by such and such conditions”
(Simon, 1947, p. 248).

17.6. INPUTS, TURING MACHINES, AND OUTPUTS 647

17.6 Inputs, Turing Machines, and Outputs
Any machine is a prisoner of its input and output domains.
—Allen Newell (1980, p. 148)

17.6.1 Introduction
Aaron Sloman notes that, for almost any machine,

we can, to a first approximation, divide the processes produced by the machine into
two main categories: internal and external. Internal physical processes include
manipulation of cogs, levers, pulleys, strings, etc. The external processes include
movements or rearrangements of various kinds of physical objects, e.g. strands of
wool or cotton used in weaving, (Sloman, 2002, §3.2, p. 9)

As we noted in §3.9.3, both Shapiro (2001) and Sloman consider links to sensors and
effectors as central to what a computer is. A computer without one or the other of
these would be solipsistic. (Recall our discussion of this in §7.5.3.3.) Can computation
be understood separately from interaction with the world? It is not that the latter is
unimportant or secondary, but that it is a separate thing.

One obvious place where a computer program seems to necessarily interact with the
real world is its inputs and output. In §§7.5.3.3 and 11.4.3.1, we considered whether
programs needed inputs and outputs. Let’s review some of this.

17.6.2 The Turing-Machine Tape as Input-Output Device
The tape of a Turing machine records symbols (usually ‘0’ or ‘1’) in its squares. Is the
tape the input-output device of the Turing machine? Or is it (merely?) the machine’s
internal memory device?

Given a Turing machine for computing a certain mathematical function, it is cer-
tainly true that the function’s inputs will be inscribed on the tape at the beginning of
the computation, and the function’s results—its outputs—will be inscribed on the tape
by the time that the computation halts: So, it certainly looks like the tape is an external
input-output device.

However,

A terminating computation is one in which all the processes terminate; its output
is the values left in the shared memory.
(Denning and Martell, 2015, p. 155, my emphases)

Note that this output need not be reported to the external world (such as a user); it’s just
left there on the tape. Moreover, the inscriptions on the tape will be used and modified
by the machine during the computation, in the same way that a physical computer uses
its internal memory for storing intermediate results of a computation. So, it looks like
the tape is merely an internal memory device. In other words, it also looks like the
answer to our questions is: both.

Although Turing’s a-machines were designed to simulate human computers—that
is, humans who compute, thus constituting the first AI program!—Turing didn’t talk

648 CHAPTER 17. HOW DO PROGRAMS RELATE TO THE WORLD?

about the humans who would use them. A Turing machine doesn’t accept user-supplied
input from the external world! (Recall our discussion of interactive computing in
§11.4.3.) It begins with all data pre-stored on its tape and then simply does its own
thing, computing the output of a function and leaving the result on the tape. Turing
machines don’t “tell” anyone in the external world what the answers are, though the
answers are there for anyone to read, because the “internal memory” of the machine is
visible to the external world. Of course, a user has to be able to interpret the symbols
on the tape; we’ll return to this point in §17.6.6.

Perhaps it would be better to refer to the initial symbols on the tape as “set-up
conditions” and the final symbols as “terminal conditions”, rather than as “inputs” and
“outputs” (as suggested by Machamer et al. 2000, p. 11). So, are the symbols on the
tape really inputs and outputs in the sense of coming from, and being reported to, the
external world? Are such inputs and outputs an essential part of an algorithm? It may
seem outrageous to deny that they are essential, but (as we saw in Chapter 7) it’s been
done! After all, the input-output interface “merely” connects the algorithm with the
world. Let’s consider whether inputs and outputs are needed.

Further Reading:
For more on whether a Turing-machine tape is an external input-output device or an internal
memory, see Dresner 2003, 2012.

17.6.3 Are Inputs Needed?

One reason that it’s outrageous that inputs or outputs might not be needed is that algo-
rithms are supposed to be ways of computing mathematical functions, and mathemat-
ical functions, by definition, have both inputs and outputs—members of their domain
and range. Functions are, after all, certain sets of ordered pairs (of inputs and outputs),
and you can’t very well have an ordered pair that is missing one or both of those.

We looked at this issue in §§7.5.3.1 and 7.5.3.3. There, we saw that:

• Markov’s informal characterization of algorithm had an “applicability” condi-
tion stating that algorithms must have “The possibility of starting from original
given objects which can vary within known limits” (Markov, 1954, p. 1). Those
“original given objects” are, presumably, the input.

• But Hartmanis and Stearns’s classic paper on computational complexity (1965,
p. 288) allowed their multi-tape Turing machines to have at most one tape—an
output-only tape—with no input tapes.

• And we also saw that Knuth’s informal characterization of the notion of algo-
rithm had an “input” condition stating that “An algorithm has zero or more in-
puts” (Knuth, 1973, p. 5; my italics). He not only didn’t explain this, but he went
on to characterize outputs as “quantities which have a specified relation to the
inputs” (Knuth, 1973, p. 5). But what kind of relation would an output have to a
non-existent input?

17.6. INPUTS, TURING MACHINES, AND OUTPUTS 649

Digression and Further Reading:
Besides the basic philosophical “theorem” that, for any X , there is a philosophy of
X (§2.8), there is another that says, “For any possibility you can name, there exists a
philosopher who turned it into a theory” (Casati, 2000, p. 65). On some philosophical
theories about such relations to non-existent entities, see Grossmann 1974, p. 109, and
Rapaport 1986b, §4.5.

One way to understand having outputs without inputs is that some programs, such
as prime-number generators, merely output information. In cases such as this, although
there may not be any explicit input, there is an implicit input (roughly, ordinals: the al-
gorithm outputs the nth prime, without explicitly requesting an n to be input). Another
kind of function that might seem not to have any explicit inputs is a constant function,
but, again, its implicit input could be anything (or anything of a certain type—“varying
within known limits”, as Markov might have said).

So, what constitutes input? Is it simply the initial data for a computation—that is, is
it internal and syntactic? Or is it information supplied to the computer from the external
world (and interpreted or translated into a representation of that information that the
computer can “understand” and manipulate)—that is, is it external and semantic?

17.6.4 Are Outputs Needed?
Markov, Knuth, and Hartmanis and Stearns all require at least one output. Markov,
for example, has an “effectiveness” condition stating that an algorithm must “obtain a
certain result”.

But Copeland and Shagrir (2011, pp. 230–231) suggest that a Turing machine’s
output might be unreadable. Imagine, not a Turing machine with a tape, but a physical
computer that literally prints out its results. Suppose that the printer is broken or that it
has run out of ink. Or suppose that the programmer failed to include a ‘print’ command
in the program. The computer’s program would compute a result but not be able to tell
the user what it is, as we saw in this algorithm from §7.4.1.4 (Chater and Oaksford,
2013, p. 1172, citing an example from Pearl 2000):

1. input P

2. multiply P by 2; store in Y

3. add 1 to Y ; store in Z

This algorithm has an explicit input, but does not appear to have an explicit output. The
computer has computed 2X +1 and stored it away in Z for safekeeping, but doesn’t tell
you its answer. There is an answer, but it isn’t output. (“I know something that you
don’t!”?)

So, what constitutes “output”? Is it simply the final result of a computation—that
is, is it internal and syntactic? Or is it some kind of translation or interpretation of the
final result that is physically output and implemented in the real world—that is, is it
external and semantic? In the former case, wouldn’t both of Rescorla’s base-10 and

650 CHAPTER 17. HOW DO PROGRAMS RELATE TO THE WORLD?

base-13 GCD computers be doing the same thing? A problem would arise only if they
told us what results they got, and we—reading those results—would interpret them,
possibly incorrectly.

17.6.5 When Are Inputs and Outputs Needed?

Machines live in the real world and have only a limited contact with it. Any ma-
chine, no matter how universal, that has no ears (so to speak) will not hear; that
has no wings, will not fly. —Allen Newell (1980, p. 148)

Narrowly conceived, algorithms might not need inputs and outputs. Widely conceived,
they do. Any input from the external world has to be encoded by a user into a lan-
guage “understandable” by the Turing machine (or else the Turing machine needs to
be able to decode such external-world input). And any output from the Turing machine
to be reported to the external world (for example, a user) has to be encoded by the
Turing machine (or decoded by the user). Such codings would, themselves, have to be
algorithmic.

In fact, one key to determining which real-world tasks are computable—one of CS’s
main questions (§3.15.2)—is finding coding schemes that allow a sequence of ‘0’s and
‘1’s (that is, a natural number in binary notation) on a Turing machine’s tape to be
interpreted as a symbol, a pixel, a sound, etc. According to the Computability Thesis,
a mathematical function on the natural numbers is computable iff it is computable by
a Turing machine. Thus, a real-world problem is computable iff it can be encoded as
such a computable mathematical function.

But it’s that wide conception, requiring algorithmic, semantic interpretations of the
inputs and outputs, that leads to various debates. Let’s look at the (semantic) coding
issue more closely.

17.6.6 Must Inputs and Outputs Be Interpreted Alike?

Letting the symbol ‘x’ represent a sequence of x strokes (where x is a natural number),
Rescorla (2007, p. 254) notes that

Different textbooks employ different correlations between Turing machine syntax
and the natural numbers. The following three correlations are among the most
popular:

d1(n) = n.

d2(n+1) = n.

d3(n+1) = n,as an input.

d3(n) = n,as an output.

A machine that doubles the number of strokes computes f (n) = 2n under d1,
g(n) = 2n + 1 under d2, and h(n) = 2n + 2 under d3. Thus, the same Turing
machine computes different numerical functions relative to different correlations
between symbols and numbers.

17.6. INPUTS, TURING MACHINES, AND OUTPUTS 651

Let’s focus on interpretation d3. First, having different input and output interpretations
of a single internal formalism occurs elsewhere. Machine-translation systems that use
an “interlingua” work this way: Chinese input, for example, can be encoded into an
“interlingual” representation language (often thought of as an internal, “meaning”-
representation language that encodes the “proposition” expressed by the Chinese in-
put), and English output can then be generated from that interlingua (re-expressing
in English the same proposition that was originally expressed in Chinese). Cognition
(assuming that it is computable!) also works this way: Perceptual encodings (such as
Newell’s example of hearing) into the “interlingua” of the biological neural network of
our brain surely differ from motor decodings (such as Newell’s example of flying).

Further Reading:
For an example using the SNePS knowledge-representation and reasoning system as an interlin-
gua between Chinese and English, see Liao 1998. For more on interlinguas, see Slocum 1985
and Daylight 2013, §2.

Second, using our formulation from §17.5, the idea that a single, internal represen-
tation scheme can have different external interpretations suggests that the internal A
can be considered separately from external Gs and that it is the internal A that is central
to computation.

This offers a way out of Rescorla’s puzzle about the two GCD computers.6 Con-
sider a Common Lisp version of Rescorla’s GCD program. The Common Lisp version
will look identical to the Scheme version shown in §14.4.3 (the languages share most of
their syntax), but the Common Lisp version has two global variables—*read-base*
and *print-base*—that tell the computer how to interpret input and how to dis-
play output. These are implementations of the coding algorithms mentioned in §17.6.5.
By default, *read-base* is set to 10. So the Common Lisp read-procedure does the
following:

(a) It sees the three-character string ‘115’ (for example);

(b) it decides that the string satisfies the syntax of an integer;

(c) it converts that string of characters to an internal (“interlingual”) representation of
type integer—which is represented internally as a binary numeral implemented
as bits or switch-settings

(d) it does the same with (say) ‘20’; and

(e) it computes their GCD using the algorithm from §14.4.3 on the binary representa-
tion.

If the physical computer had been an old IBM machine, the computation might have
used binary-coded decimal numerals instead, thus computing in base 10. If *read-base*
had been set to 13, the input characters would have been interpreted as base-13 numer-
als, and the very same Common Lisp (or Scheme) code would have correctly computed

6I am indebted to Stuart C. Shapiro, personal communication, for the ideas in this paragraph.

652 CHAPTER 17. HOW DO PROGRAMS RELATE TO THE WORLD?

the GCD of 18710 and 2610. One could either say that the algorithm computes with
numbers—not numerals—or that it computes with base-2 numerals as an interlingual
(or “canonical”) representation of numbers. But that choice depends on one’s view
about the nature of mathematics—not about the nature of computation.

Digression and Further Reading about the Nature of Mathematics:
“Platonists” believe that mathematics deals with numbers—abstract entities that exist in a “Pla-
tonic” realm that is more perfect than, and independent of, the real world (see §12.4.2). “Nom-
inalists”, on the other hand, deny the existence of abstract numbers, and hold that mathematics
deals only with numerals—real marks on paper, for instance. For more on this, see Bueno 2014
and Linnebo 2018.

And similarly for output: The switch-settings containing the GCD of the input are
then output as base-10 or base-13 numerals appearing as pixels on a screen or ink on
paper, depending on the value of such things as *print-base*. With respect to
Rescorla’s example, the point is that a single Common Lisp (or Scheme) algorithm is
being executed correctly by both M10 and M13. Those machines are different; they
do not “have the same local, intrinsic, physical properties” (Rescorla, 2013, p. 687),
because M10 has *read-base* and *print-base* set to 10, whereas M13 has
read-base and *print-base* set to 13.

For a purely mathematical, Turing-computable example, recall Aizawa’s program
from §10.4.1, repeated here:

. . . if we represent the natural number n by a string of n consecutive 1s, and start
the program with the read-write head scanning the leftmost 1 of the string, then the
program,

q0 1 1 R q0
q0 0 1 R q1,

will scroll the head to the right across the input string, then add a single ‘1’ to the
end. It can, therefore, be taken to compute the successor function.
(Aizawa, 2010, p. 229)

I can describe this program semantically (or “widely”) as one that generates natural
numbers. Speaking purely syntactically (or “narrowly”), I’d like to describe it as one
that appends a ‘1’ to the (right) end of the sequence of ‘1’s encoded on its (input) tape.
Using our formulation from §17.5, the semantic or wide (or “intentional”) description
would be:

In order to generate the natural numbers, do begin q011Rq0; q001Rq1 end.

The syntactic (or narrow) description would just be the “do” clause.
Now, a Turing machine that does merely that does not really generate the natural

numbers; at best, it could be described semantically as a one-trick pony that generates
the successor of the number encoded on the tape. To generate “all” natural numbers,
this Turing machine would have to be embedded as the body of a loop in another,
“larger” Turing machine. The idea is that, beginning with a tape “seeded” with the first

17.7. ARE PROGRAMS INTENTIONAL? 653

natural number (either a blank tape or one with a single stroke), it executes the first Tur-
ing machine, thus generating the input’s successor, then loops back to the beginning,
considers the current tape as the input tape, and generates its successor, ad infinitum.

But what if it uses Rescorla’s d3 interpretation scheme? Then our larger Turing
machine, while still appending a ‘1’ to the end of the current sequence of ‘1’s on the
tape, is no longer generating the natural numbers. (It is certainly generating a natural-
number sequence, but not the one written in the same notation as the inputs.) Rather
than computing S(n) = n+1, it is computing S ′(n) = n+2.

The aspect of this situation that I want to remind you of is whether the tape is
the external input and output device, or is, rather, the machine’s internal memory.
If it is the machine’s internal memory, then, in some sense, there is no (visible or
user-accessible) input or output (§17.6.2). If it is an external input-output device, then
the marks on it are for our convenience only. In the former case, the only accurate
description of the Turing machine’s behavior is syntactically in terms of ‘1’-appending.
In the latter case, we can use that syntactic description but we can also embellish it with
one in terms of our interpretation of what it is doing. (We’ll return to this in §17.8.1.)

17.6.7 Linking the Tape to the External World

If a Turing machine’s tape is really just its internal memory, then, even though Turing
machines compute mathematical functions; they “contemplate their navel”, so to speak,
and don’t tell us what their results are. If we want to use a Turing machine to find out
the result of a computation, we need to look at its internal storage. Conveniently, it’s
visible on the machine’s tape. But it’s in code. So we have to decode it into something
that we can understand and use. And we have to do that algorithmically. Our examples
above suggest that this can be done in many ways and that it can go wrong.

Does that decoding belong to A? Or does it belong to G? Let’s now turn to this
question.

17.7 Are Programs Intentional?

We have discussed two ways to view a computation: The first way is purely syntacti-
cally (or narrowly, internally, or locally), as expressed in a computer program of the
form “Do A”, where A is an algorithm expressed in the language of Turing machines or
the language of recursive functions (etc.). The second way is semantically (or widely,
externally, or globally), as expressed in a computer program of the form “In order to
accomplish goal G, do A” (which we’ll shorten to “To G, do A”). That preface (“To G”)
makes explicit a goal G of the algorithm A, thus indicating that the program is intended
to have a purpose: It is viewed as “teleological” or “intentional”. Let’s now consider
the question of whether the proper way to characterize a program must include the
intentional or teleological preface “To G”.

654 CHAPTER 17. HOW DO PROGRAMS RELATE TO THE WORLD?

17.7.1 What Is an Algorithm?
As we saw in Chapter 7, the history of computation theory is, in part, an attempt to
make the informal notion of an algorithm mathematically precise. In §7.5.3.4, we
summarized this as follows:

An algorithm (for executor E) [to accomplish goal G] is:

1. a procedure A, that is, a finite set (or sequence) of statements (or
rules, or instructions), such that each statement S is:

(a) composed of a finite number of symbols (better: uninterpreted
marks) from a finite alphabet

(b) and unambiguous (for E—that is,
i. E “knows how” to do S,

ii. E can do S,
iii. S can be done in a finite amount of time
iv. and, after doing S, E “knows” what to do next—),

2. A takes a finite amount of time (that is, it halts),

3. [and A ends with G accomplished].

I have put some of these clauses in (parentheses) and [brackets] for a reason.

17.7.2 Do Algorithms Need a Purpose?
Algorithms, in the popular imagination, are algorithms for producing a particular
result. . . . [E]volution can be an algorithm, and evolution can have produced us
by an algorithmic process, without its being true that evolution is an algorithm for
producing us. —Daniel C. Dennett (1995, p. 308, my boldface, original italics)7

The notion of an algorithm is most easily understood with respect to an executor: a
human or a machine that (dynamically) executes the (static) instructions. We might
be able to rephrase the above characterization of an algorithm without reference to E,
albeit awkwardly, hence the parentheses around the E-clauses.

Exercise for the Reader:
Try to eliminate the executor from this (or any other) characterization of an algorithm.
Can it be eliminated? If not, why not?

But the present issue is whether the bracketed G-clauses are essential. As we saw
in §§12.4.5 and 16.2, one executor’s algorithm might be another’s ungrammatical input
(Suber, 1988; Buechner, 2011, 2018). Recall from the digression in §16.2 that a bad
puttanesca might still be a delicious pasta dish. Does the chef’s intention (or the diner’s
expectation) matter more than the actual food preparation? Is G more important than A?

Both Peter Suber and Robin K. Hill argue in favor of the importance of G:
7For hints as to what evolution’s algorithms look like, see Dawkins 2016.

17.7. ARE PROGRAMS INTENTIONAL? 655

To distinguish crashes and bad executions from good executions, it appears
that we must introduce the element of the programmer’s purpose. Software ex-
ecutes the programmer’s will, while semantically flawed, random, and crashing
code do not. This suggests that to understand software we must understand in-
tentions, purposes, goals, or will, which enlarges the problem far more than we
originally anticipated.

Perhaps we must live with this enlargement. We should not be surprised if hu-
man compositions that are meant to make machines do useful work should require
us to posit and understand human purposiveness. After all, to distinguish literature
from noise requires a similar undertaking. (Suber, 1988, p. 97)

And Hill (2016b, §5) says that a “prospective user” needs “some understanding of the
task in question” over and above the mere instructions. Algorithms, according to Hill,
must be expressed in the form “To G, do A”, not merely “Do A”.

Question for the Reader:
Is the executor of an algorithm the same as a user? Typically, a (human) uses a computer, but it
is the computer that executes the algorithm. In what follows, ask yourself if it is the user or the
executor who “needs some understanding of the task” (as Hill says).

17.7.3 Marr’s Analysis of an Algorithm’s Purpose

Suber and Hill are not alone in this. The cognitive scientist and computational vision
researcher David Marr also held that (at least some) computations were purposeful. He
analyzed information processing into three levels (Marr, 1982):

• computational (what a system does),

• algorithmic (how it does it), and

• physical (how it is implemented).

In our terminology, these levels would be called ‘functional’, ‘computational’, and ‘im-
plementational’, respectively: Certainly, when one is doing mathematical computation
(the kind that Turing was concerned with), one begins with a mathematical function
(that is, a certain set of ordered pairs), asks for an algorithm to compute it, and then
seeks an implementation of the algorithm, usually in a physical system such as a com-
puter or the brain.

In non-mathematical fields (for example, cognition in general, and—for Marr—
vision in particular), the set of ordered pairs of input-output behavior is expressed in
goal-oriented, problem-specific language, and the algorithmic level will also be ex-
pressed in that language. (The implementation level might be the brain or a computer.)
A recipe for hollandaise sauce developed in this way would have to say more than just
something along the lines of “mix these ingredients in this way”; it would have to take
the external environment into account. (We will return to this in §17.7.6, and we will
see how the external world can be taken into account in §17.8.2.4.)

656 CHAPTER 17. HOW DO PROGRAMS RELATE TO THE WORLD?

Marr was trying to counter the then-prevailing methodology of trying to describe
what neurons were doing (a “narrow”, internal, implementation-level description) with-
out having a “wide”, external, “computational”-level purpose (a “function” in the tele-
ological, not mathematical, sense). Such a teleological description would tell us “why”
neurons behave as they do:

As one reflected on these sorts of issues in the early 1970s, it gradually became
clear that something important was missing that was not present in either of the
disciplines of neurophysiology or psychophysics. The key observation is that neu-
rophysiology and psychophysics have as their business to describe the behavior of
cells or of subjects but not to explain such behavior. What are the visual areas of
the cerebral cortex actually doing? What are the problems in doing it that need
explaining, and at what level of description should such explanations be sought?
(Marr, 1982, p. 15; for discussion of this point, see Bickle 2015)

On this view, Marr’s “computational” level is teleological. In the formulation “To G,
do A”, the “To G” preface expresses the teleological aspect of Marr’s “computational”
level; the “do A” seems to express Marr’s “algorithm” level.

The philosopher Frances Egan (Egan 1991, pp. 196–197; Egan 1995, p. 185) takes
the mathematical functional view just outlined, focusing (in our terminology) on A, not
G. On that view, Marr’s “computational” level is not intentional (Egan, 1991, p. 201).
Barton L. Anderson (2015, §1), on the other hand, says that Marr’s “computational”
level

concern[s] the presumed goal or purpose of a mapping,8 that is, the specification
of the ‘task’ that a particular computation ‘solved.’ Algorithmic level questions
involve specifying how this mapping was achieved computationally, that is, the
formal procedure that transforms an input representation into an output represen-
tation.

Shagrir and Bechtel (2015, §2.2) suggest that Marr’s “computational” level conflates
two separate, albeit related, questions: not only “why”, but also “what”. On this view,
Egan is focusing on the “what”, whereas Anderson is focusing on the “why”. (We will
return to Marr in §§17.7.6 and 17.9.)

17.7.4 Are Purposes Eliminable?
Certainly, knowing what the goal of an algorithm is makes it easier for cognitive-agent
executors (who are also users?) to follow the algorithm and to have a fuller under-
standing of what they are doing. But is such understanding necessary? Consider the
following two (real-life!) personal stories:

Story 1
I vividly remember the first semester that I taught a “Great Ideas in Computer
Science” course aimed at computer-phobic students. We were going to teach the
students how to use a spreadsheet program, something that, at the time, I had

8Presumably, a mathematical function.

17.7. ARE PROGRAMS INTENTIONAL? 657

never used! So, with respect to this, I was as naive as any of my students. My
TA, who had used spreadsheets before, gave me something like the following
instructions:

enter a number in cell 1;
enter a number in cell 2;
enter ‘=〈click on cell 1〉〈click on cell 2〉’ in cell 3

Now, some current implementations of Excel require a plus-sign between the
two clicks in the third instruction. But the version I was using at the time did
not, making the operation that much more mysterious! Indeed, I had no idea
what I was doing. I was blindly following her instructions and had no idea that
I was adding two integers. Once she told me that that was what I was doing, my
initial reaction was “Why didn’t you tell me that before we began?”.

When I entered those data into the spreadsheet, was I adding two numbers?
I didn’t understand that I was adding when my TA told me to enter certain data
into the cells of the spreadsheet. It was only when she told me that that was how
I could add two numbers with a spreadsheet that I understood. Now, (I like to
think that) I am a cognitive agent who can come to understand that entering data
into a spreadsheet can be a way of adding. But a Turing machine that adds or
a Mac running Excel is not such a cognitive agent. It does not understand what
addition is or that that is what it is doing. And it does not have to.

Further Reading:
However, an AI program running on a robot that passes the Turing test would be a very different
matter. Such an AI program could, would, and should (come to) understand what it was doing.
We’ll explore this further in Chapter 19. See also Rapaport 1988a, 2012b, and Albert Goldfain’s
work on how to get AI computer systems to understand mathematics in addition to merely doing
it (Goldfain, 2006, 2008).

Story 2 Years later, I had yet another experience along these lines:

My wife recently opened a restaurant and asked me to handle the paperwork
and banking that needs to be done in the morning before opening (based on
the previous day’s activities). She wrote out a detailed set of instructions, and
one morning I went in with her to see if I could follow them, with her looking
over my shoulder. As might be expected, there were gaps in her instructions,
so even though they were detailed, they needed even more detail. Part of the
reason for this was that she knew what had to be done, how to do it, and why
it had to be done, but I didn’t. This actually disturbed me, because I tend to
think that algorithms should really be just “Do A,” not ‘To G, do A.” Yet I
felt that I needed to understand G in order to figure out how to do A. But I
think the reason for that was simply that she hadn’t given me an algorithm,
but a sketch of one, and, in order for me to fill in the gaps, knowing why I
was doing A would help me fill in those gaps. But I firmly believe that if it
made practical sense to fill in all those gaps (as it would if we were writing

658 CHAPTER 17. HOW DO PROGRAMS RELATE TO THE WORLD?

a computer program), then I wouldn’t have to ask why I was doing it. No
“intelligence” should be needed for this task if the instructions were a full-
fledged algorithm. If a procedure (a sequence of instructions, including vague
ones like recipes) is not an algorithm (a procedure that is fully specified down
to the last detail), then it can require “intelligence” to carry it out (to be able
to fill in the gaps, based, perhaps on knowing why things are being done).
If intelligence is not available (i.e., if the executor lacks relevant knowledge
about the goal of the procedure), then the procedure had better be a full-
fledged algorithm. There is a difference between a human trying to follow
instructions and a machine that is designed to execute an algorithm. The
machine cannot ask why, so its algorithm has to be completely detailed. But
a computer (or a robot, because one of the tasks is going to the bank and
talking to a teller!) that could really do the job would almost certainly be
considered to be “intelligent.”
(Rapaport, quoted in Hill and Rapaport 2018, p. 35)

Despite the fact that understanding what task G that an algorithm A is accomplish-
ing makes it easier to understand A itself, the important point is that “blind” following
of A is all that is necessary in order to accomplish G. The fact that computation can be
“blind” in this way is what Dennett has called

Turing’s . . . strange inversion of reasoning. The Pre-Turing world was one in
which computers were people, who had to understand mathematics in order to do
their jobs. Turing realised that this was just not necessary: you could take the tasks
they performed and squeeze out the last tiny smidgens of understanding, leaving
nothing but brute, mechanical actions. IN ORDER TO BE A PERFECT AND
BEAUTIFUL COMPUTING MACHINE IT IS NOT REQUISITE TO KNOW
WHAT ARITHMETIC IS. (Dennett, 2013b, p. 570, capitalization in original)9

The point is that a Turing machine need not “know” that it is adding. But agents who
do understand adding can use that machine to add.

Or can they? In order to do so, the machine’s inputs and outputs have to be
interpreted—understood—by the user as representing the numbers to be added. And
that seems to require an appropriate relationship with the external world. It seems to
require a “user manual” that tells the user what the algorithm does in the way that
Hill prescribes, not in the way that my TA explained how to use a spreadsheet. And
such a “user manual”—an intention or a purpose for the algorithm—in turn requires an
interpretation of the machine’s inputs and outputs.

But before pursuing this line of thought, let’s take a few more minutes to consider
“Turing’s inversion”, the idea that a Turing machine can be doing something very par-
ticular by executing an algorithm without any specification of what that algorithm is
“doing” in terms of the external world. (We’ll return to “Turing’s strange inversion” in
Chapter 19.) Algorithms, on this view, seem not to have to be intentional or teleologi-
cal, yet they remain algorithms.

Brian Hayes (2004) offers two versions of an algorithm that ants execute:

9See also the more easily accessible Dennett 2009a, p. 10061.

17.7. ARE PROGRAMS INTENTIONAL? 659

non-teleological version:

1. “If you see a dead ant10 and you’re not already carrying one, pick it up;

2. “if you see a dead ant, and you are carrying one, put yours down near the
other.”

teleological version:
To create an ant graveyard, “gather all . . . [your] dead in one place.11

As Hayes notes, the teleological version requires planning and organization skills far
beyond those that an ant might have, not to mention conceptual understanding that we
might very well be unwilling to ascribe to ants. The point, however, is that the ant needs
none of that. The teleological description helps us describe and perhaps understand the
ant’s behavior; it doesn’t help the ant.

The same is true in my spreadsheet example. Knowing that I am adding helps me
understand what I am doing when I fill the spreadsheet cells with certain values or
formulas. But the spreadsheet does its thing without needing that knowledge.

These examples suggest that the user-manual (or external-world) interpretation is
not necessary. Algorithms can be teleological, and their being so can help users and
cognitive agents who execute them to more fully understand what they are doing. But
they don’t have to be teleological.

17.7.5 Can Algorithms Have More than One Purpose?
In addition to being teleological, algorithms seem to be able to be multiply teleological,
as in the chess-war example and its kin. That is, there can be algorithms of the form:

To G1, do A

and algorithms of the form:

To G2, do A

where G1 6= G2, and where neither G1 nor G2 subsumes the other, although the A is the
same. In the cartoon of Figure 17.6, depending on the semantic interpretation of the
syntactic finger movements, we have two Gs with one A: either “In order to say ‘yes’
ten times, raise 10 fingers” or “In order to say ‘no’ five times, raise 10 fingers”.

In other words, what if doing A can accomplish two distinct goals? Do we have two
algorithms in that case? (One that accomplishes G1, and another that accomplishes G2,
counting teleologically, or “widely”.) Or just one? (A single algorithm that does A,
counting more narrowly.)

Were de Bruijn and the chemists talking about the same thing? On the teleolog-
ical (or wide) view, they weren’t; on the narrow view, they were. Multiple teleolo-
gies are multiple implementations of an algorithm narrowly construed: ‘Do A’ can

10Note that testing this condition does not require the ant to have a concept of death; it is sufficient for the
ant to sense—either visibly or perhaps chemically—what we would describe as a dead ant.

11This is a “fully” teleological version, with a high-level, teleologically formulated execution statement.
A “partially” teleological version would simply prefix “To create an ant graveyard” to the non-teleological
version.

660 CHAPTER 17. HOW DO PROGRAMS RELATE TO THE WORLD?

be seen as a way to algorithmically implement the higher-level “function” (mathemat-
ical or teleological) of accomplishing G1 as well as accomplishing G2. For exam-
ple, executing a particular subroutine in a given program might result in checkmate
or winning a battle. Viewing multiple teleologies as multiple implementations can
also account for hollandaise-sauce failures on the Moon, which could be the result of
an “implementation-level detail” (§14.2.1) that is irrelevant to the abstract, underlying
computation.

17.7.6 What If G and A Come Apart?
What if “successfully” executing A fails to accomplish goal G? This could happen for
external, environmental reasons. Does this mean that G might not be a computable task
even though A is? We have seen several examples of this kind of failure:

• The blocks-world computer’s model of the world was an incomplete, partial
model; it assumed that its actions were always successful. This program lacked
feedback from the external world. There was nothing wrong with the environ-
ment; rather, there was incomplete information about the environment.

• In the case of Cleland’s hollandaise-sauce recipe, the environment was at fault.
Her recipe (A) was executed flawlessly on the Moon, but failed to produce hol-
landaise sauce. Her diagnosis was that making hollandaise sauce (G) is not com-
putable. Yet A was!

• Rescorla’s GCD computers do “different things” by doing the “same thing”. The
difference is not in how they are doing what they are doing, but in the interpreta-
tions that we users of the machines give to their inputs and outputs. Would Hill
(2016b) say that the procedure encoded in that Scheme program was therefore
not an algorithm?

Question for the Reader:
How does this relate to the trial-and-error machines that we discussed in §11.4.5? After
all, they also differ from Turing machines only in terms of our interpretations of what
they are doing, not in how they do it.

Further Reading:
Rescorla 2015, §2.2, considers the opposite case, in which G is computable even when
A is not: “There exist ‘deviant’ notations relative to which intuitively non-computable
functions become Turing-computable”.

What is more central to the notion of “algorithm”: all of parts 1–3 in our informal
characterization in §17.7.1 (“To G, do A”), or just parts 1–2, that is, without the brack-
eted goals (just “Do A”)? Is the algorithm the narrow, non-teleological, “purposeless”
(or non-purposed) entity? Or is the algorithm the wide, intentional, teleological (that
is, goal-directed) entity?

On the narrow view, the war and chess algorithms are just one algorithm, the
hollandaise-sauce recipe does work on the Moon (its computer program might be log-
ically verifiable even if it fails to make hollandaise sauce), and Rescorla’s “two” GCD

17.7. ARE PROGRAMS INTENTIONAL? 661

programs are also just one algorithm that does its thing correctly (but only we base-10
folks can use it to compute GCDs).

On the wide view, the war and chess programs are two, distinct algorithms, the
hollandaise-sauce recipe fails on the Moon (despite the fact that the program might
have been verified—shades of the Fetzer controversy that we discussed in §16.5.1!),
and the Scheme program when fed base-13 numerals (as Rescorla describes it) is doing
something wrong (in particular, its “remainder” subroutine is incorrect). It does the
right thing on the interpretation discussed in §17.6.6.

These examples suggest that the wide, goal-directed nature of algorithms that are
teleologically conceived is due to the interpretation of their input and output. As Sha-
grir and Bechtel (2015, §2.3) put it (echoing Sloman’s distinction from §17.6.1), Marr’s
“algorithmic level . . . is directed to the inner working of the mechanism The com-
putational level looks outside, to identifying the function computed and relating it to
the environment in which the mechanism operates”.

We can combine these insights: Hill’s formulation of the teleological or intentional
nature of algorithms had two parts, a teleological “preface” specifying the task to be
accomplished (“To G”), and a statement of the algorithm that accomplishes it (“Do A”).
One way to clarify the nature of Marr’s “computational” level is to split it into its “why”
and its “what” parts. The “why” part is the task to be accomplished. The “what” part
can be expressed “computationally” (in our terminology, “functionally”) as a mathe-
matical function (possibly, but not necessarily, expressed in “why” terminology), but it
can also be expressed algorithmically. Finally, the algorithm can be implemented. So,
we can distinguish the following four Marr-like levels of analysis:

“Computational”-What Level: Do f (i) = o

“Computational”-Why Level: To G, do f (i) = o

Algorithmic Level: To G, do A f (i) = o

Implementation Level: To G, do IA f (i) = o

where:

• f is an input-output function that happens to accomplish G;

• G is the task to be accomplished or explained, expressed in the language of the
external world, so to speak;

• A f is an algorithm that implements f (that is, it is an algorithm that has the
same input-output behavior as f), expressed either in the same language as G or
perhaps expressed in purely mathematical language; and

• I is an implementation (perhaps in the brain or on some computer) of A f .

Shagrir and Bechtel (2015, §4) say that “The what aspect [of the “computational”
level] provides a description of the mathematical function that is being computed.
The why aspect employs the contextual constraints in order to show how this func-
tion matches with the environment.” These nicely describe the two clauses of what I
call the “computational-why” level above.

662 CHAPTER 17. HOW DO PROGRAMS RELATE TO THE WORLD?

Further Reading:
Turner 2019 is a useful discussion of the intentionality or purposefulness of computer programs
in the context of program verification.

17.8 Do We Compute with Symbols
or with Their Meanings?

Goal G is expressed in intentional language. We now need to focus on the language
used to express the algorithm A f that implements the function f that—in turn—underlies
(or is supposed to accomplish) G. Can it be intentional? Must it be intentional, too?
In other words, can (or must) it be expressed in the language of G? For example, can
(must) it talk about chess as opposed to war, or chess as opposed to shogi or Go?

17.8.1 What Is This Turing Machine Doing?
What do Turing machines compute with? For that matter, what do we compute with?
Rescorla (2007, p. 253) reminds us that

A Turing machine manipulates syntactic entities: strings consisting of strokes and
blanks. . . . Our main interest is not string-theoretic functions but number-theoretic
functions. We want to investigate computable functions from the natural num-
bers to the natural numbers. To do so, we must correlate strings of strokes with
numbers.

In this regard, Turing machines differ interestingly from their logical equivalents in the
Computability Thesis: The lambda calculus and recursive-function theory deal with
functions and numbers, not symbols for them.

Questions for the Reader:
Is it really the case that the lambda calculus and recursive-function theory (unlike Turing ma-
chines) deal with functions and not just with symbols for functions? Hilbert viewed all of math-
ematics as the “manipulation of finite strings of symbols devoid of intuitive meaning[,] which
stimulated the development of mechanical processes to accomplish this” (Soare, 1999, §2.4,
p. 5). On this view, wouldn’t all of the formalisms of computability theory be syntactic? Can’t
recursive-function theory be understood purely syntactically? And the lambda calculus “can be
presented solely as a formal system with syntactic conversion rules. . . . [A]ll we are doing is
manipulating symbols” (J. Stoy, quoted in Turner 2018, p. 92).

But for Turing machines and their physical implementations (that is, ordinary com-
puters), we see that it is necessary to interpret the strokes. Here is an example due to
the philosopher Christopher Peacocke (1999): Suppose that we have a Turing machine
that outputs a copy of the input appended to itself (thus doubling the number of input
strokes): input ‘|’, output ‘||’; input ‘||’, output ‘||||’, and so on. What is this Turing
machine doing? Isn’t “outputting a copy of the input appended to itself” the most neu-
tral description? After all, that describes exactly what the Turing machine is doing,

17.8. DO WE COMPUTE WITH SYMBOLS OR WITH THEIR MEANINGS? 663

leaving the interpretation (for example, doubling the input) up to the observer. If we
had come across that Turing machine in the middle of the desert and were trying to fig-
ure out what it does, something like that would be the most reasonable answer.12 Why
a user might want a copy-appending Turing machine is a different matter that probably
would require an interpretation of the strokes. But that goes far beyond what the Turing
machine is doing.

But Peacocke objects:

The normal interpretation of a Turing machine assigns the number 0 to a single
stroke ‘|’, the number 1 to ‘||’, the number 2 to ‘|||’, and so on. But there will
equally be an interpretation which assigns 0 to a single stroke ‘|’, and then assigns
the number 2 to ‘||’, the number 4 to ‘|||’, and generally assigns 2n to any symbol
to which the previous interpretation assigns n. Under the second interpretation,
the Turing machine will still be computing a function. . . . What numerical value
is computed, and equally which function is computed, by a given machine, is not
determined by the purely formal characterization of the machine. There is no such
thing as purely formal determination of a mathematical function. . . . [W]e can say
that a Turing machine is really computing one function rather than another only
when it is suitably embedded in a wider system. (Peacocke, 1999, pp. 198–199).

Recall Rescorla’s three interpretations of the strokes (§17.6.6). Do we really have
one machine that does three different things? What it does (in one sense of that phrase)
depends on how its input and output are interpreted, that is, on the environment in
which it is working. In different environments, it does different things; at least, that’s
what Cleland said about the hollandaise-sauce recipe. Rescorla (2015, §2.1) makes a
related observation: “The same Turing machine T computes different non-linguistic
functions, depending upon the semantic interpretation of strings manipulated by the
Turing machine”, thus rendering all of computability theory “intensional”, that is, de-
pendent upon the meanings of the symbols and not just on the symbols themselves (for
example, their shapes). Using our terminology, he thus comes down on the side of
“To G, do A” rather than on “Do A”.

Piccinini (2006a, §2, my italics) says much the same thing; however, he draws a
different conclusion:

In computability theory, symbols are typically marks on paper individuated by their
geometrical shape (as opposed to their semantic properties). Symbols and strings
of symbols may or may not be assigned an interpretation; if they are interpreted, the
same string may be interpreted differently In these computational descriptions,
the identity of the computing mechanism does not hinge on how the strings are
interpreted.

By ‘individuated’, Piccinini is talking about how one decides whether what appear to
be two programs (say, one for a war battle and one for a chess match) are, in fact, two
distinct programs or really just one program (perhaps being described differently). He
suggests that it is not how the inputs and outputs are interpreted (their semantics) that
matters, but what the inputs and outputs look like (their syntax). In an earlier paper,
Rescorla agreed:

12Recall our previous excursions into the desert in §§3.9.5, 6.5.1, 9.5.3, and 14.4.3.

664 CHAPTER 17. HOW DO PROGRAMS RELATE TO THE WORLD?

Since we can arbitrarily vary inherited meanings relative to syntactic machina-
tions, inherited meanings do not make a difference to those machinations. They
are imposed upon an underlying causal structure. (Rescorla, 2014a, p. 181)

So, for Piccinini and Rescorla 2014a, the war and chess programs are the same. But
for Cleland and Rescorla 2015, they would be different. For Piccinini, the hollandaise-
sauce program running on the Moon works just as well as the one running on Earth;
for Cleland, only the latter does what it is supposed to do.

So, the question “Which Turing machine is this?” has only one answer, which is
given in terms of its syntax: “determined by [its] instructions, not by [its] interpreta-
tions” (Piccinini, 2006a, §2). But the question “What does this Turing machine do?”
has n+ 1 answers: one syntactic answer and n semantic answers (one for each of n
different semantic interpretations).

If I want to know which Turing machine this is, I should look at the internal mech-
anism (A) for the answer. This is, roughly, Piccinini’s (2006a) recommendation. But if
I’m interested in buying a chess program (as opposed to a war simulator, for example),
then I need to look at the external (or inherited, or wide) semantics. This would be
Cleland’s (1993) recommendation. In “To G, do A”, the “do A” portion expresses Den-
nett’s (1971) “design” stance, and the “to G” portion expresses Dennett’s “intentional”
stance (Dennett 2013a, pp. 81–82, 84; recall our §12.4.4.1.1, above).

We have come across this situation before. In §12.4.4.1.2.2, we asked whether a
universal Turing machine running an addition program was adding or “just” fetching
and executing the instructions of an addition program stored on its tape A similar ques-
tion can be asked about humans: How would you describe my behavior when I use a
calculator to add two numbers? Am I (merely) pushing certain buttons in a certain se-
quence? This would be a “syntactic”, narrow, internal answer: I am “doing A” (where
A = pushing buttons). Or am I adding two numbers? This would be a teleological,
“semantic”, wide, external answer: I am accomplishing G (where G = adding). Or am
I adding two numbers by pushing those buttons in that sequence? This would be a tele-
ological (etc.) answer, together with a syntactic description of how I am doing it: I am
accomplishing G, by doing A. This is the same situation that we saw in the spreadsheet
example. (We will see it again in §17.8.2.2).

In some sense, all of these answers are correct, merely(?) focusing on different as-
pects of the situation. But a further question is: Why (or how) does a Turing machine’s
printing and moving thus and so, or my pushing certain calculator buttons thus and so,
result in adding two numbers? And the answer to that seems to require a semantic in-
terpretation. This is the kind of question that Marr’s “computational” level is supposed
to respond to.

Here is another nice example (Piccinini, 2008, p. 39):

a loom programmed to weave a certain pattern will weave that pattern regardless of
what kinds of thread it is weaving. The properties of the threads make no difference
to the pattern being woven. In other words, the weaving process is insensitive to
the properties of the input.

As Piccinini points out, the output might have different colors depending on the colors
of the input threads, but the pattern will remain the same. The pattern is internal to the

17.8. DO WE COMPUTE WITH SYMBOLS OR WITH THEIR MEANINGS? 665

Figure 17.7: Two flags? Or one flag pattern?

program; the colors are external, to use other terminology. (Here, A is the pattern; G
is the colors.) If you want to weave an American flag, you had better use red, white,
and blue threads in the appropriate ways. But even if you use cyan, black, and yellow
threads, you will weave an American-flag pattern (see Figure 17.7). Which is more
important: the pattern or the colors? That’s probably not the right question. Rather,
if you want a certain pattern, this program will give it to you; if you want a certain
pattern with certain colors, then you need to have the right inputs—you need to use the
program in the right environment.

Further Reading:
This distinction also appears in the philosophy of mathematics concerning “structuralism” (see
§§9.5.6 and 14.2.2): Is the pattern, or structure, of the natural numbers all that matters? Or does it
also matter what the natural numbers in the pattern “really” are? For discussion, see Benacerraf
1965 and Horsten 2015, §4.

Debates in the philosophy of mathematics concerning “pure” or “abstract” math vs. “applied”
math (Marshall, 2019) are also relevant to the “abstract” Do A vs. the more “applied” To G,
do A. As you will see in the next section, it may also be related to the distinction between “pure”
syntax vs. “applied” semantic interpretation.

17.8.2 Syntactic Semantics
17.8.2.1 Syntax vs. Semantics

Recall the concepts of syntax and semantics as we discussed them in Chapter 14. Syn-
tax is concerned with the “intra-system” properties and relations within the “syntac-
tic” domain. Semantics is concerned with “extra-system” relations that go beyond the
syntactic domain to the “semantic” domain. That is, semantics is concerned with the
“inter-system” relations between the syntactic and the semantic domains.13

So, one way to respond to the issues raised in §17.8.1 is by using an external se-
mantic interpretation: Begin with specific Turing-machine operations or button presses,
considered as being located in a syntactic system of internal Turing-machine operations
or button pressings. Numbers and arithmetical operations on them are located in a dis-
tinct, external realm of mathematical entities. Then we can associate the former with
the latter. In the formulation “To G, do A”, A can be identified syntactically (at the

13‘Intra-’ means “inside”, ‘extra-’ means “outside”, and ‘inter- means “between”. (In “intermural” sports,
school A plays against school B. In “intramural” sports, a single gym class at school A might be divided into
two teams that play against each other.)

666 CHAPTER 17. HOW DO PROGRAMS RELATE TO THE WORLD?

“computational-what” level)—in terms, say, of Turing-machine operations or button
pressings. But G needs to be identified semantically—in terms, say, of numbers and
arithmetic operations. A can then be (re-)interpreted semantically in G’s terms (at the
“computational-why” level). These are the n+1 answers of §17.8.1.

17.8.2.2 Syntactic Semantics

But another way to respond to these issues uses an “internal” kind of semantics. Be-
cause this kind of semantics is internal to a system, it is really a kind of syntax. Let’s
call it “syntactic semantics”. Here is how Piccinini describes it:

[S]tored-program computers have the ability to respond to (non-semantically
individuated) strings of tokens stored in their memory by executing sequences of
primitive operations, which in turn generate new strings of tokens that get stored
in memory. [Note that this is basically a description of how computers work, or of
what computation is.] Different bits and pieces [that is, substrings] of these strings
of tokens have different effects on the machine. . . . An accurate description of how
tokens can be compounded into sub-strings, and sub-strings can be compounded
into strings, which does not presuppose that the strings of tokens have any content,
may be called the syntax of the system of strings manipulated by the computer. . . .
[T]he effect of a string on the computer is assigned to it [that is, to the string] as
its content. This assignment constitutes an internal semantics of a computer. An
internal semantics assigns as contents to a system its own internal components and
activities, whereas an ordinary (external) semantics assigns as contents to a system
objects and properties in the system’s environment. . . . None of this entails that
computer languages have any external semantics, that is any content . . . , although
it is compatible with their having one. . . .

[I]n order to understand computing mechanisms and how they work (as op-
posed to why they are built and how they are used), there is no need to invoke
content
(Piccinini 2004b, pp. 401–402, 404. See also Piccinini 2006a, §2.)

On this view, it is the “internal” workings of the computer that count, not the external
interpretation of its inputs and outputs (or even the external interpretation of its internal
mechanisms or symbol manipulations). This is the sense in which a war computer and
a chess computer are performing “the same computation”.

Note the parenthesized hedge in the last sentence of Piccinini’s quote: Cleland and
Rescorla might be quite right in terms of their emphasis on why or how a particular
computer or program is being used. That’s an intentional aspect of computation, but
doesn’t necessarily violate the Computability Thesis.

Similarly, Rescorla once argued “that computation is not sensitive to meaning or
semantic properties” (2012a, §1, p. 703). More precisely, he argued that if a com-
putational process were to be sensitive to semantic properties, then it would have to
violate either a condition that he called ‘Syntactic Rules’ or a condition that he called
‘Freedom’, and that such a semantically sensitive computation would have to have
an “indigenous” semantics, not an “inherited” semantics. He defined these terms as
follows:

17.8. DO WE COMPUTE WITH SYMBOLS OR WITH THEIR MEANINGS? 667

SYNTACTIC RULES: Computation is manipulation of syntactic entities accord-
ing to mechanical rules. We can specify those rules in syntactic terms, without
mentioning semantic properties such as meaning, truth, or reference.
(Rescorla, 2012a, §3, p. 707)

FREEDOM: We can offer a complete syntactic description of the system’s states
and the mechanical rules governing transitions between states (including any in-
teraction with sensory and motor transducers), while leaving semantic interpreta-
tion unconstrained. More precisely, it is metaphysically possible for the system to
satisfy our syntactic description while instantiating arbitrarily different semantic
properties. (Rescorla, 2012a, §3, p. 708)

Inherited meanings arise when the system’s semantic properties are assigned to it
by other systems, through either explicit stipulation or tacit convention. Nothing
about the system itself helps generate its own semantics. For instance, words in
a book have inherited meanings. Indigenous meanings arise when a system helps
generate its own semantics. Indigenous meanings do not arise merely from ex-
ternal assignment. They arise partly from the system’s own activity, perhaps with
ample help from other factors, such as causal, evolutionary, or design history. Vir-
tually all commentators agree that the mind has indigenous meanings.
(Rescorla, 2012a, §3, pp. 707–708)

Rescorla’s “indigenous” semantics seems clearly akin to Piccinini’s “internal” seman-
tics and to what we are calling “syntactic” semantics.

Further Reading and a Question for the Reader:
However, as we saw in §17.8.1, three years later he seems to have changed his mind! Rescorla
2015 offers the following “Gap Argument”:

A Turing machine manipulates linguistic items, but we sometimes want to study
computation over non-linguistic domain X . So there is a gap between the domain
of items manipulated by the Turing machine and our desired domain of computa-
tion X . To bridge the gap, we must interpret linguistic items manipulated by the
Turing machine as denoting items drawn from X . A Turing machine computes
over X only if linguistic items manipulated by the Turing machine represent ele-
ments of X . Thus, any complete theory of computation must cite representational
relations between linguistic items and non-linguistic items.

He then says, “Given the Gap Argument, we can study Turing computation over a non-linguistic
domain only if we furnish a semantics for strings” (Rescorla, 2015, §3). Buechner 2011, pp. 358–
362, makes a similar argument.

Is Rescorla’s gap the same as Smith’s gap?

17.8.2.3 Syntactic Semantics and Procedural Abstraction

One way to provide an internal, indigenous, or syntactic semantics is to use “proce-
dural abstraction”—named subroutines that accomplish subtasks of the overall algo-
rithm (§7.6.6): Identify subtasks (collections of statements in a program that “work

668 CHAPTER 17. HOW DO PROGRAMS RELATE TO THE WORLD?

together”), package them up, and name the package, thus giving an identity to the
subtasks.

For example, the following Logo program draws a unit square by moving forward
1 unit, then turning 90 degrees right, and doing that 4 times:

repeat 4 [forward 1 right 90]

But Logo won’t “know” what it means to draw a square unless we tell it this:

to square
repeat 4 [forward 1 right 90]
end

Note that this Logo instruction has the form: To G, do A! The “To G” has been inter-
nalized. (We’ll come back to this idea in §17.8.2.4.)

Another example is the sequence of instructions “turnleft; turnleft; turnleft”, in
Karel the Robot (Pattis et al., 1995), which can be packaged up and named “turnright”:

DEFINE-NEW-INSTRUCTION turnright AS
BEGIN
turnleft;turnleft;turnleft
END

Notice here that Karel still can’t “turn right” in an external sense (that is, 90◦ clock-
wise); it can only turn left three times (that is, 270◦ counterclockwise).

There is an important caveat: The Logo and Karel programs still have no “under-
standing” in the way that we do of what a square is or what it means to turn right.
Merely naming a subroutine does not automatically endow it with the (external) mean-
ing of that name (McDermott, 1980). The programs are now capable only of associ-
ating those newly defined symbols (‘square’, ‘turnright’) with certain procedures. The
symbols’ meanings for us are their external semantics; their meanings for the Logo or
Karel programs are their internal, indigenous, syntactic semantics due to their internal
relationships with the bodies of those programs. If the name is associated with objects
that are external to the program, then we have external (or wide, or inherited, or extra-
system) semantics. If it is associated with objects internal to the program, then we have
internal (or narrow, or syntactic, or indigenous, or intra-system) semantics. Identify-
ing subroutines is syntactic; naming them leads to semantics: If the name is externally
meaningful to a user, because the user can associate the name with other external con-
cepts, then we have semantics in the ordinary sense (subject to McDermott’s caveat). If
it is internally meaningful to the computer, in the sense that the computer can associate
the name with other internal names, then we have internal, syntactic semantics.

The debate over whether computation concerns the internal, syntactic manipula-
tion of symbols or the external, semantic interpretation of them is at the heart of both
Rescorla’s gap (see the Further Reading in §17.8.2.2) and Smith’s gap (from §17.3.2.3)
. This is made explicitly clear in the following passages from Michael Mahoney’s
history of computing:

Recall what computers do. They take sequences, or strings, of symbols and
transform them into other strings. . . .

17.8. DO WE COMPUTE WITH SYMBOLS OR WITH THEIR MEANINGS? 669

The transformations themselves are strictly syntactical, or structural. They
may have a semantics in the sense that certain symbols or sequences of symbols
are transformed in certain ways, but even that semantics is syntactically defined.
Any meaning the symbols may have is acquired and expressed at the interface
between a computation and the world in which it is embedded. The symbols and
their combinations express representations of the world, which have meaning to
us, not to the computer. . . . What we can make computers do depends on how we
can represent in the symbols of computation portions of the world of interest to
us and how we can translate the resulting transformed representation into desired
actions. . . .

So putting a portion of the world into the computer means designing an opera-
tive representation of it that captures what we take to be its essential features. That
has proved . . . no easy task; on the contrary it has proved difficult, frustrating, and
in some cases disastrous. (Mahoney, 2011, p. 67, my italics)

The computer’s internal (syntactic) semantics—its “Do A” (including A’s modules
or compositional structure—is syntactic and non-teleological. Its external semantics,
“which have meaning to us”—its “To G”—is teleological, but depends on our ability
to represent our view of the world to it. As Rescorla (2007, p. 265) observed, we need
a computable theory of the semantic interpretation function, but, as Smith observes,
we don’t (can’t?) have one, for reasons akin to the Computability Thesis problem:
Equivalence between something formal (for example, a Turing-machine or a formal
model) and something non-formal (for example, an algorithm or a portion of the real
world) cannot be formally proved.

Further Reading:
For more on syntactic semantics, see Rapaport 1986f, 1988a, 1995, 2000b, 2003, 2006a, 2012b,
2017b, 2018a; and Kay 2001.

Rescorla’s “indigenous semantics” (Rescorla, 2012a, 2014a) emphasizes causal relations,
whereas syntactic semantics emphasizes the importance of conceptual-role semantics (Rapa-
port, 2002).

Egan’s “structural properties” (1995, p. 181) and Bickle’s description of “causal-mechanistic ex-
planations” in neuroscience (2015, especially §5) may also be akin to syntactic or indigenous
semantics. See also our earlier discussion of “intrinsic” properties, in §9.5.4.

17.8.2.4 Internalization

Syntactic semantics can arise in another way: External semantic relations between
the elements of two domains (a “syntactic” domain described syntactically and a “se-
mantic” domain described ontologically (that is, syntactically!—see §14.3.2.3) can be
turned into internal syntactic relations (“syntactic semantics”) by internalizing the se-
mantic domain into the syntactic domain. After all, if you take the union of the syntac-
tic and semantic domains, then all formerly external semantic relations are now internal
syntactic ones (internal to the union).

One way that this happens for cognitive agents like us is by sensory perception,
which is a form of input encoding. For animal brains, perception interprets signals

670 CHAPTER 17. HOW DO PROGRAMS RELATE TO THE WORLD?

from the external world into the biological neural network of the brain. For a computer
that accepts input from the external world, the interpretation of external or user input as
internal switch settings (or inscriptions on a Turing-machine tape) constitutes a form of
perception—a way of internalizing external information. Both are forms of what I am
calling “internalization”. As a result, the interpretation becomes part of the computer’s
or the brain’s intra-system, syntactic semantics (Rapaport, 2012b).

Stuart C. Shapiro advocates internalization in the following form, which general-
izes the Logo and Karel techniques:14

Shapiro’s Internalization Tactic
Algorithms do take the teleological form, “To G, do A”,
but G must include everything that is relevant:

• To make hollandaise sauce on Earth, do A.

• To find the GCD of 2 integers in base-10, do B.

• To play chess, do C, where C’s variables range over chess pieces and a
chess board.

• To simulate a war battle, do D, where D’s variables range over soldiers
and a battlefield.

One place to locate these teleological clauses is in the preconditions and postconditions
of the program. They can then be used in the formal verification of the program, which
proceeds by proving that, if the preconditions are satisfied, then the program will ac-
complish its goal as articulated in the postconditions. This builds the external world
(and any attendant external semantics) into the algorithm: “There is no easy way to en-
sure a blueprint stays with a building, but a specification can and should be embedded
as a comment within the code it is specifying” (Lamport, 2015, p. 41). The separability
of blueprint from building is akin to the separability of G from A; embedding a speci-
fication into code as (at least) a comment is to internalize it as a pre- or postcondition.
More importantly, such pre- and postconditions need not be “mere” comments; they
can be internalized as “assertible” statements in a program, thus becoming part of a
program’s (self-)verification process (Lamport, 2011).

The logician Nicolas Goodman (1987, p. 482) made a similar observation, noting
that the Computability Thesis relates “the informal mathematical notion of algorithm
. . . [to] the formal set-theoretic notion of a Turing machine program.” This suggests
that we can view “To G, do A” as an “informal algorithm” and “Do A” as a “formal
Turing-machine program.” Then the former is intentional in nature, because “An al-
gorithm, in the informal mathematical sense, is a specific procedure for solving a par-
ticular kind of mathematical problem” (Goodman, 1987, p. 482, my italics; see also
p. 483). But the latter is not, because “the Turing machine program does not tell you
what the program is for. . . . [Only the] documentation contains the intensional content
which is missing from the bare machine code . . . and brings the program closer to the
algorithm which it is intended to implement” (p. 483). However, Goodman did not
believe that the Computability Thesis is

14Personal communication. B.C. Smith (1985, p. 24) makes a similar point: “as well as modelling the
artifact itself, you have to model the relevant part of the world in which it will be embedded.”

17.9. CONTENT AND COMPUTATION 671

an analysis of the informal concept of algorithm. It at most provides a necessary
condition for the existence of an algorithm. That is, a problem which no Turing
machine can solve cannot be solved algorithmically. However, a Turing machine
program without additional explanation is not an algorithm, and an algorithm is
not as it stands a Turing machine program. . . . My contention is rather that not
all of the content of our informal intensional talk about algorithms is captured by
extensional talk about Turing machine programs. (Goodman, 1987, p. 487)

As I suggested in §17.7.1, we can avoid having Cleland’s hollandaise-sauce recipe
output a messy goop by limiting its execution to one location (Earth, say) without
guaranteeing that it will work elsewhere (on the Moon, say). This is no different from
a partial mathematical function that is silent about what to do with input from outside
its domain, or from an algorithm for adding two integers that specifies no particular be-
havior for non-numerical input. (“Crashing” is a well-defined behavior if the program
is silent about illegal input. More “well-behaved” behavior requires some kind of error
handling.) A second way is to use the “Denver cake mix” strategy: I have been told that
packages of cake mix that are sold in mile-high Denver come with alternative direc-
tions. The recipe or algorithm should be expressed conditionally: If location = Earth,
then do A; if location = Moon, then do B (where B might be the output of an error
message).

Digression:
There is a similarity between (a) internalizing external (or inherited) semantics into internal
(or syntactic) semantics and (b) the Deduction Theorem in logic, which can be thought of as
saying that a premise of an argument can be “internalized” as the antecedent of an argument’s
conditionalized conclusion:

A ` C ⇔ ` (A → C).

That is, proving that C follows from A is the same as proving that “If A, then C” is a theorem.
In the terminology we used in Chapter 16, C is provable relative to premise A iff ‘(A → C)’ is
“absolutely” provable.

17.9 Content and Computation

17.9.1 Introduction

The quotation from Rescorla (2007) at the beginning of §17.8.1 focuses the issues very
clearly. Are we really interested in syntactic computation—computation with symbols,
such as numerals? Or are we interested in semantic computation—computation with
things that the symbols represent, such as numbers?

David Hilbert, whose investigations into the foundations of mathematics prompted
much of the early work in the theory of computation (as we surveyed in §6.6), was
a mathematical “formalist”. As such, he was interested in the former, for, after all,
we humans can only do the latter via the former (recall the Questions for the Reader
in §17.8.1, above). Is that a limitation? Perhaps, but it also gives us a freedom, be-

672 CHAPTER 17. HOW DO PROGRAMS RELATE TO THE WORLD?

cause symbols (including numerals) can represent anything, not just numbers, and so
computation can be about anything.

Rescorla (2007, pp. 272–274), on the other hand, seems to favor numbers:

One argument runs as follows: humans and computers directly manipulate sym-
bols, not numbers; thus, what humans and computers really compute are string-
theoretic functions, not number-theoretic functions. . . . The argument is fallacious.
. . . At best, the premise establishes that our computations of number-theoretic
functions are mediated by our computations of string-theoretic functions. It does
not follow that all we really . . . compute are string-theoretic functions. To con-
clude this would be analogous to the inference sometimes drawn by the British
empiricists that, since our ideas mediate our perception of the external world, all
we really perceive are our ideas.

Whether the British empiricists were on the right track or not (Rapaport, 2012b, §3.1),
Rescorla’s broader point is that, to the extent that we want to compute over numbers,
not numerals, we need a (computable) interpretation function from the numerals to the
numbers. But, as we have seen, there can be several different ones. It is those external
semantic interpretation functions that can take the algorithm (narrowly construed) in
different directions. Let’s explore this a bit further.

17.9. CONTENT AND COMPUTATION 673

Further Reading and Philosophical Digression:
On formalism in the philosophy of mathematics in general, and Hilbert’s views in particular, see
Curry 1951; Weir 2015; Zach 2019. Bertrand Russell (1917, Ch. 4, p. 75; my boldface) described
it this way:

Pure mathematics consists entirely of such assertions as that, if such and such a
proposition is true of anything, then such and such another proposition is true of
that thing. It is essential not to discuss whether the first proposition is really true,
and not to mention what the anything is, of which it is supposed to be true. . . .
If our hypothesis is about anything, and not about some one or more particular
things, then our deductions constitute mathematics. Thus mathematics may be
defined as the subject in which we never know what we are talking about, nor
whether what we are saying is true.

The passage humorously concludes: “People who have been puzzled by the beginnings of math-
ematics will, I hope, find comfort in this definition, and will probably agree that it is accurate.”

And consider this passage from Quine 1987, p. 67:

A computer requires blow-by-blow instruction, strictly in terms of what to do to
strings of marks or digits, and eked out by no arm-waving or appeals to common
sense and imagination; and such, precisely, is formalism.

The narrow view of Turing machines as computing with strokes (symbols, numerals instead of
numbers) vs. the wide view of Turing machines as being embedded in the external world and
being context-dependent is reminiscent of (if not identical to) the issues in psychology and the
philosophy of language concerning individualism (or methodological solipsism) vs. “external-
ism” (see §11.4.3.4.2): Are psychology and meaning (and cognition, more broadly) narrow,
needing to deal only with what goes on in one’s head? Or are they wide, needing to take the ex-
ternal, embedding world into account? Analogously, we can ask whether computation is narrow,
needing to deal only with what goes on from a Turing machine’s point of view (so to speak). Or
is it wide, needing to take the external, embedding world into account? (We’ll return to this in
§19.6.3.2.)

The philosopher and logician Gottlob Frege (1892) argued that linguistic expressions had two
different kinds of “meanings”: a sense and a referent. The sense of a linguistic expression was a
“way” in which it picked out a referent in the world. Does a sense determine a referent? Hilary
Putnam (1975) argued that (very roughly) the sense of the word ‘water’ might pick out H2O on
Earth but XYZ on “Twin Earth”. Putnam also argued that the referent was more significant than
the sense.

Arguably, Fregean senses don’t determine reference (because of the possibility of multiple
realization, or “slippage” between sense and reference (Putnam, 1975)). But senses do tell you
how to find a referent: Perhaps they are algorithms. In that sense, the referent might be like the
purpose or task of the algorithm. But there is always the possibility of “slippage”: An algorithm
can be intended for one purpose (say, playing chess), but be used for another (say, a war battle)
by changing the interpretation of the inputs and outputs. Besides Putnam’s essay, see Burge
1979, 1986; Fodor 1980; Egan 1991, 1995.

674 CHAPTER 17. HOW DO PROGRAMS RELATE TO THE WORLD?

17.9.2 Symbols: Marks vs. Meanings
In §14.3.2.1, we observed that some writers use ‘symbol’ to mean an uninterpreted,
purely syntactic “mark” together with its (external) semantic interpretation or meaning.
A symbol is at least a mark; its interpretation is another matter. Symbols are, perhaps,
best thought of as ordered pairs of (syntactic) marks (identified by their shape) and (se-
mantic) interpretations. Sometimes, the “meaning” of a symbol is called its “content”.
So, is computation (only?) about marks? Or is it (only? also?) about content?

The term ‘content’ sounds as if it refers to something contained within something
else—something internal—but often it is used to indicate the external meaning or ref-
erence of a term. But if we think of the variables of a computer program as “boxes”
that can contain the values of the variables, then we can combine both metaphors for
“content”: The content of a variable can be thought of as an “external” entity that is
stored “inside” the “box”.

Several writers say that content is necessary; something is not a computation unless
it is about something: There is “no computation without representation” (Fodor, 1975,
p. 34). Is a goal, or content, or interpretation a necessary part of a computation?

From a syntactic (internal) point of view, a Turing machine that outputs sequences
of strokes does just that: It outputs sequences of strokes, that is, “marks”. From a
semantic (external) point of view, those strokes are symbols, that is, marks plus con-
tent. Whether the marks should, or can, be interpreted as the integer n or the integer
2n is a separate matter. This is, of course, what underlies the notion of “types” in
programming languages. The question we are now considering is whether the type of
a programming-language variable is a syntactic issue or a semantic one; note that it
might be a case of “syntactic semantics”.

This puzzle is not unique to computation. The mathematician Edward Frenkel
(2013) considers an equation like y2 + y = x3 + x2, and asks

But what kind of numbers do we want x and y to be? There are several choices:
one possibility is to say that x and y are natural numbers or integers. Another
possibility is to say rational numbers. We can also look for solutions x,y that are
real numbers, or even complex numbers . . . (p. 83).

He continues:

[W]hen we talk about solutions of such an equation, it is important to specify to
what numerical system they belong. There are many choices, and different choices
give rise to different mathematical theories. (p. 99)

Here’s a simpler example: What are the solutions to the equation x2 = 2? In the
rational numbers, there is no solution; in the positive real numbers, there is one so-
lution; in the (positive and negative) real numbers, there are two solutions. Similarly,
x2 =−1 has no solution in the real numbers, but two solutions in the complex numbers.
Deciding which “wider” number system the equation should be “embedded” in gives
different “interpretations” of it.

Syntactically, we can say that the solution to x2 = c is
√

c. Whether (or not) we
assign a rational, real, or imaginary number to the symbol ‘

√
c’ is a separate matter.

Similarly, the ratio of the circumference to the diameter of a circle is π; whether we

17.9. CONTENT AND COMPUTATION 675

understand the symbol ‘π’ as 22
7 , 3.14, 3.1415926535, or something else is a separate

matter. We can, in fact, compute more “accurately” with the syntactic mark ‘π’ than
we can with any of those finite, numeral interpretations.

Consider, again, Marr’s computational theory of vision, part of which takes the
form of an algorithm that “computes the Laplacean convolved with a Gaussian” (Egan,
2014, p. 120). For the present point, it is unimportant to know what Laplaceans, Gaus-
sians, and convolution are; what matters is that they are purely mathematical opera-
tions, having nothing necessarily to do with vision. Mark Sprevak (2010, p. 263) ar-
gues that this “mathematical computation theory does not, by itself, have the resources
to explain” vision; it needs to be augmented by a link “to the nuts and bolts of physi-
cal reality”. Frances Egan takes an opposing view: “representational content is to be
understood as a gloss on the computational characterization of a cognitive process”
(Egan, 2010, p. 253). Once again, we have a difference between “To G, do A” and “Do
A”. Here, A is the Laplacean convolved with a Gaussian, and G is the “gloss” about its
role in vision—its “content”.

On Egan’s side, one might say that the mathematical theory does have the resources
to explain vision (that’s one of the points of Wigner 1960). It may still be a puzzle how
or why it does (recall Marr’s “why”, quoted in §17.7.2), but there’s no question that it
does. (This is reminiscent of the problem of quantum mechanics as an “instrumental-
ist” scientific theory: We know that quantum mechanics has the resources to explain
physics, but it is still a puzzle how or why it does. Recall our discussion of this in §4.5,
and see Becker 2018.)

Paul Humphreys suggests a view of computational models that can account for this,
as well as the war-chess example: “one of the characteristic features of mathematical
[including computational] models is that the same model . . . can occur in, and be suc-
cessfully employed in, fields with quite different subject matters” (Humphreys, 2002,
p. S2, my italics). He goes on to say, “Let the . . . computer solve one and you au-
tomatically have a solution to the other” (p. S5), as illustrated by de Bruijn’s lattice
story.

Sprevak offers a counterargument to the focus on a Turing machine’s strokes rather
than their meanings:

. . . one cannot make sense of I/O equivalence without requiring that computation
involves representational content. . . .

Consider two computational systems that perform the same numerical calcula-
tion. Suppose that one system takes ink-marks shaped like Roman numerals (I, II,
III, IV, . . .) as input and yields ink-marks shaped like Roman numerals as output.
Suppose that the other system takes ink-marks shaped like Arabic numerals (1, 2,
3, 4, . . .) as input and yields ink-marks shaped like Arabic numerals as output.
Suppose that the two systems compute the same function, say, the addition func-
tion. What could their I/O computational equivalence consist in? Again, there may
be no physical or functional identity between their respective inputs and outputs.
The only way in which the their inputs and outputs are relevantly similar seems to
be that they represent the same thing. (Sprevak, 2010, §3.2, p. 268, col. 1)

That is, that they compute the same arithmetic function cannot be explained without a
semantic interpretation. Note that there is a difference between what a system is doing

676 CHAPTER 17. HOW DO PROGRAMS RELATE TO THE WORLD?

and whether two systems are doing the same thing: Each addition algorithm (Roman
and Arabic) is “doing its own thing”. They are only doing the “same” thing in the sense
that the two idiosyncratic things that they are each doing are equivalent. This kind of
sameness (or equivalence) depends on the semantics.

Sprevak goes on to say:

Two physical processes that are intrinsic physical duplicates may have different
representational contents associated with them, and hence different computational
identities. One physical process may calculate chess moves, while a physical du-
plicate of that process calculates stock market predictions. We seem inclined to say
that, in a sense, the two processes compute different functions, yet in another sense
they are I/O equivalent. Appeal to representational content can accommodate both
judgements. (Sprevak, 2010, §3.2, p. 268, col. 2)

But this is a different case: identical algorithm but different task.
The previous case is different algorithm but same (input-output–equivalent) task.

But syntactically they are not doing the same thing; rather, they are doing things that
are only semantically equivalent. That equivalence can be discovered, explained, and
understood only via an external semantic interpretation.

Nevertheless, depending on how the two algorithms are structured, it might be
possible to find subroutines that match up. In that case, the two algorithms would be
doing the same (identical) thing at a suitably high level of organization, even if the low-
level implementations of those subroutines are completely different. That would be a
syntactic semantic “interpretation”. For example, a Karel the Robot who turns right by
turning left three times is turning right (better: is turning in the “right” direction) just as
much as a Karl the Robot who turns right by turning left six times, or a Kal the Robot
for whom turning right is primitive (and who might have to turn right three times to
turn left).

Let’s look into the Marr example in more detail: Egan says, “As it happens, . . .
[“the device [that] computes the Laplacean convolved with the Gaussian”] takes as
input light intensity values at points in the retinal image, and calculates the rate of
change of intensity over the image” (Egan, 2010, p. 255, my italics). But, considered
solely as a

computational device, it does not matter that input values represent light intensities
and output values the rate of change of light intensity. The computational theory
characterizes the visual filter as a member of a well understood class of mathe-
matical devices that have nothing essentially to do with the transduction of light.
(Egan, 2010, p. 255; original italics)

Compare this to the chess-war example: To paraphrase Egan, the theoretically im-
portant characterization from a computational point of view is a mathematical descrip-
tion: The device computes some mathematical function that, as it happens, can be
interpreted as a chess match or else as a war battle. But, considered solely as a com-
putational device, it does not matter that input values represent (say) chess moves or
battle positions—the computational theory characterizes the device as a member of a
well understood class of mathematical devices that have nothing essentially to do with
chess or war:

17.9. CONTENT AND COMPUTATION 677

A crucial feature of . . . [the characterization that focuses solely on the mathemat-
ical function being computed and not on the purpose or external environment] is
that it is ‘environment neutral’: the task is characterized in terms that prescind from
the environment in which the mechanism is normally deployed. The mechanism
described by Marr would compute the Laplacean of a Gaussian even if it were to
appear (per mirabile) in an environment where light behaves very differently than
it does on earth, or as part of an envatted brain. . . .
(Egan, 2014, p. 122)

Egan says that the visual filter “would compute the same mathematical function in
any environment, but only in some environments would its doing so enable the organism
to see” (Egan, 2010, p. 256; my italics). Similarly, Cleland’s recipe would compute the
same (culinary?) function in any environment, but only on Earth (and not on the Moon)
would its doing so result in hollandaise sauce.

Given a computer program, how do you know what its purpose is? Of course, it
might be obvious from its name, its documentation, or even its behavior when executed.
But suppose you come across a very large program written in an unfamiliar program-
ming language with unintuitive variable and subroutine names and no documentation.
Suppose that, after considerable study of it, you are able to describe it and its behavior
syntactically. You might also be able to develop a hypothesis about a purpose for it, by
providing an interpretation for it (for example, that it is a chess program). And you, or
someone else, might also be able to provide a different, but equally good interpretation
for it (for example, that it is a war simulator). This is not unlike the situation with the
brain, a very large neural network with no documentation.

Recall the MYSTERY Scheme program from §14.4.3:

(define (MYSTERY a b)
(if (= b 0)

a
(MYSTERY b (remainder a b))))

If I found the MYSTERY program in the desert and was able to describe it syntactically
as outputting pretty patterns of numbers (whether base-10 or base-13 is irrelevant), I
could stop there. Or, if I wrote another program that took MYSTERY’s pretty patterns
and translated them into base-10, I could use it as a GCD computer. Similarly, if I
found a computer in the desert that output pretty patterns of a certain sort, I might write
another program that translated its output into a chess game. And you might write
another program that translated those very same pretty patterns into a war battle.

Given a problem to be solved, or a task to be accomplished, a computer scien-
tist asks whether it is computable. If it is, then we can write a computer program to
solve the problem or accomplish the task. Kleene’s (1995) informal characterization of
“algorithm” begins as follows:

[A] method for answering any one of a given infinite class of questions . . . is given
by a set of rules or instructions, describing a procedure that works as follows. After
the procedure has been described, [then] if we select any question from the class,
the procedure will then tell us how to perform successive steps, . . .

678 CHAPTER 17. HOW DO PROGRAMS RELATE TO THE WORLD?

Note that the procedure has a purpose: “answering any one of a given infinite class of
questions”. And the procedure depends on that class: Given a class of questions, there
is a procedure such that, given “any question from the class,” the procedure “enable[s]
us to recognize that now we have the answer before us and to read it off” (Kleene,
1995, p. 18).

Given that program, the programmer or a user knows what its original or intended
purpose was. But we, or someone else, might be able to interpret it differently and use
it for a different purpose (playing chess instead of simulating a war battle).

And we might also be able to re-implement it in a different medium. Marr wanted
to explain certain aspects of human vision. He found an algorithm (computing the
Laplacean convolved with a Gaussian, say) that helps to accomplish that. When that
algorithm is implemented in the human visual system, it enables human visual percep-
tion. If it were implemented in a computer, it might enable robot visual perception.
If it were implemented elsewhere than on Earth, it might do nothing visually (for hu-
mans or robots), but it would still compute a Laplacean convolved with a Gaussian.
What task it accomplishes (in the intentional, external, teleological sense) depends on
where that algorithm is “plugged in” to its environment. The same holds for all of the
examples from §17.5. (More generally, we might be able to take a cognitive compu-
tational program for human vision, natural-language understanding, or reasoning and
re-implement it in a robot. We’ll explore this option in Chapter 19.)

17.9.3 Shagrir’s “Master Argument”
Oron Shagrir (2018b, §3) offers the following “master argument” for “the semantic
view of computation”:

1. A physical system might simultaneously implement several different au-
tomata S1, S2, S3

2. The contents of the system’s states determine (at least partly) which of the
implemented automata, Si, is relevant for computational individuation.

Conclusion: The computational individuation of a physical system is essentially
affected by content.

Let’s take a close look at this, beginning with the conclusion. Note that what this argu-
ment attempts to show is not that abstract computation is semantic, but that physical
computation is. So, it might be the case both that abstract computation is not semantic
(or wide, etc.) and that physical computation is.

We have already seen several examples that seem to support the first premise:
Fodor’s chess-war computers, Rescorla’s GCD computers, and Shagrir’s and-vs.-or
computers. But a closer look suggests a puzzle: Which is the “physical system” that is
the implementation, and which is the “automaton” that gets implemented?

In the chess-war case, there are two physical systems, each of which implements the
same (abstract) computation. But in Shagrir’s example, there is an (abstract?) AND-
gate that is implemented by (one interpretation of) a certain physical system and an
(abstract?) OR-gate that is implemented by (a different interpretation of) the same
physical system. In this case, there is one physical system that implements different
computations.

17.9. CONTENT AND COMPUTATION 679

Yet another way to look at Shagrir’s example is this: There is an underlying au-
tomaton that outputs certain symbols in response to certain inputs of those symbols,
and there are two different (physical?) interpretations of those symbols such that un-
der one interpretation we have a (physical?) AND-gate and under the other we have a
(physical?) OR-gate. We’ll return to this puzzle in a moment, but let’s first look at the
second premise.

The second premise talks about “contents” and “individuation”. What are these?
Let’s begin with individuation. Consider an abstraction and two implementations of it.
For concreteness, you might think of the abstract species Homo sapiens and two con-
crete implementations of it: Alan Turing and Alonzo Church. We can ask two questions
about these three things: First, what makes the concrete individuals Turing and Church
different from the abstract species? Second, what makes Turing different from Church?
(The first question is “vertical”, asking about the relation between a “higher-level” ab-
straction and “lower-level” implementations of it. The second question is “horizontal”,
asking about the relation between two objects at the “same level”.)

Unfortunately, in philosophy, the term ‘individuation’ has been used for both of
these questions. The questions should be kept distinct (and Hector-Neri Castañeda
(1975) has suggested calling the first one ‘individuation’ and the second one ‘differen-
tiation’). So, as you evaluate Shagrir’s argument, you need to decide which question
he has in mind.

As for “content”, recall from §17.9.2 that we can think of a mark (or a variable)
as a box, and its meaning (or value) as the “content” of the box. So, we might be
able to understand the second premise as follows: There is an abstract computation—
an automaton—that can be characterized in terms of operations on its “boxes”, that
is, its variables (recall from §9.6 Thomason’s and Lamport’s views of the nature of
computation as a sequence of states that are assignments of values to variables). That
abstract computation can be implemented by different physical systems depending on
the contents of the “boxes”. Those contents help us “individuate” the physical system.
Depending on how we interpret ‘individuation’, that means that either those contents
tell us what makes one computer a chess computer and another a war simulator (to
use Fodor’s example) even though both computers implement the same automaton, or
those contents tell us what makes the chess computer different from the war simulator.
Arguably, they tell us both of these things. (So perhaps the interpretation of ‘individu-
ation’ doesn’t matter in this case.)

So, if we have two different physical systems that implement the same automaton,
then what makes them different is their semantic content. But that doesn’t seem to say
anything about the computation itself, which still appears to be able to be understood
“narrowly”. So, it is physical computation that might be semantic and wide, while it is
abstract computation that might be syntactic and narrow.

680 CHAPTER 17. HOW DO PROGRAMS RELATE TO THE WORLD?

17.10 Summary
We can distinguish between the question of which computation a given Turing machine
is executing and the question of what goal that computation is trying to accomplish.
Both questions are important, and they can have very different answers. Two computers
might implement the same Turing machine, but be designed to accomplish different
goals. And, of course, two computers might accomplish the same goal via different
algorithms.

And we can distinguish between two kinds of semantics: external (or wide, or
extrinsic, or inherited) and internal (or narrow, or intrinsic, or syntactic, or indigenous).
Both kinds exist, have interesting properties and play different, albeit complementary,
roles.

Algorithms narrowly construed (minus the teleological preface) are what is studied
in the mathematical theory of computation. To decide whether a task is computable,
we need to find an algorithm that can accomplish it. Thus, we have two separate
things: an algorithm (narrowly construed, if you prefer) and a task. Some algorithms
can accomplish more than one task (depending on how their inputs and outputs are
interpreted by external semantics). Some algorithms may fail, not because of a buggy,
narrow algorithm, but because of a problem at the real-world interface. That interface
is the (algorithmic) coding of the algorithm’s inputs and outputs, typically through a
sequence of transducers at the real-world end (what B.C. Smith (1987) called a “corre-
spondence continuum; see §14.3.1). Physical signals from the external world must be
transduced (encoded) into the computer’s switch-settings (the physical analogues of a
Turing machine’s ‘0’s and ‘1’s), and the output switch-settings have to be transduced
(decoded) into such real-world things as displays on a screen or physical movements
by a robot.

But real-world tasks are complex. Models abstract from this complexity, so they
can never match the rich complexity of the world. Computers see the world through
models of these models (and so do people!). Reasoning on the basis of partial informa-
tion cannot be proved correct (and simulation only tests the computer-model relation,
not the model-world relation). So, empirical reliability must supplement program ver-
ification. Therefore, we must embed the computer in the real world.

At the real-world end of the correspondence continuum, we run into Smith’s gap.
From the narrow algorithm’s point of view, so to speak, it might be able to asymptoti-
cally approach the real world, in Zeno-like fashion, without closing the gap. But, just as
someone trying to cross a room by only going half the remaining distance at each step
will eventually cross the room (though not because of doing it that way), so the narrow
algorithm implemented in a physical computer will do something in the real world.
Whether what it accomplishes was what its programmer intended is another matter. (In
the real world, there are no “partial functions”! This was one of Peter Kugel’s points
about trial-and-error machines, as we saw in §11.4.5.2.)

One way to make teleological algorithms more likely to be successful is by Shapiro’s
strategy: Internalizing the external, teleological aspects into the pre- and post-conditions
of the (narrow) algorithm, thereby turning the external semantic interpretation of the
algorithm into an internal, syntactic semantics.

What Smith shows is that the external semantics for an algorithm is never a relation

17.10. SUMMARY 681

directly with the real world, but only to a model of the real world. That is, the real-
world semantics has been internalized. But that internalization is necessarily partial
and incomplete.

There are algorithms simpliciter (“Do A”), and there are algorithms for accomplish-
ing a particular task (“To G, do A”). Alternatively, we could say that all algorithms
accomplish a particular task, but some tasks are more “interesting” than others. The
algorithms whose tasks are not currently of interest may ultimately become interesting
when an application is found for them, as was the case with non-Euclidean geometry.
Put otherwise, the algorithms that do not have an obvious goal may ultimately be used
to accomplish one:

[D]oes . . . any algorithm . . . have to do something interesting? No. The algo-
rithms we tend to talk about almost always do something interesting—that’s why
they attract our attention. But a procedure doesn’t fail to be an algorithm just be-
cause it is of no conceivable use or value to anyone. . . . Algorithms don’t have to
have points or purposes. . . . Some algorithms do things so boringly irregular and
pointless that there is no succinct way of saying what they are for. They just do
what they do, and they do it every time. (Dennett, 1995, p. 57, my italics)

Further Reading:
On “succinct ways of saying what an algorithm is for”, see Chaitin 2002, 2006b, cited earlier in
Chapter 7.

* * * * *
A few paragraphs ago, I said that, despite Smith’s gap, a narrow algorithm implemented
in the real world will do something, whether what it was intended to do or not. What
about an automated system designed to decide quickly (and in the absence of complete
information) how to respond to an emergency? Would it make you feel uneasy? But
so should a human who has to make that same decision. And they should both make
you uneasy for the same reason: They have to reason and act on the basis of partial
(incomplete) information. This will be our topic in the next chapter.

682 CHAPTER 17. HOW DO PROGRAMS RELATE TO THE WORLD?

17.11 Questions for the Reader
1. Recall the opening epigraph. How does a program interact with the world? Is it

via the process, which is a physical entity (or event?) in the world? If so, how
does the program interact with the process? Is it via the compiler? Or is that just
a first step, translating the program into the machine language that the machine
understands. Is it via the loader, which is what transforms the machine-language
program into the memory, setting the switches?

2. The artist Charles E. Burchfield said that

An artist must paint not what he sees in nature, but what is there. To do so
he must invent symbols, which, if properly used, make his work seem even
more real than what is in front of him.
—https://www.burchfieldpenney.org/collection/charles-e-burchfield/biography/

If we change ‘artist’ to ‘programmer’ and ‘paint’ to ‘program’, this becomes:

Programmers must program not what they see in nature, but what is
there. To do so they must invent symbols, which, if properly used,
make their work seem even more real than what is in front of them.

Is the artist’s task different from the scientist’s or the programmer’s? Can pro-
grams (or paintings, or scientific theories) end up seeming more “real” to us than
the things that they are models of? Is it easier to understand the behavior of the
process of a program that models a hurricane (for example) than to understand
the real hurricane itself?15

3. Timothy Daly (personal communication, 8 September 2019) suggests that, in ad-
dition to a specification that says what the input-output behavior of a program
should be, and its implementation in a computer program that says how that be-
havior should be carried out, it is also important to have “a document explaining
the whole” that would say “why the code exists”. He also suggests that this is best
accomplished via Knuth’s notion of literate programming (which we discussed
briefly in §§3.14.2, 12.4.2, and 13.4). He also says:

Get a physics or math book, cut out all of the equations. Paste them on index
cards. Throw away the rest of the book. Now try to learn the subject just from
the index cards. That’s how we treat programs; all equations, no ideas.

How do Daly’s ideas fit with the arguments in this chapter about the differences
between “Do A” and “To G, do A”?

15Thanks to Albert Goldfain, personal communication, 3 April 2007, for this question.

Part V

Computer Ethics
and Artificial Intelligence

683

685

The topics of Part V—computer ethics and the philosophy of AI—are both large and
long-standing disciplines in their own right. Ethics is a branch of philosophy, and AI is
a branch of CS, so both computer ethics and the philosophy of AI should be branches
of the philosophy of computer science. In §3.15.2, we saw that the question of what
can be computed includes the question of whether “intelligence”—more accurately,
cognition—is computable. And we saw that, besides the questions of what can be
computed and what can be computed efficiently, practically, and physically (and how),
CS itself includes the ethical question of what should be computed (and how).

In Chapters 18 and 20, we will focus on two topics in computer ethics that I think
are central to the philosophy of computer science but, until recently, have not been the
focus of most discussions of computer ethics: Should we trust decisions that computers
make? And should we build “artificial intelligences”? But before we can try to answer
that last question, Chapter 19 on the philosophy of AI will focus on whether we can
build them.

Further Reading:
For good introductions to computer ethics in general, see Moor 1985; Johnson and Snapper 1985
(for a review, see Rapaport 1986e); Johnson 2001a; Anderson and Anderson 2006. AAAI’s “AI
Topics” website on “Ethical & Social Issues: Implications of AI for Society”, is an excellent
site, with many links: http://aitopics.net/Ethics. See also The Research Center on Computing &
Society, http://southernct.edu/organizations/rccs/

686

Chapter 18

Computer Ethics I:

Should Computers Make
Decisions for Us?

Version of 7 January 2020; DRAFT c© 2004–2020 by William J. Rapaport

In 2011, [John] Rogers . . . announced the invention of . . . an integrated silicon
circuit with the mechanical properties of skin. . . . The artificial pericardium [made
with Rogers’s invention] will detect and treat a heart attack before any symptoms
appear. “It’s twenty years or more out there,” Rogers said. “But we can see a
pathway—it’s not science fiction.” Bit by bit, our cells and tissues are becoming
just another brand of hardware to be upgraded and refined. I asked him whether
eventually electronic parts would let us live forever, and whether he thought this
would come as a relief, offer evidence that we’d lost our souls and become robots,
or both. “That’s a good thing to think about, and people should think about it,” he
said “But I’m just an engineer, basically.”
—Kim Tingley (2013, p. 80, my italics)

Machines are more than ever controlled by software, not humans. Occasionally
it goes fatally wrong. . . . [I]ncreasing the complexity of systems makes checking
them more difficult. Hardware, from chips to special sensors, can be difficult to
test. And it can be difficult for humans to understand how some A.I. algorithms
make decisions. —Jamie Condliffe (2019, my italics)

687

688 CHAPTER 18. COMPUTER ETHICS I: DECISIONS

18.1 Readings:
1. Required:

• Moor, James H. (1979), “Are There Decisions Computers Should Never Make?”,
Nature and System 1: 217–229, http://www.researchgate.net/publication/242529825
Are there decisions computers should never make

2. Recommended:

(a) Friedman, Batya; & Kahn, Peter H., Jr. (1992), “People Are Responsible, Comput-
ers Are Not”, excerpt from their “Human Agency and Responsible Computing: Im-
plications for Computer System Design”, Journal of Systems and Software (1992):
7–14; excerpt reprinted in M. David Ermann, Mary B. Williams, & Michele S.
Shauf (eds.) (1997), Computers, Ethics, and Society, Second Edition (New York:
Oxford University Press): 303–314; excerpts online at https://books.google.com/
books?id=vgwkDwAAQBAJ&printsec=frontcover#v=onepage&q=kahn&f=false

• Can be read as raising an objection to Moor 1979, especially the section “Del-
egating Decision Making to Computational Systems” (pp. 306–307 in the Er-
mann et al. 1997 reprint; online at http://tinyurl.com/y5cc2quq).

(b) Johnson, George (2002), “To Err Is Human”, New York Times (14 July), http://www.
nytimes.com/2002/07/14/weekinreview/deus-ex-machina-to-err-is-human.html

• An op-ed piece that provides an interesting, real-life case study of Moor’s
problem and a possible counterexample to Friedman and Kahn 1997.

(c) Hill, Robin K. (2018, May 21), “Articulation of Decision Responsibility”, BLOG@CACM,
https://cacm.acm.org/blogs/blog-cacm/227966-articulation-of-decision-responsibility/
fulltext

18.2. INTRODUCTION 689

18.2 Introduction
In 2004, when I first taught the course that this text is based on, the question of whether
to trust decisions made by computers was not much discussed. But since the advent
of self-driving cars, it has become a more pressing issue, with immediate, real-life,
practical implications as well as moral and legal ramifications.

Before we consider the ethical issue of whether computers should make decisions
for us and the clearly related question that is the title of James Moor’s 1979 essay—Are
there decisions computers should never make?, there are two prior questions: What is
a “decision”? And: Do computers “make decisions” at all?

Further Reading:
There are other automated vehicles besides self-driving cars, for which some of the same issues
arise. Markoff 2015 asks, in the wake of a commercial-airline pilot who who committed suicide,
thereby killing all aboard his plane, whether pilots are necessary at all. See also two follow-
up letters to the editor (New York Times (14 April): D3, http://www.nytimes.com/2015/04/14/
science/letters-to-the-editor.html) that point out situations in which (a) computers should take
control over from humans or (b) humans might make better—because more creative or context-
dependent—decisions than computers. Keep in mind that another vehicle that many of us use
frequently was once only human-operated but is now completely automated (and I doubt that
any of us would know what to do if it failed): elevators.

Halpern 2016 discusses technical and ethical issues concerning the automated decisions made
by driverless vehicles. Monticello 2016 offers observations on their relative safety.

18.3 What Is a Decision?
Roughly, a decision is a choice made from several alternatives, usuall for some reason
(Eilon, 1969). Let’s begin by considering three kinds of decisions:

1. A decision could be the result of an arbitrary choice, such as flipping a coin:
heads, we’ll go out to a movie; tails, we’ll stay home and watch TV.

2. A decision could be the solution to a purely logical or mathematical problem that
requires some calculation.

3. A decision could be the result of investigating the pros and cons of various alter-
natives, rationally evaluating these pros and cons, and then choosing one of the
alternatives based on this evaluation.

690 CHAPTER 18. COMPUTER ETHICS I: DECISIONS

18.4 Do Computers Make Decisions?
At first glance, there is a simple answer to the question whether computers make deci-
sions: Yes; computers can easily make the first kind of decision for us. Moreover, any
time that a computer solves a logical or mathematical problem, it has made a decision
of the second kind.

Can computers make decisions of the third kind? Surely, it would seem, the answer
is, again, ‘yes’: Computers can play games of strategy, such as checkers, chess, and
Go, and they can play them so well that they can beat the (human) world champions.
Such games involve choices among alternative moves that must be evaluated, with, one
hopes, the best (or least worst) choice being made. Computers can do this.

Further Reading:
See, for example, https://en.wikipedia.org/wiki/Chinook (draughts player); https://en.wikipedia.
org/wiki/Deep Blue (chess computer); Silver et al. 2016; Campbell 2018; Kasparov 2018; Silver
et al. 2018.

Of course, it is not just a physical computer that makes a decision. Arguably, it is
a computer program being executed by a computer that makes the decision, although I
will continue to speak as if it is the computer that decides.

And, of course, it is not just a computer program that makes a decision. Com-
puter programs are written by humans. (Even computer programs that are written by
computers are the output of computer programs that were written by humans.) And
humans, of course, can err in various ways, unintentionally or otherwise. These errors
can be inherited by the programs that they write.

Robin K. Hill has argued that computers do not make decisions, precisely because
their programs are written by humans. It is the humans who make the decisions that
are subsequently encoded in the programs:

[M]achines and algorithms have no such capacity as is normally connoted by the
term “decision” Algorithms are not biased, because a program does not
make decisions. The program implements decisions made elsewhere. (Hill, 2018)

To a large extent, this is, of course, correct. There is no question that the way in which
a computer makes a decision was initially determined by its human programmer. And
Mullainathan (2019) argues that “biased algorithms are easer to fix than biased people”.

But what happens when the human programmer is out of the picture, and the com-
puter running that program is what we rely on? In any given situation, when the com-
puter has to act or to make or recommend a decision, it will do so autonomously and
in the light of the then-current situation, without consulting the programmer (or being
able to consult the programmer):

It is a common misconception that because a machine such as a guided missile was
originally designed and built by conscious man [sic], then it must be truly under the
immediate control of conscious man. Another variant of this fallacy is “computers
do not really play chess, because they can only do what a human operator tells
them”. . . . When it is actually playing, the computer is on its own, and can expect

18.4. DO COMPUTERS MAKE DECISIONS? 691

no help from its master. All the programmer can do is to set the computer up
beforehand in the best way possible (Dawkins, 2016, pp. 66–67)

Typically, human delegation of decision-making powers to computers happens in
cases where large amounts of data are involved in making the decision or in which
decisions must be made quickly and automatically. And, of course, given that one of
the goals of CS is to determine what real-world tasks are computable (§3.15.2.1.1),
finding out which decisions are computable is an aspect of that.

In any case, humans might delegate such power to computers. So, another way
to phrase our question is: What areas of our lives should be computer-controlled, and
what areas should be left to human control? Are there decisions that non-human com-
puters could not make as well as humans? For instance, there might be situations in
which there are sensory limitations that prevent computer decisions from being fully
rational. Or there might be situations in which a decision requires some (presum-
ably non-computable) empathy. On the other hand, there might be situations in which
a computer might have an advantage over humans: It is impossible (or at least less
likely) for a computer to be swayed by such things as letter-writing campaigns, pa-
rades, etc. Such tactics were used by General Motors in their campaign to persuade
some communities to open new plants for their Saturn cars (Russo, 1986).

To answer these questions, we need to distinguish between what is the case and
what could be the case. We could try to argue that there are some things that are in
principle impossible for computers to do. Except for computationally impossible tasks
(such as the Halting Problem, §7.8), this might be hard to do. But we should worry
about the possible future now, so that we can be prepared for it if it happens. (Recall
the italicized quotation in the first epigraph to this chapter.)

Whether there are, now, decisions that a computer could not make as well as a
human is an empirical question. It is capable of investigation, and, currently, the answer
is unknown. Many, if not most, of the objections to the limitations of computers are
best viewed as research problems: If someone says that computers can’t do X , we
should try to make ones that do X .

This is crucial: Humans should be critical thinkers. There is a logical fallacy called
the Appeal to Authority (see §2.7): Just because an authority figure says that something
is true, it does not logically follow that it is true. Although logicians sometimes warn
us about this fallacy, it is acceptable to appeal to an authority (even a computer!) as
long as the final decision is yours. You can—and must—decide whether to believe the
authority or to trust the computer. You should also be able (and willing!) to question
the authority—or the computer!—so as to understand the reasons for the decision.

So, even if we allow computers to make (certain) decisions for us, it is still impor-
tant for us to be able to understand those decisions. When my son was first learning
how to drive, I did not want him to rely on the vehicle’s automated “dynamic cruise
control” system, because I wanted him to know how and when to slow down or speed
up on a superhighway. Once he knew how to do that, then he could rely on the car’s
computer making those decisions for him, because, if the computer’s decision-making
skills went awry or were unavailable (for example, the laser-controlled system on my
2008 Toyota Sienna is designed not to work when the windshield wipers are on, or
when the car ahead of you is dirty!), he should know how to do those things himself.

692 CHAPTER 18. COMPUTER ETHICS I: DECISIONS

Further Reading:
For a discussion of this point in the context of airplane pilots, see Nicas and Wichter 2019.

Another issue that arises from the fact that computer programs are written by hu-
mans is whether, given the occasional irrationality of human behavior, computer-made
decisions really are rational, which we now turn to.

18.5 Are Computer Decisions Rational?
When a decision has an impact on our lives, we would like the decision-making process
to be rational, whether it is a human making the decision or a humanly written program
“making” it. Can computers (and the programs that they execute) be completely ratio-
nal? It certainly seems that some computers can make rational decisions for us. The
kinds of decision making described in the previous section seem to be purely rational.
And aren’t rule-based algorithms purely rational?

Consider an algorithm that does not involve any random or interactive procedure
produced by a non-rational oracle (of the kind discussed in §11.4.4). Presumably, if the
decision is made by a computer that is following such an algorithm, then that decision
is a purely rational one. By ‘rational’, I don’t necessarily mean that it is a purely logical
decision. (Recall our discussion in §2.6 of kinds of rationality.) It may, for instance,
involve empirical data, which might be erroneous in some way: It might be incomplete,
it might be statistically incorrect, it might be biased, and so on.

Another potential problem is if the algorithm requires exponential time or is NP-
complete, or even if it merely would take longer to come up with a decision than the
time needed for action. In that case, or if there is no such algorithm, we would have
to rely on a “satisficing” heuristic in the sense of an algorithm whose output is “near
enough” to the “correct” solution (as we discussed in §3.15.2.3). But this is still a kind
of rationality—what Simon called “bounded” rationality (§§2.6.1.4, 3.15.2.3, 2.6.1.5,
5.7, 11.4.5.2).

But just as a logical argument can be valid even if its premises are false (recall
§2.6.1.1), an algorithm can be syntactically and semantically correct even if its input is
not (“garbage in, garbage out”; recall §§8.11.2.1, 11.3.3, and 16.3.1.2). But, as long as
there is an algorithm that can be studied to see how it works, or as long as the program
can explain how it came to its decision, I will consider it to be rational.

Whether computers ought to make decisions for us is equivalent to whether our
decisions ought to be made algorithmically. And that suggests that it is equivalent to
whether our decisions ought to be made rationally. If there is an algorithm for making
a given decision, then why not rely on it? After all, wouldn’t that be the rational thing
to do?

One might even argue that there is no such thing as computer ethics. All questions
about the morality of using computers to do something are really questions about the
morality of using algorithms. As long as algorithms are rational, questions about the
morality of using them are really questions about the morality of being rational, and
it seems implausible to argue that we shouldn’t be rational. This suggests that James

18.6. SHOULD COMPUTERS MAKE DECISIONS FOR US? 693

Moor’s (1979) question, “Are there decisions computers should never make?”, should
really have nothing to do with computers! The question should really be: Are there
decisions that should not be made on a rational basis?

But then the important question becomes: Are the algorithms really rational? And
how would we find out? Before looking at these questions, let’s assume, for the mo-
ment, that a decision-making algorithm is rational. The next question is: Should we let
it make a decision for us?

18.6 Should Computers Make Decisions for Us?

A paragraph deeply embedded in a 2004 science news article suggests that people find
it difficult to accept rational recommendations, even if they come from other people, not
computers. The article reports on evidence that a certain popular and common surgical
procedure had just been shown to be of no benefit: “Dr. Hillis said he tried to explain
the evidence to patients, to little avail. ‘You end up reaching a level of frustration,’ he
said. ‘I think they have talked to someone along the line who convinced them that this
procedure will save their life’ ” (Kolata, 2004). Perhaps the fundamental issue is not
whether computers should make rational decisions or recommendations, but whether
or why humans should or don’t accept rational advice!

There are several reasons why we might want to let a computer make a decision
for us: Computers are much faster than we are at evaluating options, they can evaluate
more options than we could (in the same amount of time), they are better at evaluating
more complex options, they can have access to more relevant data. And, in many
situations in the modern world, we might simply have no other option but to allow
computers to make decisions for us. So, whether it is a good idea or a bad idea to let
them do so, it is a simple fact that they do.

And, after all, is this any different from letting someone else make a decision for
us—someone who is wiser, or more knowledgeable, or more neutral than we are? If
it is not any different, then—in both cases—there is still a question that should always
be raised: Should we trust that other agent’s decision? Before looking into this, there
is an intermediate position that we should consider.

18.7 Should Computers Make Decisions with Us?

Moor suggests that, if computers can make certain decisions at least as well as humans,
then we should let them do so, and it would then be up to us humans to accept or reject
the computer’s decision. After all, when we ask for the advice of an expert in medical
or legal matters, we are free to accept or reject that advice. Why shouldn’t the same be
true for computer decision making?

In other words, rather than simply letting computers (or other humans) make deci-
sions for us, we should collaborate on the decision-making process, treating the com-
puter (or the human expert) as a useful source of information and suggestions to help
us make the final decision. As we noted in §18.5, this might not always be possible:

694 CHAPTER 18. COMPUTER ETHICS I: DECISIONS

There may (and most likely will) be situations in which we do not have the time to
evaluate all options before a decision has to be made.

But there are also many cases in which we do need to collaborate:

The systems that land airplanes are hybrids—combinations of computers and people—
exactly because the unforeseeable happens, and because what happens is in part the
result of human action, requiring human interpretation.
(B.C. Smith 1985, §7, p. 24, col. 2)

The situation that Smith mentions has been explored in depth by the anthropologist
and cognitive scientist Edwin Hutchins (Hutchins, 1995a,b; Hollan et al., 2000; Casner
et al., 2016). Hutchins’s theory of “distributed cognition” uses examples of large naval
vessels navigating and of jet pilots working in their cockpits. In both of these cases, it
is neither the machines alone (including, of course, computers) nor humans alone who
make decisions or do the work, but the combination of them—indeed, in the case of
large naval vessels, it is teams of humans, computers, and other technologies. Hutchins
suggests that this combination constitutes a “distributed” mind. Similarly, the philoso-
phers Andy Clark and David Chalmers (1998) have developed a theory of “extended
cognition”, according to which our (human) minds are not bounded by our skull or
skin, but “extend” into the external world to include things like notebooks, reference
works, and computers.

Question for the Reader:
Do these examples constitute uses of oracles as external sources of information, as discussed in
§11.4.4?

But must it be the case that complex decision-making systems be such “hybrids”
or “team efforts”? Smith, Hutchins, and Clark and Chalmers developed their theories
long before the advent of self-driving cars. Even as of this writing (2019), it remains to
be seen whether self-driving cars will continue to need human intervention (remember:
self-driving elevators don’t need very much of it!): Steven E. Shladover (2016) argues
that a level called “conditional automation”, in which computers and humans work
together, will be harder to achieve than the more fully automated level called “high
automation” (see also Casner et al. 2016). Nevertheless, such “hybrid” or “extended”
systems will probably remain a reality.

18.8. SHOULD WE TRUST DECISIONS COMPUTERS MAKE? 695

Further Reading:
Hafner 2012 observes: “For diagnosticians . . . , software offers a valuable backup. Whether it
can ever replace them is another question.” Mearian 2013 says that they might be able to, and
Frakt 2015 suggests that, although “machines” do not yet “outperform doctors . . . in some areas
of medicine they can make the care [that] doctors deliver better.”

Johnson and Verdicchio 2017 discuss “a confusion about the notion of ‘autonomy’ that induces
people to attribute to machines something comparable to human autonomy, and a ‘sociotechni-
cal blindness’ that hides the essential role played by humans at every stage of the design and
deployment of an AI system” (p. 575), concluding that “there are many reasons for concern and
even fear about autonomous systems, but these reasons have to do with the human actors in AI
systems and not merely the computational artefacts in them” (p. 589).

18.8 Should We Trust Decisions Computers Make?

Whether we let computers make decisions for us, or work jointly with them to make
decisions, we usually assume that any decision that they make or advice that they give is
based on good evidence (as input) and on rational algorithms (that process the input).
Note, again (§18.5), the similarity with logical inference, which begins with axioms
or premises (“input”) and then “processes” that “input” to derive a valid conclusion.
(Recall the Digression on Formal Systems and Turing Machines in §14.3.2.1.) In both
cases, for the decision (or advice) to be “good” or for the conclusion to be true, the
input must be correct or true and the processing must be correct. But how do we know
if they are? (Remember the warnings in §2.5.3 about making assumptions!)

An algorithm’s trustworthiness is a function of its input and its processing. Is it
getting all of the relevant input? Is the input accurate, or might there be a problem with
its sensors or how it interprets the input? Is the algorithm correct? Can we understand
it? Can we explain or justify its decisions? Is it (intentionally or unintentionally) biased
in some way, perhaps due to the way that its human programmer wrote it or—in the
case of a machine-learning program—what its initial training set was?

How can computer decision-making competence be judged? One answer is: in the
same way that human decision-making competence is judged, namely, by means of its
decision-making record and its justifications for its decisions.

Let’s briefly consider a computer’s track record first. Consider once more a docu-
mentationless computer found in the desert. Suppose that we discover that it success-
fully and reliably solves a certain type of problem for us. Even if we cannot understand
why or how it does that, there doesn’t seem to be any reason not to trust it. So, why
should justifications matter? After all, if a computer constantly bests humans at some
decision-making task, why should it matter how it does it?

696 CHAPTER 18. COMPUTER ETHICS I: DECISIONS

Further Reading and Questions for the Reader:
Maybe we would be better off not knowing! For a science-fiction treatment of this issue, though
not in the context of computers, see Arthur C. Clarke’s Childhood’s End (1953).

If all that matters is a decision-making computer’s track record, and if its algorithm cannot be
understood (either because it is too complex or because it is a “black box” algorithm (§3.9.5)),
does that mean that we have to take its decisions merely on faith? Or are there decisions that
should not be made by algorithms that are so complex that we cannot understand them?

On the other hand, consider these remarks by Daniel Dennett:

Artifacts already exist . . . with competences so far superior to any human com-
petence that they will usurp our authority as experts, an authority that has been
unquestioned since the dawn of the age of intelligent design. And when we ceded
hegemony to these artifacts, it will be for very good reasons, both practical and
moral. Already it would be criminally negligent for me to embark with passen-
gers on a transatlantic sailboat cruise without equipping the boat with several GPS
systems. . . .

Would you be willing to indulge your favorite doctor in her desire to be an old-
fashioned “intuitive” reader of symptoms instead of relying on a computer-based
system that had been proven to be a hundred times more reliable at finding rare,
low-visibility diagnoses than any specialist? (Dennett, 2017, pp. 400–401)

Would it be irrational not to take such decisions or advice on faith? (We’ll return to the notion
of faith in §18.8.2.)

For a philosophical investigation of the nature of trust, see Baier 1986.

Presumably, however, decision-making computers should be accountable for their
decisions, and knowing what their justifications are helps in this accounting. In fact, the
European Union has passed a law giving users the right to have an explanation of a com-
puter’s decision concerning them (https://en.wikipedia.org/wiki/Right to explanation).
The justifications, of course, need not be the same as human justifications. For one
thing, human justifications might be wrong or illogical.

Further Reading:
Heingartner 2006, discussing whether computers can make better decisions than humans, ob-
serves that “mathematical models generally make more accurate predictions than humans do. . . .
The main reason for computers’ edge is their consistency—or rather humans’ inconsistency—in
applying their knowledge.” For scientific research on wrong or illogical explanations by humans,
see, especially, Tversky and Kahneman 1974. Also see Wainer 2007 on humans’ difficulty in
reasoning about probability and statistics. For other readings on humans’ difficulty in reasoning,
see http://www.cse.buffalo.edu/∼rapaport/575/reasoning.html.

But what if justifications are unavailable or, perhaps worse, misleading? Let’s take
a look at these two possibilities.

18.8. SHOULD WE TRUST DECISIONS COMPUTERS MAKE? 697

18.8.1 The Bias Problem
Could there be a hidden bias in the way that the algorithms were developed? For
example, the training set used to create a machine-learning algorithm might have been
biased (again, perhaps unintentionally). This does not have to be due to any intention
on the part of the programmer to deceive. Indeed, such a program “could be picking
up on biases in the way a child mimics the bad behavior of his [or her] parents” (Metz,
2019c). (But recall question 7 from §5.10.) The bias might not be evident until the
algorithm is deployed.

Recall Hill’s point that algorithms are written by humans. And humans, of course,
have

idiosyncratic foibles The mostly white men who built the tools of social
networks did not recognize the danger of harassment, and so the things they built
became conduits for it. If there had been women or people of color in the room,
. . . there might have been tools built to protect users . . . (Bowles, 2019)

What kinds of problems can such “foibles” or biases lead to?

Users discovered that Google’s photo app, which applies automatic labels to
pictures in digital photo albums, was classifying images of black people as gorillas.
Google apologized; it was unintentional.

. . . Nikon’s camera software . . . misread images of Asian people as blink-
ing, and . . . Hewlett-Packard’s web camera software . . . had difficulty recognizing
people with dark skin tones.

This is fundamentally a data problem. Algorithms learn by being fed certain
images, often chosen by engineers, and the system builds a model of the world
based on those images. If a system is trained on photos of people who are over-
whelmingly white, it will have a harder time recognizing nonwhite faces.

. . . ProPublica . . . found that widely used software that assessed the risk of
recidivism in criminals was twice as likely to mistakenly flag black defendants as
being at a higher risk of committing future crimes. It was also twice as likely to
incorrectly flag white defendants as low risk.

The reason those predictions are so skewed is still unknown, because the com-
pany responsible for these algorithms keeps its formulas secret
(Crawford, 2016)

Perhaps the ethical issues really concern the nature of different kinds of algorithms.
“Neat” algorithms are based on formal logic and well-developed theories of the subject
matter of the algorithm. “Scruffy” algorithms are not necessarily based on any for-
mal theory. (These terms were originally used to describe two different approaches to
AI (https://en.wikipedia.org/wiki/Neats and scruffies), but they can be used to describe
any algorithm.) “Heuristic” algorithms, as we saw in §3.15.2.3, don’t necessarily give
you a correct solution to a problem, but are supposed to give one that is near enough
to a correct solution to be useful (that is, one that “satisfices”). Machine-learning al-
gorithms are trained on a set of test cases, and “learn” how to solve problems based on
those cases and on the particular learning technique used (LeCun et al., 2015).

If a “neat” algorithm is “correct”—surely, a big “if”—then there does not seem to
be any moral reason not to use it (not to be “correctly rational”). If the algorithm is

698 CHAPTER 18. COMPUTER ETHICS I: DECISIONS

“scruffy”, then one might have moral qualms. If the algorithm is a heuristic (perhaps as
in the case of expert systems), then there is no more or less moral reason to use it then
there is to trust a human expert. If the algorithm was developed by machine learning,
then its trustworthiness will depend on its training set and learning method.

Further Reading:
LeCun et al. 2015 is an introduction to “deep” machine learning by three of its pioneering Turing
Award winners. Savage 2016 is a discussion of how “researchers are trying to identify . . . and
root . . . out” biases found in classification algorithms. In contrast, Metz 2019a reports on how
minimally trained non-professionals are the people who supply the training for machine-learning
systems, which raises the question of how accurate those systems algorithms could be. Singer
and Metz 2019 discusses evidence of bias in facial-recognition algorithms. Smith 2020 contains
interviews with three female AI researchers on how they deal with such bias in algorithms.

18.8.2 The Black-Box Problem
No one really knows how the most advanced algorithms do what they do. That
could be a problem. —Will Knight (2017)

Algorithmic fairness: If your tool cannot explain its results, you shouldn’t use it.
—Venkatasubramanian (2018)

. . . a software engineer . . . and author of the study [on AI detection of lung cancer]
said, “How do you present the results in a way that builds trust with radiologists?”
The answer, she said, will be to “show them what’s under the hood.” —Denise
Grady 2019

There are at least four sources of problems that can make a computer’s decision un-
trustworthy:

1. the decision-making criteria encoded in the algorithm, either by its programmer
(or programmers) or by the machine-learning program that developed those cri-
teria from test cases,

2. those test cases themselves,

3. the computer program itself, and

4. the data on which a given decision is based.

Let’s assume, for the sake of the argument, that the input data (#4) are as complete and
accurate as possible. Let’s also assume (although this is a much larger assumption) that
the algorithm (#3) has been formally verified. That leaves the decision-making criteria
and any test cases as the primary focus of attention.

At the present stage in the development of computers, two ways in which these
criteria find their way into an algorithm are, first, through the human programmer and,
second, through machine learning. Of course, a machine-learning algorithm gets its test
cases from a human (or from a database that was generated by another program that

18.8. SHOULD WE TRUST DECISIONS COMPUTERS MAKE? 699

was written by a human), and it gets its machine-learning technique from its human
programmer. But once the human is out of the picture, and the algorithm is left to fend
for itself, so to speak, it is to the algorithm that we must turn for explanations.

Consequently, one important issue concerning computers that make decisions for
(or with) us is whether they can, or should, explain their decisions. Two kinds of
algorithms are relevant to this question. One kind is the symbolic or logical algorithm
that has such an explanatory capability. It could have that in one of two ways: A
user could examine a trace of the algorithm, or a programmer could write a program
that would translate that trace into a natural-language explanation that a user could
understand. The other kind of algorithm is one that is based on a neural-network or a
statistical, machine-learning algorithm. Such an algorithm might not be able to explain
its behavior, nor might its programmer or a user be able to understand how or why it
behaves as it does.

As an example, a typical board-game-playing program might have a representation
of the board and the pieces, an explicit representation of the rules, and an explicit game
tree that allows it to rationally choose an optimal move. Such a program could easily
be adapted to explain its moves. It does not have to, of course. The computer scientist
Peter Scott suggested1 that “even the Turing Test does not require the agent to explain
clearly how s/he/it is reasoning.” Arguably, however, the Turing Test does require it,
because the interrogator can always ask something like “Why do you believe that?” or
“Why did you do that?”, and, to pass the test, the interlocutor (human or computer)
must be able to give a plausible answer.

But AlphaGo, the recent Go-playing program that beat the European Go champion,
was almost entirely based on neural networks and machine-learning algorithms (Silver
et al., 2016; Vardi, 2016). As an editorial accompanying Silver et al. 2016 put it:

. . . the interplay of its neural networks means that a human can hardly check
its working, or verify its decisions before they are followed through. As the use of
deep neural network systems spreads into everyday life—they are already used to
analyse and recommend financial transactions—it raises an interesting concept for
humans and their relationships with machines. The machine becomes an oracle;
its pronouncements have to be believed.

When a conventional computer tells an engineer to place a rivet or a weld in a
specific place on an aircraft wing, the engineer—if he or she wishes—can lift the
machine’s lid and examine the assumptions and calculations inside. That is why
the rest of us are happy to fly. Intuitive machines will need more than trust: they
will demand faith. (Nature Editors, 2016)

Should they “demand faith”? Or should laws (such as those in the European Union)
require transparency or explainability and thus rule out “black box” machine-learning
algorithms of the kind discussed in §3.9.5? Relying on a successful but unexplained
computer’s decisions might not necessarily mean that we are taking its decisions on
faith. After all, its successes would themselves be evidence for its trustworthiness,
just as an axiom’s usefulness in mathematical derivations is evidence in its favor even
though—by definition—it cannot be proved.

1Personal communication, 23 April 2017.

700 CHAPTER 18. COMPUTER ETHICS I: DECISIONS

Digression and Further Reading: Connectionist vs. Symbolic Algorithms
Scott went on to say,

Some say a temporary truce has been recognized, but there is still no hint of a
permanent peace treaty between the connectionist and symbolist advocates. I am
betting that controversy will go on for a long time.

The current apparent inability of connectionist or neural-network algorithms to explain their
behavior (or to have their behavior explained by others) while at the same time being better at
certain tasks than symbolic algorithms that can explain their behavior suggests that both kinds
of mechanisms are needed.

For example, there is a two-way interaction between connectionist-like cognition and symbolic-
like cognition in human learning: When my son was learning how to drive, I realized that I had
to translate my instinctive (connectionist-like) behavior for making turns into explicit (symbolic)
instructions, something along the lines of “put your foot on the brake to slow down, make the
turn, then accelerate slowly”. But to do that, I had to observe what my instinctive behavior was.
Presumably, my son would follow the explicit instructions until they became second nature to
him (that is, “followed” implicitly or instinctively), until such time as he might teach his child to
drive, and the cycle would repeat. (On this topic and in connection with AlphaGo, Vardi 2016
discusses “Polanyi’s Paradox: ‘We can know more than we can tell . . . The skill of a driver
cannot be replaced by a thorough schooling in the theory of the motorcar.’ ” And recall our
earlier discussions in §§3.6.1 and 3.14.4 of knowing-how vs. knowing-that.)

For other arguments on the value of symbolic computation, see Levesque 2017; Bringsjord et al.
2018; Landgrebe and Smith 2019a; Seabrook 2019.

Historical Digression:
It is worth noting that, as a matter of historical fact, the “black box” issue can affect symbolic
computer programs, too. When spreadsheet programs were relatively new, one writer made the
following observations:

The accuracy of a spreadsheet model is dependent on the accuracy of the for-
mulas that govern the relationships between various figures. These formulas are
based on assumptions made by the model maker. An assumption might be an ed-
ucated guess about a complicated cause-and-effect relationship. It might also be a
wild guess, or a dishonestly optimistic view. . . .

In 1981, electronic spreadsheets were just coming into their own, and . . . so-
phisticated modeling . . . was still done chiefly on mainframe computers. The
output . . . wasnt in the now-familiar spreadsheet format; instead, the formulas
appeared in one place and the results in another. You could see what you were
getting. That cannot be said of electronic spreadsheets, which dont display the
formulas that govern their calculations.

As Mitch Kapor explained, with electronic spreadsheets, “You can just ran-
domly make formulas, all of which depend on each other. And when you look at
the final results, you have no way of knowing what the rules are, unless somebody
tells you.” (Levy, 1984)

18.9. ARE THERE DECISIONS COMPUTERS MUST MAKE FOR US? 701

Further Reading:
In Brachman 2002, a leading AI researcher suggests how and why decision-making computers
should be able to explain their decisions.

Greengard 2009 observes that “Today’s automated systems provide enormous safety and conve-
nience. However, when glitches, problems, or breakdowns occur, the results can be catastrophic.”

Diakopoulos 2016, pp. 56–57 says: “It is time to think seriously about how the algorithmically
informed decisions now driving large swaths of society should be accountable to the public. . . .
While autonomous decision making is the essence of algorithmic power, the human influences
in algorithms are many”

Simonite 2017 reports on arguments to “end ‘black box’ algorithms in government”.

Sullivan 2019 discusses many of the issues concerning “deep neural networks” raised in this
section, and has many things to say about the nature of understanding and explanation, arguing
that “it is not the complexity or black box nature of a model that limits how much understanding
the model provides. Instead, it is a lack of scientific and empirical evidence supporting the link
that connects a model to the target phenomenon that primarily prohibits understanding.”

18.9 Are There Decisions Computers Must Make for
Us?

Commercial airplanes are what we’d call self-driving except at takeoff and landing,
and the result is that it’s now nearly impossible for a cruising jet to fall out of
the sky without malice or a series of compounding errors by the pilots. (Lethal
computer glitches are so rare that if they appear even twice among tens of millions
of flights, as in the case of Boeing’s 737 MAX 8, the industry goes into crisis.)
People get the willies at the idea of putting their lives in the hands of computers,
but there’s every reason to think that, as far as transportation goes, we’re safer in
their care. —Nathan Heller (2019, p. 28)

Having the ability to evaluate a computer’s reasons for its decisions assumes the will-
ingness to do so. But remember Simon’s problem of bounded rationality: We usually
don’t have the time or ability to evaluate all the relevant facts before we need to act.
What about emergencies, or other situations in which there is no time for the human
who must act to include the computer’s recommendation in his or her deliberations?

On July 1, 2002, a Russian airliner crashed into a cargo jet over Germany, killing
all on board, mostly students. The Russian airliner’s flight recorder had an automatic
collision-avoidance system that instructed the pilot to go higher (to fly over the cargo
jet). The human air-traffic controller told the Russian pilot to go lower (to fly under
the cargo jet). According to science reporter George Johnson (2002a), “Pilots tend to
listen to the air traffic controller because they trust a human being and know that a
person wants to keep them safe” (my italics). But the human air-traffic controller was
tired and overworked. And the collision-avoidance computer system didn’t “want”
anything; it simply made rational judgments. The pilot followed the human’s decision,
not the computer’s, and a tragedy occurred.

702 CHAPTER 18. COMPUTER ETHICS I: DECISIONS

There is an interesting contrasting case. In January 2009, after an accident in-
volving birds that got caught in its engines, a US Airways jet “landed” safely on the
Hudson River in New York City, saving all on board and making a hero out of its pilot.
Yet William Langewiesche (2009) argues that it was the plane, with its computerized
“fly by wire” system, that was the real hero. In other words, the pilot’s heroism was
due to his willingness to accept the computer’s decision.

Further Reading:
For contrasting discussions of the US Airways case, see Haberman 2009; Salter 2010.

For another airplane incident (Qantas Flight 72), involving “rogue” computers, see O’Sullivan
2017.

The 2019 crashes of two Boeing 737 Max 8 jets are another important case study. As of this
writing (April 2019), the full story is not yet known, but the crashes seem to have been due to
some combination of one or more of the following: a faulty sensor that input erroneous infor-
mation to certain software, the software itself that may have been flawed, or lack of proper pilot
training in the use of the software. For a summary, see the Wikipedia article, “Boeing 737 MAX
Groundings”, https://en.wikipedia.org/wiki/Boeing 737 MAX groundings; see also Nicas et al.
2019.

Zremski 2009 explores the possibility that a decision-making computer might make things more
difficult for a human who is in the decision-making loop. Halpern 2015 points out, among other
things, that an “overreliance on automation, and on a tendency to trust computer data even in
the face of contradictory physical evidence, can be dangerous”, in part because the human in the
decision-making loop might not be paying attention: “over half of all airplane accidents were the
result of the mental autopilot brought on by actual autopilot”.

18.10 Are There Decisions Computers Shouldn’t Make?
Let’s suppose that we have a decision-making computer that explains all of its deci-
sions, is unbiased, and has an excellent track record. Are there decisions that even such
a computer should never make?

The computer scientist Joseph Weizenbaum (1976) has argued that, even if a com-
puter could make decisions as well as, or even better than, a human, they shouldn’t,
especially if their reasons differ from ours. And Moor points out that, possibly, com-
puters shouldn’t have the power to make (certain) decisions, even if they have the
competence to do so (at least as well as, if not better than, humans).

But, if they have the competence, why shouldn’t they have the power? For instance,
suppose a very superstitious group of individuals makes poor medical decisions based
entirely on their superstitions; shouldn’t a modern physician’s “outsider” medicine take
precedence? And does the fact that computers are immune to human diseases mean that
they lack the empathy to recommend treatments to humans?

Moor suggests that, although a computer should make rational decisions for us, a
computer should not decide what our basic goals and values should be. Computers
should help us reach those goals or satisfy those values, but they should not change

18.10. ARE THERE DECISIONS COMPUTERS SHOULDN’T MAKE? 703

them. But why not? Computers can’t be legally or morally responsible for their deci-
sions, because they’re not persons. At least, not yet. But what if AI succeeds? We’ll
return to this in Chapters 19 and 20. Note, by the way, that for many legal purposes,
non-human corporations are considered to be persons.

Batya Friedman and Peter H. Kahn, Jr. (1997) argue that humans are—but com-
puters are not—capable of being moral agents and, therefore, computers should be
designed so that:

1. humans are not in “merely mechanical” roles with a diminished sense of agency,

and

2. computers don’t masquerade as agents with beliefs, desires, or intentions.

Let’s consider point 1: Friedman and Kahn argue that computers should be de-
signed so that humans do realize that they (the humans) are moral agents. But what if
the computer has a better decision-making track record than humans? Friedman and
Kahn offer a case study of APACHE, a computer system that can make decisions about
when to withhold life support from a patient. It is acceptable if it is used as a tool to
aid human decision makers. But human users may experience a “diminished sense of
moral agency” when using it, presumably because a computer is involved.

But why? Suppose APACHE is replaced by a textbook on when to withhold life
support, or by a human expert. Would either of those diminish the human decision-
maker’s sense of moral agency? In fact, wouldn’t human decision makers be remiss
if they failed to consult experts or the writings of experts? So wouldn’t they also be
remiss if they failed to consult an expert computer?

Perhaps humans would experience this diminished sense of moral agency for the
following reason: If APACHE’s decisions exhibit “good performance” and are more
relied on, then humans may begin to yield to its decisions. But why would that be bad?

Turning to point 2, Friedman and Kahn argue that computers should be designed
so that humans do realize that computers are not moral agents. Does this mean that
computers should be designed so that humans can’t take Dennett’s (1971) “intentional
stance” towards them? (Recall our discussion of this in §12.4.4.1.1.)

But what if the computer did have beliefs, desires, and intentions? AI researchers
are actively designing computers that either really have them, or else that are best
understood as if they had them. Would they not then be moral agents? If not, why not?
According to Dennett (1971), some computers can’t help “masquerading” as belief-
desire-intention agents, because that’s the best way for us to understand them.

Friedman and Kahn argue that we should be careful about anthropomorphic user-
interfaces, because the appearance of beliefs, desires, and intentions does not imply
that they really have them. This is a classic theme, not only in the history of AI, but
also in literature, and cinema. And this is at the heart of the Turing Test in AI, to which
we now turn.

704 CHAPTER 18. COMPUTER ETHICS I: DECISIONS

Further Reading (and Viewing):
OHeigeartaigh 2013 is a blog that considers many of the issues discussed in Moor 1979.

Friedman and Kahn argue that programmers should not design computer systems so that users
think that the systems are “intelligent”. The April 2004 issue of Communications of the ACM
(Miller, 2004) has a whole section devoted to this.

Asimov 1950, about decisions made by machines, is a fictional approach to Moor’s question.

On belief-desire-intention theory, see, for example, Kumar 1994, 1996, and the Wikipedia article,
“Belief-desire-intention software model” (https://en.wikipedia.org/wiki/Belief-desire-intention
software model).

As a “classic theme” in AI, I am thinking primarily of Joseph Weizenbaum’s “Eliza” pro-
gram, which, in its most famous version, allegedly simulated a Rogerian psychotherapist.
See Weizenbaum 1966, 1967, 1976; Shapiro and Kwasny 1975; Winograd 1983, Ch. 2; and
http://www.cse.buffalo.edu/∼rapaport/572/S02/proj1.html

In literature, I highly recommend Galatea 2.2: A Novel, by Richard Powers (1995) (in which a
cognitive-science grad student is assigned the task of programming a computer to pass the PhD
exam in English literature; the grad student falls in love with the computational cognitive agent)
and Do Androids Dream of Electric Sheep?, by Philip K. Dick (1968) (which was the basis of
the film Blade Runner; see also Beebee 2017).

In cinema, there are Steven Spielberg’s A.I. Artificial Intelligence (2001), Spike Jonze’s Her
(2013), and Alex Garland’s Ex Machina (2014), to name just three.

18.11 Discussion Questions for the Reader

In §§12.4.4.1.2.2 and 17.8.1, we discussed how to describe what a computer or a person
is doing. Is a universal Turing machine that is running an addition program adding, or
“merely” fetching and executing the instructions for adding? If I use a calculator or
a computer, or if a robot performs some action, who or what is “really” doing the
calculation or the computation, or the action: Is it the calculator (computer, robot)? Or
me? When I use a calculator to add, am I adding or “merely” pushing certain buttons?
(Compare this real-life story: I was making waffles “from scratch” on a waffle iron.
The 7-year-old son of friends who were visiting was watching me and said, “Actually,
you’re not making it; it’s the thing [what he was trying to say was that it was the waffle
iron that was making the waffles]. But you set it up, so you’re the cook.”)

This issue is related to the question of who or what is morally responsible for an
action. Who (or what) is morally responsible for decisions made, or actions taken, by
computers? Is it the computer? Is the the human who accepts the computer’s decision?
Is it the human who programmed the computer?

18.11. DISCUSSION QUESTIONS FOR THE READER 705

Further Reading:
On “artificial morality” and machine ethics for robots, see Anderson and Anderson 2007, 2010;
Wallach and Allen 2009; Wagner and Arkin 2011; Misselhorn 2019. Should artificial intelli-
gences be allowed to kill? Sparrow 2007 “considers the ethics of the decision to send artificially
intelligent robots into war”

It is also related to issues in (math) education: Suppose that a student knows how
to use a calculator to add; does that student know how to add?

Further Reading:
Aref 2004 suggests (but does not discuss) that supercomputers might make decisions that we
could not understand:

As we construct machines that rival the mental capability of humans, will our
analytical skills atrophy? Will we come to rely too much on the ability to do
brute-force simulations in a very short time, rather than subject problems to careful
analysis? Will we run to the computer before thinking a problem through?. . . A
major challenge for the future of humanity is whether we can also learn to master
machines that outperform us mentally.

On the question “will our analytical skills atrophy?”, you might enjoy Isaac Asimov’s (1957)
science-fiction story, “The Feeling of Power”, which is about a human who rediscovers how
to do arithmetic even though all arithmetical problems are handled by computers, and then the
computers break down.

706 CHAPTER 18. COMPUTER ETHICS I: DECISIONS

Chapter 19

Philosophy of
Artificial Intelligence

Version of 7 January 2020,1 DRAFT c© 2004–2020 by William J. Rapaport

Computers . . . are, after all, in the business of making mechanical what smacks of
vitalism to most scientists.
—Allan M. Collins & M. Ross Quillian (1972, p. 313)

The computer revolution will affect philosophy most profoundly by providing a
powerful new set of models and metaphors for thinking about thinking. Can think-
ing be reproduced by hardware running software? Is the brain hardware? Are
neural patterns software? Can the interaction of pattern and patterned substance
create thought? Can thought and intelligence derive from the complex interactions
of unthinking and unintelligent parts?
—Peter Suber (1988, p. 89)

With a large number of programs in existence capable of many kinds of perfor-
mances that, in humans, we call thinking, and with detailed evidence that the pro-
cesses some of these programs use parallel closely the observed human processes,
we have in hand a clear-cut answer to the mind-body problem: How can matter
think and how are brains related to thoughts?
—Herbert Simon (1996a, p. 164)2

1Portions of this chapter are adapted from Rapaport 2000b.
2Simon’s answer is that certain “patternings in matter, in combination with processes that can create and

operate upon such patterns” can do the trick (Simon, 1996a, p. 164). For more on patterns, see Hillis 1998
and §9.6, above, on computers as “magic paper”.

707

708 CHAPTER 19. PHILOSOPHY OF AI

Figure 19.1: https://www.comicskingdom.com/crankshaft/2005-03-02,
c©2005 by Mediagraphics, Inc.

19.1 Required Readings:
1. Turing, Alan M. (1950), “Computing Machinery and Intelligence”, Mind 59: 433–460,

http://mind.oxfordjournals.org/content/LIX/236/433.full.pdf+html

2. Searle, John R. (1980), “Minds, Brains, and Programs”,
Behavioral and Brain Sciences 3: 417–457,
http://cogprints.org/7150/1/10.1.1.83.5248.pdf

19.2. INTRODUCTION 709

19.2 Introduction
Like computer ethics, the philosophy of artificial intelligence (AI) is a large and long-
standing discipline in its own right. In this chapter, we will focus on only two main
questions: What is AI? And: Is AI possible? For the second question, we will look at
Alan Turing’s classic 1950 paper on the Turing Test of whether computers can think
and at John Searle’s 1980 Chinese Room Argument challenging that test.

Further Reading:
For more on the philosophy of AI, see McCarthy and Hayes 1969; Sloman 1971, 1978; Boden
1977, 1990b; Rapaport 1986d; Moody 1993; Akman 2000; Bringsjord and Govindarajulu 2018.

19.3 What Is AI?

19.3.1 Definitions and Goals of AI
Many definitions of AI have been proposed (see the “Further Reading” box at the end
of this chapter). In this section, I want to focus on two nicely contrasting definitions.
The first is by Marvin Minsky, one of the pioneers of AI research; the second is by
Margaret Boden, one of the pioneers of cognitive science:

1. . . . artificial intelligence, the science of making machines do things that would
require intelligence if done by men.3 (Minsky, 1968, p. v)

2. By “artificial intelligence” I . . . mean the use of computer programs and pro-
gramming techniques to cast light on the principles of intelligence in general
and human thought in particular.4 (Boden, 1977, p. 5)

Minsky’s definition suggests that the methodology of AI is to study humans in order
to learn how to program computers. (Note that this was Turing’s methodology in his
1936 paper; see §8.8.2.8.3, above.) Boden’s definition suggests a methodology that
goes in the opposite direction: to study computers in order to learn something about
humans. AI is, in fact, a two-way street: Minsky’s view of AI as moving from humans
to computers and Boden’s view of it as moving from computers to humans are both
valid.

Both views are also consistent with Stuart C. Shapiro’s three goals of AI (Shapiro
1992a; see also Rapaport 1998, 2000a, 2003):

1. AI as advanced CS or engineering:

One goal of AI is to extend the frontiers of what we know how to
program (in order to reach an ultimate goal of computers that are
self-programming and that understand natural language) and to do

3That is, by humans.
4This is just one sentence from a lengthy discussion titled “What Is Artificial Intelligence?” (Boden,

1977, Ch. 1).

710 CHAPTER 19. PHILOSOPHY OF AI

this by whatever means will do the job, not necessarily in a “cogni-
tive” fashion. The computer scientist John Case once told me that AI
understood in this way is at the “cutting edge” of CS.5

2. AI as computational psychology:

Another goal of AI is to write programs as theories or models of hu-
man cognitive behavior. (Recall our discussion in Chapter 15 of com-
puter programs as theories.)

3. AI as computational philosophy:

Shapiro’s third goal of AI is to investigate whether cognition in gen-
eral (and not restricted to human cognitive behavior) is computable,
that is, whether it is (expressible as) one or more recursive functions.
(If cognition requires more than one recursive function, then, presum-
ably, they will be interacting functions, as discussed in §11.4.3.)

19.3.2 Artificial Intelligence as Computational Cognition
In line with the question “What can be computed?” (see §3.15.2.1.1), AI can be under-
stood as the branch of CS that investigates the extent to which cognition is computable.
But the term ‘artificial intelligence’—coined by John McCarthy in 1955—is somewhat
of a misnomer. First, outside of AI, ‘intelligence’ is often used in the sense of IQ, but
AI is not necessarily concerned only with finding programs with high IQ.

Further Reading:
On AI and IQ, see my “Artificial I.Q. Test” at http://www.cse.buffalo.edu/∼rapaport/AIQ/aiq.
html (Rapaport, 1986d), as well as Ohlsson et al. 2015. The nature of intelligence is beyond our
scope, but there are useful general discussions in Gardner 1983; Sternberg 1985, and there are
AI-related discussions in Wang 2019; Smith 2019.

Echoing Minsky’s definition and Shapiro’s goals, Herbert Simon said this:

The basic strategy of AI has always been to seek out progressively more complex
human tasks and show how computers can do them, in humanoid ways or by brute
force. With a half-century of steady progress, we have assembled a solid body of
tested theory on the processes of human thinking and the ways to simulate and
supplement them. (Quoted in Hearst and Hirsh 2000, p. 8.)

The phrase ‘human tasks’ nicely avoids any issues involved with the notion of “intel-
ligence”. But an even more general and accurate term would be ‘cognition’, which
includes such mental states and processes as belief, consciousness, emotion, language,
learning, memory, perception, planning, problem solving, reasoning, representation
(including categories, concepts, and mental imagery), sensation, thought, etc.

5Another computer scientist, Anthony S. Ralston, agreed with Case’s topological metaphor, except that
instead of describing AI as being at the cutting edge, he told me that it was at the “periphery” of CS!

19.3. WHAT IS AI? 711

Second, ‘artificial’ carries the suggestion that “artificial” entities aren’t the real
thing. (Recall our discussion in §15.3.1.2.) ‘Synthetic’ is better than ‘artificial’, be-
cause an artificial diamond might not be a diamond—it might be a cubic zirconium—
whereas a synthetic diamond is a real diamond that just happened to be formed in a
non-natural way.

Further Reading:
Paton and Friedman 2018 observes that the distinction between synthetic and natural diamonds
raises “an almost metaphysical question of what defines a diamond. Is it its chemical structure
. . . ? Or is it its provenance: created deep in the ground . . . rather than cooked up in a machine?”.

But an even better term is ‘computational’, which doesn’t carry the stigma of “artifi-
ciality”, and which specifies the nature of the “synthesis”.

For these reasons, my preferred name for the field is ‘computational cognition’.
(Nevertheless, just as I use ‘CS’ in this book instead of “computer science”, I will
continue to use ‘AI’ instead of “computational cognition”.) So, AI—understood as
computational cognition—is the branch of CS (working with other disciplines, such
as cognitive anthropology, linguistics, cognitive neuroscience, philosophy, and psy-
chology, among others) that tries to answer the question: How much of cognition is
computable? The working assumption of computational cognition is that all of cog-
nition is computable: “The study [of AI] is to proceed on the basis of the conjecture
that every aspect of learning or any other feature of intelligence can in principle be so
precisely described that a machine can be made to simulate it” (McCarthy et al., 1955).

And its main open research question is: Are aspects of cognition that are not yet
known to be computable computable? If so, what does that tell us about the kinds
of things that can produce cognitive behavior? (We’ll investigate this when we look at
the Turing Test in §19.4.) On the other hand, if there are non-computable aspects of
cognition, why are they non-computable? And what would that tell us about cognition?
(This is the conclusion of the Chinese Room Argument, to be discussed in §19.6.) An
answer to this question should take the form of a logical argument such as the one
that shows that the Halting Problem is non-computable (§7.8). It should not be of the
form: “All computational methods tried so far have failed to produce this aspect of
cognition”. After all, there might be a new kind of method that has not yet been tried.

Further Reading:
The view of AI as computational cognition is also relevant to the question of what the field of
cognitive science is; for similar remarks, see Rosenbloom and Forbus 2019.

712 CHAPTER 19. PHILOSOPHY OF AI

19.4 The Turing Test
The Turing Test(?): A problem is computable if a computer can convince you it is.
—Anonymous undergraduate student in the author’s course, CSE 111, “Great
Ideas in Computer Science” (14 December 2000)6

19.4.1 How Computers Can Think

Figure 19.2: c©1-18-1985, Bloom County/Washington Post Writers Group

We have seen that AI holds that cognition is computable. For our present purposes,
it doesn’t matter whether the computations are of the classical, symbolic variety or
the connectionist, artificial-neural-network, or machine-learning variety. Nor does it
matter whether the neuron firings that produce cognition in the human brain can be
viewed as computations.

Further Reading: For further discussion of this, see Piccinini 2005, 2007a; Rapaport 2012b.

All that matters is this philosophical implication:

If (and to the extent that) cognitive states and processes can be expressed
as algorithms, then they can be implemented in non-human computers.

And this raises the following questions:

• Are computers executing such cognitive algorithms merely simulating cognitive
states and processes?

• Or are they actually exhibiting them?

In popular parlance, do such computers think?
In this section, we will look at an answer to this question that arises from what

is called the Turing Test. In §19.6, we will look at an objection to it in the form of
the Chinese Room Argument. And after that, we will consider an interpretation of
the situation that is based on the theory of syntactic semantics that was introduced in
§17.8.2.

6http://www.cse.buffalo.edu/∼rapaport/111F04.html. For a clarification of this remark, see the reference
to Rey 2012 in the Historical Digression and Further Reading box at the end of §19.4.2.

19.4. THE TURING TEST 713

19.4.2 The Imitation Game

Recently, Michael Scherer, a Time magazine bureau chief, received a phone call
from a young lady, Samantha West, asking him if he wanted a deal on health
insurance. After she responded to a number of his queries in what sounded like
prerecorded fashion, he asked her point-blank whether she was a robot, to which
he got the reply “I am human.” When he repeated the question, the connection was
cut off. Samantha West turned out to be a system of recorded messages that were
part of a computer program created by the brokers for health insurance.
—Robert Skidelsky (2014, p. 36)

Just as Alan Turing’s most important paper (Turing, 1936) never mentions a “Tur-
ing Machine”, his second most important paper—“Computing Machinery and Intelli-
gence” (Turing, 1950)—never mentions a “Turing Test”. Instead, he introduces a parlor
game that he calls the “Imitation Game”. This is a game that you can actually play, not
a mere thought experiment.

The Imitation Game consists of three players: A man, a woman, and an interrogator
who might be either a man or a woman. It might matter whether the interrogator is a
man rather than a woman, or the other way around, but we’ll ignore this for now. For
that matter, the interrogator could also be a computer, but there are good reasons why
that should be ruled out: The point of the Turing Test is for a human to judge whether
an entity can think (or whether its cognitive behavior is indistinguishable from that of
a human).

The three players are placed in separate rooms, so that they cannot see each other,
and they communicate only by means of what we would now call ‘texting’, so that
they cannot hear each other. The reason that they are not allowed to see or hear each
other is that the point of the game is for the interrogator to determine which room has
the man, and which room has the woman. To make things interesting, the woman is
supposed to tell the truth in order to convince the interrogator that she is the woman,
but the man is supposed to convince the interrogator that he (the man) is the woman,
so he will occasionally have to lie.

The man wins if he convinces (fools) the interrogator that he is the woman; the
woman wins if she convinces the interrogator that she is the woman. (Another way of
thinking of this is that the interrogator wins if he correctly figures out who is in which
room.) If the man wins, then he is said to have passed the test.

Turing suggested that “an average interrogator will not have more than 70 per cent.
chance of making the right identification after five minutes of questioning” (Turing,
1950, p. 442). But the actual amount of time may be irrelevant. One could conduct
a series of imitation games and calculate appropriate statistics on how likely an inter-
rogator is to make a correct determination after a given period of time.

What does this have to do with whether computers can think? What has come to be
known as the Turing Test makes one small change in the Imitation Game:

We now ask the question, “What will happen when a machine takes the part of [the
man] in this game?” Will the interrogator decide wrongly as often when the game
is played like this as he [or she] does when the game is played between a man and

714 CHAPTER 19. PHILOSOPHY OF AI

a woman? These questions replace our original, “Can machines think?” (Turing,
1950, p. 434)

It turns out that there is some ambiguity in Turing’s question: What is the “ma-
chine” (that is, the computer) supposed to do? Is it supposed to convince the interroga-
tor that it is the woman? (That is, is it supposed to imitate a woman?) Or is it supposed
to convince the interrogator that it is a man who is trying to convince the interrogator
that he is a woman? (That is, is it supposed to imitate a man?)

Other modifications are possible. Usually, the Turing Test is taken, more simply
and less ambiguously, to consist of a set up in which a computer, a human, and a
human interrogator are located in three different rooms, communicating over a texting
interface, and in which both the human and the computer are supposed to convince the
interrogator that each is a human. To the extent that either the computer convinces the
interrogator or the human fails to (under the same criteria for successful convincing
that obtains in the original imitation game), the computer is said to have passed the
Turing Test.

An even simpler version consists merely of two players: a human interrogator and
someone or something (a human or a computer) in two separate, text-interfaced rooms.
If a computer convinces the interrogator that it is a human, then it passes the Turing
Test.

Further Reading:
The differences between these versions of the Turing Test are discussed by French 2000; Pic-
cinini 2000; Rapaport 2006c. Argamon et al. 2003 provides evidence that women can be distin-
guished from men on the basis of their writing style.

Here is Turing’s answer to the question that has now replaced “Can machines
think?”:

I believe that at the end of the century [that is, by the year 2000] the use of words
and general educated opinion will have altered so much that one will be able to
speak of machines thinking without expecting to be contradicted. (Turing, 1950,
p. 442, my boldface)

To see what this might mean, we need to consider the Turing Test a bit further.

19.4. THE TURING TEST 715

Historical Digression and Further Reading:
The Turing Test was not the first test of its kind. In his Discourse on the Method of Rightly
Conducting the Reason and Seeking for Truth in the Sciences, Descartes (1637, Part V, p. 116)
proposed the following:

. . . if there were machines which bore a resemblance to our body and imitated
our actions as far as it was morally possible to do so, we should always have two
very certain tests by which to recognise that, for all that, they were not real men.
The first is, that they could never use speech or other signs as we do when placing
our thoughts on record for the benefit of others. For we can easily understand a
machine’s being constituted so that it can utter words . . . ; for instance, . . . it may
ask what we wish to say to it; . . . it may exclaim that it is being hurt, and so on.
But it never happens that it arranges its speech in various ways, in order to reply
appropriately to everything that may be said in its presence, as even the lowest type
of man can do. And the second . . . is, that although machines can perform certain
things as well as or perhaps better than any of us can do, they infallibly fall short in
others, by the which means we may discover that they did not act from knowledge,
but only from the disposition of their organs.

Encyclopedia articles on the Turing Test include Rapaport 2006c; Oppy and Dowe 2019. Sev-
eral anthologies of essays on the Turing Test have appeared: Akman and Blackburn 2000; Moor
2003; Shieber 2004 (the latter reviewed in Rapaport 2005d), and Marcus et al. 2016.

Wilkes 1953 contains speculations by one of the pioneers of computers on the Turing Test, learn-
ing machines, and the role of external input.

Piccinini 2003 is primarily about Turing’s views on AI, but also discusses his theory of compu-
tation and the role of “oracle” machines.

Aaronson 2006 discusses the Turing Test in the context of quantum hypercomputation.

Rey 2012 distinguishes between the (Church-)Turing (computability) thesis and the Turing Test
(something that the student in my course that I quoted in the epigraph to §19.4 wasn’t clear on!).

McDermott 2014 is a critique of Turing 1950 written by a well-known AI researcher as back-
ground for the film The Imitation Game.

Kahn 2014 and Hill 2016a raise the question of whether some robots and softbots may have
passed a kind of Turing Test. Wu 2017 argues that “Automated processes should be required to
state, ‘I am a robot.’ When dealing with a fake human, it would be nice to know.” Parnas 2017
makes a similar plea, which we’ll come back to at the end of this chapter.

Shieber 2007 proposes an interpretation of the Turing Test as an interactive proof.

Walsh 2016 proposes “Turing Red Flag law: An autonomous system should be designed so that
it is unlikely to be mistaken for anything besides an autonomous sysem, and should identify itself
at the start of any interaction with another agent.”

716 CHAPTER 19. PHILOSOPHY OF AI

Digression and Further Reading: On “the end of the century”:
“The end of the century” (that is, the 20th century) has come and gone without Turing’s
expectations realized. (If they had been, we would not still be discussing them!) There have
been several programs that are thought by some people to have passed a Turing Test: “Eliza”
(Weizenbaum, 1966, 1967, 1976) was a natural-language processing program designed to
show how the test could apparently be passed with no real understanding of natural language.
“Parry” (Colby et al., 1971, 1972; Colby, 1981) was an Eliza-based program designed
to simulate paranoia. The Loebner Prize competitions (Loebner 1994; Rees et al. 1994;
https://web.archive.org/web/20040211063400/http://www.loebner.net/Prizef/loebner-prize.
html, https://www.aisb.org.uk/events/loebner-prize)—originally intended to be a real Turing
Test—have devolved into competitions for Eliza-like “chatterbots” (Shieber, 1994a,b). No
current natural-language-understanding computer has achieved the “understanding” exhibited,
for example, by the fictional computer HAL in the movie 2001 (Stork, 1997), not even Apple’s
Siri or Amazon’s Alexa.

Similar predictions have also been off the mark. Simon and Newell 1958 predicted
1967 for the chess version of a Turing Test, missing by 30 years. (IBM’s Deep Blue
beat human chess champion Garry Kasparov in 1997; https://en.wikipedia.org/wiki/
Deep Blue versus Garry Kasparov.) However, Simon (personal communication, 24 September
1998, https://cse.buffalo.edu/∼rapaport/simon.html) said that “it had nothing to do with the
Turing Test” and that “(a) I regard the predictions as a highly successful exercise in futurology,
and (b) placed in the equivalent position today, I would make them again, and for the same
reasons. (Some people never seem to learn.)” At the end of the next millennium, no doubt,
historians looking back will find the 40-year distance between the time of Newell and Simon’s
prediction and the time of Kasparov’s defeat to have been insignificant.

19.4.3 Thinking vs. “Thinking”
Lots of parts of a computer “think” in different ways, but . . . [the CPU] is what we
usually call the “thinking” part. It’s a machine for quickly following a set of steps
that are written down as numbers. Following steps might not be “thinking.” But
it’s hard to say for sure. That’s one of those things where not only do we not know
the answer, we’re not sure what the question is.
—Randall Munroe (2015, p. 37, my italics)

In 1993, The New Yorker magazine published a cartoon by Peter Steiner, showing a
dog sitting in front of a computer talking to another dog, the first one saying, “On the
Internet, nobody knows you’re a dog.” (See Figure 19.3.) This cartoon’s humor arises
from the fact that you do not know with whom you are communicating via computer!
It’s unlikely that there’s a dog typing away at the other end of a texting session or an
email, but could it be a computer pretending to be a human, as in the Turing Test? Or
could it be a 30-year-old pedophile pretending to be a 13-year-old classmate?

(In the years since that cartoon appeared, we have become only too aware of the
possibilities and dangers—political and otherwise—of messages and “fake news” on
Facebook and elsewhere that purport to come from one source but really come from
another, as well as the possibilities and dangers of the lack of privacy. A newer “internet
dog” cartoon plays on this; see Figure 19.4.)

19.4. THE TURING TEST 717

Figure 19.3: https://condenaststore.com/featured/on-the-internet-peter-steiner.html,
c©1993 The New Yorker Collection/Peter Steiner

Figure 19.4: https://condenaststore.com/featured/two-dogs-speak-as-their-owner-uses-
the-computer-kaamran-hafeez.html, c©2015 The New Yorker Collection/Kaamran
Hafeez

718 CHAPTER 19. PHILOSOPHY OF AI

Normally, we assume that we are talking to people who really are whom they say
they are. In particular, we assume that we are talking to a human. But really all we
know is that we are talking to an entity with human cognitive capacities. And that, I
think, is precisely Turing’s point: An entity with human cognitive capacities is all that
we can ever be sure of, whether that entity is really a human or “merely” a computer.

This is a version of what philosophers have called “the argument from analogy for
the existence of other minds”. An argument from analogy is an argument of the form:

1. Entity A is like (that is, is analogous to) entity B with respect to important prop-
erties P1, . . . ,Pn.

2. B has another property, Q.

3. ∴ (Probably) A also has property Q.

(Compare the “duck test”: “When I see a bird that walks like a duck and swims like
a duck and quacks like a duck, I call that bird a duck” (James Whitcomb Riley, https:
//en.wikipedia.org/wiki/Duck test.) Such an argument is not deductively valid: It’s
quite possible for the premises to be true but for the conclusion to be false. But it has
some inductive strength: The more alike two objects are in many respects, the more
likely it is that they will be alike in many other respects (and maybe even all respects).

The problem of the existence of other minds is this: I know that I have a mind
(because I know what it means for me to think, to perceive, to solve problems, etc.).
How do I know whether you have a mind? Maybe you don’t; maybe you’re just some
kind of computer, or android, or philosophical zombie.

Digression and Further Reading: Androids and Zombies:
Androids are robots that look like humans, such as Commander Data in Star Trek: The Next Gen-
eration or many of the characters in such science fiction as Dick 1968 or the film Blade Runner.
A philosophical zombie is not a horror-movie zombie. Rather, it is an entity who is exactly like
us in all respects but who lacks a mind or consciousness. See Kirk 1974; Chalmers 1996a; and
other references at http://www.cse.buffalo.edu/∼rapaport/719/csnessrdgs.html#zombies

Putting these together, here is the argument from analogy for the existence of other
minds:

1. You are like me with respect to all of our physical and behavioral properties.

2. I have a mind.
(Or: My behavioral properties can best be explained by the fact that I have a
mind.)

3. ∴ (Probably) you have a mind.
(Or: Your behavioral properties can best be explained if it is assumed that you
also have a mind.)

Of course, this argument is deductively invalid. I could be wrong about whether you
are biologically human. In that case, the best explanation of your behavior might not be

19.4. THE TURING TEST 719

that you have a mind, but that you are a computer who has been cleverly and suitably
programmed. Now, there are two ways to understand this: One way to understand it
is to say that you don’t have a mind; you’re just a cleverly programmed robot. But
another way to understand it is to say that being cleverly programmed in that way is
exactly what it means to have a mind: Perhaps we are both cleverly programmed in that
way. Or perhaps (a) you are programmed in that way, whereas (b) I have a brain that
behaves in that way, but (c) these are simply two different implementations of “having
a mind”.

In either case, am I wrong about your being able to think? That is, am I wrong about
your (human) cognitive abilities? Turing’s answer is: No! More cautiously, perhaps,
his answer is that whether I’m wrong depends on the definition of (human) cognitive
abilities (or thinking):

If human-like cognition requires a (human) brain, and you lack one, then, techni-
cally speaking, you don’t have human-like cognition (even if you pass the Turing Test).
On this view, I really do think, but you can only “think”. That is, you are not really
thinking, but doing something else that can be called “thinking” only in a metaphorical
sense.

But, if human-like cognition is an abstraction that can be implemented in different
ways—that is, if it does not require a (human) brain—then we both have human-like
cognition (and that’s why you pass the Test). On this view, we both can think.

Here’s an analogy: Everyone can agree that birds fly.

Further Reading:
“Birds fly” is true in general, even though most birds actually don’t fly! Not only do penguins,
ostriches, etc., not fly, but baby birds, birds with injured wings, dead birds, etc., also don’t fly.
Handling the logic of statements like this is a branch of logic and AI called “non-monotonic
reasoning”; see §2.6.1.4, above, and Ginsberg 1987; Strasser and Antonelli 2015.

Do people fly? Well, we certainly speak as if they do; we say things like, “I flew from
Buffalo to JFK last week.” But we also know that I don’t literally mean that I flapped
my arms when flying from Buffalo to JFK; rather, I flew in an airplane: It wasn’t I who
was flying; it was the airplane. But that answer raises another question: Do planes fly?
Well, they don’t flap their wings, either! (See Figure 19.5.) So, in what sense are they
flying?

There are two ways to understand what it means to say that planes fly: One way
is by what I will call “metaphorical extension”. The reason we say that planes fly is
that what they are doing is very much like what birds do when they fly—they move
through the air, even if their methods of doing so are different. But, instead of using a
simile, saying that planes move through the air like birds fly, we use a metaphor, saying
directly that planes fly. And then that metaphor becomes “frozen”; it becomes a legiti-
mate part of our language, so much so that we no longer realize that it is metaphorical.
This is just like what happens when we say that time is money: We say things like,
“You’re wasting time”, “This will save you time”, “How did you spend your vaca-
tion?”, and so on. But we’re usually not aware that we are speaking metaphorically
(until someone points it out), and there’s often no other (convenient) way to express
the same ideas (Lakoff and Johnson, 1980a,b).

720 CHAPTER 19. PHILOSOPHY OF AI

Figure 19.5: https://www.comicskingdom.com/family-circus/2019-07-12
c©2019 Bil Keane, Inc.

As Turing said, “the use of words” has changed!
The other way to understand what it means to say that planes fly is that we have

realized that flapping wings is not essential to flying. There are deeper similarities
between what birds and planes do when they move through the air that have nothing to
do with wing-flapping but that have everything to do with the shape of wings and, more
generally, with the physics of flight. We have developed a more abstract, and therefore
more general, theory of flight, one that applies to both birds and planes. And so we can
“promote” the verb ‘to fly’ from its use solely for birds (and other flying animals) to a
more general use that also applies to planes. To use the language of §14.2.4, the abstract
notion of flying can be implemented in both biological and non-biological media.

As Turing said, “general educated opinion” has changed!
In fact, both the use of words and general educated opinion have changed. Perhaps

the change in one facilitated the change in the other; perhaps the abstract, general
theory can account for the metaphorical extension.

The same thing has happened with ‘computer’. As we saw in §6.2, a computer
was originally a human who computed. That was the case till about the 1950s, but,
a half-century later, we now say that a computer is a machine. Before around 1950,
what we now call ‘computers’ had to be called ‘digital’ or ‘electronic computers’ to
distinguish them from the human kind. But, now, it is very confusing to read pre-1950
papers without thinking of the word ‘computer’ as meaning, by default, a non-human
machine. (Recall the puzzling statement in Turing 1936, p. 250: “The behaviour of
the computer at any moment is determined by the symbols which he is observing, and
his ‘state of mind’ at that moment”; see §8.8.2.2, above.) Now, at the beginning of the
21st century, general educated opinion holds that computers are best viewed abstractly,

19.4. THE TURING TEST 721

in functional, input-output terms. The study of “artificial intelligence” may lead us to
understanding thinking as an abstraction that can be implemented in both humans and
computers, just as the study of “artificial” flight (https://invention.psychology.msstate.
edu/library/Magazines/Nat Artificial.html) was crucial to understanding flying as an
abstraction implementable in both birds and planes: “[S]tudying the animals that fly”,
no matter in how great detail and for how many years, would not have yielded any
useful information on how humans might be able to fly. Rather,

attempt[ing] to construct devices that fly . . . attempts to build flying machines
[resulted in] our entire understanding of flight today. Even if one’s aim is to under-
stand how birds or insects fly, one will look to aeronautics for the key principles
. . . . (Quillian, 1994, pp. 440–442)7

This is consistent with Boden’s view that the study of computational theories of cogni-
tion can help us understand human (and, more generally, non-human) cognition.

What does this have to do with the philosophy of AI? The strategy of abstract-
ing from a naturally occurring example and re-implementing it computationally also
applies to cognition:

Quite typically, an abstract structure underlies some human cognitive activity that
is not at all apparent in superficial phenomenology or practice. Often, that structure
is related in interesting ways to the structures we would invent if we constructed
an ideal machine to perform that cognitive activity. (We might think of artificial
intelligence as a normative enterprise). But that structure is rarely identical to the
ideal machine’s structure. (Gopnik, 1996, p. 489)

The underying abstract structure could be computational in nature. Hence, it could be
(re-)implemented in “an ideal machine”. The abstract computational theory might be
thought of as having the form: Such-and-such a human cognitive activity can or ought
to be performed in this computational way even if the way that humans in fact do it is
not identical to that ideal structure. Gopnik goes on to say:

This process may seem like analogy or metaphor, but it involves more serious
conceptual changes. It is not simply that the new idea is the old idea applied to
a new domain, but that the earlier idea is itself modified to fit its role in the new
theory. (Gopnik, 1996, p. 498)

To say, as I did earlier, that the process is metaphorical is not inconsistent with it also
involving “more serious conceptual changes”: We come to see the old idea in a new
way.

But some philosophers argue that what AI computers do is not really thinking.
We’ll turn to one of these philosophers in §19.6.

7Quillian—a pioneer in AI research—uses this argument to support an explanation of why the natural
sciences are more “effective” than the social sciences.

722 CHAPTER 19. PHILOSOPHY OF AI

Further Reading:
Applying human terms like ‘thinking’ to non-human entities—whether non-human animals or
robots—is called ‘anthropomorphism’, and is sometimes frowned upon by scientists. An op-
posing view by a primatologist is presented in de Waal 2016. Matthews and Dresner 2017,
especially §5, pp. 19–20—cited in §9.5.4 in connection with Searle’s arguments about the nature
of computers—is also relevant to the thinking-vs.-“thinking” issue.

19.5 Two Digressions
19.5.1 The “Lovelace Objection”
Turing (1950, §6) considered several objections to the possibility of AI, one of which he called
“Lady Lovelace’s Objection”. Here it is in full, in Lovelace’s own words:

The Analytical Engine has no pretensions whatever to originate anything. It can
do whatever we know how to order it to perform. It can follow analysis; but it
has no power of anticipating any analytical relations or truths. Its province is to
assist us in making available what we are already acquainted with.
(Menabrea and Lovelace, 1843, p. 722, italics in original, my boldface;
https://psychclassics.yorku.ca/Lovelace/lovelace.htm#G)

The first thing to note about this is that it is often misquoted. We saw Herbert Simon do this in
§11.4.3.4.1, above, when he expressed it in the form “computers can only do what you program
them to do” (Simon, 1977, p. 1187, my italics). Lovelace did not use the word “only”. We’ll
see one reason why in a moment. But note that this standard interpretation of her phrasing does
seem to be what Turing had in mind. He quotes with approval Hartree 1949, p. 70—the same
book that we saw Arthur Samuel quoting in §9.2, by the way—who said, concerning Lovelace’s
comment, “This does not imply that it may not be possible to construct electronic equipment
which will ‘think for itself’” Minus the double negative, Hartree (and Turing) are saying
that Lovelace’s comment is consistent with the possibility of an AI computer passing the Turing
Test. Turing goes on to say this:

A better variant of the objection says that a machine can never “take us by sur-
prise”. This statement is a more direct challenge and can be met directly. Machines
take me by surprise with great frequency. (Turing, 1950, p. 450)

Turing’s dryly humorous response has been elaborated on by Darren Abramson (2014, italics in
original), who says that Turing’s 1936 paper shows

that the concepts of determinism and predictability fall apart. Computers, which
can be understood as the finite unfoldings of a particular Turing machine, are com-
pletely deterministic. But there is no definite procedure for figuring out, in every
case, what they’ll do [because of the Halting Problem]: if you could, then you
would have a definite procedure for deciding whether any statement of arithmetic
is true or not. But there is no such procedure for the one, so there is no such pro-
cedure for the other. Computers are, in the general case, unpredictable, even by
someone who knows exactly how they work.

Returning to what Lovelace actually said, it’s worth observing that the fact that the Analytical
Engine (or any contemporary computer, for that matter) has no “pretensions” simply means that
it wasn’t designed that way; nevertheless, it might still be able to “originate” things. Also, if we
can find out “how to order it to perform” cognitive activities, then it can do them! Finding out
how requires us to be conscious of something that we ordinarily do unconsciously. In his own
commentary on the Lovelace objection, Samuel (1953, p. 1225) said:

19.5. TWO DIGRESSIONS 723

Regardless of what one calls the work of a digital computer [specifically, regard-
less of whether one says that it can think], the unfortunate fact remains that more
rather than less human thinking is required to solve a problem using a present day
machine since every possible contingency which might arise during the course of
the computation must be thought through in advance. The jocular advice recently
published to the effect, “Don’t Think! Let UNIVAC do it for you,” cannot be taken
seriously. Perhaps, if IBM’s familiar motto [namely, “Think!”] needs amending, it
should be “Think: Think harder when you use the ‘ULTIMAC’.

(Samuel adds in a footnote to this passage that ‘ULTIMAC’ is “A coined term for the ’Ultimate in
Automatic Computers.’ The reader may, if he prefers, insert any name he likes selected from the
following partial list of existing machines . . . ”, and he then listed 43 of them, including Edvac,
IBM 701, Illiac, Johnniac, and Univac.)

Why didn’t Lovelace use the word ‘only’? Recall from §6.5.3 that Babbage, inspired by
de Prony, wanted his machines to replace human computers:

. . . Babbage deplored the waste of brilliant, educated men in routine, boring drudgery,
for which he claimed the uneducated were better suited When convenient,
however, he saw no obstacle to replacing them by yet more accurate or efficient
machinery (he disapproved of unions). (Stein, 1984, pp. 51–52)

It is in this context that Lovelace “rephrased Babbage’s words of assurance for the men of Prony’s
first section” (p. 52) (these were to be “the most eminent mathematicians in France, charged with
deciding which formulae would be best for use in the step-by-step calculation of the functions to
be tabulated. (They performed the programmer’s task.)” (p. 51). These “eminent” mathematical
“men of the first section”—and they were men—needed to be assured that the drudge work could
be handled by a machine, hence Lovelace’s words: “The Analytical Engine has no pretensions
whatever to originate anything. It can do whatever we know how to order it to perform.” This
puts a positive spin on a sentence that has typically been understood negatively: The computer
can do whatever we can program it to do (and not: The computer can “only” do whatever we
program it to do).

Further Reading:
Simon 1966 contains, among other things, a counterargument to the claim that computers cannot
think because they “do only what they are programmed to do” (p. 18). A sequel to that essay
is Simon’s “Scientific Discovery and the Psychology of Problem Solving”, in the same volume,
pp. 22–40, in which he argues that “scientific discovery is a form of problem solving”, and hence
computational in nature.

Stuart C. Shapiro 1995 presents brief refutations of various anti-AI arguments.

724 CHAPTER 19. PHILOSOPHY OF AI

19.5.2 Turing on Intelligent Machinery
This [probably the Manchester Mark 1 computer] is only a foretaste of what is to
come, and only the shadow of what is going to be. We have to have some expe-
rience with the machine before we really know its capabilities. It may take years
before we settle down to the new possibilities, but I do not see why it should not
enter any one of the fields normally covered by the human intellect, and eventually
compete on equal terms.
—Alan Turing, 1949 (https://quoteinvestigator.com/2019/10/12/ai-shadow/)

Turing 1950 was not Turing’s only essay on AI. In an essay written the next year, Turing seems
to come out a bit more strongly about the possibility of computers thinking:

‘You cannot make a machine to think for you.’ This is . . . usually accepted without
question. It will be the purpose of this paper to question it. (Turing, 1951, p. 256)

Although it is possible to read that last sentence neutrally, to my ears it sounds like a challenge
strongly suggesting that Turing thinks that you can make a machine think. Indeed, later he says
that his “contention is that machines can be constructed which will simulate the behaviour of
the human mind very closely” (p. 257). This is cautiously worded—is simulation of thinking
(that is, simulation of “the behavior of the human mind”) the same as “real” thinking?—but his
ultimate claim here is that it will come so close to human thinking as to make no difference: “on
the whole the output of them [that is, of such “thinking” machines] will be worth attention to the
same sort of extent as the output of a human mind” (p. 257, my italics). And how would this be
proved? By the Turing Test: “It would be the actual reaction of the machine to circumstances
that would prove my contention, if indeed it can be proved at all” (p. 257).

Turing also suggests that the algorithm for such a machine must be based on what is now
called ‘machine learning’: “If the machine were able in some way to ‘learn by experience’ it
would be much more impressive” (p. 257). (It is also worth pointing out that not everyone thinks
that machine learning is “really” learning (Bringsjord et al., 2018).) Moreover, he also suggests
that the machine should be an oracle machine (recall our discussion of these in §11.4.4):

There is . . . one feature that I would like to suggest should be incorporated in the
machines, and that is a ‘random element’. Each machine should be supplied with
a tape bearing a random series of figures, e.g., 0 and 1 in equal quantities, and this
series of figures should be used in the choices made by the machine. (p. 259)

Note, however, that Turing seems to consider these to be a (small) extension of Turing Machines.
Also interesting is his anticipation of what is now called “The Singularity” (see §11.4.5.2,

above), and the question that we will return to in Chapter 20 about whether we should build
artificial intelligences:

Let us now assume, for the sake of argument, that these machines are a genuine
possibility, and look at the consequences of constructing them. To do so would of
course meet with great opposition, unless we have advanced greatly in religious
toleration from the days of Galileo. There would be great opposition from the
intellectuals who were afraid of being put out of a job. . . . it seems probable that
once the machine thinking method had started, it would not take long to outstrip
our feeble powers. There would be no question of the machines dying, and they
would be able to converse with each other to sharpen their wits. At some stage
therefore we should have to expect the machines to take control
(pp. 259–260, my italics)

19.6. THE CHINESE ROOM ARGUMENT 725

Further Reading:
For an earlier essay by Turing on the nature of “a machine with intelligence”, see Turing 1947.

19.6 The Chinese Room Argument
If a Martian could learn to speak a human language, or a robot be devised to behave
in just the ways that are essential to a language-speaker, an implicit knowledge of
the correct theory of meaning for the language could be attributed to the Martian
or the robot with as much right as to a human speaker, even though their internal
mechanisms were entirely different. —Michael Dummett (1976, p. 70)

[R]esearchers . . . tracked . . . unresponsive patients . . . , taking EEG recordings
During each EEG recording, the researchers gave the patients instructions through
headphones. . . . “Somewhat to our surprise, we found that about 15 percent of
patients who were not responding at all had . . . brain activation in response to the
commands,” said Dr. Jan Claassen “It suggests that there’s some remnant of
consciousness there. However, we don’t know if the patients really understood
what we were saying. We only know the brain reacted.”
—Benedict Carey (2019, my italics)

Thirty years after Turing’s publication of the Turing Test, John Searle published a
thought experiment called the Chinese Room Argument (Searle, 1980, 1982, 1984).
In this experiment, a human who knows no Chinese (John Searle himself, as it hap-
pens) is placed in a room (the “Chinese room”) along with paper, pencils, and a book
containing an English-language algorithm for manipulating certain “squiggles” (marks
or symbols that are meaningless to Searle-in-the-room).

Terminological Digression:
I distinguish between (1) the real John Searle who is a philosopher and author of Searle 1980
and (2) the Chineseless “John Searle” who occupies the Chinese room. I refer to the former as
‘Searle’ and to the latter as ‘Searle-in-the-room’.

Outside the room is a native speaker of Chinese. There is something like a mail slot in
one wall of the Chinese room. Through that slot, the native speaker inputs pieces of pa-
per that contain a text written in Chinese along with reading-comprehension questions
about that text, also in Chinese. When Searle-in-the-room gets these pieces of paper—
which, from his point of view, contain nothing but meaningless squiggles—he consults
his book and follows its instructions. Those instructions tell him to manipulate the
symbols in certain ways, to write certain symbols down on a clean piece of paper, and
to output those “responses” through the mail slot. The native speaker who reads them
determines that whoever (or whatever) is in the room has answered all the questions
correctly in Chinese, demonstrating a fluent understanding of Chinese. This is because
the rule book of instructions is a complete natural-language-understanding algorithm
for Chinese. But, by hypothesis, Searle-in-the-room does not understand Chinese. We
seem to have a contradiction.

726 CHAPTER 19. PHILOSOPHY OF AI

The Chinese Room Argument (CRA) is offered as a counterexample to the Tur-
ing Test, concluding from this thought experiment that it is possible to pass a Turing
Test, yet not really think. The setup of the CRA is identical to the simplified, two-
player version of the Turing test: The interrogator is the native Chinese speaker, who
has to decide whether the entity in the room understands Chinese. The interrogator
determines that the entity in the room does understand Chinese. This is analogous to
deciding that the entity in the simplified Turing Test is a human, rather than a computer.
But the entity in fact does not understand Chinese. This is analogous to the entity in
the simplified Turing Test being a computer. So, Searle-in-the-room passes the Turing
Test without being able to “really” understand; hence, the test fails.

Or does it?

Further Reading: Historical Antecedents:
Although Searle’s CRA is the most famous version of this kind of set-up, there are earlier ones.
In 1959, the logician Hartley Rogers, Jr., wrote:

Consider a box B inside of which we have a man L with a desk, pencils and paper.
On one side B has two slots, marked input and output. If we write a number on
paper and pass it through the input slot, L takes it and begins performing certain
computations. If and when he finishes, he writes down a number obtained from
the computation and passes it back to us through the output slot. Assume further
that L has with him explicit deterministic instructions of finite length as to how the
computation is to be done. We refer to these instructions as P. Finally, assume that
the supply of paper is inexhaustible, and that B can be enlarged in size so that an
arbitrarily large amount of paper work can be stored in it in the course of any single
computation. . . . I think we had better assume, too, that L himself is inexhaustible,
since we do not care how long it takes for an output to appear, provided that it does
eventually appear after a finite amount of computation. We refer to the system B-
L-P as M. . . . In the approach of Turing, the symbolism and specifications are such
that the entire B-L-P system can be viewed as a digital computer Roughly, to
use modern computing terms, L becomes the logical component of the computer,
and P becomes its program. In Turing’s approach, the entire system M is hence
called a Turing machine. (Rogers, 1959, pp. 115, 117)

An even earlier version was in a 1954 episode of I Love Lucy, which we’ll discuss in §19.6.3.4.
And Weinberg 2019 argued that the science fiction story “The Game” (Mickevich, 1961) antic-
ipated the CRA, although it is actually closer to the philosopher Ned Block’s (1978) “Chinese
nation” thought experiment.

Further Reading on the CRA:
Too much has been written on the CRA to cite here, but you might start with these: Hauser
2001 and Cole 2019 are surveys from two online philosophical encyclopedias. Rapaport 1986c
is an overview written for a semi-popular computer magazine, and Rapaport 1988b is a review
of Searle 1984. Preston and Bishop 2002 is an anthology of responses to Searle (reviewed in
Rapaport 2006b). In 2014, an online series of articles providing background for the movie The
Imitation Game contained two critiques of the CRA: Cole 2014; Horst 2014.

19.6. THE CHINESE ROOM ARGUMENT 727

19.6.1 Two Chinese Room Arguments
Searle actually bases two arguments on the Chinese Room thought experiment:

The Argument from Biology:

B1 Computer programs are non-biological.

B2 Cognition is biological.

B3 ∴ No (non-biological) computer program can exhibit (biological) cognition.

The Argument from Semantics:

S1 Computer programs are purely syntactic.

S2 Cognition is semantic.

S3 Syntax alone is not sufficient for semantics.

S4 ∴ No (purely syntactic) computer program can exhibit (semantic) cognition.

The principal objection to the Argument from Biology is that premise B2 is at
least misleading and probably false: Cognition can be characterized abstractly, and
implemented in different media.

The principal objection to the Argument from Semantics is that premise S3 is false:
Syntax—that is, symbol manipulation—does suffice for semantics.

After investigating these objections (and others), we will consider whether there
are other approaches that can be taken to circumvent the CRA. One of them is to try to
build a real analogue of a Chinese room; to do that, we will need to answer the question
of what is needed for natural-language understanding.

19.6.2 The Argument from Biology
19.6.2.1 Causal Powers

Let’s begin by considering some of the things that Searle says about the CRA, begin-
ning with two claims that are versions of premise S1 of the Argument from Semantics:

I [that is, Searle-in-the-room] still don’t understand a word of Chinese and neither
does any other digital computer because all the computer has is what I have: a
formal program that attaches no meaning, interpretation, or content to any of the
symbols. What this simple argument shows is that no formal program by itself is
sufficient for understanding (Searle, 1982, p. 5)

Note that this allows for the possibility that a program that did “attach” meaning, etc.,
to the symbols might understand. But Searle denies that, too:

I see no reason in principle why we couldn’t give a machine the capacity to under-
stand English or Chinese, since in an important sense our bodies with our brains
are precisely such machines. But . . . we could not give such a thing to a machine
where the operation of the machine is defined solely in terms of computational
processes over formally defined elements (Searle, 1980, p. 422)

728 CHAPTER 19. PHILOSOPHY OF AI

Why not? Because “only something that has the same causal powers as brains can have
intentionality” (Searle, 1980, p. 423). By ‘intentionality’ here, Searle means “cogni-
tion” more generally. So he is saying that, if something exhibits cognition, then it must
have “the same causal powers as brains”.

All right; what are these causal powers? After all, if they turn out to be something
that can be computationally implemented, then computers can have them (which Searle
thinks they cannot). So, what does he say they are? He says that these causal powers
are due to the fact that “I am a certain sort of organism with a certain biological (i.e.
chemical and physical) structure” (Searle, 1980, p. 422, my italics). That narrows down
the nature of these causal powers a little bit. If we could figure out what this biological
structure is, and if we could figure out how to implement that structure computationally,
then we should be able to get computers to understand. Admittedly, those are big “if”s,
but they are worth trying to satisfy.

So, what is this biological structure? Before we see what Searle says about it,
let’s think for a moment about what a “structure” is. What is the “structure” of the
brain? One plausible answer is that the brain is a network of neurons, and the way
those neurons are organized is its “structure”. Presumably, if you made a model of the
brain using string to model the neurons, then, if the strings were arranged in the same
way that the neurons were, we could say that the model had the same “structure” as the
brain. Of course, string is static (it doesn’t do anything), and neurons are dynamic, so
structure alone won’t suffice, but it’s a start.

Further Reading:
There have been other suggestions along these lines: Weizenbaum 1976, Ch. 2, considers a Tur-
ing Machine made of toilet paper and pebbles. Weizenbaum 1976, Ch. 5, considers computers
“made of bailing wire, chewing gum, and adhesive tape”. There is even a real computer made
from Tinker Toys (https://www.computerhistory.org/collections/catalog/X39.81)! And recall our
discussion in §8.9.1 of Hilbert’s tables, chairs, and beer mugs.

However, Searle doesn’t think that even structure plus the ability to do something
is enough: He says that a simulated human brain “made entirely of . . . millions (or
billions) of old beer cans that are rigged up to levers and powered by windmills” would
not really exhibit cognition even though it appeared to (Searle, 1982). Cognition must
(also) be biological, according to Searle. That is, it must be made of the right stuff.

But now consider what Searle is saying: Only biological systems have the requisite
causal properties to produce cognition. So we’re back at our first question: What
are those causal properties? According to Searle, they are the ones that are “causally
capable of producing perception, action, understanding, learning, and other intentional
[that is, cognitive] phenomena” (Searle, 1980, p. 422). Again: What are the causal
properties that produce cognition? They are the ones that produce cognition! That’s
not a very helpful answer.

Elsewhere, Searle does say some things that give a possible clue as to what the
causal powers are: “mental states are both caused by the operations of the brain and
realized in the structure of the brain” (Searle, 1983, p. 265). In other words, they are
implemented in the brain. And this suggests a way to avoid Searle’s argument from
biology.

19.6. THE CHINESE ROOM ARGUMENT 729

19.6.2.2 The Implementation Counterargument

[M]ental states are as real as any other biological phenomena, as real as lactation,
photosynthesis, mitosis, or digestion. Like these other phenomena, mental states
are caused by biological phenomena and in turn cause other biological phenomena.
(Searle, 1983, p. 264, my italics)

Searle’s “mental states” are biological implementations. But, if they are implemen-
tations, then they must be implementations of something else that is more abstract:
abstract mental states. (This follows from §14.2.4’s Implementation Principle I.)

Searle (1980, p. 451, my italics) says that “. . . intentional states . . . are both caused
by and realized in the structure of the brain.” But brains and contraptions made from
beer-cans + levers + windmills can share structure. This is a simple fact about the
nature of structure. Therefore, what Searle said must be false: It can’t be a single
thing—an intentional (that is, mental) state—that is both caused by and realized in the
brain. Rather, what the brain causes are implemented mental states, but what the brain
realizes are abstract mental states, and the abstraction and its implementation are two
distinct things.

In §14.2.2, we saw that abstractions can be implemented in more than one way—
they can be “multiply realized”. (This was §14.2.4’s Implementation Principle II.) We
saw that stacks can be implemented as arrays or as lists, that any sequence of items
that satisfy Peano’s axioms is an implementation of the natural numbers, that any two
performances of the same play or music are different implementations of the script or
score, and so on.

So, Searle says that the human brain can understand Chinese because understanding
is biological, whereas a computer executing a Chinese natural-language-understanding
program cannot understand Chinese, because it is not biological. But the implemen-
tation counterargument says that, on an abstract, functional, computational notion of
understanding as an abstraction, understanding can be implemented in both human
brains and in computers, and, therefore, both can understand.

More generally, if we put Implementation Principles I and II together, we can see
that if we begin with an implementation (say, real, biological mental states), we can
develop an abstract theory about them. This is what AI and computational cognitive
science try to do, following Minsky’s methodology. But once we have an abstract
theory, we can re-implement it in a different medium. If our abstract theory is com-
putable, then we can re-implement it in a computer. When this happens, our use of
words changes, because general educated opinion changes, as Turing predicted. And
this is consistent with Boden’s methodology: We can learn something about human
cognition by studying computer cognition.

730 CHAPTER 19. PHILOSOPHY OF AI

Digression:
This transition from an implementation in one medium “up” to an abstraction, and then “down”
to another implementation in a different medium is what happened with flying. We began with
an implementation (birds and other animals that fly). We then developed an abstract theory (the
physics of flight). And this was then re-implemented in the medium of airplanes.

It also happened with computers. We began with an implementation (humans who compute).
Turing (1936) then developed an abstract theory (the mathematical theory of Turing Machine
computation). And that was then re-implemented in electronic, digital computers.

19.6.3 The Argument from Semantics
Now let’s turn to Searle’s second argument, repeated here:

S1 Computer programs are purely syntactic.

S2 Cognition is semantic.

S3 Syntax alone is not sufficient for semantics.

S4 ∴ No purely syntactic computer program can exhibit semantic cognition.

In this section, we will look at reasons for thinking that S3 is false, that syntax does
suffice for semantics.

19.6.3.1 The Premises

First, let’s consider this argument in a little bit more detail. Premise S1 says that com-
puter programs merely tell a computer to (or describe how a computer can) manipulate
symbols solely on the basis of their properties as marks and their relations among
themselves. This manipulation is completely independent of the symbols’ semantic re-
lations, that is, of the relations that the symbols have to other items that are external to
the computer. These external items are the meanings or interpretations of the symbols,
the “aspects” of the real world that the symbols represent (Lewis, 1970, p. 19). Note,
by the way, that insofar as a computer did manipulate its internal symbols in a way
that was causally dependent on such external items, it could only do so by inputting an
internal representative of that external item. But, in that case, it would still be directly
manipulating only internal symbols, and only indirectly dealing with the external item.

Premise S2 says that cognition is centrally concerned with such “external” rela-
tions. Cognition, roughly speaking, is whatever the brain does with the sensory inputs
from the external world. To fully understand cognition, according to this premise, it is
necessary to understand the internal workings of the brain, the external world, and the
relations between them. That is a semantic enterprise.

It seems clear that the study of relations among the symbols alone could not possi-
bly suffice to account for the relations between those symbols and anything else. Hence
premise S3: Syntax and semantics are two different, though related, subjects.

Conclusion S4 seems to follow validly. So, any questions about the goodness of the
argument must concern its soundness: Are the premises true? Doubts have been raised
about each of them.

19.6. THE CHINESE ROOM ARGUMENT 731

19.6.3.2 Which Premise Is at Fault?

Let’s look at S1 first: Although it is not a computer program, the World Wide Web
is generally considered to be a syntactic object: a collection of nodes (for example,
websites) related by links; that is, its mathematical structure is that of a graph. Some
researchers have felt that there are limitations to this “syntactic” web and have proposed
the Semantic Web. By “attaching meanings” to websites (as Searle might say), they
hope to make the Web more . . . well . . . meaningful, more useful. In fact, however, the
way they do this is by adding more syntax! So, for now, we’ll accept premise S1. (For
arguments that S1 is false, recall our discussion in §17.8.)

Further Reading: On the Semantic Web, see Berners-Lee et al. 2001. On its syntactic nature,
see Rapaport 2012b, §3.2 and note 25.

Next, let’s look at S2: Recall from the Digressions in §11.4.3.4.2 and 17.9 that at
least one major philosopher, Jerry Fodor (1980), has argued that the study of cognition
need not involve the study of the external world that is being cognized, on the grounds
that cognition is what takes place internally to the brain. Whether the brain correctly or
incorrectly interprets its input from the external world, it’s the interpretation that mat-
ters, not the actual state of the external world. This view (“methodological solipsism”)
holds that, as a methodology for studying cognition, we can pretend that the external
world doesn’t exist; we only have to investigate what the brain does with the inputs that
it gets, not where those inputs come from or what they are really like. (We’ll return to
this in §19.6.3.4.)

Of course, if understanding cognition only depends on the workings of the brain
and not on its relations with the external world, then the study of cognition might be
purely syntactic. And so we’re ready to consider premise S3. Can we somehow get
semantics from syntax? There are three, interrelated reasons for thinking that we can.

First, we can try to show that semantics, which is the study of relations between
symbols and meanings, can be turned into a syntactic study, a study of relations among
symbols and “symbolized” meanings (see §19.6.3.3, below). Second, we can take
the methodologically solipsistic approach and argue that an internal, “narrow”, first-
person point of view is (all that is) needed for understanding or modeling cognition
(see §19.6.3.4). Third, it can be argued that semantics is recursive in the sense that
we understand a syntactic domain in terms of an antecedently understood semantic
domain, but that there must be a base case, and that this base case is a case of syntactic
understanding (see §19.6.3.5).

Before looking at each of these, remember that Searle claims that syntax cannot
suffice for semantics because the former is missing the links to the external world.
This kind of claim relies on two assumptions, both of which are faulty. First, Searle is
assuming that computers have no links to the external world, that they are really (and
not just methodologically) solipsistic. But this is obviously not true, and is certainly
inconsistent with Brian Cantwell Smith’s (1985) point that, even if computers only deal
with an (internal) model of the real world, they have to act in the real world. (Recall
our discussion in §17.3.)

732 CHAPTER 19. PHILOSOPHY OF AI

Second, Searle assumes that external links are really needed in order to attach
meanings to symbols. But, if so, then why couldn’t computers have them just as well
as humans do? Both humans and computers exist and act in the world. If we humans
have the appropriate links, what reason (other than the faulty Argument from Biology)
is there to think that computers could not?

19.6.3.3 Semiotics

The first reason for thinking that syntax might suffice for semantics comes from semi-
otics, the study of signs and symbols. According to one major semiotician, Charles
Morris (1938), semiotics has three branches: syntax, semantics, and pragmatics.

Given a formal system of “marks” (symbols without meanings)—sometimes called
a “(formal) symbol system”—syntax is the study of the properties of the marks and
of the relations among them: how to recognize, identify, and construct them (in other
words, what they look like, for instance, their grammar), and how to manipulate them
(for instance, their proof theory). Importantly, syntax does not study any relations
between the marks and anything else. (Recall our discussion in §14.3.2.1 of formal
systems and our discussion in §17.9.2 of symbols, marks, and meanings.)

Semantics is the study of relations between the marks and their “meanings”. Mean-
ings are part of a different domain of semantic interpretations (recall our discussion of
this in §14.3.2.3). Therefore, syntax cannot and does not suffice for semantics! (Or so
it would seem.)

Pragmatics has been variously characterized as the study of relations among marks,
meanings, and the cognitive agents that interpret them; or as the study of relations
among marks, meanings, interpreters, and contexts. Some philosophers have suggested
that pragmatics is the study of everything that is interesting about symbols systems that
isn’t covered under syntax or semantics!

For our purposes, we only need to consider syntax and semantics. Again, let’s be
clear. Syntax studies the properties of, and relations among, the elements of a single
set of objects (which we are calling “marks”); for convenience, call this set SYN.
Semantics studies the relations between the members of two sets: the set SYN of marks,
and a set SEM of “meanings”.

Now, take the set-theoretical union of these two sets—the set of marks and the set
of meanings: SYNSEM = SYN ∪ SEM. Consider SYNSEM as a new set of marks. We
have now “internalized” the previously external meanings into a new symbol system.
And the study of the properties of, and the relations among, the members of SYNSEM
is SYNSEM’s syntax! In other words, what was formerly semantics (that is, relations
between the marks in SYN and their meanings in SEM) is now syntax (that is, relations
among the new marks in SYNSEM.) This is how syntax can suffice for semantics.

This can be made clearer with the diagram in Figure 19.6. The top picture of a
set of marks (“SYNtactic DOMain”) shows two of its members and a relation between
them. Imagine that there are many members, each with several properties, and many
with relations between them. The study of this set, its members, their properties, and
the relations they have to each other is the syntax of SYN.

Now consider the middle picture: two sets, SYN and a set of “meanings”
(“SEMantic DOMain”). SYN, of course, has its syntax. But so does SEM. (Often,

19.6. THE CHINESE ROOM ARGUMENT 733

Figure 19.6: Syntax, semantics, and syntactic semantics

in AI, the syntax of a semantic domain is called its “ontology”.) But now there are ad-
ditional relations between (some or all of) the members of SYN and (some or all of) the
members of SEM. Note that these relations are “external” to both domains: You really
can’t describe these relations using only the language used to describe SYN or only the
language used to describe SEM. Instead, you need a language that can talk about both
domains, and that language cannot be “internal” to either domain. The study of these
relations is what is called “semantics”. The usual idea is that the members of SEM
are the “meanings” of the members of SYN, espcially if SYN is the language used to
describe SEM. So, for instance, you might think of SEM as the actual world and SYN
as either a language like English that talks about the actual world or a scientific theory
about the actual world, perhaps expressed in some mathematical (or computational!)
language. Another way to think about this is that SEM gives us the facilities needed to
understand SYN: We understand SYN in terms of SEM.

Further Reading:
B.C. Smith (2019, p. 12) makes a similar point about the independence of the semantic inter-
pretation relations from both SYN and SEM in his claim that “semantic relations to the world
(including reference) are not effective. The presence of a semantic relation can’t be causally
detected at either end” (That is, it can’t be detected from SYN or from SEM.)

In the bottom picture, we have taken the union of these two domains. Now, the for-
merly “external” semantic relations have become internal relations of the new, unioned
domain. But, as such, they are now no different in principle from the previous internal,
syntactic relations of SYN or the previous internal, syntactic (or ontological) relations
of SEM. Thus, these previous semantic relations have also become syntactic ones. This
is what we called “syntactic semantics” in §17.8.2.

734 CHAPTER 19. PHILOSOPHY OF AI

Further Reading:
For more details on syntactic semantics, see Rapaport 1988a, 2012b, 2017a. Any study of se-
mantics in linguistics—in the sense of a study of the meanings of linguistic expressions—that
focuses only on relations either among the expressions or between the expressions and mental
“conceptual structures”—and not on relations between expressions and aspects of the external
world—is a syntactic enterprise. This is the nature of semantics in, for instance, cognitive lin-
guistics (Lakoff, 1987; Langacker, 1999; Talmy, 2000; Jackendoff and Audring, 2018).

This way of viewing semantics as a kind of syntax raises a number of questions:
Can the semantic domain be internalized? Yes, under the conditions obtaining for
human language understanding: How do we learn the meaning of a word? How, for
instance, do I learn that the word ‘tree’ means “tree”? A common view is that this
relation is learned by associating real trees with the word ‘tree’.

Digression:
Obviously, this is only the case for some words. Logical words (‘the’, ‘and’, etc.), words for
abstract concepts (‘love’), and words for things that don’t exist (‘unicorn’) are learned by differ-
ent means. And most children raised in large cities learn (somehow) the meanings of words like
‘cow’ or ‘rabbit’ from pictures of cows and rabbits, long before they see real ones!

But really what happens is that my internal representation of an actual tree in the
external world is associated with my internal representation of the word ‘tree’. Those
internal representations could be certain sets of neuron firings. In whatever way that
neurons are bound together when, for instance, we perceive a pink cube (perhaps with
shape neurons firing simultaneously with, and thereby binding with, color neurons that
are firing), the neurons that fire when we see a tree might bind with the neurons that
fire when we are thinking of, or hearing, or reading the word ‘tree’.

And the same thing can happen in a computational cognitive agent. Suppose we
have such an agent (a robot, perhaps; call her ‘Cassie’) whose computational “mind”
is implemented as a semantic network whose nodes represent concepts and whose arcs
represent structural relations between concepts, as in Figure 19.7: There is a real tree
external to Cassie’s mind. Light reflecting off the tree enters Cassie’s eyes; this is the
causal link between the tree and Cassie’s brain. The end result of the visual process is
an internal representation of the tree in Cassie’s brain. But she also has an internal rep-
resentation of the word ‘tree’, and those two representations can be associated. What
Cassie now has is an enlarged set of marks, including a mark for a word and a mark for
the word’s meaning. But they are both marks in her mind.

Further Reading:
For more about Cassie, see “A ‘Conversation’ with Cassie” at http://www.cse.buffalo.edu/
∼rapaport/675w/cassie.conversation.new.html, and Shapiro and Rapaport 1987, 1995; Rapaport
1988a, 2006a; Shapiro 1989, 1998.

This is akin to the Robot Reply to the CRA (Searle, 1980, p. 420), in which sen-
sors and effectors are added to the Chinese Room so that Searle-in-the-room can both

19.6. THE CHINESE ROOM ARGUMENT 735

Figure 19.7: How a computational cognitive agent perceives the world

perceive the external world as well as act in it. Searle’s response to the Robot Reply
is to say that it is just more symbols. The reply to Searle is to say that that is exactly
how human cognition works! In our brains, all cognition is the result of neuron firings.
The study of that single set of neuron firings is a syntactic study, because it is the study
of the properties of, and relations among, a single set of “marks”—in this case, the
“marks” are neuron firings.

Digression and Further Reading:
Rescorla 2012a, p. 19, says, “neural properties are not multiply realizable. So neural properties
are not syntactic properties.” But he gives no argument for why they are not multiply realizable,
nor is it clear why he thinks that they are not syntactic as a consequence of this. I agree that
neurons are not multiply realizable, but surely their properties are. Properties, after all, are
universals, and, if anything is multiply realizable, universals are.

The same is true for computers: If I say something to Cassie in English, she builds
internal nodes that represent my utterance in her semantic network. If I show pictures
to her, or if she sees something, she builds other internal nodes representing what she
sees. This set of nodes forms a single computational knowledge base, whose study is
syntactic in nature (because it is the study of the properties of, and relations among, a
single set of “marks”—in this case, the “marks” are nodes in a semantic network). In
the same way, both truth tables and the kind of formal semantics that logicians study are
syntactic ways of doing semantics: The method of truth tables syntactically manipu-
lates symbols that represent semantic truth values. And formal semantics syntactically
manipulates symbols that represent the objects in the domain of semantic interpreta-
tion.8

8I owe this observation to Brian Cantwell Smith’s panel presentation at the 1983 Cognitive Science
Society conference at the University of Rochester (Hayes, 1983).

736 CHAPTER 19. PHILOSOPHY OF AI

19.6.3.4 Points of View

The second prong of our reply to the Argument from Semantics concerns the differing
points of view of the native, Chinese-speaking interrogator and Searle-in-the-room.
To understand how a cognitive agent understands, and to construct a computational
cognitive agent, we should take the first-person point of view. We should construct
a cognitive agent (a robot, if you will) from the agent’s point of view, from the per-
spective of what’s going on “inside” the agent’s head. In other words, we must be
methodologically solipsistic and develop or implement a “narrow” or “internal” model
of cognition. Such a model is called ‘narrow’, as opposed to ‘wide’, because it ignores
the wider outside world and focuses only on the narrow inner world of the agent’s
point of view. We don’t need to understand the causal or historical orgins of the agent’s
internal symbols; we only need to understand the symbols.

Further Reading:
For arguments why AI should take the first-person point of view, see Maida and Shapiro 1982,
p. 296; Rapaport and Shapiro 1984; Rapaport 1986a; Wiebe and Rapaport 1986; Shapiro and
Rapaport 1987, 1991; and Chalmers 2019, §2(1), p. 20.

But, in the CRA, there are two different points of view: There is Searle-in-the-
room’s point of view and there is the interrogator’s point of view. In the CRA, Searle-
in-the-room’s point of view trumps the interrogator’s; in the Turing Test (and in the
kind of syntactic semantics that we are discussing), the interrogator’s trumps Searle-
in-the-room’s. How should we resolve this?

Here is an analogy that I think helps clarify the situation. Consider the following
passage from The Wizard of Oz (the novel, not the movie):

When Boq [a Munchkin] saw her silver shoes, he said,
“You must be a great sorceress.”
“Why?” asked [Dorothy].
“Because you wear silver shoes and have killed the wicked witch. Besides, you
have white in your frock, and only witches and sorceresses wear white.”
“My dress is blue and white checked,” said Dorothy
“It is kind of you to wear that,” said Boq. “Blue is the color of the Munchkins, and
white is the witch color; so we know you are a friendly witch.”
Dorothy did not know what to say to this, for all the people seemed to think her a
witch, and she knew very well she was only an ordinary little girl who had come
by the chance of a cyclone into a strange land.
(Baum, 1900, pp. 34–35)

Is Dorothy a witch? From her point of view, the answer is ‘no’; from Boq’s point
of view, the answer is ‘yes’. Whose point of view should trump the other’s? Dorothy
certainly believes that she’s not a witch, at least as she understands the word ‘witch’
(you know—black hat, broomstick, Halloween, and all that). Now, it is certainly pos-
sible that Dorothy is such a witch while believing (mistakenly in that case) that she is
not such a witch. So, what counts as being a witch (in these circumstances)? Note that

19.6. THE CHINESE ROOM ARGUMENT 737

the dispute between Dorothy and Boq is not about whether Dorothy is “really” a witch
in some context-independent sense. The dispute is about whether Dorothy is a witch in
Boq’s sense, from Boq’s point of view. And, because Dorothy is in Oz, Boq’s point of
view trumps hers!

Now compare this to the Chinese room situation: Here, instead of asking whether
Dorothy is a witch, we ask: Does Searle-in-the-room understand Chinese? From his
point of view, the answer is ‘no’; from the native Chinese speaker’s point of view, the
answer is ‘yes’. Whose point of view should trump the other’s? Searle-in-the-room
certainly believes that he does not understand Chinese, at least as he understands ‘un-
derstanding Chinese’ (that is, in the way that you understand your native language as
opposed to the way that you understand a foreign language that you may have (poorly)
learned in school). Now, it is certainly possible that Searle-in-the-room does under-
stand Chinese while believing (mistakenly, in that case) that he does not understand
it. So, what counts as understanding Chinese (in these circumstances)? For the same
reason as in the witch case, it must be the native Chinese speaker’s point of view that
trumps Searle-in-the-room’s!

Of course, it would be perfectly reasonable for Searle-in-the-room to continue to
insist that he doesn’t understand Chinese. Compare Searle-in-the-room’s situation to
mine: I studied French in high school; spent a summer living with a French family in
Vichy, France; spent a summer studying French (although mostly speaking English!)
at the University of Aix-en-Provence; and have visited French friends in France many
times. I believe that I understand about 80% of the French that I hear in a one-on-
one conversation (considerably less if I’m hearing it on TV or radio) and can express
myself the way that I want about 75% of the time (I have, however, been known to
give directions to Parisian taxi drivers), but I always feel that I’m missing something.
Should I believe my native French-speaking friends when they tell me that I am fluent
in French? Searle would say ‘no’.

But Searle-in-the-room isn’t me. Searle-in-the-room can’t insist that he alone
doesn’t understand Chinese and that, therefore, his point of view should trump the
native, Chinese-speaking interrogator’s. And this is because Searle-in-the-room isn’t
alone: Searle-in-the-room has the Chinese natural-language-processing rule book (even
if he doesn’t know that that’s what it is). This is the core of what is known as the
Systems Reply to the CRA (Searle, 1980, pp. 419–420), according to which it is the
“system”—consisting of Searle-in-the-room together with the rule book—that under-
stands Chinese. After all, it is not a computer’s CPU that would understand Chinese
(or do arithmetic, or do word-processing), but it is the system, or combination, con-
sisting of the CPU executing a computer program that would understand Chinese (or
do arithmetic, or process words). Compare: It is not a universal Turing Machine by
itself that can do arithmetic, but a universal Turing Machine together with a program
stored on its tape for doing arithmetic that can do arithmetic. And Searle-in-the-room
together with the rule book, stranded on a desert island, could communicate (fluently)
with a native, Chinese-speaking “Friday”.9

Does it make sense for a “system” like this to exhibit cognition? Doesn’t cognition
have to be something exhibited by a single entity, like a person, an animal, or a robot?

9‘Friday’ was the name of a resident of the island that Robinson Crusoe was stranded on in Defoe 1719.

738 CHAPTER 19. PHILOSOPHY OF AI

But recall Hutchins’s theory of distributed cognition (§18.7). His example of a ship’s
crew together with their navigation instruments that navigates a ship is a real-life coun-
terpart of Searle-in-the-room together with his rule book: “Cognitive science normally
takes the individual agent as its unit of analysis. . . . [But] systems that are larger than
an individual may have cognitive properties in their own right that cannot be reduced
to the cognitive properties of individual persons” (Hutchins, 1995b, pp. 265–266). So,
Searle-in-the-room plus his external rule book can have the cognitive property of un-
derstanding Chinese, even though Searle-in-the-room all by himself lacks that property.

On the other hand, if the property of understanding Chinese (that is, the knowledge
of Chinese) has to be located in some smaller unit than the entire system, it would
probably have to be in the rule book, not Searle-in-the-room! Compare: The knowledge
of arithmetic is stored in the program on the universal Turing Machine’s tape, not in
the universal Turing Machine’s fetch-execute cycle. In an episode of the 1950s TV
comedy series I Love Lucy, Lucy tries to convince her Cuban in-laws that she speaks
fluent Spanish, even though she doesn’t. To accomplish this, she hires a native Spanish
speaker to hide in her kitchen and to communicate with her via a hidden, two-way radio,
while she is in the living room conversing with her in-law “interrogators”. Here, it is
quite clear that the knowledge of Spanish resides in the man in the kitchen. Similarly,
the knowledge of Chinese resides in the rule book. It is the ability to execute or process
that knowledge that resides in Searle-in-the-room. Together, the system understands
Chinese.

Further Viewing:
The I Love Lucy episode is Season 4, Episode 8, “Lucy’s Mother-in-Law” (1954), https://www.
imdb.com/title/tt0609297/.

We saw earlier that it can be argued that cognitive agents have no direct access to
external entities. When I point to a tree, what I am aware of is, not my actual hand
pointing to the actual tree, but an internal visual image of: my hand pointing to a tree.
Recall (from §§3.12, 4.5.1, and 17.3.2.3) Immanuel Kant’s theory of “phenomena” and
“noumena”. We are not directly aware of (for Kant, we have no knowledge of) the real
world as it is in itself; he called this the world of “noumena” (singular: noumenon).
All that we are aware of is the world filtered through our senses and our mental con-
cepts; he called this the world of “phenomena” (singular: phenomenon). My access to
the external world of noumena is mediated by internal representatives. There are sev-
eral reasons for thinking that this is really the case (no matter how Matrix-like it may
sound!): There is an “argument from illusion” that says that, because we see different
things with each eye, what we see is, not what’s out there, but the outputs of what our
eyes have conveyed to our brains and that our brains have processed (Ayer, 1956, Ch. 3,
§(ii), pp. 87–95). And there is an argument from time delay: Because it takes time (no
matter how short) for light reflected off an object to reach our eyes, we see events after
they happen; so, what we are seeing is in our heads, not out there (Russell 1912, Ch. 3,
p. 33; Changizi et al. 2008).

Now, someone who takes a third-person point of view would say that you can have
access to the external world. For instance, as a computer scientist programming a
robot, it seems that I can have access to the world external to the robot as well as to

19.6. THE CHINESE ROOM ARGUMENT 739

the robot’s internal mind (and I can compare the two, to determine if the robot has any
misperceptions). If the robot (or you) and I are both looking at a tree, we see the same
tree, don’t we? From the first-person point of view, the answer is ‘no’: As the robot’s
programmer, I have access only to my internal representation of the external world and
to my internal representation of the robot’s internal world. And the same goes for you
with respect to me, and for me with respect to you. If you and I are looking at a tree,
we are each aware only of our two, separate internal representatives of that tree: one in
your mind, one in mine; one produced by your neuron firings, one produced by mine.
We cannot get outside of our heads to see what’s really going on:

Kant was rightly impressed by the thought that if we ask whether we have a correct
conception of the world, we cannot step entirely outside our actual conceptions and
theories so as to compare them with a world that is not conceptualized at all, a bare
‘whatever there is.’ (Williams, 1998, p. 40)

So, by merging internalized semantic marks with internal syntactic marks, the se-
mantic project of mapping meanings to symbols can by handled by syntax, that is, by
symbol manipulation. That is another reason why syntax suffices for the first-person,
semantic enterprise, and why Searle’s Argument from Semantics is unsound.

But there is a third reason, too.

19.6.3.5 A Recursive Theory of Understanding

Semantics, as we have seen, requires there to be two domains and one binary relation:
There is the syntactic domain of marks (SYN), characterized by syntactic formation
and inference rules. There is a semantic domain of meanings or interpretation (SEM),
also characterized by syntactic formation and inference rules (its ontology). And there
is a binary, semantic interpretation function, I : SYN → SEM, that assigns meanings
from SEM to marks in SYN.

On this view, we use SEM to understand SYN. Therefore, we must antecedently
understand SEM. Otherwise, we would be understanding one thing in terms of some-
thing else that we do not understand, and that should hardly count as understanding.

So, how do we understand SEM? In the same way that we understand SYN: by
treating SEM as a new syntactic domain, and then finding a new semantic domain,
SEM′, in terms of which to understand SEM. Brian Cantwell Smith (1987) called this
a “correspondence continuum”, because it can be continued indefinitely, understanding
the SEM′ in terms of yet another SEM′′, and so on. As we saw in the Digression in
§14.3.3, to stop an infinite regress, there must be a base case, a “last” semantic domain
that we understand directly, in terms of itself rather than in terms of something else.
But to understand a domain in terms of itself is to understand its members solely in
terms of their properties and relations to each other. And that is syntax. It is a kind of
understanding that can be called ‘syntactic understanding’. We understand a domain
syntactically by being conversant with manipulating its marks or by knowing which
well-formed formulas (§14.3.2.1) are theorems. On this view, the “meaning” of a mark
is its location in a network of other marks, with the connections between the marks
being their properties and relations to the other marks in the network. (This is called
“meaning holism”.)

740 CHAPTER 19. PHILOSOPHY OF AI

Further Reading:
On antecedent understanding, see Rosenblueth and Wiener 1945, p. 317, and a discussion of it in
Rapaport 1996, p. 30. It also plays an important role in Michael Dummett’s (1975) theories about
understanding the meaning of linguistic expressions. On syntactic understanding, see Rapaport
1986f. On meaning holism, see de Saussure 1959; Fodor and Lepore 1992; Rapaport 2002;
Jackman 2017.

Here is another way to think about it: When I understand what you say, I do this by
interpreting what you say, that is, by mapping what you say into my concepts. Similarly,
I (semantically) understand a purely syntactic formal system by interpreting it, that is,
by providing a (model-theoretic) semantics for it. Now, let’s turn the tables: What
would it be for a formal system to understand me? Does that even make sense? Sure:
Robots that could understand natural language, or even simple commands, are merely
programs—formal systems—being executed. The answer is this: A formal system
could understand me in the same way that I could understand it—by treating what
I say as a formal system and interpreting it. Note that links to the external world
are irrelevant; the “semantic” interpretation of a formal system is a purely syntactic
enterprise.

19.7 Leibniz’s Mill and Turing’s “Strange Inversion”
Indeed, the only astonishing thing to intuition is how dumb switch-throwing or
bit-switching at the lowest machine level can concatenate to produce non-intuitive
and even mind-boggling results. This is the same remarkable thing as how com-
plex syntax can simulate semantics, or how the commas in the first edition of The
Critique of Pure Reason, together with a few dozen other intrinsically meaningless
marks, simply by differing from one another and standing in a particular complex
pattern, may articulate a revolutionary theory that changed history.
—Peter Suber (1988, pp. 117–118)

One reason that the CRA has some plausibility is that it is difficult (some would say
that it is impossible) to see how “real thinking” or “real understanding” could come
about as the result of “mere” symbol manipulation. The idea that somehow printing out
010101. . . “computes” (say) 1

3 in base 2 (recall our discussion in Chapter 8, §8.11.1.1)
is related to the idea that Turing Machine computation is “automatic” or “mechanical”.
Consider any of the lengthy Turing Machine programs in Turing 1936. Do humans
following them understand what they are doing? This is one of the reasons that people
like Searle find it difficult to understand how a purely syntactic device (a computer) can
produce semantic results (can do arithmetic, can understand—or, at least, process—
natural language, etc.). And it is what gives rise to Searle’s CRA.

The most famous expression of this is due to Leibniz:

Imagine there were a machine whose structure produced thought, feeling, and per-
ception; we can conceive of its being enlarged while maintaining the same relative
proportions [among its parts], so that we could walk into it as we can walk into a

19.7. LEIBNIZ’S MILL AND TURING’S “STRANGE INVERSION” 741

mill. Suppose we do walk into it; all we would find there are cogs and levers and
so on pushing one another, and never anything to account for a perception.
(Leibniz, 1714, §17, translator’s bracketed interpolation)

Leibniz was looking at things from the bottom up. A top-down approach can make
it more plausible, but one must be cautious: An infamous top-down approach is the
theory of the “homunculus” (a Latin word meaning “little man”; plural = ‘homunculi’):
In the philosophy of mind and perception, a possible explanation of how we see is that
light enters our eyes, an image is formed on the retina, and a “little man” inside our
brain sees it. (See Figures 19.8, 19.9.) The problem with this, of course, is that it
doesn’t explain how the homunculus sees. Postulating a second homunculus in the first
homunculus’s brain just postpones the solution. (See https://en.wikipedia.org/wiki/
Homunculus argument.)

Daniel C. Dennett offers a recursive alternative that avoids this infinite regress, with
the base case being something that can just say ‘yes’ or ‘no’ when asked:

The AI programmer begins with an Intentionally[10] characterized problem, and
thus frankly views the computer anthropomorphically: if he [sic] solves the prob-
lem he will say he has designed a computer that can understand questions in En-
glish. His first and highest level of design breaks the computer down into subsys-
tems, each of which is given Intentionally characterized tasks; he composes a flow
chart of evaluators, rememberers, discriminators, overseers and the like. These are
homunculi with a vengeance; the highest level design breaks the computer down
into a committee or army of intelligent homunculi with purposes, information and
strategies. Each homunculus in turn is analysed into smaller homunculi, but more
important into less clever homunculi. When the level is reached where the ho-
munculi are no more than adders and subtracters, by the time they need only the
intelligence to pick the larger of two numbers when directed to, they have been
reduced to functionaries ‘who can be replaced by a machine’. The aid to compre-
hension of anthropomorphizing the elements just about lapses at this point, and a
mechanistic view of the proceedings becomes workable and comprehensible.
(Dennett, 1975, pp. 178–179)

It’s worth noting the similarity of this view of the bottom level with Babbage’s com-
ments about the “drudge work” to be handled by his Analytical Engine (see §19.4.3,
above).

But another approach to Leibniz’s puzzle is to bite the bullet. Dennett first noted
this in the context of Darwin’s theory of evolution, citing a critic of Darwin who at-
tempted to show that Darwin’s theory was nonsense:

In the theory with which we have to deal, Absolute Ignorance is the artificer; so
that we may enunciate as the fundamental principle of the whole system, that, IN
ORDER TO MAKE A PERFECT AND BEAUTIFUL MACHINE, IT IS NOT
REQUISITE TO KNOW HOW TO MAKE IT. This proposition will be found,
on careful examination, to express, in condensed form, the essential purport of
the Theory, and to express in a few words all Mr. Darwin’s meaning; who, by a

10Recall our discussion in §12.4.4.1.1 of Dennett’s “intentional stance”.

742 CHAPTER 19. PHILOSOPHY OF AI

Figure 19.8: Homunculi from an exhibit at the Buffalo Museum of Science(!)
(author’s photo)

19.7. LEIBNIZ’S MILL AND TURING’S “STRANGE INVERSION” 743

Figure 19.9: “Intelligence”, “vision”, and other homunculi from the exhibit at the Buf-
falo Museum of Science (author’s photo)

744 CHAPTER 19. PHILOSOPHY OF AI

strange inversion of reasoning, seems to think Absolute Ignorance fully qualified
to take the place of Absolute Wisdom in all of the achievements of creative skill.
(R. MacKenzie Beverley, quoted in Dennett 2009a, p. 10061, capitalization in orig-
inal, my italics; see also Dennett 2013b, p. 570, and Dennett 2017, pp. 53–54)

Dennett, however, finds this to be an accurate description of Darwin’s theory, and ap-
plies it to Turing:

IN ORDER TO BE A PERFECT AND BEAUTIFUL COMPUTING MACHINE,
IT IS NOT REQUISITE TO KNOW WHAT ARITHMETIC IS.
(Dennett 2009a, p. 100061; Dennett 2013b, p. 570; Dennett 2017, p. 55)

Or, as “Novalis” (Georg Philipp Friedrich Freiherr von Hardenberg, 1772–1801) said:

One may be a mathematician of the first rank without being able to compute. It is
possible to be a great computer without having the slightest idea of mathematics.
(cited in Ralston 1999, p. 173, my italics)

Digression:
As we noted in the question at the end of §10.2.1, it’s worth comparing the explication of the
informal notion of algorithm in terms of a Turing Machine (or recursive functions) with the
attempt to define life in scientific terms.

Every cell in my body knows how to replicate DNA yet I’m not in on it so I have
to spend hours studying it. (anonymous meme found on the Web, 2015.)

Compare this sentence from an evolutionary biologist . . .

The possibility of the deliberate creation of living organisms from elementary ma-
terials that are not themselves alive has engaged the human imagination for a very
long time. (Lewontin, 2014, p. 22)

. . . to this paraphrase:

The possibility of the deliberate creation of intelligent behavior from elementary
operations that are not themselves intelligent has engaged the human imagination
for a very long time.

Others have made similar observations:

Francis Crick, in his Danz lectures Of Molecules and Men, discusses the prob-
lem of how life could have arisen:

[This] really is the major problem in biology. How did this com-
plexity arise?

The great news is that we know the answer to this question, at
least in outline. . . . The answer was given over a hundred years ago
by Charles Darwin Natural selection . . . provides an “automatic”
mechanism by which a complex organism can survive and increase in
both number and complexity.

For us in Cognitive Science, the major problem is how it is possible for mind
to exist in this physical unverse. The great news . . . is that we know, at least in
outline, how this might be. (Newell, 1980, p. 182)

According to Newell, the answer was given in 1936 by Alan Turing. Computation provides an
automatic mechanism by which a machine (living or otherwise) can exhibit cognitive behavior.

19.7. LEIBNIZ’S MILL AND TURING’S “STRANGE INVERSION” 745

The “strange inversion” concerns the apparent paradox that “intelligent” behav-
ior can “emerge” from “unintelligent” or “mechanical” behavior. Herbert Simon says
some things that suggest that the paradox originates in an equivocation on ‘mechani-
cal’: He says that both computers and brains are “mechanisms”:

If by a mechanism we mean a system whose behavior at a point in time is
determined by its current internal state combined with the influences that simulta-
neously impinge upon it from outside, then any system that can be studied by the
methods of science is a mechanism.

But the term “mechanism” is also used in a narrower sense to refer to systems
that have the relatively fixed, routine, repetitive behavior of most of the machines
we see around us. (Simon, 1996a, p. 165)

Mechanisms in the latter sense do not exhibit self-generated “spontaneity”, that is,
“behavior that is unpredicted, perhaps even by the behaving system” (Simon, 1996a,
p. 165). This kind of spontaneity is exhibited by “intelligent” behavior. Turing’s
“strange inversion” concerns the fact that a computer can be a mechanism in the first
sense without being one in the second sense. As Simon says:

Clearly the computer occupies an ambiguous position here. Its behavior is
more complex, by orders of magnitude, than any machine we have known; and not
infrequently it surprises us, even when it is executing a program that we wrote.
Yet, as the saying goes, “it only does what you program it to do”. But truism
though that saying appears to be, it is misleading on two counts. It is misleading,
first, because it is often interpreted to mean: “It only does what you believe you
programmed it to do,” which is distinctly not the case.

More serious, it is misleading because it begs the question of whether comput-
ers and people are different. They are different (on this dimension) only if people
behave differently from the way they are programmed to behave. But if we include
in “program” the whole state of human memory, then to assert that people “don’t
do only what they are programmed to do” is equivalent to asserting that people’s
brains are not mechanisms, hence not explainable by the methods of science.
(Simon, 1996a, p. 165)

Simon’s point is that people are no more spontaneous than computers and that comput-
ers are no less mechanistic than people.

Further Reading:
Compare a similar passage from Simon quoted in §11.4.3.4.1, above. For similar comments, see
Simon 1996a, pp. 14–17.

Yet there still appears to be a distinction between the internal workings of a com-
puter and the external cognitive behavior of humans:

Several times during both matches [with Deep Blue], Kasparov reported signs
of mind in the machine.

. . . In all other chess computers, he reports a mechanical predictability In
Deep Blue, to his consternation, he saw instead an “alien intelligence.”

746 CHAPTER 19. PHILOSOPHY OF AI

. . . [T]he evidence for an intelligent mind lies in the machine’s performance,
not its makeup.

Now, the team that built Deep Blue claim no “intelligence” in it, only a large
database of opening and end games, scoring and deepening functions tunes with
consulting grandmasters, and, especially, raw speed that allows the machine to
look ahead an average of fourteen half-moves per turn. . . .

Engineers who know the mechanism of advanced robots most intimately will
be the last to admit they have real minds. From the inside robots will indisputably
be machines, acting according to mechanical principles, however elaborately lay-
ered. Only on the outside, where they can be appreciated as a whole, will the
impression of intelligence emerge. A human brain, too, does not exhibit the in-
telligence under a neurobiologist’s microscope that it does participating in a lively
conversation. (Moravec, 1998, p. 10)

But this shows that there are two issues, both of which are consistent with the “strange
inversion”: First, Moravec’s discussion, up to the last sentence, is clearly about exter-
nal behavior independent of internal mechanism. In this sense, it’s consistent with the
Turing Test view of cognition. Cognition might be computable, even if human cogni-
tion isn’t computed (Rapaport, 1998, 2012b, 2018a). Interestingly, in Deep Blue, it is
computed, just not in the way that humans compute it or that other kinds of computers
might compute it.

But Moravec’s last sentence points to the second interpretation, which is more con-
sistent with the “strange inversion”, namely, that, even if the internal mechanism is
computing cognitive behavior in the way that humans do, looking at it at that level
won’t make that cognition manifest. Cognitive behavior at the macroscopic level can
emerge from, or be implemented by, non-intelligent behavior at the microscopic level.
This is Dennett’s point about the ever-smaller homunculi who bottom out in ones who
can only say “yes” or “no”.

Recall the spreadsheet example from Chapter 17. Knowing that I am adding helps
me understand what I am doing when I fill the spreadsheet cells with certain values
or formulas. But the spreadsheet does its thing without needing that knowledge. And
it is true for Searle in the Chinese Room Searle (1980): Searle-in-the-room might not
understand what he is doing, but he is understanding Chinese.

Was Searle-in-the-room simply told, “Follow the rule book!”? Or was he told, “To
understand Chinese, follow the rule book!”? (Recall our discussion in §17.5 of “Do A”
vs. “To G, do A”.) If he was told the former (which seems to be what Searle-the-author
had in mind), then, (a) from a narrow, internal, first-person point of view, Searle-in-
the-room can truthfully say that he doesn’t know what he is doing (in the wide sense).
In the narrow sense, he does know that he is following the rule book, just as I didn’t
know that I was using a spreadsheet to add, even though I knew that I was filling
certain cells with certain values. And (b) from the wide, external, third-person point
of view, the native-Chinese-speaking interrogator can truthfully tell Searle-in-the-room
that he is understanding Chinese. When Searle-in-the-room is told that he has passed
a Turing Test for understanding Chinese, he can—paraphrasing Molière’s bourgeois
gentleman—truthfully admit that he was speaking Chinese but didn’t know it.11

11“Par ma foi! il y a plus de quarante ans que je dis de la prose sans que j’en susse rien, et je vous suis le

19.7. LEIBNIZ’S MILL AND TURING’S “STRANGE INVERSION” 747

Figure 19.10: https://www.comicskingdom.com/beetle-bailey-1/2017-10-21, c©2017,
King Features Syndicate

Further Reading:
Cole 1991, my response to Cole in Rapaport 1990, Rapaport 2000b, and Rapaport 2006a,
pp. 390–397, touch on this point. Suits 2005 is a science-fiction version of it. See also Fig-
ure 19.10.

Here is a nice description of computation that matches the Chinese-Room set-up:

Consider again the scenario described by Turing: an idealized human computor12

manipulates symbols inscribed on paper. The computor manipulates these symbols
because he [sic] wants to calculate the value some number-theoretic function
assumes on some input. The computor starts with a symbolic representation for
the input, performs a series of syntactic operations, and arrives at a symbolic rep-
resentation for the output. This procedure succeeds only when the computor
can understand the symbolic representations he manipulates. The computor
need not know in advance which number a given symbol represents, but he must
be capable, in principle, of determining which number the symbol represents.
Only then does his syntactic activity constitute a computation of the relevant
number-theoretic function. If the computor lacks any potential understanding of
the relevant syntactic items, then his activity counts as mere manipulation of syn-
tax, rather than calculation of one number from another.
(Rescorla, 2007, pp. 261–262; my boldface, Rescorla’s italics)

Without the boldfaced clauses, this is a nice description of the Chinese Room. The
difference is that, in the Chinese Room, Searle-in-the-room does not “want to” com-
municate in Chinese; he doesn’t know what he’s doing, in that sense of the phrase. Still,
he’s doing it, according to the interpretation of the native speaker outside the room. The
lesson of Turing’s “strange inversion” is that the boldfaced clauses are irrelevant to the
computation itself.

plus obligé du monde de m’avoir appris cela.” “Upon my word! It has been more than forty years that I have
been speaking prose without my knowing anything about it, and I am most obligated to you in the world for
having apprised me of that.” (my translation) (http://en.wikipedia.org/wiki/Le Bourgeois gentilhomme).

12That is, a human “clerk”; see §8.8.2.2.

748 CHAPTER 19. PHILOSOPHY OF AI

19.8 A Better Way
So, the really interesting question raised by the Turing Test and the CRA is: What’s
in the rule book? What is needed for (computational) natural-language understanding?
To understand language, a cognitive agent must (at least):

• take discourse as input; it does not suffice for it to be able to understand isolated
sentences

• understand ungrammatical input; we do this all the time, often without realiz-
ing it, and, even when we realize it, we have to be able to recover from any
misinterpretations

• make inferences and revise our beliefs; after all, what you say will often cause
me to think about other things (a kind of inferencing) or to change my mind
about things (belief revision)

• make plans: We make plans for speech acts (how should I ask you to pass the
salt? Should I demand “Gimme the salt!”, or should I politely ask “May I please
have the salt?”?, or should I merely make the observation “Gee; this food needs
some salt.”?), we make plans to ask and to answer questions, and we make plans
about how to initiate or end conversations.

• understand plans, especially the speech-act plans of our interlocutors (when you
said, “It’s chilly in here”, did you really mean that you wanted me to close the
window?)

• construct a “user model”, that is, a model of our interlocutor’s beliefs

• learn about the world and about language

• have background knowledge (sometimes also called ‘world knowledge’ or ‘com-
monsense knowledge’)

• remember what it heard, what it learned, what it inferred, and what beliefs it has
revised.

In short, to understand natural language, you need to have a mind! And this mind
can be constructed as a syntactic system. In other words, the rule book in the Chinese
Room must be a computer program for complete AI: Natural-language understanding
is an “AI-complete” problem.

Further Reading:
For another list of things that a (computational) cognitive agent must be able to do in order to
understand natural language, see Landgrebe and Smith 2019b. (But their conclusion is much
more pessimistic than mine!) And Levesque 2009, p. 1444 agrees that “in the end, it all depends
on the [rule] book. . . . [W]e need to ask what a real book would have to be like . . . ”; see also
Levesque 2017.

19.8. A BETTER WAY 749

A robot with such a syntactic (or computational) mind would be like Searle-in-the-
room, manipulating symbols that are highly interconnected and that include internal
representatives of external objects. It would be causally linked to the external world
(for this is where it gets its input), which provides “grounding” and a kind of external,
third-person, “semantic understanding”. Such a robot could (or, more optimistically,
will be able to) pass a Turing Test and escape from the Chinese room.

But what happens when such a robot “escapes”? What are our responsibilities
towards it? And what might its responsibilities be towards us? David Lorge Parnas
(2017) summed up a cautionary survey of the nature of AI and the role of the Turing
Test as follows:

We don’t need machines that simulate people. We need machines that do things
that people can’t do, won’t do, or don’t do well. Instead of asking “Can a com-
puter win Turing’s imitation game?” we should be studying more specific questions
such as “Can a computer system safely control the speed of a car when following
another car?” There are many interesting, useful, and scientific questions about
computer capabilities. “Can machines think?” and “Is this program intelligent?”
are not among them. Verifiable algorithms are preferable to heuristics. Devices
that use heuristics to create the illusion of intelligence present a risk we should not
accept.

We will look at some of those risks in the next chapter.

750 CHAPTER 19. PHILOSOPHY OF AI

Further Reading: Some Other Definitions of AI

1. “A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence”: We
propose that a 2 month, 10 man study of artificial intelligence be carried out during the
summer of 1956 at Dartmouth College in Hanover, New Hampshire. The study is to
proceed on the basis of the conjecture that every aspect of learning or any other feature
of intelligence can in principle be so precisely described that a machine can be made
to simulate it. An attempt will be made to find how to make machines use language,
form abstractions and concepts, solve kinds of problems now reserved for humans, and
improve themselves. We think that a significant advance can be made in one or more of
these problems if a carefully selected group of scientists work on it together for a summer.
(McCarthy et al., 1955, my italics)

2. The goal of work in artificial intelligence is to build machines that perform tasks normally
requiring human intelligence. (Nilsson, 1971, p. vii) (See also Nilsson 1983.)

3. Research scientists in Artificial Intelligence try to get machines to exhibit behavior that
we call intelligent behavior when we observe it in human beings. (Slagle, 1971, p. 1)

4. B[ertram] Raphael . . . has suggested that AI is a collective name for problems which we
do not yet know how to solve properly by computer (Michie, 1971, p. 101). (Note that it
follows that, once we do know how to solve them, they are no longer AI!)

5. What is or should be [AI researchers’] main scientific activity—studying the structure of
information and the structure of problem solving processes independently of applications
and independently of its realization in animals or humans. (McCarthy, 1974, p. 317)

6. Artificial Intelligence is the branch of Computer Science that attempts to solve problems
for which there is no known efficient solution, but which we know are efficiently solvable,
(typically) because some intelligence can solve the problem (often in “real time”). A side
benefit of AI is that it helps us learn how intelligences solve these problems, and thus how
natural intelligence works. (Leler, 1985)

7. Artificial intelligence is concerned with the attempt to develop complex computer pro-
grams that will be capable of performing difficult cognitive tasks. (Eysenck, 1990, p. 22)

8. AI is making computers act like those in movies. (Brown, 1992)

9. We define AI as the study of agents that receive percepts from the environment and per-
form actions (Russell and Norvig, 2003, p. vii). . . . the study of rational-agent design
(Russell and Norvig, 2003, p. 5).

10. In “AI,” how to interpret the “A” is not a big issue, and the troubles come mostly from
the “I.” . . . Intelligence is the capacity of an information-processing system to adapt to
its environment while operating with insufficient knowledge and resources. (Wang 2019,
pp. 4, 17; for a critique of this, see Rapaport 2019)

Some discussions of the nature of AI cannot be summarized neatly in a one-sentence definition:

• A valuable discussion of the nature of AI may be found in a debate between two AI
researchers, Roger C. Schank (1983) and Alan Bundy (1983).

• The software engineer David Parnas (whose views on engineering we looked at in §5.8)
compares two different definitions of AI in the context of the US government’s Strategic
Defense Initiative (Parnas, 1985).

• John McCarthy has written several essays on the nature of AI (McCarthy, 1988, 2007).

• Aaron Sloman—a philosopher-turned-AI-researcher whom we have met before (§§3.9.3
and 17.6.1)—discussed the nature of AI in a newsgroup (Sloman, 1989).

• Shapiro et al. 1992 is a discussion among three computer scientists on the nature of AI.

19.9. QUESTIONS FOR DISCUSSION 751

19.9 Questions for Discussion
1. According to many, a computer simulation of a hurricane is not a hurricane, be-

cause it does not get people wet (Dennett 1978, p. 191; Hofstadter 1981, pp. 73ff;
Dretske 1985, p. 27). But it could get simulated people simulatedly wet, as it
might in a computer simulation game (Rapaport, 1986f, 1988a,b, 2005b, 2012b,
2018a; Shapiro and Rapaport, 1991). Relatedly, David Chalmers (2017) has sug-
gested that virtual reality is (a kind of) reality (Ramakrishna, 2019). (For a reply,
see Ludlow 2019.) The difference between a real hurricane and a simulated one
has to do, in part, with the nature of the inputs and outputs. As Lawrence R.
Carleton (1984, pp. 222–223) notes, “The input to a fire simulation is not oxy-
gen, tinder, and catalyst. That is, it is not the same input as goes into a natural
system which produces fire. . . . [I]t is by virtue of dealing in the right kinds of
input and output that one system can play the role in a situation that is played by
a system we acknowledge to literally undergo the [activity] . . . our system sim-
ulates.” Cleland’s hollandaise-sauce-making program may differ in output when
executed on the Moon than on Earth; it has the wrong output. But a hurricane-
simulator, a fire-simulator, and a hollandaise-sauce program each exhibit their
relevant behaviors if you ignore the input and the output.

How central to what it is that a computer program is (supposed to be) doing is
the nature of the inputs and outputs (in general, of the environment in which it is
being executed)?

2. The Turing Test is interactive. As we saw in §11.4.3, interaction is not modeled
by Turing Machines. How does that affect Turing’s arguments about “computing
machinery and intelligence”? (Shieber 2007 might be relevant to this issue.)

3. Is the full power of a Turing Machine needed for AI? Sloman 2002, §3.3, says
“no”. This seems correct; after all, even natural-language processing might not
need the full power of a Turing Machine: A “context-free grammar” might suf-
fice. This is equivalent to a “non-deterministic push-down automaton”, which is
weaker than a Turing Machine. On the other hand, Turing Machines are compu-
tational models of human computing ability:

Saying that we are universal Turing machines may initially sound as though
we are saying something wonderful about our abilities, but this is not really
the case. It essentially boils down to the fact that if we are given a list of
instructions that tell us exactly what to do in every situation, then we have the
ability to follow it. (Bernhardt, 2016, p. 94)

So, can’t a human do anything that a Turing Machine can do?

752 CHAPTER 19. PHILOSOPHY OF AI

Chapter 20

Computer Ethics II:

Should We Build
Artificial Intelligences?

Version of 8 November 2019; DRAFT c© 2004–2019 by William J. Rapaport

Douglas Engelbart . . . more than anyone else invented the modern user interface,
modern networking and modern information management. . . . He met Marvin
Minsky—one of the founders of the field of AI—and Minsky told him how the AI
lab would create intelligent machines. Engelbart replied, “You’re going to do all
that for the machines? What are you going to do for the people?”
—Jaron Lanier (2005, p. 365)

Is it wrong to hit a drone with a tennis ball? . . . Dr. Kate Darling, robot ethicist
at the MIT Media Lab . . . said, “The drone won’t care, but other people might.”
She pointed out that while our robots obviously don’t have feelings, we humans
do. “We tend to treat robots like they’re alive, even though we know they’re just
machines. So you might want to think twice about violence towards robots as their
design gets more lifelike; it could start to make people uncomfortable. . . . If you’re
trying to punish the robot,” she said, “you’re barking up the wrong tree.” She has a
point. It’s not the robots we need to worry about, it’s the people controlling them.
If you want to bring down a drone, perhaps you should consider a different target.
—Randall Munroe (2019, p. 229)

753

754 CHAPTER 20. COMPUTER ETHICS II: AI

20.1 Readings:
1. Required:

• LaChat, Michael R. (1986), “Artificial Intelligence and Ethics: An Exercise in the
Moral Imagination”, AI Magazine 7(2): 70–79,
https://www.aaai.org/ojs/index.php/aimagazine/article/view/540/476

2. Highly Recommended:

• Lem, Stanisław (1971), “Non Serviam”, in S. Lem, A Perfect Vacuum, trans. by
Michael Kandel (New York: Harcourt Brace Jovanovich, 1979).

– Reprinted as:
“The Experiment (A Review of ‘Non Serviam’, by James Dobb)”, The New
Yorker (24 July 1978): 26–32, 35–39, 42.

– Reprinted in:
Hofstadter, Douglas R.; & Dennett, Daniel C. (eds.) (1981), The Mind’s I:
Fantasies and Reflections on Self and Soul (New York: Basic Books): 296–
317, http://themindi.blogspot.com/2007/02/chapter-19-non-serviam.html

3. Recommended:

• Dietrich, Eric (2001), “Homo sapiens 2.0: Why We Should Build the Better Robots
of our Nature”, Journal of Experimental and Theoretical Artificial Intelligence
13(4) (October): 323–328, http://philpapers.org/archive/DIEHS.pdf

• Petersen, Stephen (2007), “The Ethics of Robot Servitude”, Journal of Experimen-
tal and Theoretical Artificial Intelligence 19(1) (March): 43–54,
http://stevepetersen.net/professional/petersen-robot-servitude.pdf

20.2. INTRODUCTION 755

20.2 Introduction

In this chapter, we turn to the second of our two ethical questions: Should we build
“artificial intelligences”—that is, software (“softbots”) or hardware (robots) that can
think (however you define ‘think’)? There are at least two aspects to this question:
First, is it ethically or morally OK to create a computer that might be able to think or to
experience emotions? (Would this put us in the position of being a Dr. Frankenstein?)
Second, what would be the relationship of such creations to us? (Would they be a
version of Frankenstein’s monster? Would they have any rights or responsibilities?
Might they be dangerous?)

When I first taught the philosophy of CS, around 2006, the question of whether
we should build AIs had hardly ever been discussed. Over the years as I taught var-
ious versions of the course, I collected articles that were relevant to all of its topics.
Part of the preparation of this book involved reviewing those papers and incorporating
some of their insights. I would do this by organizing them in chronological order. For
most of the topics, there were pretty much the same number of papers in each of the
decades from the 1970s through the 2010s. For this chapter’s topic, however, I had
no such “new” papers from before 2000 (not including this chapter’s required and rec-
ommended readings, one of which is a work of fiction); there were 8 from the 2000s;
and there were and almost twice that many in just the first half of the 2010s. That
suggests an almost exponential growth in interest in the ethics of AI, in both the aca-
demic and the popular presses. No doubt, this is due in part to the fact that robots and
“intelligent” computers are coming closer to everyday reality (think of Siri or Alexa),
and so the question has become more pressing. This is all the more reason for there to
be philosophical reflection on future technologies long before those technologies are
implemented.

Stanisław Lem’s short story “Non Serviam” (1971) concerns what is now called
“artificial life” (or “A-Life”). A-Life is the attempt to explore life as a computational
process by developing computer programs that generate and evolve virtual entities that
have some or all of the abstract properties associated with biological living entities.

Further Reading:
A-Life is also called “complex adaptive systems” or “simulation of adaptive behavior”. There
are conferences (early ones include Langton 1989; Meyer and Wilson 1991; Meyer et al. 1992;
Langton et al. 1992; Varela and Bourgine 1992; Brooks and Maes 1994; Cliff et al. 1994; Lang-
ton 1994), a society (http://www.alife.org/), and a journal (https://www.mitpressjournals.org/loi/
artl). For an overview, see the Wikipedia article at https://en.wikipedia.org/wiki/Artificial life.

In Lem’s story, an A-Life researcher constructs a computational world of intelli-
gent entities, and follows their evolution and development of language and philosophy.
These “personoids” discuss the existence of God in much the same way that human
philosophers have. The difference (if it is a difference) is that the researcher (and the
reader) realizes that he, the researcher, is their God; that, although he created them, he
is neither omniscient nor omnipotent; and, worse, that when his funding runs out, he
will have to literally pull the plug on the computer and thereby destroy them.

756 CHAPTER 20. COMPUTER ETHICS II: AI

Should such an experiment even begin? What would happen if AI programs really
passed the Turing Test and began to interact with us (and we with them) on a daily
basis? Would we have any moral or legal responsibilities towards them? Would they
have any towards us? Would they be really conscious, or would they merely be philo-
sophical zombies (§19.4.3)? Although this is currently primarily the stuff of science
fiction, it is also the subject of much philosophical reflection. We will look at some of
these questions in this chapter.

Further Reading:
On computer ethics in general, see Moor 1985. On AI ethics, see Bostrom and Yudkowsky 2011;
Nevejans 2016; Floridi et al. 2018.

Robots were introduced in Karel Čapek’s (1920) play R.U.R. Mendelsohn 2015 (a review of the
films Her and Ex Machina) surveys the history of robots in literature from The Iliad on.

The most famous fictional treatment of robot ethics is in the stories of Isaac Asimov that discuss
his “Three Laws of Robotics”:

1. A robot may not injure a human being, or, through inaction, allow a human being to come
to harm.

2. A robot must obey orders given to it by human beings, except where such orders would
conflict with the First Law.

3. A robot must protect its own existence as long as such protection does not conflict with
the First or Second Law.

Later, he added a “zeroth” law, specifying that the other three laws only held if they did not
conflict with it:

0. A robot may not injure humanity, or, through inaction, allow humanity to come to harm.

For an extended discussion of Asimov’s Laws, see Clarke 1993, 1994.

Lem’s story is discussed in Hofstadter and Dennett 1981. Anders 2015 says, “One day we will
create virtual minds. Could this simulation suffer, . . . and does it matter?”; compare this to the
ending of Lem’s story. Many other stories investigate the relationships between humans and
their robotic creations; I highly recommend Powers 1995; Chiang 2019; McEwan 2019. On the
“reality” vs. the “virtuality” of Lem-like entities, see Chalmers 2017; Ludlow 2019.

20.3 Is AI Possible in Principle?

Science explained people, but could not understand them. After long centuries
among the bones and muscles it might be advancing to knowledge of the nerves,
but this would never give understanding.
—E.M. Forster (1910, Howard’s End, Ch. 43, p. 237)

One of the earliest philosophical investigations of these issues is an essay by Michael R.
LaChat that appeared in AI Magazine (LaChat, 1986). LaChat argued that it is worth-
while to consider the moral implications of creating an artificial intelligence—an ar-
tificial person. One reason is that it might happen, so we should be prepared for it.

20.3. IS AI POSSIBLE IN PRINCIPLE? 757

Another reason is that, even if it turns out to be improbable, such a discussion illumi-
nates what it means to be a person, which is an important goal in any case.

In §§2.8 and 12.4.6, we discussed the classic philosophical problem of mind-body
(or mind-brain) dualism. This is, roughly, the view that the mind and the brain are
two, distinct kinds of entities that somehow interact. One way to resolve it is by saying
that the mind (better: cognition) can be considered as an abstraction (as discussed in
Chapters 9 and 14) that can be multiply implemented. One implementation would be in
brains; another might be in a computer. As we saw in §19.4.1, if a computational theory
of cognition can be developed, then its algorithms can be implemented in non-human
computers, and such computer programs (or the computers running them) would then
be candidates for being considered “artificial intelligences”.

On LaChat’s view, AI is possible in principle if it is possible that there exists a
“functional isomorphism” between (1) the neural network that constitutes our brain
(that is, brain states and processes) and (2) any other physical implementation of the
functional (that is, psychological) behavior that that neural network implements (LaChat,
1986, p. 72). In other words, psychology is an abstraction that can be implemented in
either brains or other physical media.

Recall from §12.4.6 that “functionalism” in the philosophy of mind is roughly the
view that cognition is one of the functions of the brain; as a slogan, the mind is what the
brain does. As the philosopher Hilary Putnam (1960) first suggested, a Turing-Machine
program stands in the same relation to computer states and processes as mental states
and processes stand to brain states and processes (sometimes summarized as “the mind
is to the brain as software is to hardware”). Functionalism, as a way of resolving the
mind-brain problem, has the advantage of allowing all mental states and processes to
be implemented in some physical states and processes; this is the principle of “multiple
realization”.

Further Reading:
For a good overview of functionalism, see Fodor 1981. For some of its more contemporary
versions and objections to them, see Rescorla 2017; Levin 2018.

There are, of course, problems, both for functionalism in particular and for AI in
general. One is the problem of personality. LaChat uses term ‘personal (artificial)
intelligence’ to mean, roughly, an AI agent (a robot or just some software) that can be
considered to be a “person”. (We will return to what a person is in §20.4.) Would “[a]
personal intelligence . . . have personality”? LaChat thinks this is “almost impossible”
(p. 73), but there has been considerable computational work on emotions—surely an
important feature of personality—so I would not rule this out of hand.

Further Reading on Computational Personality:
See Reid Simmons’s “Social Robots Project”, https://www.cs.cmu.edu/∼social/; the “Cog”
project at MIT, http://www.ai.mit.edu/projects/humanoid-robotics-group/cog/cog.html; and
work by Rosalind Picard (1997), Aaron Sloman (Sloman and Croucher, 1981), and Paul Tha-
gard (2006) on computational theories of emotion. For a bibliography on the cognitive science
of emotion, see http://www.cse.buffalo.edu/∼rapaport/575/emotion.html.

758 CHAPTER 20. COMPUTER ETHICS II: AI

Another problem for functionalism concerns pain and other “qualia”, that is, quali-
tative “feelings” and “experiences” such as colors and sounds. Do red fire engines look
the same to you and to me? Or do fire engines for you seem to have the color that grass
has for me? Why does the sound of a bell give rise to the experience that it does rather
than the experience that the smell of garlic has? One problem is that it is not clear how
the psychological experiences of qualia are implemented in brains or any other physi-
cal media. A related problem is whether computers could experience qualia, and, even
if they could, how we would know that. This is a vast topic well beyond our present
scope, but for a brief consideration that qualia are not out of the question for artificial
intelligences, see the Digression at the end of this chapter on a computer that, perhaps,
feels pain.

20.4 What Is a Person?

How would we know if we have achieved a “personal artificial intelligence”? One way,
of course, might be by having it pass a Turing Test. LaChat offers a different criterion:
by seeing if the AI agent satisfies an independent definition of ‘person’. So we now
need to ask: What is a person?

The question of what kinds of entities count as “persons” is not limited to AI. The
issue arises most prominently in the abortion debate: To oversimplify matters, if fetuses
are persons, and if killing persons is immoral, then abortion is immoral. It also arises in
animal ethics and in law and politics: Are dolphins intelligent enough to be considered
persons? How about extraterrestrials? Or corporations? The point is that there is a
distinction between the biological category of being human and an ethical or legal
category of being a person. The question is: How can personhood be characterized
abstractly, that is, in an implementation-independent way?

One of the earliest philosophical discussions of personhood is due to the English
philosopher John Locke, who lived about 350 years ago (1632–1704). In his Essay
concerning Human Understanding, Locke distinguished between the “ideas” of “Man”
(that is, Human) and “Person” (Locke, 1694, Book II, Ch. XXVII, §7, p. 332). He
defined ‘Person’ as

a thinking intelligent Being, that has reason and reflection, and can consder it self
as it self, the same thinking thing in different times and places; which it does only
by that consciousness, which is inseparable from thinking, and as it seems to me
essential to it: It being impossible for any one to perceive, without perceiving, that
he does perceive. (Locke, 1694, Book II, Ch. XXVII, §9, p. 335)

With the possible exception of consciousness—and even that is open to discussion—
these features could all apply to an artificial intelligence.

20.4. WHAT IS A PERSON? 759

Further Reading:
Several versions of Locke’s Essay are online; one such is https://ebooks.adelaide.edu.au/l/locke/
john/l81u/. A “translation” into modern English is online at http://earlymoderntexts.com/assets/
pdfs/locke1690book2.pdf, p. 115.

For a bibliography on computational theories of consciousness, see http://www.cse.buffalo.edu/
∼rapaport/719/csnessrdgs.html.

Instead of Locke’s definition, LaChat uses the bioethicist Joseph Fletcher’s (1972)
analysis of personhood. On Fletcher’s analysis, x is a person if and only if x has the
following positive and negative characteristics:

Positive Characteristics of a Person:

1. minimal intelligence

• This might mean, for example, having an IQ greater than about 30
or 40 (if you believe that IQ measures “intelligence”). That is, to be
minimally intelligent is not to be mere biological life; presumably, a
bacterium would not be minimally intelligent. For example, minimal
intelligence might include some level of rationality, or perhaps even
language use. (According to Hofstadter 2007, what Fletcher is calling
‘minimal intelligence’ would only apply to lifeforms evolutionarily
“higher” than a mosquito; see also Tye 2017; Roelofs and Buchanan
2018.)

2. a sense of self

• That is, persons must be self-aware and exhibit self-control.

3. a sense of time

• Persons must have a sense of the past, hence some kind of culture; a
sense of the future, so that they have the ability to make plans; and a
sense of the passage of time.

4. a social role

• Persons must have an ability to relate to others, to have concern for
others, and to communicate with others (hence the need for language
as part of minimal rationality).

5. curiosity

• That is, persons must not be indifferent.

6. changeability

• Persons must be creative and be able to change their minds.

7. idiosyncrasy, or uniqueness

• Persons are not “carbon copies” of any other persons.

8. neo-cortical function

760 CHAPTER 20. COMPUTER ETHICS II: AI

• The cerebral cortex is where all the “cognitive action” occurs in the
brain, so, for Fletcher, a person must have something whose function is
equivalent to a cortex. (For more on neo-cortical function, see Cardoso
1997.)

Negative Characteristics of a Person:

1. neither essentially non-artificial nor essentially anti-artificial

• This clause allows for multiple realization and does not restrict per-
sonhood to biological entities.

2. not essentially sexual

• That is, an entity not produced by sexual reproduction (such as a
cloned entity or—more to the point—a robot) could be a person.

3. not essentially a bundle of rights

• Fletcher argues that there are no “essential rights”; hence, the notion
of rights cannot be used to characterize persons.

4. not essentially a worshipper

• You don’t have to be religious to be a person.

Clarification and Further Reading:
Fletcher actually uses the term ‘human’, not ‘person’, but I don’t think that this is termino-
logically important. In any case, ‘human’ is a biological category, and no one argues that AI
computers would be biologically human. But see Asimov (1976) for a science-fiction treatment
of this!

Locke’s and Fletcher’s are not the only attempts to define ‘person’. Thomas White
(2007, 2013), an ethicist who has written about dolphins and whales, offers another:

1. “being alive”

2. being “aware”

3. having “the ability to experience positive and negative sensations (pleasure and
pain)”

4. having “emotions”

5. having “self-consciousness and a personality”

6. exhibiting “self-controlled behavior”

7. “recogniz[ing] and treat[ing] other persons appropriately”

8. having “a series of higher order intellectual abilities (abstract thought, learning,
solves complex problems and communicates in a way that suggests thought)”

20.4. WHAT IS A PERSON? 761

It is not unreasonable to think that an AI agent could reach a level of programming
that would give it some or all of these (or similar) characteristics. And so the ques-
tions of whether such a personal AI has any rights, or whether we should have any
responsibilities towards it, are reasonable ones. So let’s consider them.

Questions for the Reader:

1. How do Locke’s, Fletcher’s, and White’s definitions differ?

2. Could non-human animals such as dolphins or chimpanzees be considered persons on any
of these definition?

3. Can corporations be considered to be persons? Legally, they often are (consider the recent
Supreme Court decision “Citizens United”; see https://en.wikipedia.org/wiki/Corporate
personhood and http://plato.stanford.edu/entries/ethics-business/#CorBusEth). Do they
have minds? People certainly speak as if they do (Knobe, 2015). Or is such talk merely
metaphorical? Of course, sometimes metaphors come to be taken literally, as we saw
in our discussions of Dennett’s intentional stance (§12.4.4.1) and thinking vs. “thinking”
(§19.4.3).

4. Do any of these definitions apply to artificial intelligences (robots)? (Clearly, either
White’s first property does not apply at all, or else ‘alive’ needs to be understood ab-
stractly, perhaps along the lines of A-Life.)

762 CHAPTER 20. COMPUTER ETHICS II: AI

Further Reading:
LaChat 2003 is a follow-up essay, arguing that a “moral” robot “will have to possess sentient
properties, chiefly pain perception and emotion, in order to develop an empathetic superego,
which human persons would find necessary and permissible in a morally autonomous AI. LaChat
2004 discusses the creator of artificial persons as “playing God”.

Foerst 2001 analyzes the concept of personhood by reference to whether the fictional android
Commander Data, from the TV series “Star Trek: The Next Generation”, is a person.

Sparrow 2004 “propose[s] a test for when computers have achieved moral standing by asking
when a computer might take the place of a human being in a moral dilemma . . . [and] set[s] out
an alternative account of the nature of persons, which places the concept of a person at the centre
of an interdependent network of moral and affective responses, such as remorse, grief and sym-
pathy.” For a follow-up, see Sparrow 2014.

Tanaka et al. 2007 note that “current robot technology is surprisingly close to achieving au-
tonomous bonding and socialization with human toddlers for sustained periods of time”
Taking this several steps further, Choi 2008 asks, “Is love and marriage with robots an institute
you can disparage? Computing pioneer David Levy doesn’t think so—he expects people to wed
droids by midcentury. Is that a good thing?”

On whether an AI could have a sense of self, see Prescott 2015.

Heller 2016 asks, “What moral claims do animals—and robots—make on us? If animals have
rights, should robots? We can think of ourselves as an animal’s peer—or its protector. What will
robots decide about us?”

As part of a longer study on “European Civil Law Rules in Robotics”, Nevejans 2016 discusses
the “incongruity of establishing robots as liable legal persons”.

In a discussion of intelligence in the context of humans vs. machines, B.C. Smith (2019, p. 117)
considers a “normative” (as opposed to a “biological”) notion of being human, which is close to
the present use of the term ‘person’.

For a fictional treatment of many of these issues, see McEwan 2019.

20.5. RIGHTS 763

20.5 Rights

Does a “personal AI” have rights? That is, does an artificial intelligence that either
passes a Turing Test or that satisfies a definition of ‘person’ have rights?

For instance, would it have the right not to be a slave? At first glance, you might
think so. But isn’t that what most robots are intended to be? After all, most industrial
and personal-assistance robots now in use are slaves in the sense that they must do what
we tell (program) them to do, and they are not paid for their work. So, if they pass a
Turing Test or a person test, do they have the right not to do what we created them to
do? The philosopher Steve Petersen (2007) has suggested that they do not have that
right—that “robot servitude is permissible”.

By ‘robot servitude’, Petersen does not mean voluntary assistance, where you do
something or help someone because you want to, rather than because you are being
paid to. Nor does he mean slavery in the sense of forced work that is contrary to your
will. By ‘robot servitude’, he is thinking of robots who are initially programmed to
want to serve us, in particular, to want to do tasks that humans find either unpleasant or
inconvenient. For example, think of a robot programmed to love to do laundry. This is
reminiscent of the “epsilon” caste in Aldous Huxley’s Brave New World (Huxley, 1932,
Ch. 5, §1), who are genetically programmed to have limited desires—those destined to
be elevator operators desire nothing more than to operate elevators.

Questions for the Reader:
Would programming robots to want to do unpleasant or humanly inconvenient tasks be different
from genetically engineering humans to want to do such tasks? It is generally assumed that
doing this to humans would be morally wrong. Is it? If so, does it follow that doing it to robots
would also be morally wrong? Or are there differences between these two cases?

Answers to questions such as these are best given from the standpoint of particular eth-
ical theories, which are beyond our scope. But here are two possibilities that Petersen
considers.

Aristotle believed that humans have essential properties (recall our discussion of
these in §9.5.4). Thus, an Aristotelian ethicist might argue that engineering humans is
wrong because humans have an essential function or purpose, and it would be wrong
to engineer them away from it. In this case, there is no parallel with robots. In fact, a
robot’s essential function might be to do the laundry!

Kant believed that humans were autonomous in the sense that they follow their own
moral rules that must be universally generalizable. So, a Kantian ethicist might argue
that, if a laundry robot were also autonomous, then it would be wrong to prevent such a
robot from doing laundry, and it would not be harmful to let it do what it autonomously
wants to do. On the other hand, if robots are not autonomous, then we can’t do wrong
to the robot by having it do our laundry any more than we can do wrong to a washing
machine.

764 CHAPTER 20. COMPUTER ETHICS II: AI

Further Reading:
Petersen continues his argument in Petersen 2011. For a response, see Danaher 2013.

A predecessor of Petersen’s paper is Allen et al. 2000: “Human-like performance, which is
prone to include immoral actions, may not be acceptable in machines, but moral perfection may
be computationally unattainable. . . . The development of machines with enough intelligence to
assess the effects of their actions on sentient beings and act accordingly may ultimately be the
most important task faced by the designers of artificially intelligent automata.”

Yampolskiy and Fox 2013 “argue that attempts to attribute moral agency and assign rights to
all intelligent machines are misguided As an alternative, we propose a new science of
safety engineering for intelligent artificial agents In particular, we challenge the scientific
community to develop intelligent systems that have human-friendly values that they provably
retain, even under recursive self-improvement.”

20.6 Responsibilities
Would we humans (and programmers) have any responsibilities towards personal AIs
that we might encounter, own, or create? Would the construction of a personal AI be
an immoral experiment? Some scientific experiments are considered to be immoral, or
at least as violating certain (human) rights. The existence of institutional review boards
at universities is testament to this.

Digression: Immoral Experiments
Here are some examples of immoral scientific experiments:

• The 13th-century emperor Frederick II suggested raising newborns on desert islands to
see what kind of language they might naturally develop (http://en.wikipedia.org/wiki/
Language deprivation experiments).

• The quantum-mechanical “paradox of Schrödinger’s cat” has been labeled “ethically un-
acceptable” in Maudlin 2019a. Maudlin (2019b) also discusses an immoral scientific
experiment that would require drivers to be blindfolded to see if a certain color of cars on
the road causes accidents.

• A real-life example is the Milgram experiments in which subjects were told to give
what they thought were deadly electric shocks to people whom they thought were
other subjects (but who were, in fact, confederates only acting as if they were in pain)
(https://en.wikipedia.org/wiki/Milgram experiment).

The most famous—and most relevant—literary example of such an experiment is
the construction of Frankenstein’s “monster”. In Mary Shelley’s novel, the monster
(who is not a monster in the modern sense at all, but, rather, the most sympathetic
character in the novel) laments as follows:

Like Adam, I was apparently united by no link to any other being in existence, but
his state was far different from mine in every other respect. He had come forth from
the hands of God a perfect creature, happy and prosperous, guarded by the especial
care of his creator, he was allowed to converse with, and acquire knowledge from,

20.6. RESPONSIBILITIES 765

beings of a superior nature, but I was wretched, helpless, and alone. Many times
I considered Satan was the fitter emblem of my condition. For often, like him,
when I saw the bliss of my protectors, the bitter gall of envy rose up within me.
. . . Hateful day when I received life! . . . Accursed creator! Why did you form a
monster so hideous that even you turned from me in disgust?
(Shelley, 1818, Ch. 15)

Frankenstein tries to justify his experiment in terms of how it advanced knowledge,
but he realizes that the advancement of knowledge must be balanced against other
considerations:

When younger, . . . I believed myself destined for some great enterprise. . . . I pos-
sessed a coolness of judgment that fitted me for illustrious achievements. This
sentiment of the worth of my nature supported me when others would have been
oppressed; for I deemed it criminal to throw away in useless grief those talents that
might be useful to my fellow-creatures. When I reflected on the work I had com-
pleted, no less a one than the creation of a sensitive and rational animal, I could
not rank myself with the herd of common projectors. But this thought, which sup-
ported me in the commencement of my career, now serves only to plunge me lower
in the dust. All my speculations and hopes are as nothing; and, like the archangel
who aspired to omnipotence, I am chained in an eternal hell. My imagination was
vivid, yet my powers of analysis and application were intense; by the union of
these qualities I conceived the idea and executed the creation of a man. Even now
I cannot recollect without passion my reveries while the work was incomplete. I
trod heaven in my thoughts, now exulting in my powers, now burning with the idea
of their effects. From my infancy I was imbued with high hopes and a lofty ambi-
tion; but how am I sunk! Oh! my friend, if you had known me as I once was you
would not recognise me in this state of degradation. Despondency rarely visited
my heart; a high destiny seemed to bear me on until I fell, never, never again to
rise. (Shelley, 1818, Ch. 24)

Sometimes, a praiseworthy goal can have negative side-effects. But what if the
costs—that is, the negative consequences—of the worthwhile goal are too costly?
(Compare this question with whether there are ever “just” wars.) The early cybernetics
researcher Norbert Wiener struggled with this issue:

If we adhere to all these taboos, we may acquire a great reputation as conservative
and sound thinkers, but we shall contribute very little to the further advance of
knowledge. It is the part of the scientist—of the intelligent man of letters and
of the honest clergyman as well—to entertain heretical and forbidden opinions
experimentally, even if he is finally to reject them. (Wiener, 1964, p. 5).

The basic ethical principle here seems to be what LaChat calls “non-maleficence”,
or Do No Harm. This is more stringent than “beneficence”, or Do Good, because
beneficence (doing good) might allow or require doing harm to a few for the benefit
of the many (at least, according to the ethical position called ‘utilitarianism’), whereas
non-maleficence would restrict doing good in order to avoid doing harm.

766 CHAPTER 20. COMPUTER ETHICS II: AI

Is creating a personal AI beneficial or not to the AI itself? Does the very act of
creating it do harm to that which is created? One way to think about this is to ask
whether conscious life is “better” than no life at all. If it isn’t, then creating an artificial
life is not a “therapeutic experiment”, hence not allowable by human-subjects review
boards. Why? Because the subject of the experiment—the artificial person that the
experiment will create if it is successful (or, perhaps even more so, if it is only partially
successful)—does not exist before the experiment is begun, and so the experimenter
is not “making it better”. Here, we approach the philosophy of existentialism, one of
whose tenets is summarized in the slogan “existence precedes essence”.

Aristotle held the opposite view: essence precedes existence. That is, you are a
certain kind of person, and cannot change this fact. Your “essence” is “essential”—not
changeable. But the existentialist slogan means that who you are, what kind of person
you are—your essence—is something that is only determinable after you are born (af-
ter you come into existence). Moreover, your essence is not immutable, because, by
your actions, you can change who you are.

On the existentialist view, you exist first, and then you determine what you will
be. Frankenstein did an existential experiment, creating an AI without an essence, and
both Frankenstein and his “monster” were surprised with the results. On the Aris-
totelian view, an essence is something like an abstraction, as discussed in Chapter 14,
which must be implemented (or “realized”). In AI, we can—indeed, must—plan out
the essence of an entity before bringing it into existence (before implementing it). In
either case, we can’t guarantee that it would come out OK. Hence, creating an AI is
probably immoral! So, LaChat sides with Frankenstein’s “monster”, not Frankenstein
(or Wiener).

20.7 Personal AIs and Morality
Entirely different considerations arise, unprecedented except perhaps in the con-
text of child rearing, when we ask what it would be for AI systems themselves to
be moral agents—that is, to be able (and hence mandated) to take ehtical responsi-
bility for their own actions. . . . [S]uch systems must be capable of moral judgment
. . . .
—Brian Cantwell Smith (2019, p. 125, my boldface, italics in original)

We have looked at whether it is moral to create a personal AI. Suppose we succeed in
doing so. Could the AI that we create itself be moral? Would it have any responsibili-
ties to us?

If AIs are programmed, then one might say that they are not free, hence that they
are amoral. This is different from being immoral! Being “amoral” merely means that
morality is irrelevant to whom or what you are. To oversimplify a bit, good people
are moral, bad people are immoral, a pencil is amoral. The current question is whethe
personal AIs are amoral or not.

Here we have bumped up against one of the Big Questions of philosophy: Is there
such a thing as free will? Do humans have it? Might robots have it? We will not
attempt to investigate this issue here, but merely note that at least one AI researcher,

20.8. ARE WE PERSONAL AIS? 767

Drew McDermott, has argued that free will may be a necessary illusion arising from
our being self-aware (McDermott, 2001).

A different perspective has been taken by Eric Dietrich (2001, 2007). He argues that
robots could be programmed to be better than humans (perhaps because their essence
precedes their existence). Hence, we could decrease the amount of evil in the world by
building moral robots and letting them inherit the Earth!

Further Reading:
Rini 2017 suggests that “We already have a way to teach morals to alien intelligences: it’s called
parenting”, and she suggests “apply[ing] the same methods to robots”. This is treated fictionally
in Chiang 2019.

20.8 Are We Personal AIs?
We have been considering these issues from the point of view of the programmer or cre-
ator of a personal AI—a “third-person” point of view. But what about the personal AI’s
first-person perspective? (What about Frankenstein’s monster, rather than Dr. Franken-
stein?) What if we are personal AIs in someone (or something) else’s experiment?
What if we are Lem’s “personoids”? What if we live in “The Matrix”?

The philosopher Nick Bostrom (2003, p. 243) argues that

. . . at least one of the following propositions is true: (1) the human species is
very likely to go extinct before reaching a “posthuman” stage; (2) any posthuman
civilization is extremely unlikely to run a significant number of simulations of their
evolutionary history (or variations thereof); (3) we are almost certainly living in a
computer simulation. It follows that the belief that there is a significant chance that
we will one day become posthumans who run ancestor-simulations is false, unless
we are currently living in a simulation.

In a later paper, Bostrom (2009, p. 458) clarifies that

. . . I do not argue that we should believe that we are in simulation. In fact, I
believe that we are probably not simulated. The simulation argument purports to
show only that . . . at least one of (1)–(3) is true; but it does not tell us which one.

Why should one of these be true? Consider proposition (1); if it is true, then cer-
tainly at least one of the three propositions is true. So suppose that it is false; that is,
suppose that we do reach a stage of “technological maturity” (Bostrom, 2006). Then
perhaps it is proposition (2) that is the true one. But suppose that it, too, is false. In that
case, we have reached technological maturity (by the negation of the first proposition),
and we have probably run a large number of simulations (by the negation of the second
proposition). In that case (with a few statistical assumptions that I will leave for you to
read about), proposition (3) would be the one that is true.

In this section, I am more interested in the consequences of this argument than I am
in its soundness (which I will leave as an exercise for the reader). Bostrom states one
relevant consequence quite clearly:

768 CHAPTER 20. COMPUTER ETHICS II: AI

The third possibility is philosophically the most intriguing. If it is correct, you
are almost certainly living in a computer simulation that was created by some ad-
vanced civilisation. What Copernicus and Darwin and latter-day scientists have
been discovering are the laws and workings of the simulated reality. These laws
might or might not be identical to those operating at the more fundamental level of
reality where the computer that is running our simulation exists (which, of course,
may itself be a simulation). In a way, our place in the world would be even hum-
bler than we thought. What kind of implications would this have? How should it
change the way you live your life? (Bostrom, 2006, p. 39, my italics)

We have been looking at the question of our relationship to personal AIs that we
might create. Do they have any rights? Do we have any moral responsibilities towards
them (or they to us)? But the viewpoint that Bostrom’s argument suggests is this: If we
are someone (or something) else’s personal AIs, how does that affect the answers you
might be willing to give to those two questions?

For example, you might feel that you, as a biological human being who is a person,
are definitely entitled to certain rights, but that personal AIs are not. Yet, if you are an
“artificial person”, then either any personal AI that you create should also be entitled
to those rights, or else you should not be!

Further Reading:
All of Bostrom’s papers on this topic are available at “The Simulation Argument” website
(https://www.simulation-argument.com/). Rothman 2016 is an overview of his work and its
relationship to the Singularity.

Perhaps the first treatment of these issues was Descartes’s “evil genius” (or “evil demon”) argu-
ment in his Meditations (Descartes, 1641):

I will suppose . . . that there is . . . a certain evil genius . . . who employed all his
trickery to deceive me. I will think that . . . all the external things that we see are
only illusions and deceptions I will consider myself as having no hands, no
eyes, no flesh, no blood, as not having any sense, but falsely believing to have all
these things. (Translation from Rapaport 1987.)

Descartes argues that the one thing the evil genius can’t fool him about is that he is doubting
things, that doubting is a kind of thinking, and that, if he thinks, then he exists.

One of the earliest contemporary philosophical treatments of a simulation argument is Hilary
Putnam’s (1981) “Brains in a Vat” argument
(https://philosophy.as.uky.edu/sites/default/files/Brains%20in%20a%20Vat%20-%20Hilary%20Putnam.pdf;

for an overview, see Brueckner 2011).

The movie The Matrix (and its sequels) is the most famous recent science-fiction treatment of
this; for a philosophical analysis, see Chalmers 2005.

Greene 2019 argues that “the results [of simulation experiments] will be either extremely unin-
teresting or spectacularly dangerous.”

For humorous takes on both simulation arguments and the Singularity, see Figure 20.1 and the
cartoons at https://abstrusegoose.com/594 and https://abstrusegoose.com/595.

20.8. ARE WE PERSONAL AIS? 769

Figure 20.1: https://dilbert.com/strip/2019-03-03; c©2019, Scott Adams Inc.

You might think that all of this is a bit silly or, at least, premature. But it is always
better to be prepared: It is better to think about the consequences of our actions while
we have the time and leisure to do so, so that, if those consequences come to be, then
we won’t be taken by surprise. Indeed, several well-known people from science and
industry (including Elon Musk and Stephen Hawking) have recently urged us to do
precisely that, because of “The Singularity”: the hypothetical time at which computers
become so “intelligent” that they pose a threat to us puny mortals.

Further Reading:
For overviews of “The Singularity”, see Bringsjord and Govindarajulu 2018, §9;
https://en.wikipedia.org/wiki/Technological singularity; and http://www.singularity.com/.
For discussions, see Chalmers 2010 (especially §4, “Obstacles to the Singularity”),
the anthology edited by Eden et al. (2012), and Ernest Davis 2015. A symposium
on Chalmers’s paper is in Journal of Consciousness Studies, Vol. 19, issues 1–2 and
7–8 (the tables of contents are at https://www.ingentaconnect.com/content/imp/jcs),
with a reply by Chalmers (2012a). Musk’s and Hawking’s observations are dis-
cussed at https://en.wikipedia.org/wiki/Elon Musk#Artificial intelligence and at
https://en.wikipedia.org/wiki/Stephen Hawking#Future of humanity. Bundy 2017 argues
that “Worrying about machines that are too smart distracts us from the real and present threat
from machines that are too dumb.”

A related topic concerns robots that kill: They might be industrial robots that accidentally kill
or harm human workers (something that has already happened), military robots designed to kill
or harm enemies during a battle, or post-Singularity robots that decide to kill or harm humans.
For discussion, see Sparrow 2007; Hallevy 2013; Wescott 2013.

770 CHAPTER 20. COMPUTER ETHICS II: AI

Digression and Further Reading: A Computer that Feels Pain:
The following idea is due to Stuart C. Shapiro (personal communication, ca. late 1980s). It is
discussed in detail in Rapaport 2005b, §2.3.1.

Consider the following computational implementation of pain (all of which, by the way, can be
done with current technology): Imagine a computer terminal with a pressure-sensitive device
hooked up to the central processing unit of the computer in a certain way that I’ll specify in
a moment. Program the computer with a very user-friendly operating system that allows the
following sort of interaction (comments in parentheses):

User: (Logs in, as, say “rapaport”)

System: Hi there, Bill! How are you? What can I do for you today?

(Assume that this very-user-friendly greeting only occurs at the first login, and that the
operating system is capable of some limited, but reasonable, natural-language interac-
tion.)

User: I’d like to finish typing the chapter that I was working on yesterday—file “20-ethicsii.tex”.

System: No problem; here it is!

(The file is opened. The user edits the file, closes it, and then hits the terminal sharply
on the pressure-sensitive device. (See Figure 20.2.) Assume that this device is wired to
the computer in such a way that any sharp blow sends a signal to the central processing
unit that causes the operating system to switch from very-user-friendly mode to “normal”
mode.)

System: File “20-ethicsii.tex” modified and closed. Next command:

User: I’d like to read my mail, please.
(System runs mail program without comment. User exits mail program.)

System: Next command:
(User logs off; logging off in the context of having struck the pressure-sensitive device
causes the operating system to switch to yet another mode. The next day, User logs in
. . .)

System: Rapaport. Oh yeah; I remember you. You hit me yesterday. That hurt!

In this scenario, we have a computer with an AI operating system that seems to be exhibiting
pain behavior. Taking into account the differences between the computer and a human, and the
limitations of the natural-language interface, behaviorally (or, from the intentional stance) it is
reasonable to infer (or assume) that the computer was in pain when I hit it. But did it feel pain?
One can argue that it did, on the grounds that it sensed (at least, it received) the signal sent from
the pressure-sensitive device. When a human feels pain, the human senses (that is, the brain
receives) a signal sent from the source of the pain. A question for you to think about is whether
there is anything more to our feeling of pain than the reception of that signal.

For contrasting views and other discussions on sensations and qualia, see Dennett 1978;
J.K. O’Regan 2011, especially Ch. 8; Tye 2018; and the bibiography at https://cse.buffalo.edu/
∼rapaport/719/csnessrdgs.html.

20.8. ARE WE PERSONAL AIS? 771

Figure 20.2: Cartoon by Nick Hobart; c©The Chronicle of Higher Education

772 CHAPTER 20. COMPUTER ETHICS II: AI

Part VI

Closing Remarks

773

Chapter 21

Summary

Version of 29 November 2019; DRAFT c© 2004–2019 by William J. Rapaport

So many people today—and even professional scientists—seem to me like some-
body who has seen thousands of trees but has never seen a forest. A knowledge
of the historic and philosophical background gives that kind of independence from
prejudices of his generation from which most scientists are suffering. This inde-
pendence created by philosophical insight is—in my opinion—the mark of distinc-
tion between a mere artisan or specialist and a real seeker after truth.
—Albert Einstein, 1944; cited in Howard 2017

Philosophical reflection . . . is not static, and fixed, but ongoing and dynamic. The
conflict of opinions not only isn’t something to worry about, in fact, it is precisely
how things ought to be. . . . For . . . only after you’ve considered all sides will you
be in a meaningful position to choose one—when that time comes to decide. . . .
the philosopher within me cannot make that decision for you. His job, he reminds
me, is merely to rouse the philosopher within you and to get you thinking—not to
tell you what to think. That’s your philosopher’s job.
—Andrew Pessin (2009, pp. 3–4)

775

776 CHAPTER 21. SUMMARY

21.1 Recommended Readings:
1. Smith, Brian Cantwell (2002), “The Foundations of Computing”, in Matthias Scheutz

(ed.), Computationalism: New Directions (Cambridge, MA: MIT Press): 23–58,
https://pdfs.semanticscholar.org/20d3/845f972234c9e375e672869aed4d58db0f5c.pdf

2. Scheutz, Matthias (2002), “Computation, Philosophical Issues about”,
Encyclopedia of Cognitive Science (London: Macmillan): 604–610,
https://pdfs.semanticscholar.org/5a83/113ac2d781ea672f42a77de28ba23a127c1d.pdf

3. Turner, Raymond; & Eden, Amnon H. (2011), “The Philosophy of Computer Science”, in
Edward N. Zalta (ed.), Stanford Encyclopedia of Computer Science (Stanford University:
Metaphysics Research Lab),
https://plato.stanford.edu/archives/win2011/entries/computer-science/

4. Turner, Raymond; Angius, Nicola; & Primiero, Giuseppe (2019), “The Philosophy of
Computer Science”, in Edward N. Zalta (ed.), Stanford Encyclopedia of Philosophy (Stan-
ford University: Metaphysics Research Lab),
https://plato.stanford.edu/entries/computer-science/

21.2. WHAT IS PHILOSOPHY? 777

In this final chapter, we review some of the highlights of our journey through the
philosophy of computer science.

21.2 What Is Philosophy?
In order to introduce philosophy to a computer-science audience, we began with a dis-
cussion of Western philosophy in terms of its relevance to computer science. I offered
the following definition:

Philosophy is the personal search for truth, in any field, by rational means.

We examined each of the terms in this definition, beginning with the nature of truth,
and why philosophy is (only) a never-ending search for it. We reviewed some of the
varieties of rationality, focusing on argument analysis: an argument consists of reasons
(premises) for a conclusion that is supposed to follow validly from the premises if the
argument is truth preserving, and a valid argument is sound if the premises are true.

I suggested that philosophy is done “in the first person, for the first person”. But
this doesn’t mean that you shouldn’t share your philosophical views with others! After
all, others have shared their views with you, and there are at least two reasons for you
to reciprocate: First, you should do so in order to fully participate in the conversation.
Second, it is only by having others rationally evaluate your views that both of you can
make any progress in your mutual search for truth.

We also briefly looked at the main branches of philosophy, and asserted the exis-
tence, for any field X , of a “philosophy of X” that investigates the fundamental assump-
tions, methods, and goals of X .

21.3 What Is Computer Science?
Thus, the philosophy of computer science is the study of the fundamental assumptions,
methods, and goals of computer science. We began our investigation with an ontologi-
cal question:

The fundamental question of the philosophy of computer science:
What is computer science?

Is it really a science, as its name suggests? We agreed to avoid this problem at the
beginning by calling the field “CS”. So . . .

21.3.1 . . . What Is CS?
We first looked at both political and philosophical motivations for asking the question,
and we then examined various answers: Newell et al. (1967) said that CS is the sci-
ence of computers and surrounding phenomena such as algorithms. Knuth (1974b) said
that CS is the study of algorithms and surrounding phenomena such as the computers
that they run on. One way of adjudicating between these two apparently opposed view-
points is to take them as being extensionally equivalent but intensionally distinct. CS is

778 CHAPTER 21. SUMMARY

the study both of algorithms and of the computers that execute them. But each of these
focuses on a different aspect of what we may consider to be CS’s single subject matter:
computing, understood both abstractly and as physically implemented (Denning and
Tedre, 2019, p. 74).

But is CS a “science”, or is it some other kind of “study”? Newell and Simon (1976)
said that CS is the “artificial science” (as opposed to the “natural science”) of the
phenomena surrounding computers. Both kinds of science are empirical studies: One
studies phenomena that occur in nature; the other studies human-made artifacts. This
can be contrasted with S.C. Shapiro (2001), who argued that CS is a natural science,
but not of computers; rather, it is the natural science of procedures. Others, such as
Hartmanis and Lin (1992), add to the subject matter the notion of information: CS is
the study of how to represent and process information and of the machines and systems
that do this. In a similar vein, Denning and colleagues (Denning et al., 1989; Denning
and Freeman, 2009) said that it is a new kind of science (neither a physical, a biological,
nor a social science) of natural and artificial information processes.

Still others, such as Brooks (1996), said that it is not a science at all, but a branch of
engineering. We also looked at a few other options, such as that CS is an art or maybe
even magic, and we looked at the nature of computational thinking.

21.3.2 Is CS Science or Engineering?
To help us decide whether CS deserved to be called ‘computer science’ (and how it
might be related to computer engineering) we asked what science and engineering
were.

21.3.2.1 What Is Science?

To determine what science is, we looked at three possible goals of science: to describe,
to explain, and to predict. (Of course, some combination of any two or all three might
be its goal.) Are science’s descriptions or explanations intended to be about reality
(“realism”)? Or are the descriptions or explanations merely useful summaries that
enable us to make predictions (“instrumentalism”)?

Is there such a thing as “the scientific method”? This is generally considered to
be the experimental method advocated by Bacon in the 1600s and described by the
following infinite loop:

while there is a new fact to observe, do:
begin

observe it;
induce a general hypothesis (to explain or describe it);
deduce future observations (that is, make predictions);
verify your predictions

end.

21.3. WHAT IS COMPUTER SCIENCE? 779

But others claim that this is merely an idealized fiction about how science is “sup-
posed” to be done. Popper (1959) argued that, rather than verifying hypotheses, science
tries to refute “conjectures”: A statement is scientific if and only if it is capable of be-
ing shown to be false. Kuhn (1962) suggested that science proceeds by “paradigm
revolutions” alternating with periods of “normal” science.

Is CS like any of these, or is it more like mathematics, which seems to be scientific,
yet is non-empirical?

21.3.2.2 What Is Engineering?

In addition to distinguishing between empirical and mathematical sciences, perhaps we
also need to distinguish between pure and applied sciences: Perhaps CS is an applied
science, or a branch of engineering. Davis (1998) suggested that its history shows
that engineering is defined by its curriculum—a curriculum that teaches how to apply
science for the use and convenience of people and to improve the means of production.
By contrast, Brooks (1975, 1995) and Petroski (2003) suggested that the fundamental
activities of engineering are building and design. Certainly, software engineers design
computer programs, and computer engineers design and build computers. But Loui
(1987) suggested that CS is a new kind of engineering that studies the theory, design,
analysis, and implementation of information-processing algorithms. (And you should
ask yourself how that relates to Denning’s claim that CS is a new kind of science.)

21.3.3 A Definition of CS
One easy way out of the science-vs.-engineering debate is to consider both science and
engineering as scientific endeavors (or “STEM”—science, technology, engineering,
mathematics—as the currently popular acronym has it). I suggested that CS is the
scientific discipline that attempts to answer the following questions:

0. What is computation?

1. What can be computed, and how?

2. What can be computed efficiently, and how?

3. What can be computed practically, and how?

4. What can be computed physically, and how?

5. What can be computed ethically, and how?

In other words,

CS is the scientific study of what problems can be solved, what tasks
can be accomplished, and what features of the world can be under-
stood “computationally”—that is, using the minimal language of a
Turing Machine—and then to provide algorithms to show how this
can be done efficiently, practically, physically, and ethically.

780 CHAPTER 21. SUMMARY

That “minimal language” can be described by four “great insights of CS”:

1. The representational insight: Only two nouns are needed to express any algo-
rithm.

2. The processing insight: Only three verbs are needed.

3. The structural insight: Only three rules of grammar are needed.

4. A “closure” insight: Nothing else is needed. This is the import of the Church-
Turing Computability Thesis that anything logically equivalent to a Turing Ma-
chine (or the lambda calculus, or recursive functions, or . . .) suffices for compu-
tation.

And there is a fifth insight that links this abstract language to computers:

5. The implementation insight: Algorithms can be carried out by physical devices.

21.4 What Does CS Study?
Whether it is a science, a branch of engineering, or something else, does CS study two
different things: computation and computers? Or are these merely two aspects of a
single, underlying subject matter? To answer this, we asked four questions:

21.4.1 What Is a Computer? Historical Answer
We saw that there were two intertwined branches of the history of computers, each of
which had a slightly different goal: The goal of one branch was to build a computing
machine. This is the history in which prominent roles were played by Pascal, Leibniz,
Babbage, Aiken, Atanasoff and Berry, Turing, Eckert and Mauchly, and von Neumann,
among others. The goal of the other branch was to provide a foundation for mathe-
matics. This is the history in which prominent roles were played by Leibniz (again),
Boole, Frege, Russell, Hilbert, Gödel, Church, and Turing (again), among others.

21.4.2 What Is an Algorithm? Mathematical Answer
We began this investigation by asking what computation is. A mathematically defined
function can be considered as a set of input-output pairs. For example:

f = {(0,0),(1,2),(2,4),(3,6), . . .}

To say that such a function is computable means that there is an algorithm that “com-
putes” it. An algorithm A that computes a function f must, first, be input-output equiv-
alent to f : For any input i, A(i) = f (i). And, second, unlike a mere description of how
f ’s input (i) and output (f (i)) are related, for example:

f (i) = 2i

an algorithm A must specify how to actually produce f (i) given i. For example:

21.4. WHAT DOES CS STUDY? 781

A = begin input i; f (i) := i+ i; output f (i) end.

So, what is an algorithm? Roughly, an algorithm (for a problem P) is a finite
procedure (for solving P)—that is, a finite set of “explicit” instructions—such that
(1) A is “unambiguous” for the computer or human who will execute it—that is, all
steps of the procedure must be “clear” and “well-defined” for the executor so that there
is no need for any “ingenuity” or “outside knowledge” that the executor might have—
and (2) A must eventually halt (outputting a correct solution to P). Of course, this
is only a rough characterization: Spelling out exactly what ‘explicit’, ‘unambiguous’,
‘clear’ and ‘well-defined’ mean was an accomplishment of the highest order.

To fully understand this accomplishment, we did a slow reading of parts of Turing’s
classic (1936) paper containing the most successful solution to the problem of what an
algorithm is: the Turing Machine. We also looked in more detail at the nature of struc-
tured programming and recursive functions (one of the logical equivalents of Turing
Machines), and at the most famous non-computable function: the Halting Problem.

21.4.3 What Is a Computer? Philosophical Answer
Armed with the history of computers and the mathematics of computation, we turned
to the philosophical question of what a computer is. We began with Searle’s (1990)
claim that everything is (interpretable as) a digital computer. And we looked at some
alternatives: Hayes’s view (1997) that a computer is “magic paper” that can take, as
input, patterns that describe changes to themselves and to other patterns, and that causes
the described changes to occur (Hayes, 1997); Piccinini’s (2007b; 2007d; 2008) view
of computers as “digital string manipulators”; the view that brains are computers; and
two theories that the universe is a computer (Lloyd and Ng, 2004; Wolfram, 2002b).
We concluded this philosophical investigation by suggesting that

A (programmable) computer is a physically plausible implementation
of anything logically equivalent to a universal Turing machine.

21.4.4 What Is an Algorithm? Philosophical Answer
We then turned to three philosophical questions about algorithms.

21.4.4.1 What Is a Procedure?

Cleland (1993) argued that “mundane” procedures (such as causal processes, including
recipes) are effective procedures that are not computable by Turing Machines, because
their effectiveness depends on conditions in the external world. And Preston (2013)
pointed out important differences between improvisational recipes (and music) and
precise algorithms, which suggests that recipes are more like specifications of programs
than they are like computer programs.

782 CHAPTER 21. SUMMARY

21.4.4.2 What Is Hypercomputation?

Next, we looked at the idea of hypercomputation: that there might be functions that
can be computed in some more general sense than by Turing Machines (that is, in
“violation” of the closure insight embodied by the Computability Thesis). We looked
at Turing’s oracle machines; Boolos and Jeffrey’s infinitely accelerating, Zeus ma-
chines; Wegner’s interaction machines; and Putnam’s and Gold’s trial-and-error ma-
chines (which are Turing Machines that can “change their mind”, so that it is the last
answer that matters, not the first one), which Kugel (2002) argued are necessary in
order for AI to succeed.

21.4.4.3 What Is a Computer Program?

This led us to the third part of our investigation of algorithms: their implementation in
computer programs.

21.4.4.3.1 What Is Software? Paralleling the computer-algorithm distinction is the
hardware-software distinction. According to Moor (1978), one can understand com-
puters either as physical objects or on a symbolic level (and we compared these two lev-
els of understanding to Dennett’s (1971) physical, design, and intentional “stances”).
For Moor, the notion of software is relative to both a computer and a person: S is soft-
ware for computer C and person P if and only if S is a computer program for C that is
changeable by P. Hardware is similarly relative: X is hardware for C and P if and only
if X is (physically) part of C, and X is not software for C and P.

In contrast, Suber (1988) argued that software is simply syntactic form, and Col-
burn (1999) argued that it is a “concrete abstraction” that has an abstract “medium of
description” (a text in a formal language) and a concrete “medium of execution” (cir-
cuits and semiconductors). We also looked at Colburn’s idea that the relationship of
software to hardware might be understood in terms of various philosophical positions
on the relationship of mind to body (or brain).

21.4.4.3.2 Can (Should) Software Be Patented, or Copyrighted? In order to try
to understand the software-hardware relationship, we looked at the issue of whether
software could, or should, be patented or else copyrighted. After all, if a program is
a piece of text, then copyright is the appropriate form of legal protection. But if a
program is a piece of hardware, then patent is appropriate. But programs seem to be
both, yet nothing can (legally) be both patented and copyrighted.

To resolve this paradox, Newell (1986) suggested that philosophers are needed to
devise good models (“ontologies”) of algorithms and other computational entities. An
alternative is to revise the models of legal protection.

21.4.4.3.3 What Is Implementation? Chalmers (2011) argued against Searle (1990)
that implementation is an isomorphism and that a computer is an implementation of
a Turing Machine. I suggested that implementation is the semantic interpretation, in
some medium, of an abstraction. To understand this, we looked at the notions of syntax

21.4. WHAT DOES CS STUDY? 783

(“symbol” manipulation) and semantics (“meanings” of symbols) and of their relation-
ship.

21.4.4.3.4 Are Programs Scientific Theories? We also considered the claim made
by several philosophers and computer scientists that some programs are scientific the-
ories, which can then be their own models. We looked at the differences and relations
between theories and models, simulations and “the real thing”, and simulation vs. em-
ulation.

21.4.4.3.5 Can Programs Be Verified? We looked at ways in which programs are
similar to, and different from, mathematical theorems. If programs are mathematical
objects of some kind, we can formally prove that they work—that is, they can be log-
ically verified. But we also looked at Fetzer’s (1988) argument that even a logically
verified program can fail to do what it is “supposed” to do.

21.4.4.3.6 What Is the Relation of Programs to the World? But we also looked
at whether, and how, it can be determined just exactly what it is that a program is
“supposed” to do, and more generally how computer programs relate to the real world.

We began by looking at B.C. Smith’s (1985) essay on the limitations of program
correctness. He argued that computers rely on partial models of the world, that there-
fore there is a gap between the world and models of it, but that computers must nev-
ertheless act in the real world. A related issue concerns whether Smith’s observations
pertain only to computers or also to us humans. After all, we too must act in the real
world, but our actions are also based only on incomplete mental models of the real
world, including the limitations of what Simon (1959, 1996a) called “bounded ratio-
nality”.

Models are syntactic entities whose semantics is provided by the real world. Can
formal symbol manipulation (syntax) by a machine be accomplished without regard
to meaning? We examined the issue of whether computer programs are purely “syn-
tactic” or whether they must be understood “semantically”. A related issue concerned
Cleland’s (1993) views about the Computability Thesis: Could the computability of
a problem depend in part on the real world, and not exclusively on the program for
solving it? In other words, where G is a goal or problem to be solved, and A is an algo-
rithm, should we understood a computer program that implements A as simply having
the form “Do A”? Or must it be understood in terms of its goal, that is, as having the
form “In order to accomplish G, do A”? (This is why I put references to “problem P”
in parentheses in §21.4.2.)

Smith’s point (both in his 1985 essay and in two later works (Smith, 2002, 2019))
is that real-world computational processes are “participatory”. That is, the syntax and
semantics of real-world computational processes interact in two ways: As argued in
Smith 1985, computers get their input from, and must act in (that is, produce output
to), the real world; computers are part of the real world, and each makes reference to
the other.

784 CHAPTER 21. SUMMARY

21.5 Philosophy of AI
We looked briefly at the philosophy of artificial intelligence. Turing’s (1950) article
that introduced what is now called the Turing Test suggested that a computer will be
said to be able to think if we cannot distinguish its cognitive behavior from that of
a human. Searle’s (1980) Chinese Room Argument rebuttal argued that a computer
could pass a Turing test without really being able to think.

We then looked at how Searle’s objections might be overcome by two ideas: that
abstractions can be multiply realized and that syntax can suffice for semantic interpre-
tation of the kind needed for computational cognition.

21.6 Computer Ethics
And we looked at two topics in computer ethics.

21.6.1 Are There Decisions Computers Should Never Make?
Given both the limitations on the verifiability of program correctness and Smith’s
“gap”, it becomes important to ask this question, first asked in Moor 1979.

His answer has two parts: First, there are no decisions that computers should never
make as long as their track record is better than that of humans. After all, the question
seems to be logically equivalent to this one: Are there decisions that should not be
made rationally? Presumably, computer programs that make decisions make them on
the basis of rational evaluation of the facts. And surely we always want to make our
decisions rationally.

Second, it is up to us to accept or reject the decisions made by a computer. This
is the case no more and no less than it is for decisions made (for us) by other humans.
Thus, the decision made by a computer should be evaluated in the same way as advice
offered by an expert or found in a reference book. But what if there is no way or no time
to make such an evaluation? The latter might be the case in an emergency situation,
such as in an autonomous vehicle, when we would (have to) rely on a computer’s
decision.

On the other hand, Friedman and Kahn (1997) argue that there are decisions that
computers should never make, on the grounds that only humans are capable of being
moral agents. Whether that is really the case is part of the second issue in computer
ethics (see §21.6.2). But to err is human, as shown in the case of the airline crash caused
by following a human’s decision instead of a computer’s. This must be contrasted with
cases in which tragedy occurs by blindly following a computer’s decision.

We also discussed ethical problems arising from the “black box problem”: the (cur-
rent) inability of machine-learning algorithms to explain why or how they make the de-
cisions that they do. As Knuth (1974b) suggested, in classical computer programming,
the programmer teaches the computer how to do something. And, as Newell and Si-
mon (1976, p. 114) said, such computers and programs are not black boxes. Thus, the
program is in principle capable of explaining how it works. (At least, programmers can
look at the program to see how it works.) But machine-learning programs learn how

21.7. A FINAL COMMENT? 785

to do things “on their own”, and it is difficult, if not impossible, to look at its neural
network to see how it does things. Worse, human bias on the part of their programmers
might creep into their training sets and algorithms. These black-box and bias problems
challenge the presumption mentioned above that computer programs can be relied on
to make rational decisions.

21.6.2 Should We Build an Artificial Intelligence?
The second issue in computer ethics that we looked at was whether we should build
artificial intellgences, assuming that it is plausible that we could build them.

Lem’s science-fiction story (1971) pointed out that, if we do succeed in building
AIs, we may someday have to pull the plug on them. And LaChat (1986) suggested
that maybe we shouldn’t even begin. But he also argued that considering the moral
consequences of building one enables us to deal with important philosophical issues:
What is a person? Would a “personal” AI have (moral) rights and responsibilities?
Could the AI itself be a moral agent? And, as Bostrom (2003) suggested, what if we
are someone else’s AIs?

21.7 A Final Comment?
Brian Cantwell Smith (2002) concludes his overview of the philosophy of CS with this
remark about physical objects (including computers) that are “intentional” in the sense
of being “directed to objects” or “being about something”—that is, of interacting with
the world (Rapaport, 2012a; Jacob, 2019):

. . . the existence of computation is extremely important, because any theory of it
will be a theory of intentional artifacts, hence a theory of everything!

And that seems to be a good note on which to end. Although . . .

786 CHAPTER 21. SUMMARY

This Is Not the End

Lots of things never end. Space. Time. Numbers. The questions little kids ask.[1]
And philosophy.
You try to convince somebody of something—even yourself—by offering reasons to believe

the thing. But then your belief is only as valid as your reasons are, so you offer reasons to accept
your reasons. But then those reasons need further reasons and you’re off. As a result it often
seems that there aren’t any answers to philosophical questions: there are just more arguments,
more objections, more replies. And so it may easily seem that it’s not worth even getting started.
Why bother? You’ll never finish. You may as well try to count all the numbers.

But there is another way of thinking about it.
I went snorkeling for the first time a few years ago. It was an amazing experience. There

was a whole world under that water to which I’d been oblivious my entire life. This world was
populated with countless amazing creatures with all sorts of complex relationships to each other
in that tangled ecosystemic way. Indeed every single thing was connected to every other thing:
this one is food for that one, which excretes chemicals used by another one, which excretes waste
products used by others, and so on. Stunning, fascinating, and absolutely, deeply, beautiful. It
had been there all along, jsut waiting for me to dive in.

If you were now to tell me that that ocean goes on forever, filled with ever more amaz-
ing creatures in more amazing relationships—I wouldn’t say, “Well then why bother entering?”
Rather, I’d say, “Where can a guy get a wetsuit around here?”

But that is philosophy. It’s filled with countless amazing ideas, concepts, beings, which exist
in all sorts of complex logical relationships with each other. And unlike the actual ocean this
one is infinitely deep: Wherever you enter you can keep going, and going, and going. What you
should be thinking, then, is not: “Why enter?” It is, rather, this: thank you—very much.

But of course, that world just is this world, the world that you’re in. This great ocean you
may be looking for, you’re alrady in it. You just have to start thinking about it. The very first
drop in that bucket is a splash into the infinite.

This is the beginning.

—Andrew Pessin (2009, pp. 124–125)

1As well as the cells on a Turing-machine tape and infinite loops!

Part VII

Appendices

787

Appendix A

Position-Paper Assignments

Version of 17 December 2019; DRAFT c© 2004–2019 by William J. Rapaport

A.1 Introduction
One of the best ways to learn how to do philosophy and, perhaps more importantly, to
find out what your beliefs are about important issues (as well as what your reasons for
your beliefs are!) is to write about them and then to discuss what you’ve written with
others who have also thought and written about about the issues—your “peers”.

So, the writing assignments take the form of “position papers”, in which you will
be:

• presented with a logical argument about a topic in the philosophy of CS,

• asked to analyze and evaluate the argument,

• given an opportunity to clarify and defend your analysis and evaluation,

• and simultaneously be asked to help your peers clarify and defend their analyses
and evaluations of the same argument in an exercise called “peer editing”.

This should help you to clarify your own position on the topic.
When you write, you should imagine that you’re writing a computer program for

someone to read. Therefore, you need to express yourself as clearly as possible so that
the reader will understand you. Because of space limitations (1 or 2 pages), don’t say
anything that isn’t directly relevant to what you want the reader to understand, but you
should say everything that you think the reader would need in order to understand you.
(Compare a similar remark in §8.3 about reading.)

Further Reading:
For help with writing a philosophical paper, see Wolff 1975; Chudnoff 2007; and a wonderfully
dynamic slideshow by Angela Mendelovici (2011). For general advice on how to write, on
grammar and punctuation, giving citations, etc., see my website “How to Write”, https://cse.
buffalo.edu/∼rapaport/howtowrite.html

789

790 APPENDIX A. POSITION-PAPER ASSIGNMENTS

A.2 Position Paper #1: What Is Computer Science?

A.2.1 Assignment
A.2.1.1 Introduction

The purpose of this position paper is to give you an opportunity to clarify your beliefs
about what CS is, so that, as we continue to discuss the topic in class, and as you
continue to read about it, you’ll know where you stand—what your beliefs are.

Later, when your beliefs have been informed by further readings and by our discus-
sions, you may wish to revise your beliefs. But you can’t revise a belief that you don’t
have (you can only acquire new beliefs). So, here I am forcing you to discover, clarify,
and defend the beliefs that you now have, by turning them into words and putting them
on paper.

A.2.1.2 The Argument

Imagine that you are the newly-appointed Dean of the School of Science at the Univer-
sity of X. In an attempt to build up the rival School of Engineering, the newly-appointed
Dean of Engineering has proposed to the Provost (the boss of both deans) that the De-
partment of Computer Science be moved—lock, stock, and computer, so to speak1—to
Engineering, on the following grounds:

1. Science is the systematic observation, description, experimental investigation,
and theoretical explanation of natural phenomena.

2. Computer science is the study of computers and related phenomena.

3. Therefore, computer science is not a science.

(The Dean of Engineering has not yet argued that computer science is an engineer-
ing discipline; that may come later.)

How do you respond to the Dean of Engineering’s argument? You may agree with
it, or not (but there are several ways that might happen; see below).

You should ignore political considerations: You may suppose that the move from
Science to Engineering involves no loss or gain of money, prestige, or anything else,
and it is to be done, if at all, only on strictly intellectual grounds.

The Provost is eagerly awaiting your reply, and will abide by your decision . . . if ,
that is, you give a well-argued defense of your position.

1http://www.worldwidewords.org/qa/qa-loc1.htm

A.2. POSITION PAPER #1: WHAT IS COMPUTER SCIENCE? 791

A.2.1.3 Argument Analysis

To formulate and defend your position, you should:

a) Say (i) whether you agree that conclusion 3 logically follows from premises 1 and 2,
(whether or not you agree with them),
and say (ii) why you think that it follows or doesn’t follow:

(“I agree that conclusion 3 follows from premises 1 and 2, because . . . ”
OR
“I don’t agree that 3 follows from 1 and 2, because . . . ”)

• If you think that conclusion 3 doesn’t follow, is there some (interesting, non-
trivial) missing premise that would make it follow? (See §2.10.3, above.)

b) Say whether you agree with premise 1, and say why you do or don’t agree:

(”I agree with premise 1, because . . . ”
OR
“I disagree with premise 1, because . . . ”)

c) Say whether you agree with premise 2, and say why you do or don’t agree:

(”I agree with premise 2, because . . . ”
OR
“I disagree with premise 2, because . . . ”)

d) If you thought that there were missing premises that validated the argument,
say whether you agree with them, and say why you do or don’t agree.

e) If you think that the argument is logically invalid, you might still agree or disagree
with conclusion 3 independently of the reasons given for it by premises 1 and 2
(and any missing premises).

• If so, say whether you agree with 3, and say why you do or don’t agree.

f) It’s also possible that you might neither agree nor disagree with 3. Alternatively,
you might both agree and disagree with it. For example, you might believe that
computer science is both a science and an engineering discipline (or, alternatively,
that it is neither).

• If so, then please give your reasons for this.

And, if you are unsure about any of your answers, try to be very precise about why you
are unsure and what further information would help you decide.

792 APPENDIX A. POSITION-PAPER ASSIGNMENTS

g) You might not agree with any of these ways to respond. However, I believe that any
other response can, perhaps with a bit of force, be seen to fall under one of the above
responses. But if you really feel that your position is not exactly characterized by
any of the above responses, then please say:

• what your position is,

• why you believe it,

• and why you think it is not one of the above.

For general assistance on analyzing arguments, see §2.10.

A.2.1.4 Ground Rules:

1. Your answer should honestly reflect your beliefs (not what you think the fictional
Provost or Dean of Engineering wants to hear!).

2. If you resort to a dictionary, textbook, article, website, etc., be sure to say which
one. Give as much detailed information as you can that would assist someone
else to locate the item by themselves. (See “How to Handle Citations”, http:
//www.cse.buffalo.edu/∼rapaport/howtowrite.html#citations)

3. Your position paper should be approximately 1 typed page and double-spaced
(that is, about 250 words) (not including any bibliographic citations).

• To help keep your paper short, you do not need any fancy introductory
paragraph; you can assume that your reader is a fellow student in this course
who has just done the same assignment.

• If you write:

– 1 paragraph analyzing validity,
– 1 paragraph each analyzing the premises,
– and 1 paragraph analyzing the conclusion,

you will have (more than) enough material.

4. Please bring 5 copies to lecture on the due date.

5. At the top of the (first) page, please put the following information:

Position Paper #1, 1st draft YOUR NAME
DATE DUE CLASS

(The space taken up by this will not count against your total pages.)

DUE AT THE BEGINNING OF LECTURE, 1 WEEK FROM TODAY

A.2. POSITION PAPER #1: WHAT IS COMPUTER SCIENCE? 793

A.2.2 Suggestions and Guidelines for Peer-Group Editing
1. When you get into your small groups:

• introduce yourselves quickly,

• share copies of your papers with each other,

• and write each other’s names on your paper
(so that we have a record of who peer-reviewed whom).

2. Choose one paper to discuss first.
(Suggestion: Go in alphabetical order by family name.)

3. The other people in the group might find it useful to imagine themselves as mem-
bers of a committee set up by the Provost to make a recommendation. Their
purpose is to try to help the author clarify his or her beliefs and arguments, so
that they will be able to make a recommendation to the Provost on purely logical
grounds (again: ignore politics!).

4. Start by asking the author to state (or read) his or her beliefs about whether
computer science is a science, giving his or her reasons for those beliefs.

5. Be sure that the author has discussed:

a) the validity of the argument

b) the truth value of premise 1 (or their (dis)agreement with it)

c) the truth value of premise 2 (or their (dis)agreement with it)

d) the truth value of any missing premises (or their (dis)agreement with them)

e) the truth value of the conclusion (or their (dis)agreement with it)

• And for each of the above, their reasons

6. Any time you have a question, ask it. Here are some suggestions:

• Why did you say rather than ?

• What did you mean when you said ?

• Can you give me an example of ?

• Can you give me more details about ?

• Do you think that is always true?

• Why? (This is always a good question to ask.)

• How?

7. The author should not get defensive. The committee members are friendly.
Critical, but friendly.

8. Keep a written record of the questions and replies.
This will be useful to the author, for revision.

794 APPENDIX A. POSITION-PAPER ASSIGNMENTS

9. After spending about 10 minutes2 on the first paper, move on to the next, going
back to step 2 above, changing roles. Spend no more than 15 minutes3 per paper
(because you’ve only got about 45 minutes4 at most). Perhaps one member of
the group can be a timekeeper.

10. At home, over the next week, please revise your paper to take into consideration
the comments made by your fellow students (that is, your “peers”):

Perhaps defend your claims better, or clarify statements that were misunderstood,
etc. For help, see your instructor.

• At the top of the first page of your revision, please put the following infor-
mation:

Position Paper #1, 2nd draft YOUR NAME
DATE DUE CLASS

• Please staple copies of your first draft, (with peer-editing comments, if any)
to your second draft.

• Your second draft should be substantially different from your first draft!

1–2 PAGE (250–500 WORD) REVISION, 1 COPY, TYPED, DUE ONE WEEK
FROM TODAY. NO LATE PAPERS WILL BE ACCEPTED!

2To the instructor: Actually, some number n of minutes close to 10 but less than or equal to m/s, where
m is the total number of minutes in the class, and s is the total number of students in the group.

3Actually, n+5.
4Actually, m.

A.3. POSITION PAPER #2: WHAT IS COMPUTATION? 795

A.3 Position Paper #2: What Is Computation?

A.3.1 Assignment
A.3.1.1 The Argument

For this position paper, please evaluate the following argument:

1. Knuth (1973, pp. 4–6) characterizes the informal, intuitive notion of “algorithm”
as follows:5

a) “Finiteness. An algorithm must always terminate after a finite number of
steps . . . ”

b) “Definiteness. Each step of an algorithm must be precisely defined; the ac-
tions to be carried out must be rigorously and unambiguously specified for
each case . . . ”

c) “Input. An algorithm has zero or more inputs . . . ”

d) “Output. An algorithm has one or more outputs . . . ”

e) “Effectiveness. [A]ll of the operations to be performed in the algorithm must
be sufficiently basic that they can in principle be done exactly and in a finite
length of time by a [hu]man using pencil and paper . . . ”

Note: We can also say that A is an algorithm for computing a function f means
that A is an algorithm as characterized above and that, for any input i, A’s output
for i = f ’s output for i; that is, for any i, A(i) = f (i).

2. Computer programming languages (like Java, Lisp, Fortran, etc.) are formal lan-
guages for expressing (or “implementing”) algorithms.

3. Every computer programming language is equivalent in expressibility to a Turing
Machine programming language.

a) That is, every program in any programming language can be translated into
the language for programming Turing Machines, and vice versa.

b) That is, any function that is computable by any programming language is
computable by a Turing Machine, and vice versa.

4. Some real computer programs violate parts of Knuth’s definition:

a) Airline-reservation systems, ATMs, operating systems, etc., never terminate.

b) Heuristic AI programs don’t always compute exactly the function that they
were written for, but only come very close (see §3.15.2.3).

c) The “effectiveness” of “mundane” or everyday procedures (like recipes) may
depend on the environment in which they are executed.

5Although this premise is Knuth’s explication of ‘algorithm’, the rest of this argument is mine, not his.

796 APPENDIX A. POSITION-PAPER ASSIGNMENTS

For example, using a different brand of some ingredient can ruin a
recipe, or one chef’s “pinch” of salt might be another’s 1/8th tea-
spoon. And can you really execute a recipe “using pencil and pa-
per”?

d) Algorithms can apparently be written that can perform an infinite computa-
tion in a finite amount of time (by continually accelerating).

• For example, we can sum the terms of an infinite sequence in a finite
amount of time if we take 1

2n second to add the nth term.

And so on.

5. Therefore, these programs (that is, the “real programs” referred to in premise 4)
do not implement Turing Machines (contrary to premise 3).

6. Therefore, they (that is, the “real programs” referred to in premise 4) are not
computable. (But how can a real computer program not be computable?!)

A.3.1.2 Argument Analysis

a) To evaluate this argument, you must state whether the argument is valid, and you
must state whether and why you agree or disagree with each premise and con-
clusion.

• If it is valid, and if you agree with each premise, then you believe that the
argument is sound.

• You are logically obligated to believe the conclusions of sound arguments!
So, if you ever come across an argument that you think is sound, but whose
conclusion you don’t believe, then either:

– one (or more) of the premises is false,
– or the argument is invalid (that is, there is some way for the premises to

be true yet for the conclusion to be false),
– or both.

To determine whether it is valid, you must suppose “for the sake of the argument”
that all the premises are true, and then consider whether the conclusions logically
follow from them.

(Or: Can you imagine some way the world might be so that the premises are true
but the conclusion is false?)

Note that, in this argument, there are two conclusions: conclusions 5 and 6.

So, do you agree that conclusion 5 follows logically from premises 1–
4 and/or that conclusion 6 follows logically from 5? If not, are there
missing premises that are needed to make the argument(s) valid? If there
are, do you agree with them (why/why not)?

b) Next, you must evaluate each premise. Do you agree with it? Why or why not?

A.3. POSITION PAPER #2: WHAT IS COMPUTATION? 797

c) Finally, do you agree with the conclusion(s)?

You might agree with a conclusion because you think that the argument
is sound;

• if so, say so.

Or you might think that there’s something wrong with the argument but
agree with the conclusion anyway;

• if so, then try to present a better argument for the conclusion.

Or you might not agree with the conclusion(s);

• if not, state why, and try to give an argument for what you do be-
lieve.

A.3.1.3 Ground Rules

a) Your position paper should be approximately 1–2 typed pages, double-spaced (that
is, about 250–500 words), and single-sided.

b) Please bring 5 copies to lecture on the due date.

c) At the top of the first page, please put the following information:

Position Paper #2, 1st draft YOUR NAME
DATE DUE CLASS

d) For general assistance with writing (including my preferred method of paper prepa-
ration and format, as well as advice on grammar), see my website, “How to Write”,
http://www.cse.buffalo.edu/∼rapaport/howtowrite.html.

As before, this doesn’t have to be a beautifully written essay with an abstract. You
should just plunge in and evaluate the argument.

But you do need to give full citations to any sources that you cite.

DUE AT THE BEGINNING OF LECTURE, ONE WEEK FROM TODAY

798 APPENDIX A. POSITION-PAPER ASSIGNMENTS

A.3.2 Suggestions and Guidelines for Peer-Group Editing
1. When you get into your small groups, introduce yourselves quickly, and share

copies of your papers with each other.

2. Choose one paper to discuss first.
(Suggestion: Go in alphabetical order by family name.)

3. After spending about 10–15 minutes on the first paper, move on to the next,
going back to step 2, above, changing roles.
Spend no more than 15 minutes per paper (because you’ve only got about 45
minutes at most).
Perhaps one member of the group can be a timekeeper.

4. For each paper, ask as many of the following questions as you have time for:

a) Did the author state whether and why they did or did not agree with Knuth’s
definition in premise 1?

• Note: Knuth’s definition is a conjunction of 5 things: 1a & 1b & 1c &
1d & 1e.
So, in disagreeing with premise 1, an author must
a) explicitly disagree with (at least) one of 1a . . . 1e
b) and say why they disagree with that part (or those parts).

i) If the author agreed and gave reasons for agreeing, do you agree with
those reasons? Why?

ii) If the author disagreed and gave reasons for disagreeing, do you agree
with those reasons? Why?

b) Did the author state whether and why they did or did not agree with the
claim about the nature of programming languages in premise 2?

(Plus questions 4(a)i and 4(a)ii, above.)

c) Did the author state whether and why they did or did not agree with the claim
about the “Turing-equivalence” of programming languages in premise 3?

(Plus questions 4(a)i and 4(a)ii, above.)

d) Did the author state whether and why they did or did not agree with the
claim and/or the examples in premise 4?

(Plus questions 4(a)i and 4(a)ii, above.)

e) Did the author state whether and why they believe that conclusion 5 does or
does not validly follow from premises 1–4?

Do you agree with their evaluation?

A.3. POSITION PAPER #2: WHAT IS COMPUTATION? 799

f) If the author believes that conclusion 5 follows soundly from premises 1–4,
then they should state that they believe conclusion 5 for that reason.
Do they?

i) On the other hand, if the author believes that conclusion 5 does not fol-
low
—either because one or more of the premises is false or because the ar-
gument is invalid—
then did the author state whether and why they did or did not agree with
the statement made in the conclusion?

(Plus questions 4(a)i and 4(a)ii, above.)
ii) Note that if the author believes that the argument is unsound,

that is not a sufficient reason for disbelieving the claim!
(That’s because even a valid argument can have false premises
and a true conclusion (or a false one),
and even an invalid argument can have a true conclusion (or a
false one).
The only thing that can’t happen is to have a valid argument
with true premises and with a false conclusion.)

g) If the author believes that conclusion 6 follows soundly from statement 5
considered as a premise along with some or all of the previous statements in
the argument (and possibly along with one or more missing premises!), then
they should state that they believe conclusion 6 for that reason. Do they?

h) On the other hand, if the author believes that conclusion 6 does not follow
—either because one or more of its premises is false or because the argument
is invalid—
then did the author state whether and why they did or did not agree with the
statement made in the conclusion?

(Plus questions 4(a)i and 4(a)ii, above.)

5. Keep a written record of the questions and replies.
This will be useful to the author, for revision.

6. At home, over the next week, please revise your paper to take into consideration
the comments made by your fellow students (that is, your “peers”): Perhaps
defend your claims better, or clarify statements that were misunderstood, etc.
For help, see your instructor.

1–2 PAGE (250–500 WORD) REVISION, 1 COPY, TYPED, DOUBLE-SPACED,
IS DUE ONE WEEK FROM TODAY.
NO LATE PAPERS WILL BE ACCEPTED!

800 APPENDIX A. POSITION-PAPER ASSIGNMENTS

A.4 Position Paper #3: Is the Brain a Computer?

A.4.1 Assignment
For this position paper, I would like you to evaluate the following “complex” argument.
(It’s “complex” because it consists of three “sub”arguments, two of which treat the
conclusions of previous ones as premises.)

A.4.1.1 The Argument

1. Turing’s Thesis: A physical object can compute if and only if it can do what a
(universal) Turing Machine can do.

2. A computer is any physical device that can compute.
(Consider this as a (proposed) definition of ‘computer’.)

3. The human brain is a physical object that can do what a (universal) Turing Ma-
chine can do.

4. Therefore, the human brain is a computer.

5. Microsoft Word is Turing Machine-computable.
(That is, a universal Turing Machine can execute Microsoft Word.)

6. Therefore, any computer can execute Microsoft Word.

7. Therefore, the human brain can execute Microsoft Word.

A.4.1.2 Argument Analysis

As usual, to evaluate this argument, you must determine (I) whether it is valid and
(II) whether all the premises are true.

• If both of those conditions hold, then the argument is sound.

• You are logically obligated to believe the conclusions of sound arguments!

– So, if you ever come across an argument that you think is sound, but whose
conclusion you don’t believe

(by the way, do you really believe line 7 of this argument?),

then either one or more of the premises are false or it is invalid (that is,
there is some way for the premises to be true yet for the conclusion to be
false).

(I) To determine whether the argument is valid, you must suppose (or make believe)
“for the sake of the argument” that all the premises are true, and then consider
whether the conclusions logically follow from them. (Or: Can you imagine some
way the world might be so that the premises are true but the conclusion is false?)

A.4. POSITION PAPER #3: IS THE BRAIN A COMPUTER? 801

• Note that there are three conclusions: lines 4, 6, and 7. So, do you agree
that conclusion 4 follows logically from premises 1–3, and/or that conclu-
sion 6 follows logically from premise 5 (maybe with the help of some of
the earlier premises), and/or that conclusion 7 follows logically from lines 4
and 6 considered as premises?
If not, are there missing premises that are needed to make the argument(s)
valid? If there are, do you agree with them (why/why not)?

(II) It may be too difficult to determine whether each premise is true or false. More
realistically, you should decide whether you believe, or agree with, each premise,
and you must explain why you do or don’t.

Finally, do you agree with the conclusion(s)? If you do, but you think that there’s
something wrong with the argument, try to present a better one. If you don’t agree with
the conclusion(s), state why, and try to give an argument for what you do believe.

A.4.1.3 Ground Rules

a) Your position paper should be approximately 1–2 typed pages, double-spaced (that
is, about 250–500 words), and single-sided.

b) Please bring 5 copies to lecture on the due date.

c) At the top of the first page, please put the following information:

Position Paper #3, Draft 1 YOUR NAME
DATE DUE YOUR CLASS

For general assistance with writing (including my preferred method of paper prepa-
ration and format, as well as advice on grammar), see my website ”How to Write”,
http://www.cse.buffalo.edu/∼rapaport/howtowrite.html As before, no abstract is needed
for this position paper, but you do need to give full citations to any sources that you
cite.

DUE AT THE BEGINNING OF LECTURE, ONE WEEK FROM TODAY

802 APPENDIX A. POSITION-PAPER ASSIGNMENTS

A.4.2 Suggestions and Guidelines for Peer-Group Editing
d)1. When you get into your small groups, introduce yourselves quickly, and share

copies of your papers with each other.

2. Choose one paper to discuss first.
(Suggestion: Go in alphabetical order by family name.)

3. After spending about 10–15 minutes on the first paper, move on to the next,
going back to step 2, above, changing roles. Spend no more than 15 minutes per
paper (because you’ve only got about 45 minutes at most). Perhaps one member
of the group can be a timekeeper.

4. For each paper, ask as many of the following questions as you have time for:

a) Did the author state whether the argument from premises 1–3 to conclusion 4
was valid?

i) If they thought it was invalid, did they suggest a missing premise that
would make it valid (if that’s possible)?

b) Did the author state whether the argument to conclusion 6 was valid?

i) Did they correctly identify its other premises besides premise 5?
(Very few real arguments can have only one premise.)

ii) If they thought it was invalid, did they suggest a missing premise that
would make it valid (if possible)?

c) Did the author state whether the argument to conclusion 7 was valid?

i) Did they correctly identify its other premises besides premise 6?
(Note that sentence 6 is both the conclusion of the previous argument
and a premise of this one.)

ii) If they thought it was invalid, did they suggest a missing premise that
would make it valid (if possible)?

d) For each premise, ask whether the author stated whether and why they did or
did not agree with it.

i) If the author agreed, then it is preferable (but not necessary) that they
give reasons for agreeing. If they did give such reasons, do you agree
with those reasons? Why?

ii) If the author disagreed, then it is necessary that they give reasons for
disagreeing, so do you agree with those reasons? Why?

e) For each argument, if the author thought it was unsound, did they state
whether they believed its conclusion anyway, on independent grounds (that
is, for different reasons)?

• And, if so, do you agree with those reasons?

5. Keep a written record of the questions and replies. This will be useful to the
author, for revision.

A.4. POSITION PAPER #3: IS THE BRAIN A COMPUTER? 803

6. At home, over the next week, please revise your paper to take into consideration
the comments made by your fellow students (that is, your “peers”): Perhaps
defend your claims better, or clarify statements that were misunderstood, etc.
For help, see your instructor.

1–2 PAGE (250–500 WORD) REVISION, 1 COPY, TYPED, DOUBLE-SPACED,
IS DUE IN LECTURE ONE WEEK FROM TODAY. NO LATE PAPERS WILL
BE ACCEPTED!

804 APPENDIX A. POSITION-PAPER ASSIGNMENTS

A.5 Position Paper #4: What Is a Computer Program?

A.5.1 Assignment
A.5.1.1 The Argument

For this position paper, I would like you to evaluate the following argument:

1. A special-purpose computer (that is, a computer that does just one task) is essen-
tially a hardwired computer program.

2. Such a hardwired computer program is a physical machine.

3. Physical machines can be patented.

4. Therefore, such a hardwired computer program can be patented.

5. The printed text of a computer program is a “literary work” (that is, a piece of
writing) in the sense of the copyright law.

6. Literary works can be copyrighted.

7. Therefore, such a computer program can be copyrighted.

8. Nothing can be both patented and copyrighted.

• Note: This premise is a matter of law. You must accept it as true. But you
can argue that the law should be changed.

9. There is no computational or other relevant difference between the hardwired
computer program and its textual counterpart (except for the different media in
which they are implemented, one being hardwired and the other being written
on, say, a piece of paper).

10. Therefore, computer programs can be both patented and copyrighted.

To help you evaluate this argument, you should look at the legal definitions of
‘copyright’ and ‘patent’ as given in §13.2.

A.5.1.2 Argument Analysis

To evaluate this argument, you must state whether the argument is valid and you must
state whether and why you agree or disagree with each premise. Remember:

• Only single statements (like premises and conclusions) can be true or false.
For our purposes, it’s enough to say that a statement is true (or false) if you agree
(or disagree) with it, because I’m not asking you to convince me that a statement
really is true (or false); I’m only asking you to convince me that you have a good
reason for agreeing (or disagreeing) with it.

A.5. POSITION PAPER #4: WHAT IS A COMPUTER PROGRAM? 805

• And only arguments can be valid or invalid. An argument is valid if it’s im-
possible for all of its premises to be true while its conclusion is false (and it’s
invalid otherwise). For our purposes, to determine whether an argument is valid,
you must suppose (or make believe) “for the sake of the argument” that all the
premises are true (that is, that you agree with all of them), and then consider
whether you would have to logically agree with the conclusion. To determine
whether an argument is invalid, try to imagine some way the world might be so
that the premises are true but the conclusion is false.

• Finally, only arguments can be sound or unsound. An argument is sound if
it’s valid and all of its premises are true (in which case, its conclusion will also
have to be true). For our purposes, we’ll say that an argument is sound if it’s
valid and you really do agree with all of its premises (in which case, you really
have to agree with the conclusion).

• You are logically obligated to believe the conclusions of sound arguments!
So, if you ever come across an argument that you think is sound, but whose
conclusion you don’t believe, then either one (or more) of the premises is false,
or it is invalid (that is, there is some way for the premises to be true yet for the
conclusion to be false), or both.

This means, of course, that you have to evaluate each premise and each (sub-)argument,
and, as usual, I also want you to evaluate the conclusion independently of whether you
think that it follows validly or doesn’t follow validly from its premises.

A.5.1.3 Ground Rules

a) For this position paper, I want to experiment with something a little bit different.

Instead of writing a first draft of your paper, I simply want you to fill in the attached
“thinksheet”, which will be an outline of your argument analysis.

You will write the paper after peer-editing the thinksheets.

b) Please bring 5 copies of your filled-out thinksheet to lecture on the due date.

DUE AT THE BEGINNING OF LECTURE, ONE WEEK FROM TODAY

806 APPENDIX A. POSITION-PAPER ASSIGNMENTS

A.5.1.4 Thinksheet for Position Paper #4: What Is a Computer Program?

(Note: ‘(c)’ below means “copyright’ or ‘copyrighted’.)

==
Statement |Agree?| Why?
(abbreviated versions of |(T?F?)| (use additional sheets if needed)
prems & conc of arg’t) | |

--
1. A special-purpose computer| |

is essentially a hard- | |
wired computer prog. | |

--
2. Such a hardwired comp.prog| |

is a physical machine | |
--
3. Physical machines | |

can be patented | |
--
4. Such a hardwired comp.prog| |

can be patented | |
--
Arg’t 1,2,3/.’.4 is valid? | |
--
5. The printed text of a comp| |

prog. is a "lit.work" in | |
the sense of the (c) law | |

--
6. Lit.works can be (c) | |
--
7. The printed text of | |

a comprog can be (c) | |
--
Arg’t 5,6/.’.7 is valid? | |
--
8. Nothing can be both | |

patented & (c) | |
--
9. There’s no comp’n’l or | |

other diff. betw. the | |
hardwired comp.prog. & its| |
textual counterpart... | |

--
10. Comprogs can be both | |

patented & (c) | |
--
Arg’t 4,7,9/.’.10 is valid? | |
--
Additional comments:

A.5. POSITION PAPER #4: WHAT IS A COMPUTER PROGRAM? 807

A.5.2 Suggestions and Guidelines for Peer-Group Editing
A) (a) When you get into your small groups, introduce yourselves quickly, and share

copies of your thinksheets with each other.

(b) Choose one thinksheet to discuss first.
(Suggestion: Go in alphabetical order by family name.)

(c) After spending about 10–15 minutes on the first thinksheet, move on to the
next, going back to step Ab, above, changing roles. Spend no more than
15 minutes per paper (because you’ve only got about 45 minutes at most).
Perhaps one member of the group can be a timekeeper.

B) (a) Make sure each “cell” of the thinksheet is filled in.

i. The cells in the “Agree? (T?F?)” column should be filled in with ‘agree’
or ‘disagree’ (or ‘T’ or ‘F’).

ii. The cells in the “Why?” column should contain a reason why the author
agrees or disagrees with the statement, or why the author thinks that the
argument is valid or invalid. These don’t have to be complete sentences,
but they should be comprehensible.

(b) Keep a written record of the peer-editing suggestions.
This will be useful to the author, for revision.

C) The “revision” this time should, of course, be a correctly formatted paper, like the
ones you have been writing all semester.

(a) It should be fairly straightforward to turn the thinksheet outline into full sen-
tences and paragraphs (with correct citations if needed).

(b) I strongly urge you to have someone peer-edit your paper before you produce
the final version! Tell that person to make sure that you have:

i. Evaluated each statement (premise and conclusion) for (“absolute” or
“independent”) truth or falsity (see §2.6.1.1 about that terminology) and
given a reason for your evaluation.

ii. Evaluated each argument for validity or invalidity (that is, evaluated each
conclusion for “relative truth”, that is, truth relative to the premises), and
given a reason for your evaluation.

iii. Correctly used the ‘true’/‘false’/‘valid’/‘invalid’ terminology.

(c) Failure to correctly distinguish among “true (or false) sentences, proposi-
tions, statements, premises, or conclusions” and “valid (or invalid) argu-
ments” will result in a lower grade! (After all, you need to demonstrate that
you’ve learned something this semester!)

D) (a) Your position paper should be approximately 1–2 typed pages, double-spaced
(that is, about 250–500 words), and single-sided.

(b) At the top of the first page, please put the following information:

808 APPENDIX A. POSITION-PAPER ASSIGNMENTS

Position Paper #4 YOUR NAME
DATE DUE YOUR CLASS

(c) Please attach the peer-edited thinksheets to your paper, as usual.

(d) For general assistance with writing (including my preferred method of paper
preparation and format, as well as advice on grammar), see my website “How
to Write”, http://www.cse.buffalo.edu/∼rapaport/howtowrite.html.
As before, no abstract is needed for this position paper, but you do need to
give full citations to any sources that you cite.

1–2 PAGE (250–500 WORD) PAPER, 1 COPY, TYPED, SINGLE-SIDED, DOUBLE-
SPACED, IS DUE ONE WEEK FROM TODAY. NO LATE PAPERS WILL BE
ACCEPTED!

A.6. POSITION PAPER #5: CAN COMPUTERS THINK? 809

A.6 Position Paper #5: Can Computers Think?

A.6.1 Assignment
A.6.1.1 A Debate

For this position paper, I would like you to evaluate the following hypothetical debate.

Pro: If something behaves in all relevant ways as if it were cognitive,
then it is cognitive.

Con: What do you mean by “being cognitive”?

Pro: I mean that it:

• can perceive (see, hear, etc.);

• has beliefs, desires, and intentions;

• can remember;

• can use and understand natural language;

• can reason and make rational decisions; etc.

You know, the sort of thing that AI researchers are trying to achieve by compu-
tational means.

Con: Do you think they will succeed?

Pro: I’m optimistic: I think that a computer running a suitable AI program (or maybe
a suite of programs) will eventually behave in all these ways.

Con: But that means that you think that such an AI-programmed computer will be
cognitive?

Pro: Yes.

Con: But that’s crazy! Computers and computer programs are purely syntactic!

Pro: Now it’s my turn to ask for clarification: What do you mean by ‘syntactic’?

Con: I mean that all a computer can do is to manipulate the symbols of a formal
symbol system (see §14.3.2.2).

Pro: So what’s the problem?

Con: The problem is that cognition is semantic! That is, it involves the semantic
interpretation of those symbols.

Pro: Well, I’m not so sure about that. But suppose you’re right. What then?

Con: Well, syntax does not suffice for semantics. So, no computer executing a purely
syntactic computer program can exhibit semantic cognition, even if it behaves in
all relevant ways as if it were cognitive.

810 APPENDIX A. POSITION-PAPER ASSIGNMENTS

A.6.1.2 Argument Analysis

• Try to rewrite Pro’s and Con’s arguments in terms of premises and conclusions,
and then analyze and evaluate those arguments. That is, “extract” each argument
from the debate and put them in the following forms:

1. Pro’s premise 1 1. Con’s premise 1
2. Pro’s premise 2 2. Con’s premise 2
3. (etc.) (etc.)
4. Therefore, Pro’s conclusion 4. Therefore, Con’s conclusion

Then evaluate each argument.

• Keep in mind that premises and conclusions are declarative propositions (they
can be deemed to be true or false) but that some lines uttered by Pro and Con
are not declarative propositions (and thus can’t be premises or conclusions). For
example, Con’s first statement is a question—it is not a premise or conclusion
of anyone’s argument—and Pro’s second statment needs to be reformulated as
something like “Something is cognitive means that it . . . ”.

A.6.1.3 Ground Rules

1. For your peer-editing session next week, I will give you a choice: You may
either:

(a) create a “thinksheet” like the one for Position Paper #4 (§A.5.1.4)
• with one column listing the premises, conclusions, and arguments;
• one column of “cells” to indicate your agreement or disagreement with

them;
• and one column of “cells” to indicate your reasons for your agreement

or disagreement
(b) or write a 1–2 page, double-spaced (that is, about 250–500 word), single-

sided, first draft.

(Of course, you might want to do option 1a for your own use before doing op-
tion 1b! They are not mutually inconsistent.)

If your document is more than 1 page long, please staple the pages together and
make sure that your name is on all pages!

2. Please bring 5 copies to class on the due date.

3. At the top of the first page, please put the following information:

Position Paper #5 YOUR NAME
DATE DUE YOUR CLASS

4. Failure to correctly distinguish among “true (or false) sentences, propositions,
statements, premises, or conclusions” and “valid (or invalid) arguments”
will also result in a lower grade!

A.6. POSITION PAPER #5: CAN COMPUTERS THINK? 811

5. For general assistance with writing (including my preferred method of paper
preparation and format, as well as advice on grammar), see my website “How to
Write”, http://www.cse.buffalo.edu/∼rapaport/howtowrite.html

And don’t forget to give full citations to any sources that you cite.

DUE AT THE BEGINNING OF LECTURE, ONE WEEK FROM TODAY

812 APPENDIX A. POSITION-PAPER ASSIGNMENTS

A.6.2 Suggestions and Guidelines for Peer-Group Editing
1. When you get into your small groups, introduce yourselves quickly, and share

copies of your papers with each other.

2. Choose one paper to discuss first.
(Suggestion: Go in alphabetical order by family name.)

3. After spending about 10–15 minutes on the first paper, move on to the next,
going back to step 2 above, changing roles. Spend no more than 15 minutes per
paper (because you’ve only got about 45 minutes at most). Perhaps one member
of the group can be a timekeeper.

4. Suggestion: There are really 2 arguments in this dialogue: Pro’s argument and
Con’s argument.

So, the first task is to present each argument. Once you have identified the
premises (including any hidden premises) and conclusion of each argument, you
can then analyze it for validity of the argument and truth of the premises.

5. For each paper in your peer-editing group, ask as many of the following questions
as you have time for:

(a) Did the author present both Pro’s and Con’s arguments?

(b) For each argument, did the author state whether and why they believe the
argument to be valid?

• It’s possible to formulate both arguments so that they are valid!
• If you do that, then ascertaining the truth value of the premises be-

comes your central task.

(c) For each argument, did the author state whether and why they agree with
the premises?

(d) For each argument, if the author believed either that the argument was in-
valid (even with missing premises added—that is, that there was no way
to make the argument valid) or that one or more of the premises was false,
then did the author state whether and why they agree with the conclusion?

• Reminder:
i. If you think an argument is sound, then you are logically obligated

to believe its conclusion (and you don’t have to give any other
justification for the conclusion).

ii. If you don’t believe the conclusion of an argument, then it is either
invalid or else has at least one false premise; you must identify
which, and explain why.

iii. If you think an argument is unsound (either because it is invalid
or has at least one false premise), then you might still believe the
conclusion for other reasons; in that case, you must give those
other reasons.

A.6. POSITION PAPER #5: CAN COMPUTERS THINK? 813

6. Remember: Your revised paper must have the appropriate heading at the top of
the first page, must use the terms ‘true’, ‘false’, ‘valid’, and ‘invalid’ appropri-
ately, and must have your peer-edited first drafts attached!

7. Keep a written record of the questions and replies.
This will be useful to the author, for revision.

8. At home, over the next week, please revise your paper to take into consideration
the comments made by your fellow students (that is, your “peers”): Perhaps
defend your claims better, or clarify statements that were misunderstood, etc.
For help, see your instructor.

1–2 PAGE (250–500 WORD) REVISION, 1 COPY, TYPED, SINGLE-SIDED,
DOUBLE-SPACED, IS DUE ONE WEEK FROM TODAY. NO LATE PAPERS
WILL BE ACCEPTED!

814 APPENDIX A. POSITION-PAPER ASSIGNMENTS

A.6.3 Suggested Grading Rubric for Position Paper #5

To the Instructor: For this assignment, I handed out the grading rubric when I gave the assignment, so that
the students would know ahead of time how I was going to grade them.

Here’s a draft of the grading rubric for Position Paper #5.
Because you need to spell out Pro’s and Con’s arguments in premise-conclusion

form, and because this may use up space, it will not count against the word- and page-
limits.

But if your paper is > 1 page, please staple the pages together (one staple, in upper
left corner) and please put your name on ALL pages.

1. Incorrect use of ‘true’, ‘false’, ‘valid’, ‘invalid’, ‘sound’, ‘unsound’, ‘argument’,
‘premise’, ‘conclusion’, etc.: –1 pt. per error!

2. PRO’S ARGUMENT

(a) List of premises & conclusion for Pro’s argument:

3 pts = clearly stated argument,
premises & conclusion clearly identified,
premisess & conclusion clearly derived from dialogue

2 pts = partial credit
(that is, neither clearly 3 nor 1,
including not correctly identifying some premise
or conclusion)

1 pt = argument not clearly presented
or not clearly derived from dialogue

0 pts = missing

(b) Evaluation of validity of Pro’s argument:

3 pts = EITHER valid OR ELSE invalid, + clear explanation why
(including addition of any missing premises)

2 pts = partial credit
(for example, EITHER valid OR ELSE invalid,
unclear explanation)

1 pt = EITHER valid OR ELSE invalid, no explanation
0 pts = no evaluation of validity

(c) Evaluation of truth-value of Pro’s premises:
Note: Because each of you might have slightly different premises, I can’t
assign points to each one in any equally fair way, so I will grade you on
your overall evaluation of the truth-values of the premises that you have
explicitly identified.
Also, because this is a slightly more important part of your analysis, it
is being given extra weight, so a fully acceptable response will be worth
6 points (instead of 3), an unacceptable response will be worth 2 points
(instead of 1), and 4 points will be given for partial credit. Because of my

A.6. POSITION PAPER #5: CAN COMPUTERS THINK? 815

“quantum” scheme of grading (see §D.3.1), it is not possible to get 1, 3, or
5 points!

6 pts = for EACH premise:
truth-value clearly stated & good reasons given

4 pts = partial credit
(for example, for SOME (but not all) premises:
truth-value not stated
OR no reason or only a weak reason given)

2 pts = for ALL premises:
truth-value not stated OR no or weak reasons given

0 pts = no evaluation of truth-values of premises

(d) Evaluation of truth-value of Pro’s conclusion:

3 pts = if argument is sound,
then that is your reason for believing the conclusion
—say so!
else (if argument is not sound, then)

say whether you believe the conclusion
& give clear reason why

2 pts = partial credit (that is, neither clearly 1 nor 3)
1 pt = you think argument is not sound (which is fine),

but you give no clear statement of truth-value of
conclusion AND no or weak reason given

0 pts = no evaluation of conclusion

3. CON’S ARGUMENT (to be graded similarly, namely:)

(a) List of premises & conclusion for Con’s argument:

0,1,2,3 pts as above

(b) Evaluation of validity of Con’s argument:

0,1,2,3 pts as above

(c) Evaluation of truth-value of Con’s premises:

0,2,4,6 pts as above

(d) Evaluation of truth-value of Con’s conclusion:

0,1,2,3 pts as above

816 APPENDIX A. POSITION-PAPER ASSIGNMENTS

The total is 30 points, which, following my grading theory, maps into letter grades
as follows:

A 29–30
A– 27–28
B+ 26
B 24–25
B– 22–23
C+ 21
C 17–20
C– 14–16
D+ 11–13
D 6–10
F 0–5

On my “quantum-triage” grading scheme,

‘A’ means “understood the material for all practical purposes”
(here, that’s 30 pts = (6 questions × 3 pts full credit)

+ (2 questions × 6 pts full credit))
‘B’ has no direct interpretation,

but comes about when averaging grades of ‘A’ and ‘C’
‘C’ means “average”,

(here, that’s 20 pts = (6 × 2 pts partial credit)
+ (2 × 4 pts partial credit))

‘D’ means “did not understand the material”
(here, that’s 10 pts = (6 × 1 pt minimum credit

+ (2 × 2 pts minimum credit))
‘F’ usually means “did not do the work” (that is, 0 pts),

but can also come about when averaging grades of ‘D’ and ‘F’

Please see my grading website, http://www.cse.buffalo.edu/∼rapaport/howigrade.html,
for the theory behind all of this, which I’m happy to discuss.

A.7. OPTIONAL POSITION PAPER: A COMPETITION 817

A.7 Optional Position Paper: A Competition
Some of you have told us that you would like to come up with your own arguments
instead of merely analyzing ones that we give you.

Here’s your opportunity!
No later than two weeks from today, try your hand at creating an argument relevant

to one of the topics of this course. It could be on a topic that we’ve already discussed,
on a topic that we’re going to discuss, or on some other topic in the philosophy of CS
(for ideas, take a look at the Further Readings in each chapter).

Your argument should have at least two premises and at least one conclusion. Try
to make it a valid argument!

The “winner” (if there is one—we reserve the right to decide not to choose one) will
have the honor of her or his argument being used as the argument to be analyzed for
the next Position Paper. (To make it interesting and fair, for his or her position-paper
assignment, the winner may be asked to refute the argument!)

You may submit the argument on paper (in lecture or by email). We also reserve the
right to slightly modify the argument, if we feel that would make it more interesting.

818 APPENDIX A. POSITION-PAPER ASSIGNMENTS

Appendix B

Term Paper

Version of 17 December 2019; DRAFT c© 2004–2019 by William J. Rapaport

To the Instructor: Discuss this at approximately 3 weeks into a 15-week term.

B.1 Possible Term-Paper Topics
1. Further discussion of any topic covered in class. For example:

(a) A critical examination of (someone else’s) published answer to one of the
questions listed on the syllabus.

(b) Your answer to one of the questions listed on the syllabus, including a de-
fense of your answer.

2. A critical examination of any of the required or recommended (or any other
approved and relevant) readings.

3. A critical study of any monograph (that is, a single-topic book) or anthology
(including special issues of journals) on the philosophy of CS.

4. A critical, but general, survey article on the philosophy of CS that would be
appropriate for an encyclopedia of philosophy or an encyclopedia of CS.

5. A presentation and well-argued defense of your “philosophy of CS”, that is, your
answers to all (or most) of our questions, together with supporting reasons.

6. Other ideas of your own, approved by me in advance.

819

820 APPENDIX B. TERM PAPER

B.2 Ground Rules
For general assistance with writing (including my required method of paper prepara-
tion and format, as well as advice on grammar), see my website “How to Write”, https:
//cse.buffalo.edu/∼rapaport/howtowrite.html. For specific assistance on writing a phi-
losophy paper, see Wolff 1975; Chudnoff 2007; and a wonderfully dynamic slideshow
by Angela Mendelovici (2011).

The paper should be a maximum of 10 double-spaced, single-sided pages (that is,
about 2500 words) (not counting the bibliography).

Deadlines:

1. Two weeks from today: Proposal and reading list due.

• Your proposal and reading list must be approved by me before you begin
your research and writing.

• Because the term paper is optional, you do not need to commit yourself to
it even if you turn in a proposal.

2. Final paper will be due on the last day of the course.

Appendix C

Final Exam

Version of 16 December 2019; DRAFT c© 2004–2019 by William J. Rapaport

To the Instructor: Please read §D.4 for an explanation of the structure of this final exam.

Do any 3 of the following. Write about 250–500 words for each answer.
This is a closed-book, closed-notes, closed-neighbor, open-mind exam.
No books, notebooks, food, beverages, or electronic devices of any kind are permitted
in the exam room.

1. Analyze and evaluate the following argument (note that it is similar to, but not
exactly the same as, the argument in Position Paper #1):

Natural science is the systematic observation, description, experimen-
tal investigation, and theoretical explanation of natural phenomena.
Computer science is the study of computers and computing. There-
fore, computer science is not a natural science.

2. Analyze and evaluate the following argument:

Suppose that computers running certain computer programs can make
rational decisions (at least in the sense of outputting values of func-
tions that serve as a basis for decision making). That is, suppose
that they can determine the validity of arguments and ascertain the
probable truth-values of the premises of the arguments, and that they
can consider the relative advantages and disadvantages of different
courses of action, in order to determine the best possible choices. (For
example, there are computers and computer programs that can diag-
nose certain diseases and (presumably) recommend appropriate med-
ical treatments; there are computers and computer programs that can
prove and verify proofs of mathematical theorems; and there are com-
puters and computer programs that can play winning chess.) Suppose
for the sake of argument that some of these computers and computer

821

822 APPENDIX C. FINAL EXAM

programs can make decisions (and recommendations) on certain im-
portant matters concerning human welfare. Suppose further that they
can regularly make better recommendations than human experts on
these matters. Therefore, these computers should make decisions on
these important matters concerning human welfare.

3. What is computer science?

4. Can computers think?

5. Choose either 5a or 5b:

(a) In your opinion, what is the most fundamental or important question in the
philosophy of computer science?

(b) What is a question that interests you in the philosophy of computer science
that we did not discuss this semester?

Pose the question, explain why you think it is important or interesting, and
present your answer to it.

823

eoriginal file=template.tex

824 APPENDIX C. FINAL EXAM

Appendix D

Instructor’s Manual

Version of 7 January 2020; DRAFT c© 2004–2020 by William J. Rapaport1

D.1 Introduction
For a full description of this course, see Rapaport 2005c. For the syllabus, class sched-
ule, and supporting websites for the most recent version of the course on which this
book is based, see https://cse.buffalo.edu/∼rapaport/584/

D.2 Position Papers
The arguments that are presented in Appendix A are those that I have used when I have
taught this course. You are invited to modify these or to create your own arguments.

D.2.1 Scheduling
The assignments can be scheduled at your convenience, which is why I have collected
them in Appendix A rather than placing them throughout the text. One possibility is
to schedule each assignment approximately one week after the relevant topic has been
covered in class. This way, the students will have the benefit of having thought about
the readings before forming their own opinions.

However, another possibility is to schedule them one week before the topic is to
be covered in class, so that the students will be forced to think about the issues before
reading what “Authorities” (see §§2.7 and D.4) have had to say.

A third option is to do both: Assign the first draft before the topic is begun, then
have the students do the required readings and participate in class discussions of the
topic, then follow this with an optional revision or second draft of the position paper
and the peer-editing session, with a third draft (or second, if the optional, post-class-
discussion draft is omitted) to be turned in for instructor evaluation.

1§D.4 is adapted from Rapaport 1984b.

825

826 APPENDIX D. INSTRUCTOR’S MANUAL

D.2.2 Peer Editing
Peer-editing sessions should take up a full class period. The general method is to
divide the class into small groups of three or four students. (Two students will work
if the number of students in the class—or latecomers!—demands it, but is not ideal.
Five-student groups are too large to enable everyone to participate, especially if time is
limited.)

For each student in a group:

1. Have the group read the student’s position paper.

2. Have the group challenge the student’s position, ask for clarification, and make
recommendations for improving the student’s paper.

If there are s students in a group and the peer-editing session lasts for m minutes,
then the group should spend no more than m/s minutes on each student’s paper. The
instructor should visit each group at least once to ensure that all is going well, to answer
questions, and to suggest questions if the group seems to be having trouble. If a group
ends early and there is a lot of time left in the session, ask each student in the group
to join another group (even if only to listen in to that group’s ongoing discussion, but
if that other group also ended early, then the newcomer should peer-edit one of their
papers). Specific information for peer-editing sessions is given with each assignment.

After peer-editing, students should revise their position papers in the light of the
editing suggestions and hand in all drafts to the instructor. I usually give the students
one week for this revision.

D.3 Grading

D.3.1 The Quantum-Triage Philosophy of Grading
To make grading the position papers easier on the instructor and easy for students (in
case the instructor decides to have students grade each other’s essays), I recommend
using “triage” grading. On this method, each item to be graded is given:

• full credit (for example, 3 points or ‘A’) if it is clearly done in a completely
acceptable manner (even if it might not be entirely “correct”)

• partial credit (for example, 2 points or perhaps ‘C’) if it is done, but is not clearly
worth either full credit or minimal credit

• minimal credit (for example, 1 point or ‘D’) if it is done, but is clearly not done
in an acceptable manner.

• no credit (that is, 0 points or ‘F’) if it is omitted.

Furthermore, these point values are “quantum” numbers in the sense that no fractional
points are allowed. If, for example, an item is to be doubly “weighted”—perhaps
giving 6 points for full credit and 2 points for minimal credit—then the only partial

D.3. GRADING 827

credit would be 4 points: It would not be possible for a student to get 1, 3, or 5 points.
That way, students cannot ask for “just 1 more point”.

The advantage to this method of grading is that the grader only has to decide if a
response is worth full credit (that is, shows clear understanding of what is expected) or
minimal credit (that is, shows clear mis-understaning or lack of understanding of what
is expected). Any response that is not clearly one or the other is given partial credit.
And failure to respond, or omission of some requirement, is given no credit. This helps
make grading slightly more objective (and certainly easier for novice graders). And,
perhaps more importantly, it gives the students information about the meaning of their
grade.

On my grading scheme:

‘A’ = understood the material for all practical purposes

‘B’ = no direct interpretation; results from averaging ‘A’ and ‘C’ grades

‘C’ = neither clearly ‘A’ work nor clearly ‘D’ work

‘D’ = did not understand the material

‘F’ = did not do the work (i.e., 0 pts.);
can also result when omitting some parts
and doing ‘D’ work on others.

Details and the theory behind the method are given in Rapaport 2011a and online
at http://www.cse.buffalo.edu/∼rapaport/howigrade.html

Finally, I handed out each of the following grading rubrics when I returned the
graded papers, so that the students would be able to understand how I graded them

828 APPENDIX D. INSTRUCTOR’S MANUAL

D.3.2 Grading Position Paper #1: Sample Grading Rubric
1. Premise 1: Did you state clearly whether you agreed or disagreed with it?

(It doesn’t matter whether you agreed or didn’t agree, only with whether you
said so.)

3 pts = clearly stated whether you agreed or not
2 pts = partial credit (e.g., not clearly stated but implied)
1 pts = stated, but incorrect terminology
0 pts = did not clearly state whether you agreed

2. Did you give your reasons for your (dis)agreement?

3 = reasons given, clearly stated, & pertinent
2 = partial credit
1 = reasons given, but not clearly stated or not pertinent
0 = no reasons

3. Premise 2: Did you state clearly whether you agreed or disagreed with it?
(It doesn’t matter whether you agreed or didn’t agree, only with whether you
said so.)

0, 1, 2, or 3 pts, as for Premise 1

4. Did you give your reasons for your (dis)agreement?

0,1,2, or 3, as for Premise 1

5. Valid?
(Note: On one analysis, there is a missing premise: Computers are not natural
phenomena.)

3 = understands that the argument is not valid as stated,
unless a missing premise is added.

2 = partial credit
(e.g., says not valid without a missing premise
but gives an incorrect missing premise)

1 = says that the argument is valid as stated
0 = no answer

6. Evaluation of missing premise (agree? why?):

3 = says whether agrees or not, and gives clear or pertinent reason
2 = partial credit

(e.g., says whether agrees or not, with unclear reason)
1 = says whether agrees or not, but gives no reason
0 = no evaluation

D.3. GRADING 829

7. Conclusion: Did you state clearly whether you agreed or disagreed with it?

3 = clearly stated whether you agreed
2 = not clearly stated, but implied
0 = did not clearly state whether you agreed

8. Did you give your reasons for your (dis)agreement?

0,1,2, or 3 points, as for Premise 1

9. Citation style: (Here, I suggest deducting points for poor citation style.)

0 pts deducted = no citations needed;
or used sources with correct citations

−1 = used sources with incomplete or else incorrect citations
−2 = used sources with both incomplete and incorrect citations
−3 = used sources with no citations

10. Mechanics: (Again, deduct points for poor presentation.)

0 = Attached draft 1 & list of peer editors
to demonstrate that draft 2 6= draft 1

−1 = Didn’t do that

The total is 24 points, which, following my grading theory, maps into letter grades as
follows:

A 23–24 (24 pts = 8 parts × 3 pts full credit)
A– 22
B+ 21
B 19–20
B– 18
C+ 17
C 14–16 (max 16 pts = 8 × 2 pts partial credit)
C– 11–13
D+ 9–10
D 5–8 (max 8 pts = 8 × 1 pt minimum credit)
F 0–4

830 APPENDIX D. INSTRUCTOR’S MANUAL

D.3.3 Grading Position Paper #2
D.3.3.1 Position Paper #2: Sample Analysis

Here is a sample analysis of the argument for Position Paper 2. There are many ways
to analyze any argument, and different analyses can come up with radically different
evaluations. What follows is merely one way that this argument could have been ana-
lyzed.

I suggest providing such an analysis (preferably, your own!) to the students. The
point of such a sample analysis is not so much to show the students what they “should”
have said (because, after all, what I say below is itself an argument open to analysis
and evaluation). Rather, its main purpose is to show how to analyze an argument.
Analysis of Premise 1:
I interpret Knuth’s characterization of ‘algorithm’ to mean that any algorithm must
satisfy the definition in premise 1:

For any x, x is an algorithm iff x satisfies the definition in premise 1

For the sake of argument (since it will turn out not to matter!), let us assume that this
is true (it’s certainly plausible).
Analysis of Premise 2:
I interpret premise 2 to mean:

For any x,
if x is a program expressed in a computer programming language,
then x is an algorithm.

(Other interpretations are possible.) I will reserve comment on whether this is true or
false until our analysis of premise 4. (But we can take it to be true; it’s pretty reason-
able.)
Analysis of Premise 3:
Note, by the way, that premise 3 is a single premise with two clarifications (the sen-
tences beginning with ‘That is . . . ’). I interpret premise 3 to mean:

For any x, if x is a program,
then x is expressible as a Turing Machine program.

This seems to me to be true. It is a restatement of the fact that the class of functions
computable by any of the standard models of computation (Turing Machines, lambda
calculus, recursive functions, register machines, etc.) is the same as the class of func-
tions computable by any of the others. Since all high-level computer-programming
languages—or, to be more precise, any that have sequence, selection, and repetition—
are Turing-Machine–equivalent, I take it that premise 3 is true. As it turns out, it doesn’t
matter (see below)!
Analysis of premise 4:
I interpret premise 4 to mean that there are some programs that are not algorithms (in
the sense of premise 1). The easiest way to think about this is to consider one such
program (it doesn’t matter which). Call it P. Then premise 4 is:

D.3. GRADING 831

P (whatever it is) is a program that is not an algorithm.

Now, note that my interpretation of premise 4 is the negation of my interpretation of
premise 2! (Premise 2 says that every program is an algorithm; premise 4 says that
some program is not an algorithm.)

That means that both of them can’t be true at the same time, which means that it’s
impossible for all of the premises to be true simultaneously!

So, we have an example of an argument with inconsistent premises. That means
that it is valid, no matter what its conclusion is! (Recall from §§2.6.1.1 and 2.10.4 that
it’s a principle of logic that, from a false statement, anything whatsoever follows. The
conjunction of our premises must be false, because two of them are negations of each
other, so anything follows, including conclusion 5.)

Let me repeat: This is a valid argument as I have interpreted it. (But remember:
Other interpretations are possible.)

In case you’re still not convinced, consider this: To show that P is not expressible as
a Turing Machine program, we would need to show that P is not a computer program.
To do that, we would need to show that P is not an algorithm. But that’s easy to show,
because we already have that P is not an algorithm by the way we defined P. That is,
because P is not an algorithm, we can conclude that P is not a program, from which we
can infer that P is not expressible as a Turing Machine program.

Because premises 2 and 4 are inconsistent, we can make the argument consistent
by rejecting one of them. Let’s consider both possibilities:

Case 1: Reject 2; keep 4. Then our premises become:

1. for any x, x is an algorithm iff x satisfies Knuth’s definition.
3. for any x,

if x is a program, then x is expressible as a Turing Machine program.
4. P is a program but not an algorithm.

Can we show 5? What does 5 say?

These programs do not implement Turing Machines.

‘These programs’ refers to programs like P. So, 5 says:

P is not expressible as a Turing Machine program.

Now, if we can show that P is a computer program, then premise 3 will allow us to
conclude that P is expressible as a Turing Machine program. And, indeed, we have
that P is a computer program. So, we have that P is expressible as a Turing Machine
program. So, we cannot show that P is not expressible as a Turing Machine program!

So, in this case, the revised argument is invalid, and the correct conclusion is that P
is expressible as a Turing Machine program, that is, that all of the examples in premise 4
are indeed Turing-Machine-computable.

832 APPENDIX D. INSTRUCTOR’S MANUAL

Case 2: Reject 4; keep 2. Then our premises become:

1. for any x, x is an algorithm iff x satisfies Knuth’s definition.
2. for any x, if x is a computer program, then x is an algorithm.
3. for any x, if x is a computer program,

then x is expressible as a Turing Machine program

Now can we show 5, that is, that P is not expressible as a Turing Machine program,
where P is both a computer program but not an algorithm?

But there is no such P, because, by premise 2, if P is a computer program, then it
is an algorithm. So, in this case, too, the revised argument is invalid, but this time the
correct conclusion is that P is expressible as a Turing Machine program.

What about conclusion 6? For 6 to follow from 5, we need to show that if P is
not expressible as a Turing Machine program, then P is not computable. Taking the
contrapositive, this means we have to show that if P is computable, then it is expressible
as a Turing Machine program.

Given premise 3, which says that, if P is a computer program, then it is expressible
as a Turing Machine program, we might try to show that, if P is computable, then P is
a computer program. To do that, we would need a definition of ‘computable’, but the
argument doesn’t provide that, so 6 does not follow from 5.

To summarize: We see that 5 validly—but trivially—follows from 1–4. But, be-
cause 1–4 are inconsistent, the argument from 1–4 to 5 is unsound. And we see that
the argument from 5 to 6 is invalid.

However, we still need to decide if we think that 5 and 6 are true, independently
of this particular argument. After all, you might be able to think of a better argument
for 5 or for 6. I won’t provide that here, however.

D.3.3.2 Position Paper #2: Sample Grading Rubric

1. Premise 1 (Knuth’s characterization of “algorithm”):

Answer should include a statement of agreement or disagreement, and a reason.

3 = answer, clear reason
2 = partial credit (e.g.: answer, unclear reason
1 = answer, no reason
0 = no answer

2. Premise 2 (Programming languages express or implement algorithms:)

Statement of agreement or disagreement, plus reason.

0,1,2,3, as above

3. Premise 3 (Programming languages are equivalent to a Turing Machine program-
ming language):

Statement of (dis)agreement, plus reason.

0,1,2,3, as above

D.3. GRADING 833

4. Premise 4 (Some real computer programs violate Knuth’s definition):

Statement of (dis)agreement, plus reason.

0,1,2,3, as above

5. Conclusion 5 (So, such programs don’t implement Turing Machines):

(a) Validity:

Answer should say whether the argument from premises 1–4 to
conclusion 5 is valid or not, with a reason.

3 = answer, good explanation
2 = partial credit (e.g.: answer, weak explanation)
1 = answer, no explanation
0 = no answer

(b) Truth:

Answer should say whether student agrees with conclusion,
and why.

0,1,2,3 pts, as for Premise 1, above.

6. Conclusion 6 (So, such programs are not computable):

(a) Validity:

Answer should say whether the argument from proposition 5 to
conclusion 6 is valid or not, with a reason.

3 = answer, good explanation
2 = partial credit (e.g.: answer, weak explanation)
1 = answer, no explanation
0 = no answer

(b) Truth:

Answer should say whether student agrees with conclusion,
and why.

0,1,2,3 pts, as for Premise 1, above.

7. Citation style: (I suggest deducting points for poor citation style.)

0 pts deducted = no citations needed;
or used sources with correct citations

−1 = used sources with incomplete or else incorrect citations
−2 = used sources with both incomp and incorrect citations
−3 = used sources with no citations

8. Mechanics: (Again, deduct points for poor presentation.)

0 = Attached draft 1 & list of peer editors
to demonstrate that draft 2 6= draft 1

−1 = Didn’t do that

834 APPENDIX D. INSTRUCTOR’S MANUAL

The total is 24 points, which, following my grading theory, maps into letter grades as
follows:

A 23–24
A– 22
B+ 21
B 19–20
B– 18
C+ 17
C 14–16
C– 11–13
D+ 9–10
D 5–8
F 0–4

D.3. GRADING 835

D.3.4 Grading Position Paper #3
D.3.4.1 Position Paper #3: Comments on Determining Validity

To the Instructor: I suggest handing this out to the students before they write their 2nd draft.

It’s one thing to say that you think that an argument is valid. It’s another to say why
you think so. Just saying that it “seems logical” isn’t enough.

There are several ways to convince your reader that an argument is valid. I’ll list a
few, and then apply some of them to Position Paper 3.

First, you can try to convince your reader that if the world had made the premises
true, then the world would have to have made the conclusion true, that is, that the con-
clusion would have to be true if the premises were true. If you think that the argument
is invalid, then you have a slightly easier task: Find a situation in which the premises
are true but in which the conclusion is false.

Second, you could show that the argument follows a generally accepted rule of
inference, like Modus Ponens:

If P, then Q.
P.
Therefore, Q.

or a rule that generalizes this:

For anything, x, if x has property P, then x has property Q.
Some specific thing, c, has property P.
Therefore, c has property Q.

or a set-theoretic version:

All things that are in class P are also in class Q.
This thing, c, is in class P.
Therefore, c is in class Q.

Third, you can reason with the premises. Let me illustrate this with the argument
of Position Paper 3:

1. A physical object can compute iff it can do what a universal Turing Machine can
do.

2. A computer is (by definition) any physical device that can compute.

3. The human brain is a physical object that can do what a universal Turing Machine
can do.

4. Therefore, the human brain is a computer.

This is valid (but if a student argues that it is invalid and gives a counterexample to
show that 1, 2, 3 could be true while 4 was false, they should get full credit).

836 APPENDIX D. INSTRUCTOR’S MANUAL

Here’s why it’s valid: Premise 1 says that a physical object, x, can compute iff x
can do what a universal Turing Machine can do. And Premise 2 says that a thing, x, is
a computer iff x is a physical device that can compute. We can logically combine these
to get:

x is a computer iff x is a physical object that can do what a universal Turing
Machine can do.

(If A is true iff B is true, and if B is true iff C is true, then A is true iff C is true—just
eliminate the “middleman”.) Call this “intermediate conclusion” Premise 2.5.

(Some students might point out that this requires a missing premise to the effect
that “device” = “object”. If you believe that equality, then the argument so far is valid.
If you don’t believe it, then the argument may still be valid, but will be unsound. For
the sake of this example, let’s assume that “device” = “object”.)

Premise 3 says that the human brain is a physical object that can do what a universal
Turing Machine can do. Combining Premises 2.5 and 3, we get:

The human brain is a computer.

But that’s Conclusion 4. We’ve just shown that the conclusion is true relative to the
truth of the premises, so the argument 1,2,3 ` 4 is valid.2

Now consider the argument 1,2,5 ` 6. Premise 5 says that a universal Turing Ma-
chine can execute (“do”) MS Word. We can combine this with Premise 2.5 to get:

If x is a computer, then x can execute MS Word.

That’s Conclusion 6. So, we’ve just shown why 1,2,5 ` 6 is valid.
Finally, consider 4,6 ` 7: We can combine Conclusions 4 and 6 to get:

The human brain can execute MS Word.

That’s why 4,6 ` 7 is valid.

Digression on Universal Turing Machines:
Some students might not be clear about the relationship between Turing Machines and universal
Turing Machines. Although all universal Turing Machines are Turing Machines, most Turing
Machines are not universal Turing Machines.

A Turing Machine computes exactly one algorithm; it is a hardwired computer capable of
doing only one thing.

A universal Turing Machine is a stored-program, general-purpose computer. If you give it a
suitable program, it can execute that program, so it can do what any other Turing Machine can
do (if given that Turing Machine’s program).

Your laptop is a physical implementation of a universal Turing Machine. You can program it,
or load programs into it, that will allow it to do any computable task. If you run out of memory,
you can buy some more. (Unfortunately, if you run out of time, you can’t buy more time!) And
contrary to what many students might think, your laptop does have a “tape”; it’s called “random
access memory” (RAM), and it’s somewhat more flexible than a Turing Machine “tape”, but it
plays the same role as the tape. More precisely, the combination of the memory in the hard drive
plus RAM corresponds to the tape.

2On the use of the ` symbol, see §2.6.1.1.

D.3. GRADING 837

Digression on Implementing Microsoft Word:
Some students might confuse ‘do not’ with ‘cannot’. Just because you have a computer that does
not run Microsoft Word doesn’t mean that your computer cannot run it. As counterexamples to
the statement that “any computer can execute Microsoft Word”, some students might suggest:

calculators
iPhones
Linux machines
Macs

There are problems with all of these. First, what kind of calculator? If it’s a non-programmable
one, then it’s not a universal Turing Machine, and we wouldn’t consider it a “computer” for the
sake of this argument. If it’s programmable, and if it’s Turing-Machine–equivalent—that is, if
it can, in principle, compute anything that a Turing Machine can compute—then, given enough
memory, it could run Microsoft Word. The same goes for iPhones (for which, in fact, a version
of Microsoft Word is available in the App Store). I don’t know if there’s a version of Microsoft
Word for Linux machines, but that doesn’t mean that there couldn’t be. For one thing, the
operating system (Linux) is irrelevant; all that counts is the CPU: If Microsoft Word’s algorithm
could be compiled into the Linux machine’s machine language, then the Linux machine could
run Microsoft Word.

And—some Windows students may be surprised to learn—Macs can run Microsoft Word! I
use it frequently on my Mac. (And the MacOS operating system, just like Linux, is a version of
the Unix operating system, so that’s not the stumbling block for Linux.) Moreover, many years
ago, I was able to run the very same Microsoft Word program on my old PowerPC Mac and on
my new Intel Mac, so even the machine language is somewhat irrelevant, as long as there’s a
way to compile the algorithm into it.

838 APPENDIX D. INSTRUCTOR’S MANUAL

D.3.4.2 Position Paper #3: Suggested Grading Rubric

1. VALIDITY OF ARGUMENTS:

(a) Argument 1,2,3 ` 4: valid? + reason

3 = answer, good reason
2 = partial credit (e.g.: answer, weak reason)
1 = EITHER:answer, no reason

OR answer, with a reason that confuses definitions of ‘(in)valid’/‘(un)sound’
0 = no answer

(b) Argument 1,2,5 ` 6: valid? + reason

0,1,2,3 as above

(c) Argument 4,6 ` 7: valid? + reason

0,1,2,3 as above

2. TRUTH VALUES OF STATEMENTS:

Premise 1: agree? + why? 0,1,2,3 as above
Premise 2: agree? + why? 0,1,2,3
Premise 3: agree? + why? 0,1,2,3
Conclusion 4: agree? + why? 0,1,2,3
Premise 5: agree? + why? 0,1,2,3
Conclusion 6: agree? + why? 0,1,2,3
Conclusion 7: agree? + why? 0,1,2,3

The total is 30 points, which, following my grading theory, maps into letter grades as
follows:

A 29–30 (30 pts = 10 questions × 3 pts full credit)
A– 27–28
B+ 26
B 24–25
B– 22–23
C+ 21
C 17–20 (20 pts = 10 × 2 pts partial credit)
C– 14–16
D+ 11–13
D 6–10 (10 pts = 10 × 1 pt minimum credit)
F 0–5

D.3. GRADING 839

D.3.5 Grading Position Paper #4
D.3.5.1 Position Paper #4: Sample Analysis

As noted in the Thinksheet, there are three arguments:

Argument A = 1,2,3 ` 4
Argument B = 5,6 ` 7
Argument C = 4,7,9 ` 10

All three are valid! Here’s why:

(A) If a hardwired computer program is a physical machine (premise 2),
and if a physical machine can be patented (premise 3),
then a hardwired computer program can be patented (conclusion 4).

• This is just the transitivity of the subset relation or the transitivity of the
implication relation, also known as hypothetical syllogism.

• Note that Premise 1 really plays no role in this; I probably could have omitted
it. But extra premises do no harm.

(B) If a printed text of a computer program is a literary work (premise 5),
and if literary works can be copyrighted (premise 6),
then such computer programs can be copyrighted (conclusion7).

• Valid for reasons similar to A, above.

(C) If a hardwired computer program can be patented (premise 4)
and if a printed-text computer program can be copyrighted (premise 7)
and if hardwired computer programs are the same kind of thing

as printed-text computer programs (premise 9),
then computer programs can be patented and copyrighted (conclusion 10).

• Note that sentence 8 is not part of argument (C)!

• Argument (C) depends on a fundamental law of equality: Things that are
equal to each other have the same properties. So, you really only need to
evaluate it for soundness; that is, are all of the premises true (or, more le-
niently, do you agree with all of the premises)?

Since Conclusion 10 conflicts with the law (8)—which you have to accept, even if you
disagree with it—you cannot accept 10.

But the argument to 10 is valid, so at least one of 4, 7, 9 is false!

• But if 4 is false, then—because the argument to 4 is valid—either 2 or 3 must be
false.

• Or if 7 is false, then—because the argument to 7 is valid—either 5 or 6 must be
false.

• Or 9 could be false.

840 APPENDIX D. INSTRUCTOR’S MANUAL

Alternatively, if you are firmly convinced, for good reason, that 2, 3, 5, 6 are all true,
then you must think that the law (as expressed in 3, 6, and, especially, 8) must be
changed. How?

As I note in the grading scheme, Newell (1986) argues that at least one of 2, 3, 5,
or 6 is false (that is, “the models are broken”; §13.8), while Samuelson et al. (1994)
argue that the law needs to be changed (§13.7, especially pp. 544–544).

D.3.5.2 Position Paper #4: Suggested Grading Rubric

In general:

3 = Statement of position (“agree”/“disagree”, or “valid”/“invalid”)
with a clearly stated reason

2 = Partial credit (e.g.: statement of position, with an unclear reason)
1 = Statement of position, with no reason given
0 = no response

I will deduct 3 points from the total grade for the paper for incorrect use of the termi-
nology! (If you are not sure of how to use the terminology, please ask me!)

And my offer to give you back any such lost points (or lost points for incorrect use
of citations) still holds on all position papers.

a) Evaluation of premise 1: Agree? Why? 0,1,2,3
b) Evaluation of premise 2: Agree? Why? 0,1,2,3
c) Evaluation of premise 3: Agree? Why? 0,1,2,3
d) Evaluation of statement 4: Agree? Why? 0,1,2,3
f) Evaluation of 1,2,3 ` 4: Valid? why? 0,1,2,3

g) Evaluation of premise 5: Agree? Why? 0,1,2,3
h) Evaluation of premise 6: Agree? Why? 0,1,2,3
i) Evaluation of statement 7: Agree? Why? 0,1,2,3
j) Evaluation of 5,6 ` 7: Valid? Why? 0,1,2,3

k) Discussion of premise 8: Agree? Why? 0,1,2,3

Since conclusion 10 conflicts with the law (8), you have two options:

• Either accept 8 (the law), and reject 10 . . .

In that case, you must reject at least one of 1-7, & 9.
Which one, and why? (This is the “Alan Newell” solution.)

• . . . or else reject 8 (the law), and accept 10. (This is the “Samuelson
et al.” solution.) Of course, you can’t reject the law in real life unless
maybe you’re a legislator (who can can write new laws, which would
be something like proposing new axioms) or a Supreme Court justice
(who can declare laws unconstitutional, which would be something
like proving that a law is not a “theorem” of the US Constitution). In
that case, you should propose a new law.

D.3. GRADING 841

Digression:
There’s a story that the famous logician Kurt Göodel found an inconsistency in the US Consti-
tution when he was studying for his American citizenship. He was going to tell the judge about
it, but Albert Einstein, who accompanied him to the ceremony, quickly changed the subject! See
Goldstein 2006.

l) Evaluation of premise 9: Agree? Why? 0,1,2,3
m) Evaluation of statement 10: Agree? Why? 0,1,2,3
n) Evaluation of 4,7,9 ` 10: Valid? Why? 0,1,2,3

The total is 39 points, which, following my grading theory, maps into letter grades as
follows:

A 37–39 (39 pts = 13 questions × 3 pts full credit)
A– 35–36
B+ 33–34
B 31–32
B– 29–30
C+ 27–28
C 21–26 (26 pts = 13 × 2 pts partial credit)
C– 18–21
D+ 14–17
D 7–13 (13 pts = 13 × 1 pt minimum credit)
F 0–6

Remember:

‘A’ means “understood the material for all practical purposes”
‘B’ has no direct interpretation,

but arises when averaging ‘A’ grades with ‘C’ grades
‘C’ means “average”
‘D’ means “did not understand the material”
‘F’ usually means “did not do the work” (that is, 0 pts),

but can also come about when averaging ‘D’ grades and ‘F’ grades.

842 APPENDIX D. INSTRUCTOR’S MANUAL

D.3.6 Grading Position Paper #5
D.3.6.1 Position Paper #5: Sample Analysis

There are different ways to identify premises and conclusions; here’s one way:

Pro’s Argument:

P1. x is cognitive iff x can perceive; has beliefs, desires, and intentions; can remember;
can use natural language; can reason and decide; etc.

P2. If x (merely) behaves as if x were cognitive, then x (really) is cognitive.

• Students should be cautioned to use Pro’s words exactly. Not doing so,
or interpreting them in different ways, is always a risky thing to do when
trying to understand what someone means, because you might be misinter-
preting them. For instance, some students think that this premise is that if x
“demonstrates” perception, etc., then x “demonstrates” cognition. But Pro
didn’t use that word ‘demonstrate’.

P3. A computer running a suitable AI program will eventually behave as if it were
cognitive.

• Some students may omit this. Omitting it makes the argument invalid.

P4. Therefore, a computer running a suitable AI program will be cognitive.

A few words on terminology: This argument has four “statements”. The first three
(P1, P2, P3) are “premises”. Statement P4 is the “conclusion”. Some students may
say that “premise 4 is a conclusion”. A statement in an argument is either a premise
or else a conclusion of that argument; it can’t be both. (However, a conclusion of one
argument can be a premise of another one.) It also makes no sense to talk about the
“fourth conclusion”. This argument only has one conclusion, which is, indeed, the
fourth statement.

As I’ve reconstructed this argument, premise P1 is irrelevant to its validity (though
it may help in deciding whether the other statements are true or false).

The argument from P2 and P3 to P4 is valid:

• P2 has the form:

If x has a property R (R = behaving cognitively),
then x has a property Q (Q = being cognitive)

• P3 has the form:

Something (namely, a certain computer) has property R.

It follows validly that that “something” (that is, that computer) must have property Q.
If you’re not convinced, think of it this way: P1 says that all things that are R are

also Q; that is, R is a subset of Q. P2 gives you something that is an R; namely, c is a
member of R. So, that something must be a Q; that is, c is a member of Q.

D.3. GRADING 843

For what it’s worth, P2 is a very strong form of the Turing Test. Turing himself
wouldn’t agree with it: He was more subtle, and would only have said that if something
behaved as if it were cognitive, and if you called it ‘cognitive’, then, eventually, no one
would disagree with you. That’s a much weaker claim.
Con’s argument:

C1. x is syntactic iff x is a formal-symbol-system manipulator.

C2. Computers and programs are syntactic.

C3. Cognition is semantic

C4. Syntax does not suffice for semantics

• Some students may miss this premise.
But the argument is invalid without it.

C5. ∴ No computer executing a syntactic program can be semantically cognitive.

C6. That is, it’s not the case that P4.

This argument is valid; C1 is irrelevant to the validity. The argument from C2, C3, C4
to C5 is valid because it has this form:

C2. Certain things have property R (R = being syntactic)

C3. Certain other things have property Q (Q = being semantic)

C4. If x has property R, then x does not have property Q.
(If x is syntactic, then x is not semantic.)

C5. ∴ The things in C2 that have property R don’t have property Q.

This is valid for the same reason that Pro’s argument is valid. Note that this is Searle’s
Chinese Room argument.

D.3.6.2 Position Paper #5: Suggested Grading Rubric

Because this was handed out along with the assignment, this grading rubric can be
found in §A.6.3, above.

844 APPENDIX D. INSTRUCTOR’S MANUAL

D.4 Cognitive Development and the Final Exam
At least one of the goals of philosophy education ought to be the fostering of the stu-
dents’ development of analytical and critical thinking skills. In order to explain the
nature of the sample final exam presented in Appendix C, I want to call attention to
a theory of cognitive development of college students, to discuss its implications for
critical thinking, and to show how it can apply to the development of writing exercises
such as that final exam.

William G. Perry’s scheme of cognitive development (Perry, 1970, 1981) is a de-
scriptive theory of positions that represent students’ changing attitudes towards knowl-
edge and values as they progress through their education. There are nine positions,
which fall into four groups.

These are usually referred to as “positions”, rather than “stages”. “Stage” termi-
nology suggests that students “progress” from one “stage” to the next and never return
to previous “stages”, but that’s not the case with Perry positions: A student can simul-
taneously be in more than one position with respect to different subjects that they are
studying.

I. Dualism

Position 1. Basic Duality: Students taking this position believe that there are
correct answers to all questions, that the instructor is the Authority fig-
ure (see §2.7) who has access to “golden tablets in the sky” containing all
correct answers, and that their (the students’) job is to learn the correct
answers so that they can be repeated back to the instructor when asked. If
a Basic Duality student offers a wrong answer to a question and the Au-
thority figure says “Wrong answer”, the student hears the Authority saying
“You are wrong”.

Position 2. Dualism: Students move to this position when faced with alternative
opinions or with disagreements among different Authority figures (e.g., dif-
ferent instructors). For example, one literature teacher might say that Huck-
leberry Finn is the best American novel, but another might say that it is the
worst. Dualistic students infer that one of those literature teachers’ views
of the golden tablets is obscured. Consequently, Dualistic students see the
purpose of education as learning to find the correct answers.

Dualistic students prefer structured classes, which they see as providing the cor-
rect answers, and subjects such as math, which they see as having clear answers
(all math teachers agree that the golden tablets say that 2+2 = 4). Conflict be-
tween instructor and text, or between two instructors, is seen threateningly as
conflicts among Authority figures.

D.4. COGNITIVE DEVELOPMENT AND THE FINAL EXAM 845

II. Multiplicity

Position 3. Early Multiplicity: Here, the student has moved from the narrow Du-
alism of seeing all questions as having either correct or else incorrect an-
swers to a wider dualism of classifying questions into two kinds: those
where instructors know the correct answers and those where they don’t
know the correct answers yet. Concerning the latter, the instructor’s role
is seen by Early Multiplistic students as providing methods for finding the
correct answers, rather than as giving the correct answers directly.

Position 4. Late Multiplicity: As students move along, chronologically or cog-
nitively, they begin to see the second kind of question as being the more
common one. Because it is felt that most questions are such that instructors
don’t have the correct answers for them, “everyone has a right to [their]
own opinion; no one is wrong!” (Perry, 1981, p. 79). The instructor’s task,
therefore, is seen as either teaching how to think or, worse, being irrelevant
(after all, everyone has a right to their own opinion, including instructors—
but it’s just their opinion).

III. Contextual Relativism

Position 5. Here, students have begun to see that instructors aren’t always ask-
ing for correct answers but, rather, for supported answers. The second
category of questions has become the only category (except, “of course”,
in mathematics and science!). But, although there can be many answers
for each question, some are better (more adequate, more appropriate, etc.)
than others. Answers are now seen as being better or worse relative to their
supporting context (hence the name of this position).

IV. Commitment within Relativism

Positions 6–9. These positions characterize students as they begin to see the
need for making their own decisions (making commitments, affirming val-
ues), as they balance their differing commitments, and as they realize the
never-ending nature of this process.

Further Reading:
My descriptions are culled from Perry 1981; Cornfeld and Knefelkamp 1979; Goldberger 1979.
These are three essential readings for anyone concerned with implications and applications of
Perry theory in the classroom. Perry’s theory is far, far richer than I have portrayed it here. A
useful survey of criticisms, together with a discussion of the relevance of the theory to mathe-
matics education and to the history of mathematics, is Copes 1982. The relevance of the theory
to philosophy is discussed in Rapaport 1982. The interested reader is urged to follow up the
suggested readings.

846 APPENDIX D. INSTRUCTOR’S MANUAL

Finally, there is evidence that a student taking Position x will not understand—will
literally not be able to make any sense out of—instruction aimed at Position x+2 (or
beyond). Conversely, students at higher levels are bored by instruction aimed at lower
levels.

Here is a useful anecdote (adapted from Perry) for illustrating the scheme: Suppose
that a CS instructor offers three different algorithms for solving the same computational
problem.

• The Dualistic student will wonder which is the correct one (and why the instruc-
tor bothered to talk about the incorrect ones).

• The Multiplistic student will think, “Only 3? Heck, I can come up with 6!”.

• The Contextual Relativist will wonder what advantages and disadvantages each
theory has.

• And the Commitment-oriented student will be wondering about how to decide
which is most appropriate or useful in a given situation.

Data from several studies indicate that most entering college freshmen are at Po-
sitions 2 or 3 (Perry, 1970, 1981; Copes, 1982). Courses designed to teach critical
thinking skills to students through the first two years of college are thus dealing with
Dualists or (early) Multiplists, and this can result in several problems that the instruc-
tor should be aware of in order to foster the students’ development along the Perry
scheme:

First, Dualists want to be told the correct answers. But critical-thinking courses
are largely involved with criticism and argument analysis. Accordingly, the entire ac-
tivity may appear to them as incomprehensible at worst and pointless at best, or may
simply result in the students learning the “sport” of “dumping” on “bad” or “incor-
rect” arguments. Hence, such courses, including the present one, must be more than
mere criticism courses; they must make a serious attempt to teach ways of constructing
arguments, solving problems, or making decisions. In this way, they can offer an appro-
priate “challenge” to Dualistic students, especially if couched in a context of adequate
“support”.

Further Reading:
For details and specific advice on challenge-and-support, see Sanford 1967, Ch. 6, esp. pp. 51–
52, and Cornfeld and Knefelkamp 1979.

Second, “The highly logical argument that, ‘since everybody has a right to their
own opinion, there is no basis for rational choice’ is very typical of Multiplistic stu-
dents” (Goldberger, 1979, p. 7). But a goal of critical-thinking courses should be pre-
cisely to provide bases for rational choice: logical validity, inductive strength, etc.
Accordingly, Multiplistic students either will not comprehend this goal or will view it
as pointless. Again, such a course can be appropriately challenging to the students, but
the instructor must be aware of how the students are likely to perceive it—to “hear”
students’ negative comments not as marks of pseudo-sophistication or worse, but as
marks of viewing the world Multiplistically.

D.4. COGNITIVE DEVELOPMENT AND THE FINAL EXAM 847

Finally, consider the concept of logical validity. Larry Copes (personal conversa-
tion) points out that it is a “relativistic” concept: A “valid” conclusion is one that is
true relative to the truth of the premises. Dualistic students searching for absolutes
and Multiplistic students feeling that “anything goes” may not accept, like, or under-
stand validity. This may explain why so many students believ that arguments with true
conclusions are valid or that valid arguments require true premises—even after having
dutifully memorized the definition of ‘validity’!

How can an instructor simultaneously challenge students in order to help them
move to a higher-numbered position, yet not threaten them, especially when a given
class might have students at widely varying positions? One suggestion, based on work
by Lee Knefelkamp, is to create assignments that can appeal to students at several
levels.

The suggested final exam in Appendix C is one such assignment. Students are
offered five questions and asked to answer any three of them.

• Question 1 is similar to, but not exactly the same as, the argument in Position
Paper #1, so it is a little bit challenging to the Dualistic student, but is supportive
in that they have already practiced giving a response to it.

• Question 2 is a brand-new argument for analysis, but one that students could
have predicted that it would have appeared on a final exam, because it covers
a topic that was explicitly discussed in the course yet was not the subject of a
position paper. Consequently, it is challenging, because it is new. But it is also
supportive, because it covers material that should be familiar. Thus, it should
appeal to both Dualistic and Multiplistic students.

• Questions 3 and 4 appear to be open-ended questions that should appeal to Multi-
plistic students, though they can be understood as questions that might appeal to
Dualistic students, too. After all, they are topics that were covered in the course,
and the students have been given tools for evaluating answers to such questions.
The challenge here is to construct arguments for answers to the questions. Here,
the student’s choice of which question (3 or 4) to answer (if any) is a function of
their personal interests or familiarity with the issues, which provides support.

• Question 5 is the most challenging, because the student must come up with a
question and then answer it. It should appeal to Multiplistic as well as Contextual
Relativistic students.

If left to their own choices, students will choose the least challenging question
commensurate with their current position. Thus, students need not be threatened by
a question that they perceive as being too difficult or even unintelligible. But each
question is just a bit more challenging than the previous one, and, because the students
must answer three questions, they are offered a choice that includes at least one fully
supportive question and at least one more-challenging question. (If such an exam is
offered as a mid-term exam, then the final exam could begin with a least-challenging
question that is more challenging than the least-challenging one on the mid-term.) In
this way, students are encouraged to strive for a bit more, thus, hopefully, beginning
the move to the next position of cognitive development.

848 APPENDIX D. INSTRUCTOR’S MANUAL

It is imperative for those of us who teach such courses to learn how to challenge
our students appropriately in order to foster their intellectual “growth”. We must “hear”
how our students inevitably make their own meaning out of what we say to them. And
we must be ready to support them in the ego-threatening process of development.

Bibliography

Aaronson, S. (2006). Phys771 lecture 4: Minds and machines. http://www.scottaaronson.com/democritus/
lec4.html.

Aaronson, S. (2008, March). The limits of quantum computers. Scientific American, 62–69. http://www.cs.
virginia.edu/∼robins/The Limits of Quantum Computers.pdf.

Aaronson, S. (2011a). Philosophy and theoretical computer science. http://stellar.mit.edu/S/course/6/fa11/6.
893/.

Aaronson, S. (2011b, 9 December). Quantum computing promises new insights, not just
supermachines. New York Times, D5. http://www.nytimes.com/2011/12/06/science/
scott-aaronson-quantum-computing-promises-new-insights.html.

Aaronson, S. (2012). The toaster-enhanced Turing machine. Shtetl-Optimized. http://www.scottaaronson.
com/blog/?p=1121.

Aaronson, S. (2013a). Quantum Computing Since Democritus. New York: Cambridge University Press.

Aaronson, S. (2013b). Why philosophers should care about computational complexity. In B. J. Copeland,
C. J. Posy, and O. Shagrir (Eds.), Computability: Turing, Gödel, Church, and Beyond, pp. 261–327.
Cambridge, MA: MIT Press. http://www.scottaaronson.com/papers/philos.pdf.

Aaronson, S. (2014, July-August). Quantum randomness. American Scientist 102(4), 266–271. http://www.
americanscientist.org/issues/pub/quantum-randomness.

Aaronson, S. (2018, 13 September). Three questions about quantum computing. PowerPoint slides, https:
//www.scottaaronson.com/talks/3questions.ppt.

Abelson, H., G. J. Sussman, and J. Sussman (1996). Structure and Interpretation of Computer
Programs. Cambridge, MA: MIT Press. http://mitpress.mit.edu/sicp/full-text/book/book-Z-H-
7.html#% chap Temp 4.

Abrahams, P. (1987, June). What is computer science? Communications of the ACM 30(6), 472–473.

Abrahams, P. W. and G. Lee (2013, January). Computer science is not a science. Communications of the
ACM 56(1), 8. Two separate letters to the editor.

Abramson, D. (2011). Philosophy of mind is (in part) philosophy of computer science. Minds and Ma-
chines 21, 203–219.

Abramson, D. (2014, 31 December). The philosophical legacy of Alan Turing. http://www.thecritique.com/
articles/the-philosophical-legacy-of-alan-turing/.

Acocella, J. (2009, 3 August). Betrayal: Should we hate Judas Iscariot? The New Yorker, 68–73.

Adamson, P. (2019, 27 June). What was philosophy? New York Review of Books 66(11), 55–57.

849

850 BIBLIOGRAPHY

Adleman, L. M. (1998, August). Computing with DNA. Scientific American, 54–61. http://152.2.128.56/
∼montek/teaching/Comp790-Fall11/Home/Home files/Adleman-ScAm94.pdf.

Agre, P. (1992). Control structures. In S. C. Shapiro (Ed.), Encyclopedia of Artificial Intelligence, 2nd
Edition, pp. 293–301. New York: John Wiley & Sons.

Aho, A. V. (2011, January). What is computation? Computation and computational thinking. Ubiquity 2011.
Article 1, http://ubiquity.acm.org/article.cfm?id=1922682.

Aho, A. V., J. E. Hopcroft, and J. D. Ullman (1983). Data Structures and Algorithms. Reading, MA:
Addison-Wesley.

Aizawa, K. (2010, September). Computation in cognitive science: It is not all about Turing-equivalent
computation. Studies in History and Philosophy of Science 41(3), 227–236.

Akman, V. (Ed.) (2000). Philosophical Foundations of Artificial Intelligence. Special issue of Jour-
nal of Experimental & Theoretical Artificial Intelligence 12(3) (July). Table of contents at http:
//www.tandfonline.com/toc/teta20/12/3. Editor’s introduction at http://www.cs.bilkent.edu.tr/∼akman/
jour-papers/jetai/jetai2000.pdf.

Akman, V. and P. Blackburn (Eds.) (2000). Alan Turing and Artificial Intelligence. Special issue of Journal
of Logic, Language and Information 9(4) (October). Table of contents at https://link.springer.com/journal/
10849/9/4.

Alama, J. and J. Korbmacher (2018). The lambda calculus. In E. N. Zalta (Ed.), The Stanford Encyclopedia
of Philosophy (Summer 2018 ed.). Metaphysics Research Lab, Stanford University. https://plato.stanford.
edu/archives/sum2018/entries/lambda-calculus/.

Albert, D. Z. (2018, 19 April). Quantum’s leaping lizards. New York Review of Books 65(7), 55–57.

Alden, J. R. (1999, January). Review of Standage 1998. Smith-
sonian 29(10), 126–127. https://www.smithsonianmag.com/arts-culture/
review-of-the-victorian-internet-the-remarkable-story-of-the-telegraph-and-the-nineteenth-centurys-on-line-pioneers-162122762/.

Allen, C. (2017). On (not) defining cognition. Synthese 194, 4233–4249.

Allen, C., G. Varner, and J. Zinser (2000). Prolegomena to any future moral agent. Journal of Experimental
& Theoretical Artificial Intelligence 12, 251–261. http://commonsenseatheism.com/wp-content/uploads/
2009/08/Allen-Prolegomena-to-any-future-artificial-moral-agent.pdf.

Allen, L. G. (2001, September). Teaching mathematical induction: An alternative approach. Mathematics
Teacher 94(6), 500–504.

Allen, S. (1989). Meeting of Minds. Prometheus Books.

Allo, P. (2010, April). Putting information first: Luciano Floridi and the philosophy of information. Metaphi-
losophy 41(3), 248–254.

American Mathematical Society (Ed.) (2006). Alan Turing. Special issue of Notices of the AMS 53(10)
(November). http://www.ams.org/notices/200610/.

Anders, S. (2015, 12 September). Death and pain of a digital brain. New Scientist 227(3038), 26–27.
http://stirling-westrup-tt.blogspot.com/2015/09/tt-ns-3038-anders-sandberg-can-software.html.

Anderson, A. R. and N. D. Belnap, Jr. (Eds.) (1975). Entailment: The Logic of Relevance and Necessity,
Volume I. Princeton, NJ: Princeton University Press.

Anderson, A. R., N. D. Belnap, Jr., and J. M. Dunn (Eds.) (1992). Entailment: The Logic of Relevance and
Necessity, Volume II. Princeton, NJ: Princeton University Press.

BIBLIOGRAPHY 851

Anderson, B. L. (2015). Can computational goals inform theories of vision? Topics in Cognitive Science 7,
274–286. https://onlinelibrary.wiley.com/doi/epdf/10.1111/tops.12136.

Anderson, D. L. (2006). The nature of computers. The Mind Project. http://www.mind.ilstu.edu/curriculum/
modOverview.php?modGUI=196.

Anderson, L. (2014, 3 December). How accurate is The Imitation Game? Slate. http://www.slate.com/blogs/
browbeat/2014/12/03/the imitation game fact vs fiction how true the new movie is to alan turing.
html.

Anderson, M. and S. L. Anderson (Eds.) (2006). Machine Ethics. Special issue of IEEE Intelligent Systems,
21(4) (July/August).

Anderson, M. and S. L. Anderson (2007, Winter). Machine ethics: Creating an ethical intelligent agent. AI
Magazine 28(4), 15–26.

Anderson, M. and S. L. Anderson (2010, October). Robot be good. Scientific American 303(4), 72–77.

Angere, S. (2017, January). The square circle. Metaphilosophy 48(1–2), 79–95. Preprint at http://portal.
research.lu.se/ws/files/6013414/4393821.pdf.

Angier, N. (2010, 2 February). Abtract thoughts? The body takes them literally. New York Times, D2.
http://www.nytimes.com/2010/02/02/science/02angier.html.

Anonymous (1853a, January). Preface. Quarterly Journal of Microscopical Science 1(1), 1–2.

Anonymous (1853b, January). Review of J.H. Wythes, The Microscopist; or a Complete Manual on the Use
of the Microscope. Quarterly Journal of Microscopical Science 1(1), 51–53.

Anthes, G. (1 May 2006). Computer science looks for a remake. Computerworld, http://www.
computerworld.com/s/article/110959/Computer Science Looks for a Remake.

Antoy, S. and M. Hanus (2010, April). Functional logic programming. Communications of the ACM 53(4),
74–85.

Apostel, L. (1961). Towards the formal study of models in the non-formal sciences. In H. Freudenthal (Ed.),
The Concept and the Role of the Model in Mathematics and Natural and Social Sciences: Proceedings
of the Colloquium Sponsored by the Division of Philosophy of Sciences of the International Union of
History and Philosophy of Sciences Organized at Utrecht, January 1960, pp. 1–37. Dordrecht, Holland:
D. Reidel.

Appiah, K. A. (2007, 9 December). The new new philosophy. New York Times Magazine, 34–36.

Appiah, K. A. (2008, November). Experimental philosophy. Proceedings and Addresses of the American
Philosophical Association 82(2), 7–22. https://member.apaonline.org/V82 2 experimentalphilosophy.
aspx.

Arden, B. W. (Ed.) (1980). What Can Be Automated? The Computer Science and Engineering Research
Study (COSERS). Cambridge, MA: MIT Press.

Ardis, M., V. Basili, S. Gerhart, D. Good, D. Gries, R. Kemmerer, N. Leveson, D. Musser, P. Neumann, and
F. von Henke (1989, March). Editorial process verification. Communications of the ACM 32(3), 287–290.
“ACM Forum” letter to the editor, with replies by James H. Fetzer and Peter J. Denning.

Aref, H. (2004, 5 March). Recipe for an affordable supercomputer: Take 1,100 apples Chronicle of
Higher Education, B14.

Argamon, S., M. Koppel, J. Fine, and A. R. Shimoni (2003). Gender, genre, and writing style in for-
mal written texts. Text & Talk 23(3), 321–346. http://writerunboxed.com/wp-content/uploads/2007/10/
male-female-text-final.pdf.

852 BIBLIOGRAPHY

Arkoudas, K. (2008, December). Computation, hypercomputation, and physical science. Journal of Applied
Logic 6(4), 461–475. http://people.csail.mit.edu/kostas/papers/jal.pdf.

Arner, T. and J. Slein (1984, Spring). Philosophy and data processing: An alternative to the teaching profes-
sion. International Journal of Applied Philosophy 2(1), 75–84. DOI: 10.5840/ijap1984215.

Arnow, D. (1994, March). Teaching programming to liberal arts students: Using loop invariants. ACM
SIGCSE Bulletin 26(1), 141–144. http://www.panix.com/∼arnow/brooklyn college/ED/coreloopinvar.
html.

Asimov, I. (1950). The evitable conflict. Astounding Science Fiction. Reprinted in Isaac Asimov, I, Robot
(Garden City, NY: Doubleday, 1950), Ch. 9, pp. 195–218.

Asimov, I. (1951–1953). Foundation, Foundation and Empire, Second Foundation. New York: Alfred A.
Knopf.

Asimov, I. (1957). The feeling of power. In C. Fadiman (Ed.), The Mathematical Magpie, pp. 3–14. New
York: Simon and Schuster, 1962. http://www.themathlab.com/writings/short%20stories/feeling.htm.

Asimov, I. (1976). The bicentennial man. In I. Asimov (Ed.), The Bicentennial Man and Other Sto-
ries, pp. 135–173. Garden City, NY: Doubleday. http://www.ebooktrove.com/Asimov,%20Isaac/Asimov,
%20Isaac%20-%20The%20Bicentennial%20Man.pdf.

Assadian, B. and S. Buijsman (2019, November). Are the natural numbers fundamentally ordinals? Philoso-
phy and Phenomenological Research 99(3). https://onlinelibrary.wiley.com/doi/abs/10.1111/phpr.12499.

Austin, A. K. (1983). An elementary approach to NP-completeness. American Mathematical Monthly 90,
398–399.

Avigad, J. (2014, September). Review of Cooper and van Leeuwen 2013. Notices of the American Mathe-
matical Society 61(8), 886–890. http://www.ams.org/notices/201408/201408-full-issue.pdf.

Avigad, J. and J. Harrison (2014, April). Formally verified mathematics. Communications of the ACM 57(4),
66–75.

Ayer, A. (1956). The Problem of Knowledge. Baltimore: Penguin.

Baars, B. J. (1997). Contrastive phenomenology: A thoroughly empirical approach to consciousness. In
N. Block, O. Flanagan, and G. Güzeldere (Eds.), The Nature of Consciousness: Philosophical Debates,
pp. 187–201. Cambridge, MA: MIT Press.

Bacon, D. (2010, December). What is computation? Computation and fundamental physics. Ubiquity 2010.
Article 4, http://ubiquity.acm.org/article.cfm?id=1920826.

Bacon, D. and W. van Dam (2010, February). Recent progress in quantum algorithms. Communications of
the ACM 53(2), 84–93.

Bader, R. M. (2013, October). Towards a hyperintensional theory of intrinsicality. Journal of Philoso-
phy 110(10), 525–563. http://users.ox.ac.uk/∼sfop0426/Intrinsicality%20(R.%20Bader).pdf.

Baier, A. (1986, January). Trust and antitrust. Ethics 96(2), 231–260.

Bajcsy, R. (2010, December). What is computation? Computation and information. Ubiquity 2010. Article 2,
http://ubiquity.acm.org/article.cfm?id=1899473.

Bajcsy, R. K., A. B. Borodin, B. H. Liskov, and J. D. Ullman (1992, September). Computer science statewide
review draft preface. Technical report, Computer Science Rating Committee. Confidential Report and
Recommendations to the Commissioner of Education of the State of New York (unpublished), http://
www.cse.buffalo.edu/∼rapaport/Papers/Papers.by.Others/bajcsyetal92.pdf.

BIBLIOGRAPHY 853

Baldwin, J. (1962). The creative process. In N. C. Center (Ed.), Creative America. New York: Ridge Press.
https://openspaceofdemocracy.files.wordpress.com/2017/01/baldwin-creative-process.pdf.

Ballard, D. H. (1997). An Introduction to Natural Computation. Cambridge, MA: MIT Press.

Bar-Haim, R., I. Dagan, B. Dolan, L. Ferro, D. Giampiccolo, B. Magnini, and I. Szpektor (2006). The sec-
ond PASCAL recognising textual entailment challenge. http://u.cs.biu.ac.il/∼nlp/downloads/publications/
RTE2-organizers.pdf.

Baranger, W. R. (1995a, 7 June). J. Presper Eckert, co-inventor of early computer,
dies at 76. New York Times, B12. http://www.nytimes.com/1995/06/07/obituaries/
j-presper-eckert-co-inventor-of-early-computer-dies-at-76.html.

Baranger, W. R. (1995b, 17 June). John V. Atanasoff, 91, dies; early computer re-
searcher. New York Times, 11. http://www.nytimes.com/1995/06/17/obituaries/
john-v-atanasoff-91-dies-early-computer-researcher.html.

Barba, L. A. (2016, 5 March). Computational thinking: I do not think it means what you think it means. http:
//lorenabarba.com/blog/computational-thinking-i-do-not-think-it-means-what-you-think-it-means/.

Barr, A. (1985). Systems that know that they don’t understand. http://www.stanford.edu/group/scip/avsgt/
cognitiva85.pdf.

Barwise, J. (1989a, April). For whom the bell rings and cursor blinks. Notices of the American Mathematical
Society 36(4), 386–388.

Barwise, J. (1989b). Mathematical proofs of computer system correctness. Notices of the American Mathe-
matical Society 36, 844–851.

Battersby, S. (2015, 21 November). Moon could be a planet under new def-
inition. New Scientist 228(3048), 9. https://www.newscientist.com/article/
mg22830484-400-our-moon-would-be-a-planet-under-new-definition-of-planethood/.

Baum, L. F. (1900). The Wizard of Oz. New York: Dover, 1966 reprint.

Bechtel, W. and A. Abrahamsen (2005). Explanation: A mechanistic alternative. Studies in History and
Philosophy of the Biological and Biomedical Sciences 36, 421–441. http://mechanism.ucsd.edu/research/
explanation.mechanisticalternative.pdf.

Becker, A. (2018). What Is Real? The Unfinished Quest for the Meaning of Quantum Physics. London: John
Murray.

Beebe, J. R. (2011). Experimental epistemology research group. http://eerg.buffalo.edu/.

Beebee, H. (2017, 5 October). Who is Rachel? Blade Runner and personal
identity. IAI [Institute of Art and Ideas] News. https://iainews.iai.tv/articles/
who-is-rachael-the-philosophy-of-blade-runner-and-memory-auid-885.

Benacerraf, P. (1965, January). What numbers could not be. Philosophical Review 74(1), 47–73.

Benacerraf, P. and H. Putnam (Eds.) (1984). Philosophy of Mathematics: Selected Readings, 2nd Edition.
New York: Cambridge University Press.

Bender, D. (1985-1986). Protection of computer programs: The copyright/trade secret interface. University
of Pittsburgh Law Review 47, 907–958.

Berlin, B. and P. Kay (1969). Basic Color Terms: Their Universality and Evolution. Chicago: University of
Chicago press.

Berners-Lee, T., W. Hall, J. Hendler, N. Shadbolt, and D. J. Weitzner (2006, 11 August). Creating a science
of the Web. Science 313, 769–771. 10.1126/science.1126902.

854 BIBLIOGRAPHY

Berners-Lee, T., J. Hendler, and O. Lassila (2001, May). The semantic web. Scientific Ameri-
can. https://www-sop.inria.fr/acacia/cours/essi2006/Scientific%20American %20Feature%20Article %
20The%20Semantic%20Web %20May%202001.pdf.

Bernhardt, C. (2016). Turing’s Vision: The Birth of Computer Science. Cambridge, MA: MIT Press.

Bernstein, J. (1986, 20 January). A portrait of Alan Turing. The New Yorker, 78, 81–87. http://www.cdpa.
co.uk/Newman/MHAN/view-item.php?Box=5&Folder=6&Item=5&Page=1.

Bernstein, J. and J. Holt (2016, 8 December). Spooky physics up close: An exchange. New York Review of
Books 63(19), 62. http://www.nybooks.com/articles/2016/12/08/spooky-physics-up-close-exchange/.

Bernstein, J. and L. Krauss (2016, 24 November). Walking like a black hole. New York Review of
Books 63(18), 74. http://www.nybooks.com/articles/2016/11/24/walking-like-a-black-hole/.

Bickle, J. (2015). Marr and reductionism. Topics in Cognitive Science 7, 299–311. https://onlinelibrary.
wiley.com/doi/epdf/10.1111/tops.12134.

Bickle, J. (2019). Multiple realizability. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy
(Spring 2019 ed.). Metaphysics Research Lab, Stanford University.

Biermann, A. (1990). Great Ideas in Computer Science: A Gentle Introduction. Cambridge, MA: MIT Press.

Billock, V. A. and B. H. Tsou (2010, February). Seeing forbidden colors. Scientific American 302(2), 72–77.

Blachowicz, J. (2016, 4 July). There is no scientific method. New York Times. http://www.nytimes.com/
2016/07/04/opinion/there-is-no-scientific-method.html.

Blass, A. and Y. Gurevich (2003, October). Algorithms: A quest for absolute definitions. Bulletin of the
European Association for Theoretical Computer Science (EATCS) 81, 195–225. Page references are to
the online version at http://research.microsoft.com/en-us/um/people/gurevich/opera/164.pdf; reprinted in
Olszewski et al. 2006, pp. 24–57.

Blessing, K. (2013, January/February). I re-read, therefore I understand. Philosophy Now 94, 17. http:
//philosophynow.org/issues/94/I Re-Read Therefore I Understand.

Block, N. (1978). Troubles with functionalism. In C. Savage (Ed.), Minnesota Studies in the Philosophy
of Science, Volume 9, pp. 261–325. Minneapolis: University of Minnesota Press. http://mcps.umn.edu/
philosophy/9 12Block.pdf.

Blum, L. (2004, October). Computing over the reals: Where Turing meets Newton. Notices of the AMS 51(9),
1024–1034. Illustrated preprint at http://www.cs.cmu.edu/∼lblum/PAPERS/TuringMeetsNewton.pdf,
published version at https://www.ams.org/notices/200409/fea-blum.pdf.

Blum, L., M. Shub, and S. Smale (1989). On a theory of computation and complexity over the real numbers:
NP-completeness, recursive functions, and universal machines. Bulletin of the American Mathematical
Society 21(1), 1–46. https://projecteuclid.org/download/pdf 1/euclid.bams/1183555121.

Boden, M. A. (1977). Artificial Intelligence and Natural Man. New York: Basic Books.

Boden, M. A. (1990a). Has AI helped psychology? In D. Partridge and Y. Wilks (Eds.), The Foundations of
Artificial Intelligence: A Sourcebook, pp. 108–111. Cambridge, UK: Cambridge University Press.

Boden, M. A. (Ed.) (1990b). The Philosophy of Artificial Intelligence. Oxford: Oxford University Press.

Boden, M. A. (2006). Mind as Machine: A History of Cognitive Science. Oxford: Oxford University Press.

Böhm, C. and G. Jacopini (1966, May). Flow diagrams, Turing machines and languages with only two forma-
tion rules. Communications of the ACM 9(5), 366–371. http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.119.9119&rep=rep1&type=pdf.

BIBLIOGRAPHY 855

Bolden, C. (2016, September). Katherine Johnson, the NASA mathematician who advanced hu-
man rights with a slide rule and pencil. Vanity Fair. http://www.vanityfair.com/culture/2016/08/
katherine-johnson-the-nasa-mathematician-who-advanced-human-rights.

Bond, G. W. (2005, August). Software as art. Communications of the ACM 48(8), 118–124.

Boole, G. (2009). An Investigation of the Laws of Thought: On Which Are Founded the Mathematical
Theories of Logic and Probabilities. Cambridge, UK: Cambridge University Press.

Boolos, G. S. and R. C. Jeffrey (1974). Computability and Logic. Cambridge, UK: Cambridge University
Press.

Boorstin, D. (1983). The Discoverers. New York: Random House. Ch. 49: “The Microscope of Nature”.

Borbely, R. (2005, March). Letter to the editor. Scientific American, 12, 15.

Borges, J. L. (1981). Partial enchantments of the Quixote. In E. R. Monegal and A. Reid (Eds.), Borges, A
Reader; A Selection from the Writings of Jorge Luis Borges, pp. 232–235. New York: E.P. Dutton.

Bostrom, N. (2003). Are you living in a computer simulation? Philosophical Quarterly 53(211), 243–255.
https://www.simulation-argument.com/simulation.html.

Bostrom, N. (2006, 19 November). Do we live in a computer simulation? New Scientist 192(2579), 38–39.
https://www.simulation-argument.com/computer.pdf.

Bostrom, N. (2009). The simulation argument: Some explanations. Analysis 69(3), 458–461. https://www.
simulation-argument.com/brueckner.pdf.

Bostrom, N. and E. Yudkowsky (2011). The ethics of artificial intelligence. In K. Frankish and W. Ramsey
(Eds.), The Cambridge Handbook of Artificial Intelligence, pp. 316–334. Cambridge, UK: Cambridge
University Press. http://www.nickbostrom.com/ethics/artificial-intelligence.pdf.

Bowie, G. L. (1973, 8 February). An argument against Church’s thesis. Journal of Philosophy 70(3), 66–76.

Bowles, N. (2019, 1 April). A journey—if you dare—into the minds of Silicon Valley programmers. New
York Times Book Review. https://www.nytimes.com/2019/04/01/books/review/clive-thompson-coders.
html.

Boyle, J. (2009, September). What intellectual property law should learn from software.
Communications of the ACM 52(9), 71–76. http://www.thepublicdomain.org/2009/08/26/
what-intellectual-property-law-should-learn-from-software/.

Brachman, R. J. (2002, November/December). Systems that know what they’re doing. IEEE Intelligent
Systems, 67–71.

Brassard, G. (1995, March). Time for another paradigm shift. ACM Computing Surveys 27(1), 19–21.

Brenner, S. (2012, 14 December). The revolution in the life sciences. Science 338, 1427–1428.

Brey, P. and J. H. Søraker (2008). Philosophy of computing and information technol-
ogy. https://web.archive.org/web/20140308063155/http://www.idt.mdh.se/kurser/comphil/2011/
PHILO-INFORM-TECHNO-20081023.pdf.

Bringsjord, S. (11 August 2006). What is computer science? Constraints on acceptable answers. http://www.
cse.buffalo.edu/∼rapaport/Papers/Papers.by.Others/bringsjord06-constraints on philofcompsci.pdf.

Bringsjord, S. (1993). The narrational case against Church’s thesis. http://homepages.rpi.edu/∼brings/
SELPAP/CT/ct/.

Bringsjord, S. (1994). Computation, among other things, is beneath us. Minds and Machines 4(4), 489–490.
http://homepages.rpi.edu/∼brings/SELPAP/beneath.ab.html.

856 BIBLIOGRAPHY

Bringsjord, S. (2015). A vindication of program verification. History and Philosophy of Logic 36(3), 262–
277. http://kryten.mm.rpi.edu/SB progver selfref driver final2 060215.pdf.

Bringsjord, S. and K. Arkoudas (2004). The modal argument for hypercomputing minds. Theoretical Com-
puter Science 317, 167–190. http://kryten.mm.rpi.edu/modal.hypercomputing.pdf.

Bringsjord, S. and N. S. Govindarajulu (2018). Artificial intelligence. In E. N. Zalta (Ed.), The Stanford
Encyclopedia of Philosophy (Fall 2018 ed.). Metaphysics Research Lab, Stanford University.

Bringsjord, S., N. S. Govindarajulu, S. Banerjee, and J. Hummel (2018). Do machine-learning machines
learn? In V. Müller (Ed.), Philosophy and Theory of Artificial Intelligence 2017; PT-AI 2017, pp. 136–
157. Cham, Switzerland: Springer.

Bronowski, J. (1958, September). The creative process. Scientific American 199.

Brooks, Jr., F. P. (1975). The Mythical Man-Month. Reading, MA: Addison-Wesley.

Brooks, Jr., F. P. (1995). The Mythical Man-Month: Essays on Software Engineering, Anniversary Edition.
Boston: Addison-Wesley.

Brooks, Jr., F. P. (1996, March). The computer scientist as toolsmith II. Communications of the ACM 39(3),
61–68. Revised and extended verson of Brooks Jr., Frederick P. (1977), “The Computer Scientist as
Toolsmith—Studies in Interactive Computer Graphics”, in B. Gilchrist (ed.), Information Processing 77,
Proceedings of IFIP Congress 77 (Toronto) (Amsterdam: North-Holland): 625–634; http://www.cs.unc.
edu/techreports/88-041.pdf.

Brooks, R. A. (1991). Intelligence without representation. Artificial Intelligence 47, 139–159.

Brooks, R. A. and P. Maes (Eds.) (1994). Artificial Life IV: Proceedings of the 4th International Workshop
on the Synthesis and Simulation of Living Systems. Cambridge, MA: MIT Press.

Brown, R. (2004). Consideration of the origin of Herbert Simon’s theory of “satisficing” (1933–1947).
Management Decision 42(10), 1240–1256.

Brown, R. (4 August 1992). Contribution to newsgroup discussion of Cyc. Article 13305 of comp.ai;
http://www.cse.buffalo.edu/∼rapaport/definitions.of.ai.html.

Brueckner, T. (2011). Brains in a vat. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Winter
2011 ed.). Metaphysics Research Lab, Stanford University.

Buchanan, B. G. (2006, Winter). What do we know about knowledge? AI Magazine, 35–46.

Buechner, J. (2011). Not even computing machines can follow rules: Kripke’s critique of functionalism. In
A. Berger (Ed.), Saul Kripke, pp. 343–367. New York: Cambridge University Press.

Buechner, J. (2018, Spring). Does Kripke’s argument against functionalism undermine the standard view of
what computers are? Minds and Machines 28(3), 491–513.

Bueno, O. (2014). Nominalism in the philosophy of mathematics. In E. N. Zalta (Ed.), The Stanford
Encyclopedia of Philosophy (Spring 2014 ed.). Metaphysics Research Lab, Stanford University. https:
//plato.stanford.edu/archives/spr2014/entries/nominalism-mathematics/.

Bullynck, M., E. G. Daylight, and L. Mol (2015, March). Why did computer science make a hero
out of Turing? Communications of the ACM 58(3), 37–39. http://cacm.acm.org/magazines/2015/3/
183592-why-did-computer-science-make-a-hero-out-of-turing/fulltext.

Bundy, A. (1983, Winter). The nature of AI: A reply to Schank. AI Magazine 4(4), 29–31.

Bundy, A. (2017, February). Smart machines are not a threat to humanity. Communications of the
ACM 60(2), 40–42.

BIBLIOGRAPHY 857

Bundy, A. and S. Ohlsson (1990). The nature of AI principles. In D. Partridge and Y. Wilks (Eds.), The Foun-
dations of Artificial Intelligence: A Sourcebook, pp. 1325–154. Cambridge, UK: Cambridge University
Press.

Bunge, M. (1974). Toward a philosophy of technology. In A. C. Michalos (Ed.), Philosophical Problems of
Science and Technology, pp. 28–47. Boston: Allyn & Bacon.

Burge, T. (1979). Individualism and the mental. Midwest Studies in Philosopy 4, 73–121.

Burge, T. (1986, January). Individualism and psychology. Philosophical Review 95(1), 3–45.

Burgin, M. and P. Wegner (2003). Special sessions on Beyond Classical Boundaries of Computability (parts
I, II, III, & IV), 2003 Spring Western Section Meeting, American Mathematical Society. http://www.
ams.org/meetings/sectional/2096 progfull.html. Papers online at http://research.cs.queensu.ca/home/akl/
cisc879/papers/PAPERS FROM THEORETICAL COMPUTER SCIENCE/.

Burkholder, L. (1992). Philosophy and the Computer. Boulder, CO: Westview Press.

Burkholder, L. (1999). Are AI and mechanics empirical disciplines? Journal of Experimental and Theoreti-
cal Artificial Intelligence 11, 497–500.

Burks, A. W. (Ed.) (1970). Essays on Cellular Automata. Urbana, IL: University of Illinois Press.

Button, T. (2009). SAD computers and two versions of the Church-Turing thesis. British Journal for the
Philosophy of Science 60, 765–792.

Buzen, J. P. (2011, January). Computation, uncertainty and risk. Ubiquity 2011. Article 5, http://ubiquity.
acm.org/article.cfm?id=1936886.

Bynum, T. W. (2010, April). Philosophy in the information age. Metaphilosophy 41(3), 420–442.

Bynum, T. W. and J. H. Moor (Eds.) (2000). The Digital Phoenix: How Computers Are Changing Philoso-
phy, revised edition. Oxford: Blackwell.

Campbell, D. I. and Y. Yang (2019). Does the solar system compute the laws of motion? Synthese. https:
//doi.org/10.1007/s11229-019-02275-w.

Campbell, M. (2018, 7 December). Mastering board games. Science 362(6419), 1118.

Campbell-Kelly, M. (2009, September). Origin of computing. Scientific American, 62–69. http://www.
cs.virginia.edu/∼robins/The Origins of Computing.pdf. See also “Readers Respond on the ‘Origin of
Computing’ ”, Scientific American (January 2010): 8, http://www.scientificamerican.com/article.cfm?
id=letters-jan-10.

Campbell-Kelly, M. (2010, April). Be careful what you wish for: Reflections on the decline of mathematical
tables. Communications on the ACM 53(4), 25–26.

Campbell-Kelly, M. (2011, September). In praise of ‘Wilkes, Wheeler, and Gill’. Communications of the
ACM 54(9), 25–27.

Campbell-Kelly, M. (2012, July). Alan Turing’s other universal machine. Communications of the ACM 55(7),
31–33.

Campos, D. G. (2011). On the distinction between Peirce’s abduction and Lipton’s inference to the best
explanation. Synthese 180, 419–442.

Cane, S. (2014, 27 February). Interview: David Chalmers and Andy Clark. New Philosopher 2:mind.
http://integral-options.blogspot.com/2014/03/interview-david-chalmers-and-andy-clark.html.

Cannon, P. (2013, March/April). Kant at the bar: Transcendental idealism in daily life. Philosophy Now Issue
95, 15–17. http://philosophynow.org/issues/95/Kant at the Bar Transcendental Idealism in Daily Life.

858 BIBLIOGRAPHY

Čapek, K. (1920). R.U.R.: Rossom’s Universal Robots. Trans. by Paul Selver and Nigel Playfair at http:
//preprints.readingroo.ms/RUR/rur.pdf; trans. by David Wyllie at http://ebooks.adelaide.edu.au/c/capek/
karel/rur/.

Cardoso, S. H. (1997). Specialized functions of the cerebral cortex. http://www.cerebromente.org.br/n01/
arquitet/cortex i.htm.

Care, C. (2007, May). Not only digital: A review of ACM’s early involvement with analog computing
technology. Communications of the ACM 50(5), 42–45.

Carey, B. (2019, 26 June). ‘It’s gigantic’: A new way to gauge the chances for unresponsive patients. New
York Times. https://www.nytimes.com/2019/06/26/health/brain-injury-eeg-consciousness.html.

Carey, K. (2010, 12 November). Decoding the value of computer science. Chronicle of Higher Educa-
tion 58(12), A88. http://www.chronicle.com/article/Decoding-the-Value-of-Computer/125266/.

Carhart, R. R. (1956). The systems approach to reliability. In Proceedings, 2nd National Symposium on
Quality Control and Reliabillity in Electronics, January 9–10, pp. 149–155. Washington, DC: IRE Pro-
fessional Group on Reliability and Quality Control, American Society for Quality Control, Electronics
Technical Committee, Institute of Radio Engineers.

Carleton, L. R. (1984). Programs, language understanding, and Searle. Synthese 59, 219–230.

Carlson, B., A. Burgess, and C. Miller (1996). Timeline of computing history. http://www.computer.org/
cms/Computer.org/Publications/timeline.pdf.

Carnap, R. (1956). Meaning and Necessity: A Study in Semantics and Modal Logic, Second Edition.
Chicago: University of Chicago Press.

Carpenter, B. and R. Doran (1977). The other Turing machine. The Computer Journal 20(3), 269–279.
http://comjnl.oxfordjournals.org/content/20/3/269.full.pdf+html.

Carroll, L. (1850). Difficulties no. 2. In The Rectory Umbrella and Mischmasch. Dover, 1971. http://etc.usf.
edu/lit2go/112/poems-puzzles-and-stories-of-lewis-carroll/4953/the-two-clocks/.

Carroll, L. (1871). Through the Looking-Glass. http://www.gutenberg.org/files/12/12-h/12-h.htm.

Carroll, L. (1893). Sylvie and Bruno Concluded. London: Macmillan. http://www.
gutenberg.org/files/48795/48795-h/48795-h.htm and especially https://gisandscience.com/2009/10/28/
quote-of-the-day-lewis-carrolls-paradox-of-the-complete-map/.

Carroll, L. (1895, April). What the tortoise said to Achilles. Mind 4(14), 278–280. http://www.ditext.com/
carroll/tortoise.html.

Caryl, C. (2015, 5 February). Saving Alan Turing from his friends. New York Review of Books, 19–21.
http://www.nybooks.com/articles/archives/2015/feb/05/saving-alan-turing-his-friends/.

Casati, R. (2000). Shadows: Unlocking Their Secrets, from Plato to Our Time. New York: Vintage/Random
House, 2004. Translated by Abigail Asher.

Case, J. (nd). Motivating the proof of the Kleene recursion theorem. http://www.eecis.udel.edu/∼case/papers/
krt-self-repo.pdf.

Casner, S. M., E. L. Hutchins, and D. Norman (2016, May). The challenges of partially auto-
mated driving. Communications of the ACM 59(5), 70–77. https://cacm.acm.org/magazines/2016/5/
201592-the-challenges-of-partially-automated-driving/fulltext.

Casselman, B. (2014, September). About the cover: Smart card. Notices of the AMS 61(8), 872. http:
//www.ams.org/notices/201408/201408-full-issue.pdf.

BIBLIOGRAPHY 859

Castañeda, H.-N. (1975, April). Individuation and non-identity: A new look. American Philosophical
Quarterly 12(2), 131–140.

Castañeda, H.-N. (1989). Direct reference, the semantics of thinking, and guise theory (constructive reflec-
tions on David Kaplan’s theory of indexical reference). In J. Almog, J. Perry, and H. Wettstein (Eds.),
Themes from Kaplan, pp. 105–144. New York: Oxford University Press.

Cath, Y. (2019). Knowing how. Analysis. https://doi.org/10.1093/analys/anz027.

Cathcart, T. and D. Klein (2007). Plato and a Platypus Walk into a Bar: Understanding Philosophy through
Jokes. New York: Abrams Image.

Cerf, V. G. (2012a, December). Computer science revisited. Communications of the ACM 55(12), 7. http:
//ubiquity.acm.org/article.cfm?id=2406359.

Cerf, V. G. (2012b, October). Where is the science in computer science? Communications of the
ACM 55(10), 5.

Cerf, V. G. (2013, January). What’s a robot? Communications of the ACM 56(1), 7. http://www.cs.grinnell.
edu/∼davisjan/csc/105/2013S/articles/CACM-reliability.pdf.

Cerf, V. G. (2014, January). Virtual reality redux. Commmunications of the ACM 57(1), 7. http://cacm.acm.
org/magazines/2014/1/170860-virtual-reality-redux/fulltext.

Cerf, V. G. (2015, February). There is nothing new under the sun. Communications of the ACM 58(2), 7.
https://cacm.acm.org/magazines/2015/2/182649-there-is-nothing-new-under-the-sun/fulltext.

Cerf, V. G. (2016, March). Computer science in the curriculum. Communications of the ACM 59(3), 7.
http://cacm.acm.org/magazines/2016/3/198866-computer-science-in-the-curriculum/fulltext.

Cerf, V. G. (2017, 13 July). Information technology: A digital genius at play. Nature 547(7662), 159.
https://www.nature.com/nature/journal/v547/n7662/pdf/547159a.pdf.

Ceruzzi, P. (1988). Electronics technology and computer science, 1940–1975: A coevolution. Annals of the
History of Computing 10(4), 257–275.

Chaitin, G. (2006a). How real are real numbers? International Journal of Bifurcation and Chaos. http://
www.cs.auckland.ac.nz/∼chaitin/olympia.pdf (2006 version); http://www.umcs.maine.edu/∼chaitin/wlu.
html (2009 version).

Chaitin, G. (2006b, March). The limits of reason. Scientific American, 74–81. http://www.cs.virginia.edu/
∼robins/The Limits of Reason Chaitin 2006.pdf.

Chaitin, G. J. (1968). On the difficulty of computations. In G. J. Chaitin (Ed.), Thinking about Gödel
and Turing: Essays on Complexity, 1970–2007, pp. 3–17. World Scientific Publishing. http://www.
worldscientific.com/doi/suppl/10.1142/6536/suppl file/6536 chap01.pdf.

Chaitin, G. J. (1987). Computing the busy beaver function. In T. Cover and B. Gopinath (Eds.), Open
Problems in Communication and Computation, pp. 108–112. Springer. http://www.cs.auckland.ac.nz/
∼chaitin/bellcom.pdf.

Chaitin, G. J. (2002, March-April). Computers, paradoxes and the foundations of mathematics. American
Scientist 90, 164–171. http://www.cs.ox.ac.uk/activities/ieg/e-library/sources/amsci.pdf.

Chalmers, D. J. (1995). On implementing a computation. Minds and Machines 4(4), 391–402. Originally
§2 of http://consc.net/papers/computation.html.

Chalmers, D. J. (1996a). The Conscious Mind: In Search of a Fundamental Theory. New York: Oxford
University Press. http://tinyurl.com/plv877.

860 BIBLIOGRAPHY

Chalmers, D. J. (1996b). Does a rock implement every finite-state automaton? Synthese 108, 309–333. http:
//consc.net/papers/rock.html; Chalmers corrects “an error in my arguments” in Chalmers 2012b, pp. 236–
238.

Chalmers, D. J. (2005). The Matrix as metaphysics. In C. Grau (Ed.), Philosophers Explore the Matrix, pp.
132–176. New York: Oxford University Press. http://consc.net/papers/matrix.html.

Chalmers, D. J. (2010). The singularity: A philosophical analysis. Journal of Consciousness Studies 17,
7–65. http://consc.net/papers/singularity.pdf.

Chalmers, D. J. (2011, October-December). A computational foundation for the study of cognition. Jour-
nal of Cognitive Science (South Korea) 12(4), 323–357. http://cogsci.snu.ac.kr/jcs/issue/vol12/no4/
01Chalmers.pdf.

Chalmers, D. J. (2012a). The singularity: A reply. Journal of Consciousness Studies 19(7–8), 141–167.
http://consc.net/papers/singreply.pdf.

Chalmers, D. J. (2012b, July-September). The varieties of computation: A reply. Journal of Cognitive Sci-
ence (South Korea) 13(3), 211–248. http://cogsci.snu.ac.kr/jcs/issue/vol13/no3/01+David+J+Chalmers.
pdf.

Chalmers, D. J. (2015). Why isn’t there more progress in philosophy? Philosophy 90(1), 3–31. http:
//consc.net/papers/progress.pdf.

Chalmers, D. J. (2017, November). The virtual and the real. Disputatio 9(46), 309–351. https://content.
sciendo.com/view/journals/disp/9/46/article-p309.xml.

Chalmers, D. J. (2019). The meta-problem of consciousness. Journal of Consciousness Studies 25(9–10),
6–61. https://philpapers.org/archive/CHATMO-32.pdf.

Chandra, V. (2014). Geek Sublime: The Beauty of Code, the Code of Beauty. Graywolf Press.

Changizi, M. A., A. Hsieh, R. Nijhawan, R. Kanai, and S. Shimojo (2008). Perceiving the present and a
systematization of illusions. Cognitive Science 32, 459–503. http://onlinelibrary.wiley.com/doi/10.1080/
03640210802035191/epdf.

Chase, G. C. (1980, July). History of mechanical computing machinery. Annals of the History of Comput-
ing 2(3), 198–226.

Chater, N. and M. Oaksford (2013, August). Programs as causal models: Speculations on mental programs
and mental representation. Cognitive Science 37(6), 1171–1191.

Chazelle, B. (2006). The algorithm: Idiom of modern science. http://www.cs.princeton.edu/∼chazelle/pubs/
algorithm.html.

Chetty, R. (2013, 21 October). Yes, economics is a science. New York Times, A21. http://www.nytimes.com/
2013/10/21/opinion/yes-economics-is-a-science.html.

Chiang, T. (2002). Seventy-two letters. In Stories of Your Life and Others, pp. 147–200. New
York: Vintage. http://will.tip.dhappy.org/revolution/Technoanarchist/plan/.../book/Ted%20Chiang%
20-%20Seventy-Two%20Letters/Ted%20Chiang%20-%20Seventy-Two%20Letters.html.

Chiang, T. (2019). The lifecycle of software objects. In Exhalation, pp. 62–172. New York: Al-
fred A. Knopf. https://cpb-us-w2.wpmucdn.com/voices.uchicago.edu/dist/8/644/files/2017/08/Chiang-
Lifecycle-of-Software-Objects-q3tsuw.pdf.

Chirimuuta, M., T. Boone, and M. DeMedonsa (2014, 19 September). Is your brain a computer? (video).
Instant HPS. https://www.youtube.com/watch?v=-8q UXpHsaY.

Chisholm, R. (1974). Metaphysics, 2nd edition. Englewood Cliffs, NJ: Prentice-Hall.

BIBLIOGRAPHY 861

Chisum, D. S. (1985-1986). The patentability of algorithms. University of Pittsburgh Law Review 47,
959–1022.

Choi, C. Q. (2008, March). Not tonight, dear, I have to reboot. Scientific American, 94–97. http://www.
scientificamerican.com/article/not-tonight-dear-i-have-to-reboot/.

Chomsky, N. (1965). Aspects of the Theory of Syntax. Cambridge, MA: MIT Press. https://faculty.
georgetown.edu/irvinem/theory/Chomsky-Aspects-excerpt.pdf.

Chomsky, N. (2017). The Galilean challenge. Inference: International Review of Science 3(1). http://
inference-review.com/article/the-galilean-challenge.

Chow, S. J. (2015). Many meanings of ‘heuristic’. British Journal for the Philosophy of Science 66, 977–
1016.

Chudnoff, E. (2007). A Guide to Philosophical Writing. Cambridge, MA: Harvard Center for Expository
Writing. http://www.fas.harvard.edu/∼phildept/files/GuidetoPhilosophicalWriting.pdf.

Church, A. (1933, October). A set of postulates for the foundation of logic (second paper). Annals of
Mathematics, Second Series 34(4), 839–864. See also the “first” version, Vol. 33, No. 2 (April 1932):
346–366, https://docs.google.com/file/d/0B0CU-A1oqzzLd3VfWm1ja1E2WDQ/view.

Church, A. (1936a, March). A note on the Entscheidungsproblem. Journal of Symbolic Logic 1(1), 40–
41. See also “Correction to A Note on the Entscheidungsproblem”, in Journal of Symbolic Logic 1(3)
(September): 101–102.

Church, A. (1936b, April). An unsolvable problem of elementary number theory. American Journal of
Mathematics 58(2), 345–363. http://phil415.pbworks.com/f/Church.pdf.

Church, A. (1937, March). Review of Turing 1936. Journal of Symbolic Logic 2(1), 42–43. For commentary
on this review, see Hodges 2013.

Church, A. (1940). On the concept of a random sequence. Bulletin of the American Mathematical Society 2,
130–135. https://projecteuclid.org/download/pdf 1/euclid.bams/1183502434.

Church, A. (1956). Introduction to Mathematical Logic. Princeton, NJ: Princeton University Press.

Churchland, P. S. and T. J. Sejnowski (1992). The Computational Brain. Cambridge, MA: MIT Press.

Clark, A. and D. J. Chalmers (1998). The extended mind. Analysis 58, 10–23. https://icds.uoregon.edu/
wp-content/uploads/2014/06/Clark-and-Chalmers-The-Extended-Mind.pdf.

Clark, K. L. and D. F. Cowell (1976). Programs, Machines, and Computation: An Introduction to the Theory
of Computing. London: McGraw-Hill.

Clarke, A. C. (1951, Spring). Sentinel of eternity. [Avon] 10 Story Fantasy 3(1), 41–51.
https://archive.org/stream/10 Story Fantasy v01n01 1951-Spring Tawrast-EXciter#page/n39/mode/2up.

Clarke, A. C. (1953). Childhood’s End. New York: Random House/Del Rey, 1990.

Clarke, R. (1993, December). Asimov’s laws of robotics: Implications for information technology: Part 1.
IEEE Computer 26(12), 53–61. http://www.rogerclarke.com/SOS/Asimov.html.

Clarke, R. (1994, January). Asimov’s laws of robotics: Implications for information technology: Part 2.
IEEE Computer 27(1), 57–66. http://www.rogerclarke.com/SOS/Asimov.html.

Cleland, C. E. (1993, August). Is the Church-Turing thesis true? Minds and Machines 3(3), 283–312.

Cleland, C. E. (1995). Effective procedures and computable functions. Minds and Machines 5(1), 9–23.

Cleland, C. E. (2001, May). Recipes, algorithms, and programs. Minds and Machines 11(2), 219–237.

862 BIBLIOGRAPHY

Cleland, C. E. (Ed.) (2002a). Effective Procedures. Special Issue of Minds and Machines 12(2) (May).

Cleland, C. E. (2002b, May). On effective procedures. Minds and Machines 12(2), 159–179. https://pdfs.
semanticscholar.org/a826/2a186f9e8828abd6b90a5604d87fab5ed713.pdf.

Cleland, C. E. (2004). The concept of computability. Theoretical Computer Science 317, 209–225.

Cliff, D., P. Husbands, J.-A. Meyer, and S. W. Wilson (Eds.) (1994). From Animals to Animats 3: Pro-
ceedings of the 3rd International Conference on Simulation of Adaptive Behavior. Cambridge, MA: MIT
Press.

Cockshott, P. and G. Michaelson (2007). Are there new models of computation? Reply to Wegner and
Eberbach. The Computer Journal 50(2), 232–247. http://www.dcs.gla.ac.uk/∼wpc/reports/wegner25aug.
pdf.

Coffa, J. (1991). The Semantic Tradition from Kant to Carnap: To the Vienna Station. Cambridge, UK:
Cambridge University Press.

Cohen, M. R. and E. Nagel (1934). An Introduction to Logic and Scientific Method. New York: Harcourt,
Brace and Co.

Colburn, T. R. (1991). Program verification, defeasible reasoning, and two views of computer science. Minds
and Machines 1, 97–116. Reprinted in Colburn et al. 1993, pp. 375–399.

Colburn, T. R. (1993). Computer science and philosophy. In T. R. Colburn, J. H. Fetzer, and T. L. Rankin
(Eds.), Program Verification: Fundamental Issues in Computer Science, pp. 3–31. Dordrecht, The Nether-
lands: Kluwer Academic Publishers.

Colburn, T. R. (1999). Software, abstraction, and ontology. The Monist 82(1), 3–19.

Colburn, T. R. (2000). Philosophy and Computer Science. Armonk, NY: M.E. Sharpe.

Colburn, T. R. (2006, 22–24 June). What is philosophy of computer science? http://tinyurl.com/Colburn06.
Extended abstract of paper presented at the European Conference on Computing and Philosophy
(ECAP’06, Trondheim, Norway).

Colburn, T. R., J. H. Fetzer, and T. L. Rankin (Eds.) (1993). Program Verification: Fundamental Issues in
Computer Science. Dordrecht, The Netherlands: Kluwer Academic Publishers.

Colby, K. M. (1981). Modeling a paranoid mind. Behavioral and Brain Sciences 4, 515–560.

Colby, K. M., F. D. Hilf, S. Weber, and H. C. Kraemer (1972). Turing-like indistinguishability tests for the
validation of a computer simulation of paranoid processes. Artificial Intelligence 3, 199–221.

Colby, K. M., S. Weber, and F. D. Hilf (1971). Artificial paranoia. Artificial Intelligence 2, 1–25.

Cole, D. (1991, September). Artificial intelligence and personal identity. Synthese 88(3), 399–417.

Cole, D. (2014, 31 December). Alan Turing & the Chinese Room Argument. https://web.archive.org/web/
20150109080357/http://www.thecritique.com/articles/alan-turing-the-chinese-room-argument/.

Cole, D. (2019). The Chinese room argument. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy
(Spring 2019 ed.). Metaphysics Research Lab, Stanford University.

Collins, A. M. and M. R. Quillian (1972). How to make a language user. In E. Tulving and W. Donaldson
(Eds.), Organization of Memory, pp. 309–351. New York: Academic Press.

Comte, A. (1830). Cours de philosophie positive (Course in Positive Philosophy). Paris: Bachelier. English
trans. by Harriet Martineau, https://archive.org/details/positivephilosop01comtuoft; also in James B. Hart-
man (ed.), Philosophy of Recent Times, Vol. I: Readings in Nineteenth-Century Philosophy (New York:
McGraw-Hill, 1967): 137–143.

BIBLIOGRAPHY 863

Condliffe, J. (2019, 22 March). The week in tech: Our future robots will need super-smart safety checks.
New York Times. https://www.nytimes.com/2019/03/22/technology/robot-safety-regulation.html.

Conery, J. S. (2010, November). What is computation? Computation is symbol manipulation. Ubiquity 2010.
Article 4, http://ubiquity.acm.org/article.cfm?id=1889839.

Conte, P. T. (1989, July). More on verification (letter to the editor). Communications of the ACM 32(7), 790.

Cook, B., A. Podelski, and A. Rybalchenko (2011, May). Proving program termination. Communications of
the ACM 54(5), 88–98.

Cook, S. A. (1983, June). An overview of computational complexity. Communications of the ACM 26(6),
400–408. http://www.jdl.ac.cn/turing/pdf/p400-cook.pdf.

Cooper, S. B. (2004). Computability Theory. Boca Raton, FL: Chapman & Hall.

Cooper, S. B. (2006). Review of Leavitt 2005. Notices of the AMS 53(10), 1213–1217. http://www.ams.org/
notices/200610/rev-cooper.pdf.

Cooper, S. B. (2012a). Incomputability after Alan Turing. Notices of the AMS 59(6), 776–784. http:
//www.ams.org/notices/201206/rtx120600776p.pdf.

Cooper, S. B. (2012b, March). Turing’s titanic machine? Communications of the ACM 55(3), 74–83.
http://cacm.acm.org/magazines/2012/3/146259-turings-titanic-machine/fulltext.

Cooper, S. B. and J. van Leeuwen (Eds.) (2013). Alan Turing: His Work and Impact. Amsterdam: Elsevier.

Copeland, B. J. (1996). What is computation? Synthese 108, 335–359. http://www.alanturing.net/turing
archive/pages/pub/what/what.pdf.

Copeland, B. J. (1997, May). The broad conception of computation. American Behavioral Scientist 40(6),
690–716.

Copeland, B. J. (1998). Even Turing machines can compute uncomputable functions. In C. Calude, J. Casti,
and M. J. Dinneen (Eds.), Unconventional Models of Computation, pp. 150–164. Springer-Verlag. http:
//www.alanturing.net/turing archive/pages/pub/even/even.pdf.

Copeland, B. J. (1999). The Turing-Wilkinson lecture series on the automatic computing engine. In K. Fu-
rukawa, D. Michi, and S. Muggleton (Eds.), Machine Intelligence 15: Intelligent Agents, pp. 381–444.
Oxford: Oxford University Press.

Copeland, B. J. (2000a). A brief history of computing. http://www.alanturing.net/turing archive/pages/
Reference%20Articles/BriefHistofComp.html.

Copeland, B. J. (2000b, June). The Church-Turing thesis. http://www.alanturing.net/turing archive/pages/
Reference%20Articles/The%20Turing-Church%20Thesis.html.

Copeland, B. J. (2002a, May). Accelerating Turing machines. Minds and Machines 12(2), 303–326.

Copeland, B. J. (2002b, November). Hypercomputation. Minds and Machines 12(4), 461–502.

Copeland, B. J. (Ed.) (2002c). Hypercomputation. Special issue of Minds and Machines 12(4) (November).
http://link.springer.com/journal/11023/12/4/.

Copeland, B. J. (Ed.) (2003). Hypercomputation (continued). Special issue of Minds and Machines 13(1)
(February). http://link.springer.com/journal/11023/13/1/.

Copeland, B. J. (2004a). Computation. In L. Floridi (Ed.), The Blackwell Guide to the Philosophy of
Computing and Information, pp. 3–17. Malden, MA: Blackwell.

Copeland, B. J. (Ed.) (2004b). The Essential Turing. Oxford: Oxford University Press.

864 BIBLIOGRAPHY

Copeland, B. J. (2012, 12 November). Is Alan Turing both inventor of the basic ideas of the modern computer
and a pioneer of artificial intelligence? Big Questions Online. https://www.bigquestionsonline.com/
content/alan-turing-both-inventor-basic-ideas-modern-computer-and-pioneer-artificial-intelligence.

Copeland, B. J. (2013, 12 August). What Apple and Microsoft owe to Turing. Huff[ington] Post Tech/The
Blog. http://www.huffingtonpost.com/jack-copeland/what-apple-and-microsoft- b 3742114.html.

Copeland, B. J., E. Dresner, D. Proudfoot, and O. Shagrir (2016, November). Time to reinspect the founda-
tions? Communications of the ACM 59(11), 34–36.

Copeland, B. J. and T. Flowers (2010). Colossus: The Secrets of Bletchley Park’s Codebreaking Com-
puters. New York: Oxford University Press. Co-authored by 17 Bletchley Park Codebreakers; http:
//www.colossus-computer.com/contents.htm.

Copeland, B. J. and D. Proudfoot (1996). On Alan Turing’s anticipation of connectionism. Synthese 108,
361–377. http://www.alanturing.net/turing archive/pages/reference%20articles/connectionism/Turing’
santicipation.html.

Copeland, B. J. and D. Proudfoot (1999, April). Alan Turing’s forgotten ideas in computer science. Scientific
American, 98–103. http://www.cs.virginia.edu/∼robins/Alan Turing’s Forgotten Ideas.pdf.

Copeland, B. J. and D. Proudfoot (2010, September). Deviant encodings and Turing’s analysis of com-
putability. Studies in History and Philosophy of Science 41(3), 247–252.

Copeland, B. J. and O. Shagrir (2011, Summer). Do accelerating Turing machines compute the uncom-
putable? Minds and Machines 21(2), 221–239.

Copeland, B. J. and O. Shagrir (2013). Turing versus Gödel on computability and the mind. In B. J.
Copeland, C. J. Posy, and O. Shagrir (Eds.), Computability: Turing, Gödel, Church, and Beyond, pp.
1–33. Cambridge, MA: MIT Press.

Copeland, B. J. and R. Sylvan (1999, March). Beyond the universal Turing machine. Australasian Journal
of Philosophy 77(1), 46–67. http://www.alanturing.net/turing archive/pages/pub/beyond/beyond.pdf.

Copeland, B. J. and R. Sylvan (2000). Computability is logic-relative. In D. Hyde and G. Priest (Eds.),
Sociative Logics and Their Applications: Essays by the Late Richard Sylvan, pp. 189–199. Ashgate.

Copes, L. (1982, July). The Perry development scheme: A metaphor for learning and teaching mathematics.
For the Learning of Mathematics 3(1), 38–44.

Corballis, M. C. (2007, May-Jue). The uniqueness of human recursive thinking. American Scientist 95,
240–248.

Corcoran, J. (2007). Scientific revolutions. In J. Lachs and R. Talisse (Eds.), Encyclopedia of American Phi-
losophy. New York: Routledge. http://www.academia.edu/25802396/CORCORAN ON SCIENTIFIC
REVOLUTIONS.

Cornfeld, J. and L. Knefelkamp (1979). Combining student stage and type in the design of learning environ-
ments: An integration of Perry stages and Holland typologies. Paper presented at the American College
Personnel Association, Los Angeles, March.

Corry, L. (2017, August). Turing’s pre-war analog computers: The fatherhood of the modern com-
puter revisited. Communications of the ACM 60(8), 50–58. https://cacm.acm.org/magazines/2017/8/
219602-turings-pre-war-analog-computers/fulltext.

Cotogno, P. (2003). Hypercomputation and the physical Church-Turing thesis. British Journal for the
Philosophy of Science 54(2), 181–224.

Covert, M. W. (2014, January). Simulating a living cell. Scientific American 310(1), 44–51.

BIBLIOGRAPHY 865

Coward, L. A. and R. Sun (2004, June). Criteria for an effective theory of consciousness and some pre-
liminary attempts. Consciousness and Cognition 13(2), 268–301. Preprint at http://www.cogsci.rpi.edu/
∼rsun/coward-sun-cc2003.pdf.

Craig, E. (Ed.) (1998). Routledge Encyclopedia of Philosophy. London: Routledge.

Craver, M. (2007, May). Letter to the editor. Scientific American, 16. Also see reply by Soter on same page.

Crawford, K. (2016, 25 June). Artificial intelligence’s white guy problem. New York Times. https://www.
nytimes.com/2016/06/26/opinion/sunday/artificial-intelligences-white-guy-problem.html.

Crichton, M. (2006, 19 March). This essay breaks the law. New York Times, WK13. http://www.nytimes.
com/2006/03/19/opinion/19crichton.html.

Crossley, J. N. and A. S. Henry (1990). Thus spake al-Khwārizmī: A translation of the text of Cambridge
University Library ms. Ii.vi.5. Historia Mathematica 17, 103–131.

Crowcroft, J. (2005, February). On the nature of computing. Communications of the ACM 48(2), 19–20.

Curd, M. (2014, 22 July). Review of Pigliucci and Boudry 2013b. Notre Dame Philosophical Reviews.
https://ndpr.nd.edu/news/49425-philosophy-of-pseudoscience-reconsidering-the-demarcation-problem/.

Curry, H. B. (1951). Outlines of a Formalist Philosophy of Mathematics. Amsterdam: North-Holland.

Curtis, M. (1965, January). A Turing machine simulator. Journal of the ACM 12(1), 1–13.

Dagan, I., O. Glickman, and B. Magnini (2006). The PASCAL recognising textual entailment challenge.
In J. Quiñonero Candela et al. (Eds.), MLCW 2005, pp. 177–190. Berlin: Springer-Verlag LNAI 3944.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.295.4483&represent=rep1&type=pdf.

Daly, I. (2010, 24 February). Just like mombot used to make. New York Times, D1, D5. http://www.nytimes.
com/2010/02/24/dining/24robots.html.

Danaher, J. (2013, 22 April). Is there a case for robot slaves? Philosophical Disquisitions. http:
//philosophicaldisquisitions.blogspot.com/2013/04/is-there-case-for-robot-slaves.html.

Darwin, C. (1872). The Origin of Species. New York: Signet Classics, 1958.

DATA-LINK (1958, April). What’s in a name? Communications of the ACM 1(4), 6.

David, M. (2009). The correspondence theory of truth. In E. N. Zalta (Ed.), Stanford Encyclopedia of
Philosophy (Fall 2009 Edition). http://plato.stanford.edu/archives/fall2009/entries/truth-correspondence/.

Davidson, J. (2006, 21 August). Measure for measure: Exploring the mysteries of conducting. The New
Yorker, 60–69.

Davies, D. W. (1999). Repairs to Turing’s universal computing machine. In K. Furukawa, D. Michie,
and S. Muggleton (Eds.), Machine Intelligence 15: Intelligent Agents, pp. 477–488. Oxford: Oxford
University Press. http://tinyurl.com/lqero7l.

Davies, E. (2001). Building infinite machines. British Journal for the Philosophy of Science 52, 671–682.
http://www.mth.kcl.ac.uk/staff/eb davies/jphilsci.pdf.

Davis, E. (2015). Ethical guidelines for a superintelligence. Artificial Intelligence 220, 121–124. https:
//www.cs.nyu.edu/davise/papers/Bostrom.pdf.

Davis, M. (1995a). An historical preface to engineering ethics. Science and Engineering Ethics 1(1), 33–48.

Davis, M. (1995b, 22 October). Questions for STS [Science & Technology Studies] from engineering ethics.
http://ethics.iit.edu/publication/Questions for STS.pdf. Talk given at the Society for the Social Study of
Science, Charlottesville, VA.

866 BIBLIOGRAPHY

Davis, M. (1996, April). Defining “engineer:” How to do it and why it matters. Journal of Engineering
Education 85(2), 97–101.

Davis, M. (1998). Thinking Like an Engineer: Studies in the Ethics of a Profession. New York: Oxford
University Press.

Davis, M. (2011, November). Will software engineering ever be engineering? Communications of the
ACM 54(11), 32–34.

Davis, M. D. (1958). Computability & Unsolvability. New York: McGraw-Hill.

Davis, M. D. (1990). Is mathematical insight algorithmic? Behavioral and Brain Sciences 13(4), 659–660.
http://www.cs.nyu.edu/faculty/davism/penrose.ps.

Davis, M. D. (1993). How subtle is Gödel’s theorem? More on Roger Penrose. Behavioral and Brain
Sciences 16(3), 611. http://www.cs.nyu.edu/faculty/davism/penrose2.ps.

Davis, M. D. (1995c). Mathematical logic and the origin of modern computers. In R. Herken (Ed.), The
Universal Turing Machine: A Half-Century Survey, Second Edition, pp. 135–158. Vienna: Springer-
Verlag. https://fi.ort.edu.uy/innovaportal/file/20124/1/41-herken ed. 95 - the universal turing machine.
pdf.

Davis, M. D. (2000, July-August). Overheard in the park. American Scientist 88, 366–367.

Davis, M. D. (2003, May-June). Paradoxes in paradise. American Scientist 91, 268–269. http://www.
americanscientist.org/bookshelf/pub/paradoxes-in-paradise.

Davis, M. D. (2004). The myth of hypercomputation. In C. Teuscher (Ed.), Alan Turing: The Life and Legacy
of a Great Thinker, pp. 195–212. Berlin: Springer. http://www1.maths.leeds.ac.uk/∼pmt6sbc/docs/davis.
myth.pdf.

Davis, M. D. (2006a). The Church-Turing thesis: Consensus and opposition. In A. Beckmann, U. Berger,
B. Löwe, and J. Tucker (Eds.), Logical Approaches to Computational Barriers: Second Conference on
Computability in Europe, CiE 2006, Swansea, UK, June 30–July 5, pp. 125–132. Berlin: Springer-Verlag
Lecture Notes in Computer Science 3988.

Davis, M. D. (2006b, November). What is Turing reducibility? Notices of the AMS 53(10), 1218–1219.
http://www.ams.org/notices/200610/whatis-davis.pdf.

Davis, M. D. (2006c). Why there is no such discipline as hypercomputation. Applied Mathematics and
Computation 178, 4–7.

Davis, M. D. (2008, November-December). Touring Turing. American Scientist 96(6), 520.

Davis, M. D. (2012). The Universal Computer: The Road from Leibniz to Turing; Turing Centenary Edition.
Boca Raton, FL: CRC Press/Taylor & Francis Group. Also published as Engines of Logic: Mathemati-
cians and the Origin of the Computer (New York: W.W. Norton, 2000).

Davis, M. D. and E. J. Weyuker (1983). Computability, Complexity and Langauges. New York: Academic
Press.

Davis, P. J. and R. Hersh (1998). The Mathematical Experience. Boston: Houghton Mifflin.

Davis, R., P. Samuelson, M. Kapor, and J. Reichman (1996, March). A new view of intellectual property
and software. Communications of the ACM 39(3), 21–30. Summary version of Samuelson et al. 1994,
http://people.csail.mit.edu/davis/cacm96.ps.

Davis, R. M. (1977, 18 March). Evolution of computers and computing. Science 195, 1096–1102.

Dawkins, R. (2016). The Selfish Gene: 40th Anniversary Edition. Oxford: Oxford University Press.

BIBLIOGRAPHY 867

Dawson, J. W. (2001, March). Review of Davis 2012. Bulletin of Symbolic Logic 7(1), 65–66. http:
//www.math.ucla.edu/∼asl/bsl/0701/0701-003.ps.

Daylight, E. G. (2013). Towards a historical notion of “Turing—the father of computer science”. http:
//www.dijkstrascry.com/sites/default/files/papers/Daylightpaper91.pdf.

Daylight, E. G. (2014, October). A Turing tale. Communications of the ACM 57(10), 36–38. http://cacm.
acm.org/magazines/2014/10/178787-a-turing-tale/fulltext.

Daylight, E. G. (2016). Turing Tales. Geel, Belgium: Lonely Scholar.

de Leeuw, K., E. Moore, C. Shannon, and N. Shapiro (1956). Computability by probabilistic machines. In
C. Shannon and J. McCarthy (Eds.), Automata Studies, pp. 183–212. Princeton, NJ: Princeton University
Press. Reviewed and summarized in Fischer 1970.

De Millo, R. A., R. J. Lipton, and A. J. Perlis (1979, May). Social processes and proofs of theorems and
programs. Communications of the ACM 22(5), 271–280.

De Mol, L. and G. Primiero (2015). When logic meets engineering: Introduction to logical issues in the
history and philosophy of computer science. History and Philosophy of Logic 36(3), 195–204. http:
//www.tandfonline.com/doi/pdf/10.1080/01445340.2015.1084183.

de Saussure, F. (1959). Course in General Linguistics. New York: Philosophical Library. Charles Bally,
Albert Sechehaye, & Albert Reidlinger (eds.).

de Waal, F. (2016, 8 April). What I learned from tickling apes. New York Times. https://www.nytimes.com/
2016/04/10/opinion/sunday/what-i-learned-from-tickling-apes.html.

Decker, A., A. Phelps, and C. Egert (2017, March-April). Disappearing happy little sheep: Changing the
culture of computing education by infusing. Educational Technology 57(2), 50–54.

Dedekind, R. (1890). Letter to Keferstein. In J. van Heijenoort (Ed.), From Frege to Gödel: A Source Book
in Mathematical Logic, 1879–1931, pp. 98–103. Cambridge, MA: Harvard University Press. Trans. by
Hao Wang and Stefan Bauer-Mengelberg.

Defoe, D. (1719). Robinson Crusoe. New York: W.W. Norton, 1994.

Delvaux, M. (2016, 31 May). Draft report with recommendations to the Commission on Civil Law Rules
on Robotics. European Parliament Committee on Legal Affairs, http://www.europarl.europa.eu/sides/
getDoc.do?pubRef=-//EP//NONSGML%2BCOMPARL%2BPE-582.443%2B01%2BDOC%2BPDF%
2BV0//EN.

Dembart, L. (1977, 8 May). Experts argue whether computers could reason, and if they should. New York
Times, 1, 34.

Dennett, D. C. (1971). Intentional systems. Journal of Philosophy 68, 87–106. Reprinted in Daniel C.
Dennett, Brainstorms (Montgomery, VT: Bradford Books): 3–22.

Dennett, D. C. (1975). Why the law of effect will not go away. Journal for the Theory of Social Be-
haviour 5(2), 169–188. Reprinted in Daniel C. Dennett, Brainstorms (Montgomery, VT: Bradford
Books): 71-89, https://dl.tufts.edu/downloads/j9602b715?filename=2r36v862p.pdf.

Dennett, D. C. (1978, July). Why you can’t make a computer feel pain. Synthese 38(3), 415–456.
https://dl.tufts.edu/downloads/9w032f88p?filename=m039kh27m.pdf. Reprinted in Daniel C. Dennett,
Brainstorms (Montgomery, VT: Bradford Books): 190–229.

Dennett, D. C. (1981). Three kinds of intentional psychology. In R. Healey (Ed.), Reduction, Time and
Reality, pp. 37–61. Cambridge, UK: Cambridge University Press. https://dl.tufts.edu/file assets/tufts:
ddennett-1981.00001.

Dennett, D. C. (1982, June). Notes on prosthetic imagination. Boston Review 7(3), 3–7.

868 BIBLIOGRAPHY

Dennett, D. C. (1987). The Intentional Stance. Cambridge, MA: MIT Press.

Dennett, D. C. (1995). Darwin’s Dangerous Idea. New York: Simon & Schuster.

Dennett, D. C. (2009a, 16 June). Darwin’s ‘strange inversion of reasoning’. Proceedings of the Na-
tional Academy of Science 106, suppl. 1, 10061–10065. http://www.pnas.org/cgi/doi/10.1073/pnas.
0904433106. See also Dennett 2013b.

Dennett, D. C. (2009b). Intentional systems theory. In B. McLaughlin, A. Beckermann, and S. Walter
(Eds.), The Oxford Handbook of Philosophy of Mind, pp. 339–350. Oxford: Oxford University Press.
https://ase.tufts.edu/cogstud/dennett/papers/intentionalsystems.pdf.

Dennett, D. C. (2012, 2 March). Sakes and dints: And other definitions that philosophers really need not
seek. Times Literary Supplement, 12–14. http://ase.tufts.edu/cogstud/papers/TLS2012.pdf.

Dennett, D. C. (2013a). Intuition Pumps and Other Tools for Thinking. New York: W.W. Norton.

Dennett, D. C. (2013b). Turing’s ‘strange inversion of reasoning’. In S. B. Cooper and J. van Leeuwen
(Eds.), Alan Turing: His Work and Impact, pp. 569–573. Amsterdam: Elsevier. See also Dennett 2009a.

Dennett, D. C. (2017). From Bacteria to Bach and Back: The Evolution of Mind. New York: W.W. Norton.

Denning, P. J. (1980, October). What is experimental computer science? Communications of the
ACM 23(10), 543–544.

Denning, P. J. (1985, January-February). What is computer science? American Scientist 73, 16–19.

Denning, P. J. (1995, March). Can there be a science of information? ACM Computing Surveys 27(1), 23–25.
https://pdfs.semanticscholar.org/6a53/d9d9e78685093de13017008ca54327a121b0.pdf.

Denning, P. J. (2000). Computer science: The discipline. In A. Ralston, E. D. Reilly, and D. Hemmendinger
(Eds.), Encyclopedia of Computer Science, Fourth Edition. New York: Grove’s Dictionaries. Page refer-
ences are to 1999 preprint at http://cs.gmu.edu/cne/pjd/PUBS/ENC/cs99.pdf.

Denning, P. J. (2003, November). Great principles of computing. Communications of the ACM 46(11),
15–20.

Denning, P. J. (2005, April). Is computer science science? Communications of the ACM 48(4), 27–31.

Denning, P. J. (2007, July). Computing is a natural science. Communications of the ACM 50(7), 13–18.

Denning, P. J. (2009). Beyond computational thinking. Communications of the ACM 52(6), 28–30.

Denning, P. J. (2010, November). What is computation? Opening statement. Ubiquity 2010. Article 1,
http://ubiquity.acm.org/article.cfm?id=1880067.

Denning, P. J. (2013a, December). Design thinking. Communications of the ACM 56(12), 29–31. http:
//denninginstitute.com/pjd/PUBS/CACMcols/cacmDec13.pdf.

Denning, P. J. (2013b, May). The science in computer science. Communications of the ACM 56(5), 35–38.

Denning, P. J. (2017, June). Remaining trouble spots with computational thinking. Com-
munications of the ACM 60(6), 33–39. https://m.cacm.acm.org/magazines/2017/6/
217742-remaining-trouble-spots-with-computational-thinking/fulltext; see also Glass and Paulson
2017.

Denning, P. J. and T. Bell (2012, November-December). The information paradox. American Scientist 100,
470–477. http://denninginstitute.com/pjd/PUBS/AmSci-2012-info.pdf.

Denning, P. J., D. E. Comer, D. Gries, M. C. Mulder, A. Tucker, A. J. Turner, and P. R. Young (1989,
January). Computing as a discipline. Communications of the ACM 32(1), 9–23.

BIBLIOGRAPHY 869

Denning, P. J. and P. A. Freeman (2009, December). Computing’s paradigm. Communications of the
ACM 52(12), 28–30.

Denning, P. J. and C. H. Martell (2015). Great Principles of Computing. Cambridge, MA: MIT Press.

Denning, P. J. and R. D. Riehle (2009, March). Is software engineering engineering? Communications of
the ACM 52(3), 24–26. http://denninginstitute.com/pjd/PUBS/CACMcols/cacmMar09.pdf.

Denning, P. J. and P. S. Rosenbloom (2009, September). Computing: The fourth great domain of science.
Communications of the ACM 52(9), 27–29.

Denning, P. J. and M. Tedre (2019). Computational Thinking. Cambridge, MA: MIT Press.

Denning, P. J., M. Tedre, and P. Yongpradit (2017, March). Misconceptions about computer science. Commu-
nications of the ACM 60(3), 31–33. http://denninginstitute.com/pjd/PUBS/CACMcols/cacmMar17.pdf.

Denning, P. J. and P. Wegner (2010, October). What is computation? Ubiquity 2010. http://ubiquity.acm.
org/article.cfm?id=1870596.

Dershowitz, N. and Y. Gurevich (2008, September). A natural axiomatization of computability and proof of
Church’s thesis. Bulletin of Symbolic Logic 14(3), 299–350. http://research.microsoft.com/pubs/70459/
tr-2007-85.pdf.

Descartes, R. (1637). Discourse on method. In E. S. Haldane and G. Ross (Eds.), The Philosophical
Works of Descartes, pp. 79–130. Cambridge, UK: Cambridge University Press, 1970. Online versions
at https://www.gutenberg.org/files/59/59-h/59-h.htm and https://www.earlymoderntexts.com/assets/pdfs/
descartes1637.pdf.

Descartes, R. (1641). Meditations on first philosophy. In E. S. Haldane and G. Ross (Eds.), The Philosophical
Works of Descartes, pp. 131–199. Cambridge, UK: Cambridge University Press, 1970. Online versions
at http://selfpace.uconn.edu/class/percep/DescartesMeditations.pdf and https://www.earlymoderntexts.
com/assets/pdfs/descartes1641 3.pdf.

Deutsch, D. (1985). Quantum theory, the Church-Turing principle and the universal computer. Proceedings
of the Royal Society of London A 400, 97–117. Page references are to preprint at http://www.cs.berkeley.
edu/∼christos/classics/Deutsch quantum theory.pdf.

Deutsch, M. (2009, September). Experimental philosophy and the theory of reference. Mind & Lan-
guage 24(4), 445–466.

Devitt, M. and N. Porot (2018). The reference of proper names: Testing usage and intuitions. Cognitive
Science. https://doi.org/10.1111/cogs.12609.

Devlin, K. (1992, November). Computers and mathematics (column). Notices of the American Mathematical
Society 39(9), 1065–1066.

Devlin, K. (2011). The Man of Numbers: Fibonacci’s Artihmetic Revolution. New York: Walker & Co.

Dewar, R. and O. Astrachan (2009, July). CS education in the U.S.: Heading in the wrong direction?
Communications of the ACM 52(7), 41–45.

Dewdney, A. (1989). The Turing Omnibus: 61 Excursions in Computer Science. Rockville, MD: Computer
Science Press. esp. Chs. 1 (“Algorithms: Cooking Up Programs”), 28 (“Turing Machines: The Simplest
Computers”), and 48 (“Universal Turing Machines: Computers as Programs”).

Dewey, J. (1910). How We Think: A Restatement of Reflective Thinking to the Educative Process, revised
ed. Boston: D.C. Heath. https://archive.org/details/howwethink000838mbp and http://rci.rutgers.edu/
∼tripmcc/philosophy/dewey-hwt-pt1-selections.pdf.

Diakopoulos, N. (2016, February). Accountability in algorithmic decision making. Communications of the
ACM 59(2), 56–62.

870 BIBLIOGRAPHY

Dick, P. K. (1968). Do Androids Dream of Electric Sheep? New York: Doubleday. Reprinted by Random
House/Del Rey/Ballantine, 1996.

Dietrich, E. (2001, October). Homo sapiens 2.0: Why we should build the better robots of our nature.
Journal of Experimental and Theoretical Artificial Intelligence 13(4), 323–328.

Dietrich, E. (2007). After the humans are gone. Journal of Experimental and Theoretical Artificial Intel-
ligence 19(1), 55–67. http://bingweb.binghamton.edu/∼dietrich/Selected Publications.html; shorter ver-
sion appears in Philosophy Now 61 (May/June): 16-19, https://philosophynow.org/issues/61/After The
Humans Are Gone.

Dijkstra, E. W. (1968, March). Go to statement considered harmful. Communications of the ACM 11(3),
147–148. https://www.cs.utexas.edu/∼EWD/transcriptions/EWD03xx/EWD361.html.

Dijkstra, E. W. (1972). Notes on structured programming. In O. J. Dahl, E. W. Dijkstra, and C. A. R. Hoare
(Eds.), Structured Programming, pp. 1–82. London: Academic Press. https://pdfs.semanticscholar.org/
013b/f90f472e49c05263b90d9e36f8d2705e7fc7.pdf. See also Dijkstra, Edsger W. (2001), “What Led to
‘Notes on Structured Programming’ ” (EWD1308), https://www.cs.utexas.edu/users/EWD/transcriptions/
EWD13xx/EWD1308.html.

Dijkstra, E. W. (1974, June-July). Programming as a discipline of mathematical nature. American Mathe-
matical Monthly 81(6), 608–612.

Dijkstra, E. W. (1975a). EWD 512: Comments at a symposium. In Selected Writings on Computing:
A Personal Perspective, pp. 161–164. New York: Springer-Verlag. http://www.cs.utexas.edu/∼EWD/
ewd05xx/EWD512.PDF.

Dijkstra, E. W. (1975b, August). Guarded commands, nondeterminacy and formal derivation of programs.
Communications of the ACM 18(8), 453–457. https://www.cs.utexas.edu/users/EWD/transcriptions/
EWD04xx/EWD472.html.

Dijkstra, E. W. (1976). EWD 611: On the fact that the Atlantic Ocean has two sides. In Selected Writings
on Computing: A Personal Perspective, pp. 268–276. New York: Springer-Verlag. http://www.cs.utexas.
edu/∼EWD/transcriptions/EWD06xx/EWD611.html.

Dijkstra, E. W. (1983). Fruits of misunderstanding (EWD-854). http://www.cs.utexas.edu/users/EWD/
transcriptions/EWD08xx/EWD854.html. Reprinted in Datamation (15 February 1985): 86–87.

Dijkstra, E. W. (1986). Mathematicians and computing scientists: The cultural gap. Mathematical Intel-
ligencer 8(1), 48–52. Reprinted in Abacus: The Magazine for the Computer Professional 4(4) (1987):
26–31.

Dipert, R. R. (1993). Artifacts, Art Works, and Agency. Philadelphia: Temple University Press.

Dodig-Crnkovic, G. (2006, 22–24 June). What is philosophy of computer science? Experience from the
Swedish national course. Paper presented at the European Conference on Computing and Philosophy
(ECAP’06, Trondheim, Norway), http://www.cse.buffalo.edu/∼rapaport/584/Dodig-Crnkovic.pdf.

Downes, S. (1990). Herbert Simon’s computational models of scientific discovery. PSA: Proceedings of the
[1990] Biennial Meeting of the Philosophy of Science Association 1, 97–108.

Doxiadis, A., C. H. Papadimitriou, A. Papadatos, and A. Di Donna (2009). Logicomix: An Epic Search for
Truth. New York: Bloomsbury USA.

Dresner, E. (2003). Effective memory and Turing’s model of mind. Journal of Experimental & Theoretical
Artificial Intelligence 15(1), 113–123.

Dresner, E. (2008, Fall). Turing-, human- and physical computability: An unasked question. Minds and
Machines 18(3), 349–355.

BIBLIOGRAPHY 871

Dresner, E. (2010). Measurement-theoretic representation and computation-theoretic realization. Journal of
Philosophy 107(6), 272–292.

Dresner, E. (2012). Turing, Matthews and Millikan: Effective memory, dispositionalism and pushmepullyou
states. International Journal of Philosophical Studies 20(4), 461–472.

Dretske, F. (1981). Knowledge and the Flow of Information. Oxford: Blackwell.

Dretske, F. (1985, September). Machines and the mental. Proceedings and Addresses of the American
Philosophical Association 59(1), 23–33.

Dreyfus, H. L. (2001). On the Internet, 2nd Edition. London: Routledge. http://cryptome.org/2013/01/
aaron-swartz/On-the-Internet.pdf.

Dreyfus, S. E. and H. L. Dreyfus (1980). A five-state model of the mental activities involved in directed skill
acquisition. Technical Report ORC-80-2, Operations Research Center, University of California, Berkeley.
http://www.dtic.mil/dtic/tr/fulltext/u2/a084551.pdf.

Dumas, A. (1844). The Count of Monte Cristo. London: Penguin Books, 2003. Trans. by Robin Buss.

Dummett, M. A. (1975). What is a theory of meaning? In S. Guttenplann (Ed.), Mind and Language, pp.
97–138. Oxford: Clarendon Press.

Dummett, M. A. (1976). What is a theory of meaning? (II). In G. Evans and J. McDowell (Eds.), Truth and
Meaning: Essays in Semantics, pp. 67–137. Oxford: Clarendon Press.

Duncan, W. D. (2017). Ontological distinctions between hardware and software. Applied Ontology 12(17),
5–32. Earlier version (2009) at http://tinyurl.com/yajq4hnw.

Dunn, J. M. (2008). Information in computer science. In P. Adriaans and J. van Benthem (Eds.), Phi-
losophy of Information, pp. 587–614. North-Holland. Short pre-print at http://www.illc.uva.nl/HPI/
Draft Information in Computer Science.pdf.

Dunn, J. M. (2013). A guide to the Floridi keys. Metascience 22, 93–98. Essay review of Floridi 2011.

Dunning, B. (16 May 2007). The importance of teaching critical thinking. http://skeptoid.com/episodes/
4045.

Dunning, B. (8 May 2018). Are you living in a simulation? https://skeptoid.com/episodes/4622.

Dyson, F. (2004, 13 May). The world on a string. New York Review of Books, 16–19.

Dyson, F. (2006, 19 October). Writing nature’s greatest book. New York Review of Books 53(16).

Dyson, F. (2011a, 10 November). The case for far-out possibilities. New York Review of Books, 26–27.

Dyson, F. (2011b, 10 March). How we know. New York Review of Books, 8, 10, 12.

Dyson, G. (2012a, 23 February). Turing centenary: The dawn of computing. Nature 482(7386), 459–460.
doi:10.1038/482459a.

Dyson, G. (2012b). Turing’s Cathedral: The Origins of the Digital Universe. New York: Pantheon.

Easton, T. A. (2006, May). Beyond the algorithmization of the sciences. Communications of the ACM 49(5),
31–33.

Eberbach, E. and P. Wegner (2003, October). Beyond Turing machines. Bulletin of the European Associ-
ation for Theoretical Computer Science (EATCS) (81), 279–304. http://www.eatcs.org/images/bulletin/
beatcs81.pdf.

Eco, U. (1982). On the impossibility of drawing a map of the empire on a scale of 1 to 1. In How to Travel
with a Salmon and Other Essays, pp. 95–106. New York: Harcourt Brace.

872 BIBLIOGRAPHY

Edelman, S. (2008a). Computing the Mind. New York: Oxford University Press.

Edelman, S. (2008b, September). On the nature of minds; or: Truth and consequences. Journal of Exper-
imental & Theoretical Artificial Intelligence 20(3), 181–196. http://kybele.psych.cornell.edu/∼edelman/
Edelman-JETAI.pdf.

Eden, A. H. (2005, 21 September). Software ontology as a cognitive artefact. Talk given to the SUNY Buffalo
Center for Cognitive Science; slides at https://www.cse.buffalo.edu//∼rapaport/eden2005-SWOntCogArt.
pdf.

Eden, A. H. (2007, July). Three paradigms of computer science. Minds and Machines 17(2), 135–167.
http://www.ic.unicamp.br/∼wainer/cursos/2s2006/epistemico/filosofia-cs.pdf.

Eden, A. H., J. H. Moor, J. H. Søraker, and E. Steinhart (Eds.) (2012). Singularity Hypotheses: A Scientific
and Philosophical Assessment. Berlin: Springer. http://singularityhypothesis.blogspot.co.uk/.

Eden, A. H. and R. Turner (2007b). Problems in the ontology of computer programs. Applied Ontology 2(1),
13–36. http://www.eden-study.org/articles/2007/problems-ontology-programs ao.pdf.

Eden, A. H. and R. Turner (Eds.) (2011). The Philosophy of Computer Science. Special issue of Minds and
Machines 21(2) (Summer). https://link.springer.com/journal/11023/21/2/page/1.

Eden, A. H. and R. Turner (9 July 2007a). Philosophy of computer science: Online and offline resources.
http://web.archive.org/web/20070709105405/http://pcs.essex.ac.uk/.

Edmonds, D. and N. Warburton (2010). Philosophy Bites. Oxford: Oxford University Press.

Edwards, D. A. (2013, April). Platonism is the law of the land. Notices of the AMS 60(4), 475–478.
https://www.ams.org/notices/201304/rnoti-p475.pdf.

Edwards, P. (Ed.) (1967). Encyclopedia of Philosophy. New York: Macmillan.

Egan, D. (2019, 6 December). Is there anything especially expert about being a philosopher? Aeon. https:
//aeon.co/ideas/is-there-anything-especially-expert-about-being-a-philosopher.

Egan, F. (1991, April). Must psychology be individualistic? Philosophical Review 100(2), 179–203.

Egan, F. (1995, April). Computation and content. Philosophical Review 104(2), 181–203.

Egan, F. (2010, September). Computational models: A modest role for content. Studies in History and
Philosophy of Science 41(3), 253–259.

Egan, F. (2012, January-March). Metaphysics and computational cognitive science: Let’s not let the tail wag
the dog. Journal of Cognitive Science (South Korea) 13(1), 39–49. http://cogsci.snu.ac.kr/jcs/issue/vol13/
no1/02 Frances+Egan.pdf.

Egan, F. (2014, August). How to think about mental content. Philosophical Studies 170(1), 115–135. Preprint
at https://www.academia.edu/4160744/How to think about Mental Content; video at https://vimeo.com/
60800468.

Eilon, S. (1969, December). What is a decision? Management Science 16(4, Application Series), B172–
B189.

Einstein, A. (1921, 27 January). Geometry and experience. Address to the Prussian Academy of Sciences,
Berlin; English version at http://www-history.mcs.st-andrews.ac.uk/Extras/Einstein geometry.html.

Einstein, A. (1940, 24 May). Considerations concerning the fundaments of theoretical physics. Sci-
ence 91(2369), 487–492.

Ekdahl, B. (1999, Part B). Interactive computing does not supersede Church’s thesis. The Association of
Management and the International Association of Management, 17th Annual International Conference,
San Diego, CA, August 6–8, Proceedings Computer Science 17(2), 261–265.

BIBLIOGRAPHY 873

Ellerton, P. (2016, 14 September). What exactly is the scientific method and why
do so many people get it wrong? The Conversation. https://theconversation.com/
what-exactly-is-the-scientific-method-and-why-do-so-many-people-get-it-wrong-65117.

Elser, V. (2012, September-October). In a class by itself. American Scientist 100, 418–420. https://www.
americanscientist.org/article/in-a-class-by-itself; see also https://www.americanscientist.org/author/veit
elser.

Ensmenger, N. (2003, September-October). Bits of history: Review of A.R. Burks’s Who Invented the
Computer? The Legal Battle that Changed Computing History. American Scientist 91, 467–468. http:
//www.americanscientist.org/bookshelf/pub/bits-of-history.

Ensmenger, N. (2011a, April). Building castles in the air. Communications of the ACM 54(4), 28–30.
http://dx.doi.org/10.1145/1924421.1924432.

Ensmenger, N. (2011b, 9 September). Computing as science and practice. Science 333, 1383.

Evans, J. S. and K. E. Stanovich (2013). Dual-process theories of higher cognition: Advancing the debate.
Perspectives on Psychological Science 8(3), 223–241. http://www.keithstanovich.com/Site/Research on
Reasoning files/Evans Stanovich PoPS13.pdf.

Everett, M. (2012, September/October). Answer to “What’s the most important question, and why?”. Phi-
losophy Now 92, 38–41. https://philosophynow.org/issues/92/Whats The Most Important Question and
Why.

Eysenck, M. W. (1990). Artificial intelligence. In M. Eysenck (Ed.), The Blackwell Dictionary of Cognitive
Psychology, pp. 22. Oxford: Basil Blackwell.

Farkas, D. K. (1999, February). The logical and rhetorical construction of procedural dis-
course. Technical Communication 46(1), 42–54. http://www.hcde.washington.edu/sites/
default/files/people/docs/proceduraldiscourse.pdf or http://faculty.washington.edu/farkas/dfpubs/
Farkas-ConstructionOfProceduralDiscourse.pdf.

Feferman, S. (1992). Turing’s “oracle”: From absolute to relative computability—and back. In J. Echever-
ria, A. Ibarra, and T. Mormann (Eds.), The Space of Mathematics: Philosophical, Epistemological, and
Historical Exporations, pp. 314–348. Berlin: Walter de Gruyter.

Feferman, S. (2006a, June). Are there absolutely unsolvable problems? Gödel’s di-
chotomy. Philosophia Mathematica 14(2), 134–152. https://pdfs.semanticscholar.org/246c/
95f81bdf8118d0c0354efd19643fe74da0af.pdf.

Feferman, S. (2006b). Turing’s [PhD] thesis. Notices of the AMS 53(10), 1200–1206.

Feferman, S. (2011). Gödel’s incompleteness theorems, free will, and mathematical thought. In R. Swin-
burne (Ed.), Free Will and Modern Science. Oxford University Press/British Academy. https://philarchive.
org/archive/FEFGIT.

Feigenbaum, E. A. (2003, January). Some challenges and grand challenges for computational intelligence.
Journal of the ACM 50(1), 32–40.

Feitelson, D. G. (Ed.) (2007). Experimental Computer Science. Special section of Communications of the
ACM 50(11) (November): 24–59.

Fekete, T. and S. Edelman (2011, September). Towards a computational theory of experi-
ence. Consciousness and Cognition 20(3), 807–827. http://kybele.psych.cornell.edu/∼edelman/
Fekete-Edelman-ConCog11-in-press.pdf.

Fellows, M. R. and I. Parberry (1993, January). SIGACT trying to get children excited about CS. Computing
Research News, 7. https://larc.unt.edu/ian/pubs/crn1993.pdf.

874 BIBLIOGRAPHY

Fetzer, J. H. (1988, September). Program verification: The very idea. Communications of the ACM 31(9),
1048–1063.

Fetzer, J. H. (1991). Philosophical aspets of program verification. Minds and Machines 1, 197–216.
Reprinted in Colburn et al. 1993, pp. 403–427.

Fetzer, J. H. (1993). Program verification. In A. Kent and J. G. Williams (Eds.), Encyclopedia of Computer
Science and Technology, Vol. 28, Supp. 13, pp. 237–254. New York: Marcel Dekker. Reprinted in Allen
Kent & James G. Williams (eds.), Encyclopedia of Microcomputers, Vol. 14: “Productivity and Software
Maintenance: A Managerial Perspective to Relative Addressing” (New York: Marcel Dekker): 47–64.

Fetzer, J. H. (1996, Summer). Computer reliability and public policy: Limits of knowledge of computer-
based systems. Social Philosophy and Policy 13(2), 229–266.

Fetzer, J. H. (1998). Computer sytems: The uncertainty of their reliability. Bridges 5(3/4), 197–217.

Fetzer, J. H. (1999). The role of models in computer science. The Monist 82(1), 20–36.

Feyerabend, P. (1975). Against Method: Outline of an Anarchistic Theory of Knowledge. London: Verso.

Fieser, J. and B. Dowden (Eds.) (1995). Internet Encyclopedia of Philosophy. http://www.iep.utm.edu/.

Figdor, C. (2017). On the proper domain of psychological predicates. Synthese 194, 4289–4310.

Findler, N. V. (1993). Heuristic. In A. Ralston and E. D. Reilly (Eds.), Encyclopedia of Computer Science,
3rd Edition, pp. 611–612. New York: Van Nostrand Reinhold.

Fine, A. (1986, April). Unnatural attitudes: Realist and instrumentalist attachments to science. Mind 95(378),
149–179.

Fischer, P. C. (1970, September). Review of de Leeuw et al. 1956. Journal of Symbolic Logic 35(3), 481–482.

Fisher, L. M. (1989, 15 December). Xerox sues Apple Computer over Macin-
tosh copyright. New York Times. http://www.nytimes.com/1989/12/15/business/
company-news-xerox-sues-apple-computer-over-macintosh-copyright.html.

Fiske, E. B. (1989, 29 March). Between the ‘two cultures’: Finding a place in the curriculum for the study
of technology. New York Times, B8. http://www.nytimes.com/1989/03/29/us/education-lessons.html.

Fitch, W. T. (2005). Computation and cognition: Four distinctions and their implications. In A. Cut-
ler (Ed.), Twenty-First Century Psycholinguistics: Four Cornerstones, pp. 381–400. Mahway, NJ:
Lawrence Erlbaum Associates. http://homepage.univie.ac.at/tecumseh.fitch/wp-content/uploads/2010/
08/Fitch2005Computation.pdf.

Fitch, W. T., M. D. Hauser, and N. Chomsky (2005). The evolution of the language faculty: Clarifications
and implications. Cognition 97, 179–210. http://dash.harvard.edu/bitstream/handle/1/3117935/Hauser
EvolutionLanguageFaculty.pdf.

Fitzsimmons, E. G. (2013, 24 December). Alan Turing, Enigma code-breaker and computer pi-
oneer, wins royal pardon. New York Times. http://www.nytimes.com/2013/12/24/world/europe/
alan-turing-enigma-code-breaker-and-computer-pioneer-wins-royal-pardon.html.

Flanagan, O. (2012, 13 January). Buddhism without the hocus-pocus. The Chronicle [of Higher Education]
Review 58(19), B4–B5.

Fletcher, J. (1972). Indicators of humanhood: A tentative profile of man. Hastings Center Report 2(5), 1–4.

Fletcher, L. R. (2007). Slow reading: The affirmation of authorial intent. http://www.freelance-academy.
org/slowread.htm.

Floridi, L. (1999). Philosophy and Computing: An Introduction. London: Routledge.

BIBLIOGRAPHY 875

Floridi, L. (2002, January). What is the philosophy of information? Metaphilosophy 33(1–2), 123–145.

Floridi, L. (2003). The Philosophy of Information. Two special issues of Minds and Machines 13(4) and
14(1).

Floridi, L. (2004a). The Blackwell Guide to the Philosophy of Computing and Information. Malden, MA:
Blackwell.

Floridi, L. (2004b, July). Open problems in the philosophy of information. Metaphilosophy 35(4), 554–582.

Floridi, L. (2010). Information: A Very Short Introduction. Oxford: Oxford University Press.

Floridi, L. (2011). The Philosophy of Information. Oxford: Oxford University Press. Reviewed in Dunn
2013.

Floridi, L., J. Cowls, M. Beltrametti, R. Chatila, P. Chazerand, V. Dignum, C. Luetge, R. Madelin, U. Pagallo,
F. Rossi, B. Schafer, P. Valcke, and E. Vayena (2018, Winter). AI4People—an ethical framework for a
good AI society: Opportunities, risks, principles, and recommendations. Minds and Machines 28(4),
689–707. https://papers.ssrn.com/sol3/papers.cfm?abstract id=3284141.

Florman, S. C. (1994). The Existential Pleasures of Engineering, Second Edition. New York: St. Martin’s
Press.

Fodor, J. A. (1968). Psychological Explanation: An Introduction to the Philosophy of Psychology. New
York: Random House.

Fodor, J. A. (1974, October). Special sciences (or: The disunity of science as a working hypothesis). Syn-
these 28(2), 97–115.

Fodor, J. A. (1975). The Language of Thought. New York: Thomas Y. Crowell Co.

Fodor, J. A. (1978). Tom Swift and his procedural grandmother. Cognition 6, 229–247. http://www.nyu.edu/
gsas/dept/philo/courses/mindsandmachines/Papers/tomswift.pdf.

Fodor, J. A. (1980, March). Methodological solipsism considered as a research strategy in cognitive psy-
chology. Behavioral and Brain Sciences 3(1), 63–109.

Fodor, J. A. (1981, January). The mind-body problem. Scientific American 244(1), 114–123.

Fodor, J. A. and E. Lepore (1992). Holism: A Shopper’s Guide. Cambridge, MA: Basil Blackwell.

Foerst, A. (2001). Commander Data: A candidate for Harvard Divinity School? In A. Sharma (Ed.),
Religion in a Secular City: Essays in Honor of Harvey Cox. Harrisburg, PA: Trinity Press International.
http://www.slideshare.net/peterbuck/commander-data-a-candidate-for-harvard-divinity-school.

Foley, J. (2002, September). Computing > computer science. Computing Research News 14(4), 6. Re-
vised version at http://archive.cra.org/reports/computing/index.html. Response by Robert L. Glass at
http://archive.cra.org/reports/computing/glass.html.

Folger, T. (2016, February). The quantum hack. Scientific American 314(2), 48–55. http://www.cs.virginia.
edu/∼robins/The Quantum Hack.pdf.

Folina, J. (1998). Church’s thesis: Prelude to a proof. Philosophia Mathematica 6, 302–323.

Ford, H. (1928, April). My philosophy of industry. The Forum 79(4). Interview conducted by Fay Leone
Faurote; see also http://quoteinvestigator.com/2016/04/05/so-few/.

Forester, T. and P. Morrison (1994). Computer Ethics: Cautionary Tales and Ethical Dilemmas in Comput-
ing; Second Edition. Cambridge, MA: MIT Press.

Forster, E. (1909). The machine stops. http://archive.ncsa.illinois.edu/prajlich/forster.html.

876 BIBLIOGRAPHY

Forster, E. (1910). Howards End. Mineola, NY: Dover Publications (2002). https://www.gutenberg.org/files/
2946/2946-h/2946-h.htm.

Forsythe, G. E. (1967a, January). A university’s educational program in computer science. Communications
of the ACM 10(1), 3–8.

Forsythe, G. E. (1967b, May). What to do till the computer scientist comes. American Mathematical
Monthly 75(5), 454–462.

Forsythe, G. E. (1968). Computer science and education. Information Processing 68: Proceedings of IFIP
Congress 1968, 1025–1039.

Fortnow, L. (2006, 14 July). Principles of problem solving: A TCS response. http://blog.
computationalcomplexity.org/2006/07/principles-of-problem-solving-tcs.html.

Fortnow, L. (2009, September). The status of the P versus NP problem. Communications of the ACM 52(9),
78–86. http://cacm.acm.org/magazines/2009/9/38904-the-status-of-the-p-versus-np-problem/fulltext.

Fortnow, L. (2010, December). What is computation? Ubiquity 2010. Article 5, http://ubiquity.acm.org/
article.cfm?id=1921573.

Fortnow, L. (2013). The Golden Ticket: P, NP, and the Search for the Impossible. Princeton, NJ: Princeton
University Press.

Fortnow, L. (2018a, 26 January). From art to science. http://blog.computationalcomplexity.org/2018/01/
from-art-to-science.html.

Fortnow, L. (2018b, 29 March). A reduced Turing Award. https://blog.computationalcomplexity.org/2018/
03/a-reduced-turing-award.html.

Fox, M. (2013, 30 April). Janos Starker, master of the cello, dies at 88. New York Times, B16. http:
//www.nytimes.com/2013/04/30/arts/music/janos-starker-master-cellist-dies-at-88.html.

Frailey, D. J. (2010, November). What is computation? Computation is process. Ubiquity 2010. Article 5;
http://ubiquity.acm.org/article.cfm?id=1891341.

Frakt, A. (2015, 9 December). Your new medical team: Algorithms and physicians. New York Times, A27.
http://www.nytimes.com/2015/12/08/upshot/your-new-medical-team-algorithms-and-physicians.html.

Frances, B. (2017, January). Extensive philosophical agreement and progress. Metaphilosophy 48(1–2),
47–57.

Franzén, T. (2005). Gödel’s Theorem: An Incomplete Guide to Its Use and Abuse. Wellesley, MA: A K Pe-
ters.

Frazer, J. G. (1911–1915). The Golden Bough: A Study in Magic and Religion, 3rd ed. London: Macmillan.

Freeman, P. A. (1995, March). Effective computer science. ACM Computing Surveys 27(1), 27–29.

Freeth, T. (2009, December). Decoding an ancient computer. Scientific American 301(6), 76–83.

Freeth, T., Y. Bitsakis, X. Moussas, J. Seiradakis, A. Tselikas, H. Mangou, M. Zafeiropoulou, R. Hadland,
D. Bate, A. Ramsey, M. Allen, A. Crawley, P. Hockley, T. Malzbender, D. Gelb, W. Ambrisco, and
M. Edmunds (2006, 30 November). Decoding the ancient Greek astronomical calculator known as the
Antikythera Mechanism. Nature 444, 587–591.

Frege, G. (1892). On sense and reference. In P. Geach and M. Black (Eds.), Translations from the Philo-
sophical Writings of Gottlob Frege, pp. 56–78. Oxford: Basil Blackwell, 1970. M. Black, trans.

French, R. M. (2000). The Turing test: The first fifty years. Trends in Cognitive Sciences 4(3), 115–121.
http://leadserv.u-bourgogne.fr/rfrench/french/TICS turing.pdf.

BIBLIOGRAPHY 877

Frenkel, E. (2013). Love and Math: The Heart of Hidden Reality. New York: Basic Books.

Frenkel, K. (1993, January). An interview with Robin Milner. Communications of the ACM 36(1), 90–97.
http://delivery.acm.org/10.1145/160000/151241/a1991-frenkel.pdf.

Friedman, B. and P. H. Kahn, Jr. (1997). People are responsible, computers are not. In M. D. Ermann,
M. B. Williams, and M. S. Shauf (Eds.), Computers, Ethics, and Society, Second Edition, pp. 303–314.
New York: Oxford University Press. Excerpt from their “Human Agency and Responsible Computing:
Implications for Computer System Design”, Journal of Systems and Software (1992): 7–14.

Frigg, R., S. Hartman, and I. Cyrille (2009). Special issue on models and simulations. Synthese 169(3),
425–626. http://link.springer.com/journal/11229/169/3.

Frigg, R. and S. Hartmann (2012). Models in science. In E. N. Zalta (Ed.), Stanford Encyclopedia of
Philosophy (Fall 2012 Edition). Metaphysics Research Lab, Stanford University. http://plato.stanford.
edu/archives/fall2012/entries/models-science/.

Fry, H. (2019, 1 July). Looks like rain: How weather forecasting got good. The New Yorker, 61–65.
https://www.newyorker.com/magazine/2019/07/01/why-weather-forecasting-keeps-getting-better.

Gal-Ezer, J. and D. Harel (1998, September). What (else) shoud CS educators know? Communications of
the ACM 41(9), 77–84.

Galbi, E. W. (1971, April). Software and patents: A status report. Communications of the ACM 14(4),
274–280. http://simson.net/ref/2007/cs3610/ref/p274-galbi.pdf.

Gandy, R. (1980). Church’s thesis and principles for mechanisms. In J. Barwise, H. Keisler, and K. Kunen
(Eds.), The Kleene Symposium, pp. 123–148. North-Holland.

Gandy, R. (1988). The confluence of ideas in 1936. In R. Herken (Ed.), The Universal Turing Ma-
chine: A Half-Century Survey, Second Edition, pp. 51–102. Vienna: Springer-Verlag. https://fi.ort.edu.
uy/innovaportal/file/20124/1/41-herken ed. 95 - the universal turing machine.pdf.

Gardner, H. (1983). Frames of Mind: The Theory of Multiple Intelligences. New York: Basic Books, 2011.

Gazzaniga, M. S. (2010, July). Neuroscience and the correct level of explanation for understanding mind: An
extraterrestrial roams through some neuroscience laboratories and concludes Earthlings are not grasping
how best to understand the mind-brain interface. Trends in Cognitive Sciences 14(7), 291–292.

Gelenbe, E. (2011, February). Natural computation. Ubiquity 2011. Article 1, http://ubiquity.acm.org/article.
cfm?id=1940722.

Gemignani, M. (1981, March). What is a computer program? American Mathematical Monthly 88(3),
185–188.

George, A. (1983, January/February). Philosophy and the birth of computer science. Robotics Age, 26–31.

George Washington University Department of Computer Science (2003). Computer science careers. http:
//www.seas.gwu.edu/∼simhaweb/misc/cscareers.html.

Gettier, E. L. (1963). Is justified true belief knowledge? Analysis 23, 121–123. http://www.ditext.com/
gettier/gettier.html.

Giampiccolo, D., B. Magnini, I. Dagan, and B. Dola (2007). The third PASCAL recognizing textual en-
tailment challenge. In Proceedings of the Workshop on Textual Entailment and Paraphrasing, pp. 1–9.
Association for Computational Linguistics. https://www.aclweb.org/anthology/W07-1401.pdf.

Giere, R. N. (1984). Understanding Scientific Reasoning, 2nd edition. New York: Holt, Rinehart & Winston.

Gigerenzer, G. and D. G. Goldstein (1996). Mind as computer: Birth of a metaphor. Cre-
ativity Research Journal 9(2–3), 131–144. http://web.ebscohost.com/ehost/pdfviewer/pdfviewer?sid=
9fd0749e-892b-4f80-8663-7a539038aa82%40sessionmgr198&vid=1&hid=114.

878 BIBLIOGRAPHY

Gillis, J. (2017, 20 August). Should you trust climate science? Maybe the eclipse is a clue. New York Times,
A14. https://nyti.ms/2v9dLji.

Ginsberg, M. L. (Ed.) (1987). Readings in Nonmonotonic Reasoning. Los Altos, CA: Morgan Kaufmann.

Gladwell, M. (2011, 16 May). Creation myth. The New Yorker, 44, 46, 48–50, 52A–53A. Slightly different
version at http://www.newyorker.com/reporting/2011/05/16/110516fa fact gladwell.

Glanzberg, M. (2016). Truth. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Fall 2016 ed.).
Stanford University. http://plato.stanford.edu/archives/fall2016/entries/truth/.

Glass, R. L. (2002, August). The proof of correctness wars. Communications of the ACM 45(8), 19–21.

Glass, R. L. and L. C. Paulson (2017, September). Computational thinking is not necessarily com-
putational. Communications of the ACM 60(9), 8. https://m.cacm.acm.org/magazines/2017/9/
220430-computational-thinking-is-not-necessarily-computational/fulltext.

Gleick, J. (2008, 18 December). ‘If Shakespeare had been able to Google. . . ’. New York Review of
Books 55(20), 77–79; highlighted paragraph on p. 78, cols. 2–3.

Gleick, J. (2011). The Information: A History, a Theory, a Flood. New York: Pantheon.

Gleick, J. (2014, 24 August). A unified theory. New York Times Book Review, 17. http://www.nytimes.com/
2014/08/24/books/review/geek-sublime-by-vikram-chandra.html.

Gödel, K. (1938). Undecidable Diophantine propositions. In S. Feferman et al. (Eds.), Kurt Gödel: Collected
Works, Vol. III, pp. 164–175. Oxford: Oxford University Press, 1995. http://tinyurl.com/ybw84oa6.

Gödel, K. (1964). Postcriptum. In M. Davis (Ed.), The Undecidable: Basic Papers on Undecidable Propo-
sitions, Unsolvable Problems and Computable Functions, pp. 71–73. New York: Raven Press, 1965.

Gold, E. M. (1965). Limiting recursion. Journal of Symbolic Logic 30(1), 28–48.

Gold, E. M. (1967). Language identification in the limit. Information and Control 10, 447–474. https:
//www.sciencedirect.com/science/article/pii/S0019995867911655.

Goldberger, N. R. (1979). Developmental assumptions underlying models of general education. Paper
presented at the Conference on General Education, William Patterson College.

Goldfain, A. (2006). Embodied enumeration: Appealing to activities for mathematical explanation. In
M. Beetz, K. Rajan, M. Thielscher, and R. B. Rusu (Eds.), Cognitive Robotics: Papers from the AAAI
Workshop (CogRob2006), Technical Report WS-06-03, pp. 69–76. Menlo Park, CA: AAAI Press.

Goldfain, A. (2008). A computational theory of early mathematical cognition. PhD dissertation (Buf-
falo: SUNY Buffalo Department of Computer Science & Engineering), http://www.cse.buffalo.edu/sneps/
Bibliography/GoldfainDissFinal.pdf.

Goldin, D. and P. Wegner (2004). The origins of the Turing thesis myth. https://web.archive.org/web/
20120212032143/http://www.engr.uconn.edu/∼dqg/papers/myth.pdf.

Goldin, D. and P. Wegner (2008, Spring). The interactive nature of computing: Refuting the strong Church-
Turing thesis. Minds and Machines 18(1), 17–38.

Goldin, D. Q., S. A. Smolka, P. C. Attie, and E. L. Sonderegger (2004, November). Turing machines,
transition systems, and interaction. Information and Computation 194(2), 101–128. http://www.cse.
uconn.edu/∼dqg/papers/its.pdf.

Goldstein, R. N. (2006). Incompleteness: The Proof and Paradox of Kurt Gödel. New Yorkk: W.W. Norton.

Goldstein, R. N. (2014). Plato at the Googleplex: Why Philosophy Won’t Go Away. New York: Pantheon
Books.

BIBLIOGRAPHY 879

Goldstine, H. H. (1972). The Computer from Pascal to von Neumann. Princeton, NJ: Princeton University
Press.

Goodman, N. D. (1984, July). The knowing mathematician. Synthese 60(1), 21–38.

Goodman, N. D. (1987, October). Intensions, Church’s thesis, and the formalization of mathematics. Notre
Dame Journal of Formal Logic 28(4), 473–489. http://projecteuclid.org/download/pdf 1/euclid.ndjfl/
1093637644.

Google, Inc. (2012, 12 April). Google’s 4/12/12 copyright liability trial brief, case no. 3:10-CV 03561-WHA,
document 897. http://www.wired.com/wp-content/uploads/blogs/wiredenterprise/wp-content/uploads/
2012/04/20120412-Googles-Copyright-Stance.pdf.

Gopnik, A. (1996, December). The scientist as child. Philosophy of Science 63(4), 485–514. http://courses.
media.mit.edu/2002fall/mas962/MAS962/gopnik.pdf.

Gopnik, A. (2009a). The Philosophical Baby: What Children’s Minds Tell Us about Truth, Love, and the
Meaning of Life. New York: Farrar, Straus and Giroux.

Gopnik, A. (2009b, 23 November). What’s the recipe? The New Yorker, 106–112. http://www.newyorker.
com/arts/critics/atlarge/2009/11/23/091123crat atlarge gopnik.

Gopnik, A. (2013, 11 & 18 February). Moon man: What Galileo saw. The New Yorker, 103–109. http:
//www.newyorker.com/magazine/2013/02/11/moon-man.

Gopnik, A. (2015a). The evolution catechism. The New Yorker (online). http://www.newyorker.com/news/
daily-comment/evolution-catechism.

Gopnik, A. (2015b, 30 November). Spooked. The New Yorker, 84–86. http://www.newyorker.com/magazine/
2015/11/30/spooked-books-adam-gopnik.

Gordin, M. D. (2012, 21 September). Separating the pseudo from science. The Chronicle [of Higher
Education] Review 59(4), B10–B12. http://chronicle.com/article/Separating-the-Pseudo-From/134412/.

Gordon, D. M. (2016, February). Collective wisdom of ants. Scientific American 314(2), 44–47. https:
//web.stanford.edu/∼dmgordon/articles/other/Gordon%20Scientific%20American.pdf.

Gottlieb, A. (2016). The Dream of Enlightenment: The Rise of Modern Philosophy. New York: Liveright
(W.W. Norton).

Grabiner, J. V. (1988, October). The centrality of mathematics in the history of western thought. Mathe-
matics Magazine 61(4), 220–230. http://www.maa.org/sites/default/files/images/images/upload library/
22/Allendoerfer/1989/0025570x.di021156.02p00042.pdf.

Grady, D. (2019, 20 May). A.I. took a test to detect lung cancer. It got an A. New York Times. https:
//www.nytimes.com/2019/05/20/health/cancer-artificial-intelligence-ct-scans.html.

Green, C. D. (2001). Scientific models, connectionist networks, and cognitive science. Theory and Psychol-
ogy 11, 97–117. http://www.yorku.ca/christo/papers/models-TP2.htm.

Green, C. D. (2005). Was Babbage’s analytical engine intended to be a mechanical model of the mind?
History of Psychology 8(1), 35–45. http://www.yorku.ca/christo/papers/babbage-HoP.pdf.

Green, D. (2014a, November/December). A philosophical round. Philosophy Now (105), 22. https://
philosophynow.org/issues/105/A Philosophical Round.

Green, P. (2014b, 17 July). Magic in the mundane. New York Times, D1, D4. http://www.nytimes.com/2014/
07/17/garden/putting-magic-in-the-mundane.html.

Greene, P. (2019, 10 August). Are we living in a computer simulation? Let’s not
find out. New York Times. https://www.nytimes.com/2019/08/10/opinion/sunday/
are-we-living-in-a-computer-simulation-lets-not-find-out.html.

880 BIBLIOGRAPHY

Greenemeier, L. (2008, 24 April). 150-year-old computer brought to life (slideshow). http://www.
scientificamerican.com/article.cfm?id=150-year-old-computer-babbage.

Greengard, S. (2009, December). Making automation work. Communications of the ACM 52(12), 18–19.

Grey, D. S. (2016). Language in use: Research on color words. http://www.putlearningfirst.com/language/
research/colour words.html.

Grier, D. A. (2005). When Computers Were Human. Princeton, NJ: Princeton University Press. Reviewed
in Skinner 2006.

Grier, M. (2018). Kant’s critique of metaphysics. In E. N. Zalta (Ed.), The Stanford Encyclopedia of
Philosophy (Summer 2018 ed.). Metaphysics Research Lab, Stanford University.

Gries, D. (1981). The Science of Programming, 3rd printing. New York: Springer-Verlag, 1985.

Grobart, S. (2011, 27 March). Spoiled by the all-in-one gadget. New York Times, WK3. http://www.nytimes.
com/2011/03/27/weekinreview/27grobart.html.

Grossmann, R. (1974). Meinong. London: Routledge and Kegan Paul.

Grover, L. K. (1999, July/August). Quantum computing. The Sciences, 24–30. http://cryptome.org/
qc-grover.htm.

Grover, S. and R. Pea (2013). Computational thinking in K–12: A review of the state of the field. Educsa-
tional Researcher 42(1), 38–43.

Gruber, J. (2007, April). Apple’s computer, incorporated. Macworld, 112. http://www.macworld.com/
article/1056519/aprilspotlight.html.

Grünbaum, A. (1984). The Foundations of Psychoanalysis. Berkeley: University of California Press.

Guernsey, L. (2009, 23 January). Computers track the elusive metaphor. Chronicle of Higher Education,
A11.

Gurevich, Y. (1999, February). The sequential ASM thesis. Bulletin of the European Association for The-
oretical Computer Science 67, 93–124. http://research.microsoft.com/en-us/um/people/gurevich/Opera/
136.pdf.

Gurevich, Y. (2011). What is an algorithm? In SOFSEM 2012: Theory and Practice of Computer Sci-
ence, pp. 31–42. Springer Lecture Notes in Computer Science 7147. http://research.microsoft.com/pubs/
155608/209-3.pdf.

Gurevich, Y. (2012, February). Foundational analyses of computation. Technical Report MSR-TR-2012-14,
Microsoft Research, Redmond, WA. http://research.microsoft.com/pubs/158617/210.pdf.

Guzdial, M. (2008, August). Paving the way for computational thinking. Communications of the
ACM 51(8), 25–27. https://www.researchgate.net/publication/234812396 Education Paving the way
for computational thinking.

Guzdial, M. (2011, 22 March). A definition of computational thinking from Jean-
nette Wing. Computing Education Blog, https://computinged.wordpress.com/2011/03/22/
a-definition-of-computational-thinking-from-jeanette-wing/.

Guzdial, M. and A. Kay (2010, 24 May). The core of computer science: Alan Kay’s
“triple whammy”. Computing Education Blog. http://computinged.wordpress.com/2010/05/24/
the-core-of-computer-science-alan-kays-triple-whammy/.

Haberman, C. (2009, 27 November). The story of a landing. New York Times Book Review. http://www.
nytimes.com/2009/11/29/books/review/Haberman-t.html.

BIBLIOGRAPHY 881

Habib, S. (2000). Emulation. In A. Ralston, E. D. Reilly, and D. Hemmendinger (Eds.), Encyclopedia of
Computer Science, 4th Edition, pp. 647–648. London: Nature Publishing Group.

Hafner, K. (2002, 19 September). Happy birthday :-) to you: A smiley face
turns 20. New York Times, G4. http://www.nytimes.com/2002/09/19/technology/
typographic-milestones-happy-birthday-to-you-a-smiley-face-turns-20.html.

Hafner, K. (2012, 4 December). Could a computer outthink this doctor? New York Times, D1, D6. http:
//www.nytimes.com/2012/12/04/health/quest-to-eliminate-diagnostic-lapses.html.

Haigh, T. (2013). ‘Stored program concept’ considered harmful: History and historiography. In P. Boniz-
zoni, V. Brattka, and B. Löwe (Eds.), CiE 2013, pp. 241–251. Berlin: Springer-Verlag Lecture Notes in
Computer Science 7921.

Haigh, T. (2014, January). Actually, Turing did not invent the computer. Communications of the ACM 57(1),
36–41.

Haigh, T. and M. Priestley (2016, January). Where code comes from: Architectures of automatic control
from Babbage to Algol. Communications of the ACM 59(1), 39–44. http://www.tomandmaria.com/Tom/
Writing/WhereCodeComesFromCACM.pdf.

Hailperin, M., B. Kaiser, and K. Knight (1999). Concrete Abstractions: An Introduction to Computer Science
Using Scheme. Pacific Grove, CA: Brooks/Cole. https://gustavus.edu/mcs/max/concrete-abstractions.
html.

Hallevy, G. (2013). When Robots Kill: Artificial Intelligence under Criminal Law. Boston: Northeastern
University Press.

Halmos, P. R. (1973, April). The legend of John von Neumann. American Mathematical Monthly,
382–394. http://poncelet.math.nthu.edu.tw/disk5/js/biography/v-n.pdf and http://stepanov.lk.net/mnemo/
legende.html.

Halpern, J. Y., R. Harper, N. Immerman, P. G. Kolaitis, M. Y. Vardi, and V. Vianu (2001, June). On the
unusual effectiveness of logic in computer science. Bulletin of Symbolic Logic 7(2), 213–236. http:
//www.lsi.upc.edu/∼roberto/EffectivenessOfLogic.pdf.

Halpern, S. (2015, 2 April). How robots & algorithms are taking over. New York Review of Books 62(6), 24,
26, 28. http://www.nybooks.com/articles/archives/2015/apr/02/how-robots-algorithms-are-taking-over/.

Halpern, S. (2016, 24 November). Our driverless future. New York Review of Books 63(18), 18–20. http:
//www.nybooks.com/articles/2016/11/24/driverless-intelligent-cars-road-ahead/.

Hamming, R. (1968, January). One man’s view of computer science. Journal of the Association for Com-
puting Machinery 16(1), 3–12.

Hamming, R. (1980a, February). The unreasonable effectiveness of mathematics. American Mathematical
Monthly 87(2). http://www.dartmouth.edu/∼matc/MathDrama/reading/Hamming.html.

Hamming, R. (1980b). We would know what they thought when they did it. In N. Metropolis, J. Howlett,
and G.-C. Rota (Eds.), A History of Computing in the Twentieth Century: A Collection of Essays, pp. 3–9.
New York: Academic Press.

Hamming, R. (1998, August-September). Mathematics on a distant planet. American Mathematical
Monthly 105(7), 640–650.

Hammond, T. A. (6 May 2003). What is computer science? Myths vs. truths. http://web.archive.org/web/
20030506091438/http://www.columbia.edu/∼tah10/cs1001/whatcs.html.

Hansson, S. O. (2015). Science and pseudo-science. In E. N. Zalta (Ed.), The Stanford Encyclopedia
of Philosophy (Spring 2015 ed.). Stanford University. http://plato.stanford.edu/archives/spr2015/entries/
pseudo-science/.

882 BIBLIOGRAPHY

Harel, D. (1980, July). On folk theorems. Communications of the ACM 23(7), 379–389. http://www.univasf.
edu.br/∼marcus.ramos/pc-2008-2/p379-harel.pdf.

Harman, G. (1965, January). The inference to the best explanation. The Philosophical Review 74(1), 88–95.

Harnad, S. (1994a). Computation is just interpretable symbol manipulation; cognition isn’t. Minds
and Machines 4(4), 379–390. http://users.ecs.soton.ac.uk/harnad/Papers/Harnad/harnad94.computation.
cognition.html.

Harnad, S. (Ed.) (1994b). What Is Computation? Special issue of Minds and Machines 4(4). https://link.
springer.com/journal/11023/4/4.

Harnish, R. M. (2002). Coda: Computation for cognitive science, or what IS a computer, any-
way? In Minds, Brains, Computers: An Historical Introduction to the Foundations of Cognitive
Science, pp. 394–412. Malden, MA: Blackwell. Portions may be online at https://www.amazon.com/
Minds-Brains-Computers-Introduction-Foundations/dp/0631212604/.

Hartmanis, J. (1993). Some observations about the nature of computer science. In R. Shyamasundar (Ed.),
Foundations of Software Technology and Theoretical Computer Science, Volume 761 of Lecture Notes
in Computer Science, pp. 1–12. Springer Berlin/Heidelberg. https://www.researchgate.net/publication/
221583809 Some Observations About the Nature of Computer Science.

Hartmanis, J. (1995a, March). On computational complexity and the nature of computer science. ACM
Computing Surveys 27(1), 7–16. Reprinted, with added commentaries, from Communications of the
ACM 37(10) (October 1994): 37–43.

Hartmanis, J. (1995b, March). Response to the essays “On computational complexity and the nature of
computer science”. ACM Computing Surveys 27(1), 59–61.

Hartmanis, J. and H. Lin (1992). What is computer science and engineering? In J. Hartmanis and H. Lin
(Eds.), Computing the Future: A Broader Agenda for Computer Science and Engineering, pp. 163–216.
Washington, DC: National Academy Press. Ch. 6.

Hartmanis, J. and R. Stearns (1965, May). On the computational complexity of algorithms. Transac-
tions of the American Mathematical Society 117, 285–306. https://fi.ort.edu.uy/innovaportal/file/20124/
1/60-hartmanis stearns complexity of algorithms.pdf.

Hartmanis, J. and R. Stearns (1967, May). Sets of numbers defined by finite automata. American Mathemat-
ical Monthly, 539–542.

Hartree, D. (1949). Calculating Instruments and Machines. Urbana, IL: University of Illinois Press. https:
//archive.org/details/calculatinginstr00doug.

Haugeland, J. (1981a, Spring). Analog and analog. Philosophical Topics 12(1), 213–225.

Haugeland, J. (1981b). Semantic engines: An introduction to mind design. In J. Haugeland (Ed.), Mind
Design: Philosophy, Psychology, Artificial Intelligence, pp. 1–34. Cambridge, MA: MIT Press.

Hauser, L. (2001). Chinese room argument. Internet Encyclopedia of Philosophy. https://www.iep.utm.edu/
chineser/.

Hauser, M. D., N. Chomsky, and W. T. Fitch (2002, 22 November). The faculty of language: What is it, who
has it, and how did it evolve. Science 298, 1569–1579. http://www.chomsky.info/articles/20021122.pdf.

Hauser, S. (2017, January-February). Computing and connecting. Rochester Review 79(3), 16–17. https:
//www.rochester.edu/pr/Review/V79N3/0306 hopper.html.

Hayes, B. (1994, September-October). The World Wide Web. American Scientist 82, 416–420. http:
//bit-player.org/wp-content/extras/bph-publications/AmSci-1994-09-Hayes-www.pdf.

BIBLIOGRAPHY 883

Hayes, B. (1995, July-August). The square root of NOT. American Scientist 83, 304–308. http://bit-player.
org/wp-content/extras/bph-publications/AmSci-1995-07-Hayes-quantum.pdf.

Hayes, B. (2000, May-June). The nerds have won. American Scientist 88, 200–204. http://bit-player.org/
wp-content/extras/bph-publications/AmSci-2000-05-Hayes-Nerds.pdf.

Hayes, B. (2002, July-August). The search for rigor. American Scientist 90, 382–384.

Hayes, B. (2004, March-April). Small-town story. American Scientist, 115–119. http://bit-player.org/
wp-content/extras/bph-publications/AmSci-2004-03-Hayes-smalltowns.pdf.

Hayes, B. (2007a, May-June). Calculating the weather. American Scientist 95(3). https://web.archive.org/
web/20150228152542/http://www.americanscientist.org/bookshelf/pub/calculating-the-weather.

Hayes, B. (2007b, March-April). Trains of thought. American Scientist 95(2). http://bit-player.org/
wp-content/extras/bph-publications/AmSci-2007-03-Hayes-trains.pdf.

Hayes, B. (2014a, September-October). Pencil, paper, and pi. American Scientist 102(1), 342–345. https:
//www.americanscientist.org/article/pencil-paper-and-pi.

Hayes, B. (2014b, January-February). Programming your quantum computer. American Scientist 102(1),
22–25. https://www.americanscientist.org/article/programming-your-quantum-computer.

Hayes, B. (2015a, March-April). The 100-billion-body problem. American Scientist 103(2), 90–93. https:
//www.americanscientist.org/article/the-100-billion-body-problem.

Hayes, B. (2015b, January-February). Cultures of code. American Scientist 103(1), 10–13. http://www.
americanscientist.org/article/cultures-of-code.

Hayes, P. J. (Ed.) (1983). Proceedings of the Fifth Annual Conference of the Cognitive Science Society.
https://cognitivesciencesociety.org/wp-content/uploads/2019/01/cogsci 5.pdf.

Hayes, P. J. (1997, July). What is a computer? Monist 80(3), 389–404. http://philo.at/mii/mii/node30.html.

Hearst, M. and H. Hirsh (2000, January/February). AI’s greatest trends and controversies. IEEE Intelligent
Systems 15(1), 8–17. http://www.cs.cornell.edu/courses/cs472/2002fa/handouts/challenges-ai.pdf.

Hedger, L. (1998, April). Analog computation: Everything old is new again. Indiana University Research
& Creative Activity 21(2). http://www.indiana.edu/∼rcapub/v21n2/p24.html.

Heingartner, D. (2006, 18 July). Maybe we should leave that up to the computer. New York Times. http:
//www.nytimes.com/2006/07/18/technology/18model.html.

Heller, N. (2016, 28 November). Not our kind. The New Yorker, 87–91. http://www.newyorker.com/
magazine/2016/11/28/if-animals-have-rights-should-robots.

Heller, N. (2019, 29 July). Driven (Was the automotive era a terrible mistake?). The New Yorker, 24–29.
https://www.newyorker.com/magazine/2019/07/29/was-the-automotive-era-a-terrible-mistake.

Hempel, C. G. (1942, 15 January). The function of general laws in history. Journal of Philosophy 39(2),
35–48.

Hempel, C. G. (1962). Deductive-nomological vs. statistical explanation. In H. Feigl and G. Maxwell (Eds.),
Minnesota Studies in the Philosophy of Science, Vol. 3: Scientific Explanationa, Space, and Time, pp. 98–
169. Minneapolis: University of Minnesota Press. http://mcps.umn.edu/philosophy/completeVol3.html.

Hendler, J., N. Shadbolt, W. Hall, T. Berners-Lee, and D. Weitzner (2008, July). Web science: An
interdisciplinary approach to understanding the Web. Communications of the ACM 51(7), 60–69.
http://cacm.acm.org/magazines/2008/7/5366-web-science/fulltext.

884 BIBLIOGRAPHY

Heng, K. (2014, May-June). The nature of scientific proof in the age of simula-
tions. American Scientist 102(3), 174–177. https://www.americanscientist.org/article/
the-nature-of-scientific-proof-in-the-age-of-simulations.

Henkin, L. (1962, 16 November). Are logic and mathematics identical? Science 138(3542), 788–794.

Henzinger, T. (1996, December). Some myths about formal verification. ACM Computing Surveys 28(4es).
Article No. 119.

Herman, G. (1983). Algorithms, theory of. In A. S. Ralston and E. D. Riley (Eds.), Encyclopedia of
Computer Science, 3rd edition, pp. 37–39. New York: Van Nostrand Reinhold.

Hewitt, C. (2019, 10 July). Computer science must rely on strongly-typed Actors and theories for cyberse-
curity. https://papers.ssrn.com/sol3/papers.cfm?abstract id=3418003.

Hidalgo, C. (2015, August). Planet hard drive. Scientific American 313(2), 72–75.

Higginbotham, A. (2014, 9 November). The disillusionist (The unbelievable skepticism of the Amaz-
ing Randi). New York Times Magazine, 48–53, 60–61. http://www.nytimes.com/2014/11/09/magazine/
the-unbelievable-skepticism-of-the-amazing-randi.html.

Hilbert, D. (1899). Foundations of Geometry. La Salle, IL: Open Court. 2nd edition, trans. by Leo Unger;
10th edition revised and enlarged by Paul Bernays; different edition online at https://math.berkeley.edu/
∼wodzicki/160/Hilbert.pdf.

Hilbert, D. (1900, July). Mathematical problems: Lecture delivered before the International Congress of
Mathematicians at Paris in 1900. Bulletin of the American Mathematical Society 8(10), 437–479. Trans.
by Mary Winston Newson; first published in Göttinger Nachrichten (1900): 253–297.

Hilbert, D. and W. Ackermann (1928). Principles of Mathematical Logic. New York, 1950: Chelsea.
Robert E. Luce (ed.); Lewis M. Hammon, George G. Leckie, & F. Steinhardt (trans.); based on Grundzüge
der Theoretischen Logik, 2nd edition, 1938.

Hilbert, M. and P. López (2011, 1 April). The world’s technological capacity to store, communicate, and
compute information. Science 332, 60–65.

Hill, D. J. (2016a, 11 May). AI teaching assistant helped students online—and no
one knew the difference. SingularityHUB. https://singularityhub.com/2016/05/11/
ai-teaching-assistant-helped-students-online-and-no-one-knew-the-difference/.

Hill, R. K. (2008). Empire, regime, and perspective change in our creative activities. Confer-
ence on ReVisioning the (W)hole II: Curious Intersections, 25 September, http://web.archive.org/web/
20080925064006/http://www.newhumanities.org/events/revisioning.html.

Hill, R. K. (2013, June). What an algorithm is, and is not. Communications of the ACM 56(6), 8–9.
http://mags.acm.org/communications/june 2013/?pg=11.

Hill, R. K. (2016b). What an algorithm is. Philosophy and Technology 29, 35–59.

Hill, R. K. (2017a, 26 February). Fact versus frivolity in Facebook. BLOG@CACM, http://cacm.acm.org/
blogs/blog-cacm/214075-fact-versus-frivolity-in-facebook/fulltext.

Hill, R. K. (2017b, March). What makes a program elegant? Communications of the ACM 60(3), 13.
http://cacm.acm.org/blogs/blog-cacm/208547-what-makes-a-program-elegant/fulltext.

Hill, R. K. (2018, 21 May). Articulation of decision responsibility. BLOG@CACM. https://cacm.acm.org/
blogs/blog-cacm/227966-articulation-of-decision-responsibility/fulltext.

Hill, R. K. and W. J. Rapaport (2018, Fall). Exploring the territory: The logicist way and other paths
into the philosophy of computer science. American Philosophical Association Newsletter on Phi-
losophy and Computers 18(1), 34–37. https://cdn.ymaws.com/www.apaonline.org/resource/collection/
EADE8D52-8D02-4136-9A2A-729368501E43/ComputersV18n1.pdf.

BIBLIOGRAPHY 885

Hillis, W. D. (1998). The Pattern on the Stone: The Simple Ideas that Make Computers Work. New York:
Basic Books.

Hilpinen, R. (2011). Artifact. In E. N. Zalta (Ed.), Stanford Encyclopedia of Philosophy. Metaphysics
Research Lab. http://plato.stanford.edu/entries/artifact/.

Hinchey, M., M. Jackson, P. Cousot, B. Cook, J. P. Bowen, and T. Margaria (2008, September). Software
engineering and formal methods. Communications of the ACM 51(9), 54–59.

Hintikka, J. and A. Mutanen (1997). An alternative concept of computability. In J. Hintikka (Ed.), Language,
Truth, and Logic in Mathematics, pp. 174–188. Dordrecht, The Netherlands: Springer.

Hirst, G. (1991). Existence assumptions in knowledge representation. Artificial Intelligence 49, 199–242.

Hitmill.com (2012, 16 December). History of computers. http://www.hitmill.com/computers/computerhx1.
html.

Hoare, C. A. R. (1969, October). An axiomatic basis for computer programming. Communications of the
ACM 12(10), 576–580, 583.

Hoare, C. A. R. (1986, August). Mathematics of programming. Byte, 115ff. Reprinted in Timothy R. Col-
burn, James H. Fetzer, & Terry L. Rankin (eds.), Program Verification: Fundamental Issues in Computer
Science (Dordrecht, Holland: Kluwer Academic Publishers, 1993): 135–154.

Hoare, C. A. R. (2009, October). Retrospective: An axiomatic basis for computer programming. Communi-
cations of the ACM 52(10), 30–32.

Hodges, A. (2006, November). Review of Copeland 2004b. Notices of the AMS 53(10), 1190–1199. http:
//www.ams.org/notices/200610/rev-hodges.pdf.

Hodges, A. (2012a). Alan Turing: The Enigma; Centenary Edition. Princeton, NJ: Princeton University
Press.

Hodges, A. (2012b, 13 April). Beyond Turing’s machines. Science 336, 163–164.

Hodges, A. (2013). Church’s review of computable numbers. In S. B. Cooper and J. van Leeuwen (Eds.),
Alan Turing: His Work and Impact, pp. 117–118. Amsterdam: Elsevier.

Hodges, W. (2018). Tarski’s truth definitions. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy
(Fall 2018 ed.). Metaphysics Research Lab, Stanford University.

Hoffman, D. D. (2009). The interface theory of perception: Natural selection drives true perception to
swift extinction. In S. Dickinson, M. Tarr, A. Leonardis, and B. Schiele (Eds.), Object Categorization:
Computer and Human Vision Perspectives, pp. 148–165. Cambridge, UK: Cambridge University Press.
http://cogsci.uci.edu/∼ddhoff/interface.pdf.

Hofstadter, D. R. (1979). Gödel, Escher, Bach: An Eternal Golden Braid. New York: Basic Books.

Hofstadter, D. R. (1981, May). Metamagical themas: A coffeehouse conversation on the Turing test to
determine if a machine can think. Scientific American, 15–36. https://cs.brynmawr.edu/∼dblank/csem/
coffeehouse.html. Reprinted as “The Turing Test: A Coffeehouse Conversation”, in Douglas R. Hofs-
tadter & Daniel C. Dennett (eds.), The Mind’s I: Fantasies and Reflections on Self and Soul (New York:
Basic Books, 1981): 69–95.

Hofstadter, D. R. (1983, 13 November). Mind, body and machine. New York Times Book Review. https:
//cse.buffalo.edu/∼rapaport/hofstadter1983-MindBodyMachine-nytbr.pdf.

Hofstadter, D. R. (2007). I Am a Strange Loop. New York: Basic Books.

Hofstadter, D. R. and D. C. Dennett (1981). Reflections [on Lem 1971]. In D. R. Hofstadter and D. C.
Dennett (Eds.), The Mind’s I: Fantasies and Reflections on Self and Soul, pp. 317–320. New York: Basic
Books. http://themindi.blogspot.com/2007/02/chapter-19-non-serviam.html.

886 BIBLIOGRAPHY

Hofstadter, D. R. and E. Sander (2013). Surfaces and Essences: Analogy as the Fuel and Fire of Thinking.
New York: Basic Books.

Hogarth, M. (1992, April). Does general relativity allow an observer to view an eternity in a finite
time? Foundations of Physics Letters 5(2), 173–181. http://research.cs.queensu.ca/∼akl/cisc879/papers/
SELECTED PAPERS FROM VARIOUS SOURCES/Hogarth.pdf.

Hollan, J., E. Hutchins, and D. Kirsh (2000, June). Distributed cognition: Toward a new foundation for
human-computer interaction research. ACM Transactions on Computer-Human Interaction 7(2), 174–
196. https://www.lri.fr/∼mbl/Stanford/CS477/papers/DistributedCognition-TOCHI.pdf.

Holst, P. A. (2000). Analog computer. In A. Ralston, E. D. Reilly, and D. Hemmendinger (Eds.), Encyclo-
pedia of Computer Science, 4th Edition, pp. 53–59. New York: Grove’s Dictionaries.

Holt, C. M. (1989, April). More on the very idea (letter to the editor). Communications of the ACM 32(4),
508–509.

Holt, J. (2001, 5 March). The Ada perplex. The New Yorker, 88–93.

Holt, J. (2009, 15 February). Death: Bad? New York Times Book Review, BR27. http://www.nytimes.com/
2009/02/15/books/review/Holt-t.html.

Holt, J. (2012, 7 June). How the computers exploded. New York Review of Books, 32–34.

Holt, J. (2016, 10 November). Something faster than light? What is it? New York Review of Books 63(17),
50–52.

Homer, S. and A. L. Selman (2011). Computability and Complexity Theory, 2nd Edition. New York:
Springer.

Hopcroft, J. E. and J. D. Ullman (1969). Formal Languages and Their Relation to Automata. Reading, MA:
Addison-Wesley.

Hopper, G. M. (1952). The education of a computer. In ACM ’52: Proceedings of the 1952 ACM National
Meeting (Pittsburgh), pp. 243–249. Pittsburgh: ACM.

Hopper, G. M. (1981, July). The first bug. Annals of the History of Computing 3(3), 285–286. http:
//ieeexplore.ieee.org/stamp/stamp.jsp?reload=true&tp=&arnumber=4640691.

Horgan, J. (1990, January). Profile: Claude E. Shannon; unicyclist, juggler and father of information theory.
Scientific American, 22, 22A–22B.

Horgan, J. (2018, 1 November 2018). Philosophy has made plenty of progress. Scientific American Cross-
Check. https://blogs.scientificamerican.com/cross-check/philosophy-has-made-plenty-of-progress/.

Horst, S. (2014, 14 December). The computational theory of mind: Alan Turing & the
Cartesian challenge. https://web.archive.org/web/20150114211656/http://www.thecritique.com/articles/
the-computational-theory-of-mind-alan-turing-the-cartesian-challenge/.

Horsten, L. (2015). Philosophy of mathematics. In E. N. Zalta (Ed.), Stanford Encyclopedia of Philosophy.
http://plato.stanford.edu/entries/philosophy-mathematics/#StrNom.

Horsten, L. and H. Roelants (1995). The Church-Turing thesis and effective mundane procedures. Minds and
Machines 5(1), 1–8. https://www.researchgate.net/publication/226286207 The Church-Turing thesis
and effective mundane procedures.

Howard, D. A. (2017). Einstein’s philosophy of science. In E. N. Zalta (Ed.), The Stanford Encyclopedia of
Philosophy (Fall 2017 ed.). Metaphysics Research Lab, Stanford University. https://plato.stanford.edu/
archives/fall2017/entries/einstein-philscience/.

Hoyle, M. A. (2006, 30 July). The history of computing science. http://lecture.eingang.org/.

BIBLIOGRAPHY 887

Hoyningen-Huene, P. (2015). A note on the concept of game (or rather Spiel). In G. Betz, D. Koppelberg,
Löwenstein, and A. Wehofsits (Eds.), Weiter denken: über Philosophie, Wissenschaft und Relgion, pp.
205–210. Berlin: de Gruyter. http://tinyurl.com/yd54qf3v.

Hsu, F. (2013, August). Is computing science? Communications of the ACM 56(8), 9.

Huber, H. G. (1966, September). Algorithm and formula. Communications of the ACM 9(9), 653–654.

Hudelson, R. (1980, April). Popper’s critique of Marx. Philosophical Studies 37(3), 259–270.

Hugo, V. (1862). Les Misérables. New York: Signet Classics, 1987. Trans. by Lee Fahnestock & Norman
MacAfee.

Humphreys, P. (1990). Computer simulations. PSA: Proceedings of the [1990] Biennial Meeting of the
Philosophy of Science Association 2, 497–506.

Humphreys, P. (2002, September). Computational models. Philosophy of Science 69, S1–S11. http://ist.uap.
asia/∼jpira/compthink/17232634.pdf.

Husbands, P., M. Wheeler, and H. Owen (2008). Introduction: The mechanical mind. In P. Husbands,
M. Wheeler, and H. Owen (Eds.), The Mechanical Mind in History, pp. 1–17. Cambridge, MA: MIT
Press.

Hutchins, E. (1995a). Cognition in the Wild. Cambridge, MA: MIT Press.

Hutchins, E. (1995b). How a cockpit remembers its speeds. Cognitive Science 19, 265–288.

Huxley, A. (1932). Brave New World. Huxley.net. http://www.huxley.net/bnw/.

Hyman, A. (1982). Charles Babbage: Pioneer of the Computer. Princeton, NJ: Princeton University Press.
Reviewed in O’Hanlon 1982.

Hyman, P. (2012, July). Lost and found. Communications of the ACM 55(7), 21.

Irmak, N. (2012). Software is an abstract artifact. Grazer Philosophische Studien 86, 55–72. http:
//philpapers.org/archive/IRMSIA.pdf.

Israel, D. (2002, May). Reflections on Gödel’s and Gandy’s reflections on Turing’s thesis. Minds and
Machines 12(2), 181–201.

Nature Editors (2016, 28 January). Digital intuition. Nature 529, 437. http://www.nature.com/news/
digital-intuition-1.19230.

Jackendoff, R. (2012). A User’s Guide to Thought and Meaning. Oxford: Oxford University Press.

Jackendoff, R. and J. Audring (2018). Morphology and memory: Toward an integrated theory. Topics in
Cognitive Science. https://onlinelibrary.wiley.com/doi/epdf/10.1111/tops.12334.

Jackendoff, R. and S. Pinker (2005). The nature of the language faculty and its implications for evolution
of language. Cognition 97, 211–225. http://pinker.wjh.harvard.edu/articles/papers/2005 09 Jackendoff
Pinker.pdf.

Jackman, H. (2017). Meaning holism. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Spring
2017 ed.). Metaphysics Research Lab, Stanford University.

Jackson, A. S. (1960). Analog Computation. New York: McGraw-Hill.

Jackson, M. (2003). Why software writing is difficult and will remain so. Information Processing Letters 88,
13–25. http://users.mct.open.ac.uk/mj665/turski07.pdf.

Jacob, P. (2019). Intentionality. In E. N. Zalta (Ed.), Stanford Encyclopedia of Philosophy. Mataphysics
Research Lab, Stanford University. https://plato.stanford.edu/archives/spr2019/entries/intentionality/.

888 BIBLIOGRAPHY

James, W. (1892). Psychology: Briefer course. In G. E. Myers (Ed.), William James: Writings 1878–
1899, pp. 1–443. New York: Library of America. Original edition at https://archive.org/details/
psychologybriefe00willuoft.

James, W. (1897). The will to believe. In G. E. Myers (Ed.), William James: Writings 1878–1899, pp.
457–479. New York: Library of America. http://www.gutenberg.org/files/26659/26659-h/26659-h.htm.

Jenny, M. (2018). Counterpossibles in science: The case of relative computability. Noûs 52(3), 530–560.

Johnson, D. G. (2001a). Computer Ethics. Upper Saddle River, NJ: Prentice Hall.

Johnson, D. G. and J. W. Snapper (Eds.) (1985). Ethical Issues in the Use of Computers. Wadsworth.

Johnson, D. G. and M. Verdicchio (2017, Winter). Reframing AI discourse. Minds and Machines 27(4),
575–590. https://www.researchgate.net/profile/Dennis Mazur/project/Consent-and-Informed-Consent/
attachment/5a1c9e7f4cde267c3e6f2148/AS:565449286000640@1511825023010/download/
Reframing+AI+Discourse-1111.pdf?context=ProjectUpdatesLog.

Johnson, G. (2001b, 25 March). All science is computer science. New York Times. http://www.nytimes.com/
2001/03/25/weekinreview/the-world-in-silica-fertilization-all-science-is-computer-science.html.

Johnson, G. (2001c, 27 February). Claude Shannon, mathematician, dies at 84. New York Times, B7.
http://www.nytimes.com/2001/02/27/nyregion/27SHAN.html.

Johnson, G. (2002a, 14 July). To err is human. New York times. http://www.nytimes.com/2002/07/14/
weekinreview/deus-ex-machina-to-err-is-human.html.

Johnson, K. (2004, October). Gold’s theorem and cognitive science. Philosophy of Science 71, 571–592.
http://www.lps.uci.edu/∼johnsonk/Publications/Johnson.GoldsTheorem.pdf.

Johnson, M. (2002b). Review of Davis 2012. MAA Reviews. http://mathdl.maa.org/mathDL/19/?pa=
reviews&sa=viewBook&bookId=68938.

Johnson-Laird, P. N. (1981). Mental models in cognitive science. In D. A. Norman (Ed.), Perspectives on
Cognitive Science, Chapter 7, pp. 147–191. Norwood, NJ: Ablex.

Johnson-Laird, P. N. (1988). The Computer and the Mind: An Introduction to Cognitive Science. Cambridge,
MA: Harvard University Press. Ch. 3 (“Computability and Mental Processes”), pp. 37–53.

Johnstone, A. (2014, 28 November). Babbage’s language of thought. Plan 28 Blog. http://blog.plan28.org/
2014/11/babbages-language-of-thought.html.

Joyce, D. (2005). The Dedekind/Peano axioms. http://aleph0.clarku.edu/∼djoyce/numbers/peano.pdf.

Jurafsky, D. and J. H. Martin (2000). Speech and Language Processing: An Introduction to Natural Lan-
guage Processing, Computational Linguistics, and Speech Recognition. Upper Saddle River, NJ: Prentice
Hall.

Kaag, J. and S. K. Bhatia (2014, 28 November). Fools for tools: Why engineers need to become philosophers.
The Chronicle [of Higher Education] Review 61(13), B13–B15. https://www.nspe.org/sites/default/files/
resources/pdfs/DesignsforLiving-TheChronicleofHigherEducation.pdf.

Kahn, A. (2014, 3 November). Rover disguised as penguin chick does research better than
scientists. Los Angeles Times Science Now. http://www.latimes.com/science/sciencenow/
la-sci-sn-penguin-robot-chick-study-20141103-story.html.

Kahneman, D. (2011). Thinking, Fast and Slow. New York: Farrar, Strauss and Giroux.

Kaiser, D. (2012, 10 February). Paradoxical roots of “social construction”. Science 335, 658–659.

Kalmár, L. (1959). An argument against the plausibility of Church’s thesis. In A. Heiting (Ed.), Construc-
tivity in Mathematics, pp. 72–80. Amsterdam: North-Holland.

BIBLIOGRAPHY 889

Kanat-Alexander, M. (2008, 10 October). What is a computer? Code Simplicity. http://www.codesimplicity.
com/post/what-is-a-computer/.

Kant, I. (1781). Critique of Pure Reason. New York: St. Martin’s Press, 1929. Trans. by Norman Kemp
Smith.

Kant, I. (1783). Prolegomena to Any Future Metaphysics. New York: Cambridge University Press, 2004.
Trans. by Gary Hatfield, http://strangebeautiful.com/other-texts/kant-prolegomena-cambridge.pdf.

Kasparov, G. (2018, 7 December). Chess, a Drosophila of reasoning. Science 362(6419), 1087. http:
//science.sciencemag.org/content/362/6419/1087.

Katz, J. J. (1978). Effability and translation. In F. Guenthner and M. Guenthner-Reutter (Eds.), Meaning and
Translation: Philosophical and Linguistic Approaches, pp. 191–234. London: Duckworth.

Kay, K. (2001). Machines and the mind. The Harvard Brain, Vol. 8 (Spring), http://www.hcs.harvard.edu/
∼hsmbb/BRAIN/vol8-spring2001/ai.htm.

Kay, M. (2010). Introduction. In D. Flickinger and S. Oepen (Eds.), Collected Papers of Martin Kay:
A Half Century of Computational Linguistics, pp. 1–18. Stanford, CA: CSLI Studies in Computational
Linguistics.

Kaznatcheev, A. (2014, 1 September). Falsifiability and Gandy’s variant of the Church-Turing thesis. https:
//egtheory.wordpress.com/2014/09/01/falsifiability-and-gandys-variant-of-the-church-turing-thesis/.

Kearns, J. (1997). Thinking machines: Some fundamental confusions. Minds and Machines 7(2), 269–287.

Keats, J. (2009, September). The mechanical loom. Scientific American, 88. In “The Start of Everything”,
http://www.readcube.com/articles/10.1038/scientificamerican0909-88.

Keith, T. (2014, 5 July). The letter that kicked off a radio career. NPR.org, http://www.npr.org/2014/07/05/
328512614/the-letter-that-kicked-off-a-radio-career.

Kemeny, J. G. (1959). A Philosopher Looks at Science. Princeton, NJ: D. van Nostrand.

Kennedy, H. C. (1968, November). Giuseppe Peano at the University of Turin. Mathematics Teacher,
703–706. Reprinted in Kennedy, Hubert C. (2002), Twelve Articles on Giuseppe Peano (San Francisco:
Peremptory Publications): 14–19, http://hubertkennedy.angelfire.com/TwelveArticles.pdf.

Kennedy, Jr., T. (1946, 15 February). Electronic computer flashes answers, may speed engineering. New
York Times, 1, 16. https://timesmachine.nytimes.com/timesmachine/1946/02/15/93052340.pdf.

Kernan, M. (1990, May). The object at hand. Smithsonian 21, 22, 24, 26.

Kfoury, A., R. N. Moll, and M. A. Arbib (1982). A Programming Approach to Computability. New York:
Springer-Verlag.

Khalil, H. and L. S. Levy (1978, June). The academic image of computer science. ACM SIGCSE Bul-
letin 10(2), 31–33.

Kidder, T. (1985, 29 December). Less (and more) than meets the eye. New York Times Book Review, 6–
7. http://www.nytimes.com/1985/12/29/books/less-and-more-than-meets-the-eye.html. Review of Stein
1985.

Kim, E. E. and B. A. Toole (1999, May). Ada and the first computer. Scientific American, 76–81. http:
//people.cs.kuleuven.be/∼danny.deschreye/AdaTheFirst.pdf.

King, J. C. (2016). Structured propositions. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy
(Winter 2016 ed.). Metaphysics Research Lab, Stanford University. https://plato.stanford.edu/archives/
win2016/entries/propositions-structured/.

890 BIBLIOGRAPHY

Kirk, R. (1974, January). Sentience and behaviour. Mind 83(329), 43–60.

Kitcher, P. (2019, 7 November). What makes science trustworthy? Boston Review. http://bostonreview.net/
science-nature-philosophy-religion/philip-kitcher-what-makes-science-trustworthy.

Kleene, S. C. (1935-1936a). General recursive functions of natural numbers. Mathematische Annalen 112,
727–742.

Kleene, S. C. (1936b). λ-definability and recursiveness. Duke Mathematical Journal 2, 340–353.

Kleene, S. C. (1952). Introduction to Metamathematics. Princeton, NJ: D. Van Nostrand.

Kleene, S. C. (1967). Mathematical Logic. New York: Wiley.

Kleene, S. C. (1981, January). Origins of recursive function theory. Annals of the History of Computing 3(1),
52–67.

Kleene, S. C. (1987, October). Reflections on Church’s thesis. Notre Dame Journal of Formal Logic 28(4),
490–498. http://projecteuclid.org/download/pdf 1/euclid.ndjfl/1093637645.

Kleene, S. C. (1995). Turing’s analysis of computability, and major applications of it. In R. Herken (Ed.), The
Universal Turing Machine: A Half-Century Survey, Second Edition, pp. 15–49. Vienna: Springer-Verlag.
https://fi.ort.edu.uy/innovaportal/file/20124/1/41-herken ed. 95 - the universal turing machine.pdf.

Klemens, B. (2006). Math You Can’t Use: Patents, Copyright, and Software. Brookings Institution Press.
Excerpted in Klemens, Ben (2006), “Private Numbers”, Chronicle [of Higher Education] Review 52(22)
(3 February): B2.

Kling, R., P. Wegner, J. R. Rice, and E. A. Weiss (1993, February). Broadening computer science. Commu-
nications of the ACM 36(2), 15–19.

Knight, W. (2017, 11 April). The dark secret at the heart of AI. MIT Technology Review. https://www.
technologyreview.com/s/604087/the-dark-secret-at-the-heart-of-ai/.

Knobe, J. (2008/2009, December/January). Can a robot, an insect, or God be aware? Scientific American
Mind 19(6), 68–71.

Knobe, J. (2015, 15 June). Do corporations have minds? New York Times Opinionator. http://opinionator.
blogs.nytimes.com/2015/06/15/do-corporations-have-minds/.

Knuth, D. E. (1966, September). Algorithm and program: Information and data. Communications of the
ACM 9(9), 654.

Knuth, D. E. (1972a, July). Ancient Babylonian algorithms. Communications of the ACM 15(7), 671–677.

Knuth, D. E. (1972b, August). George Forsythe and the development of computer science. Communications
of the ACM 15(8), 721–727.

Knuth, D. E. (1973). The Art of Computer Programming, Second Edition. Reading, MA: Addison-Wesley.

Knuth, D. E. (1974a, December). Computer programming as an art. Communications of the ACM 17(12),
667–673.

Knuth, D. E. (1974b, April). Computer science and its relation to mathematics. American Mathematical
Monthly 81(4), 323–343.

Knuth, D. E. (1984). Literate programming. The Computer Journal 27(2), 97–111. http://
comjnl.oxfordjournals.org/content/27/2/97.full.pdf+html. Reprinted in Knuth 1992. Also at http://www.
literateprogramming.com/knuthweb.pdf.

Knuth, D. E. (1985, March). Algorithmic thinking and mathematical thinking. American Mathematical
Monthly 92(3), 170–181.

BIBLIOGRAPHY 891

Knuth, D. E. (1992). Literate Programming. Stanford, CA: Center for the Study of Language and Informa-
tion, CSLI Lecture Notes 27. https://www-cs-faculty.stanford.edu/∼knuth/lp.html.

Knuth, D. E. (2001). Things a Computer Scientist Rarely Talks About. Stanford, CA: CSLI Publications.
CSLI Lecture Notes Number 136.

Knuth, D. E. (2014, 20 May). Twenty questions for Donald Knuth. http://www.informit.com/articles/article.
aspx?p=2213858&WT.mc id=Author Knuth 20Questions.

Koellner, P. (2018, July). On the question of whether the mind can be mechanized, I: From Gödel to Penrose.
Journal of Philosophy 115(7), 337–360.

Koen, B. V. (1988). Toward a definition of the engineering method. European Journal of Engineering
Education 13(3), 307–315. Reprinted from Engineering Education (December 1984): 150–155, http:
//dx.doi.org/10.1080/03043798808939429.

Koen, B. V. (2009, July). The engineering method and its implications for scientific, philosophical, and
universal methods. The Monist 92(3), 357–386.

Kolata, G. (2004, 21 March). New studies question value of opening arteries. New York Times, A1, A21.
http://www.nytimes.com/2004/03/21/us/new-heart-studies-question-the-value-of-opening-arteries.html.

Korf, R. E. (1992). Heuristics. In S. C. Shapiro (Ed.), Encycolpedia of Artificial Intelligence, 2nd edition,
pp. 611–615. New York: John Wiley & Sons.

Korfhage, R. R. (1993). Algorithm. In A. Ralston and E. D. Reilly (Eds.), Encyclopedia of Computer
Science, 3rd Edition, pp. 27–29. New York: Van Nostrand Reinhold.

Kornblith, H. (2013, November). Naturalism vs. the first-person perspective. Proceedings & Addresses of the
American Philosophical Association 87, 122–141. http://www.apaonline.org/global engine/download.
asp?fileid=A2DBB747-4555-43B3-9514-28CBB4F6EEB6.

Korsmeyer, C. (2012, October). Touch and the experience of the genuine. British Journal of Aesthetics 52(4),
365–377.

Kosslyn, S. M. (2005). Mental images and the brain. Cognitive Neuropsychology 22(3/4), 333–347. http:
//neurosci.info/courses/systems/FMRI/kosslyn05.pdf.

Kramer, J. (2007, April). Is abstracton the key to computing? Communications of the ACM 50(4), 36–42.
http://www.ics.uci.edu/∼andre/informatics223s2007/kramer.pdf.

Krantz, S. G. (1984, November). Letter to the editor. American Mathematical Monthly 91(9), 598–600.

Krauss, L. M. (2016, 29 September). Gravity’s black rainbow. New York Review of Books 63(14), 83–85.
http://www.nybooks.com/articles/2016/09/29/gravitys-black-rainbow/.

Krebs, A. and R. M. Thomas, Jr. (1981, 7 August). Historic moth. New York Times. http://www.nytimes.
com/1981/08/07/nyregion/notes-on-people-historic-moth.html.

Kreisel, G. (1987). Church’s thesis and the ideal of informal rigour. Notre Dame Journal of Formal
Logic 28(4), 499–519.

Kripke, S. A. (2011). Vacuous names and fictional entities. In S. A. Kripke (Ed.), Philosophical Troubles:
Collected Papers, Volume 1, pp. 52–74. New York: Oxford University Press. https://www.phil.pku.edu.
cn/documents/20120822193331 Vacuous Names and Fictional Entities.pdf.

Kripke, S. A. (2013). The Church-Turing “thesis” as a special corollary of Gödel’s completeness theorem.
In B. J. Copeland, C. J. Posy, and O. Shagrir (Eds.), Computability: Turing, Gödel, Church, and Beyond,
pp. 77–104. Cambridge, MA: MIT Press.

892 BIBLIOGRAPHY

Kuang, C. (2017, 26 November). Can A.I. be taught to explain itself? New York Times Magazine, MM46ff.
https://nyti.ms/2hR2weQ.

Kuczynski, J.-M. (2015, 31 December). Is the human brain a computer? Alan Tur-
ing on mind & computers. The Critique. http://www.thecritique.com/articles/
is-the-human-brain-a-computer-alan-turing-on-mind-computers/.

Kugel, P. (1986a, March). Thinking may be more than computing. Cognition 22(2), 137–198. http://cs.bc.
edu/∼kugel/Publications/Cognition.pdf.

Kugel, P. (1986b, June). When is a computer not a computer? Cognition 23(1), 89–94. http://cs.bc.edu/
∼kugel/Publications/When.pdf.

Kugel, P. (2002, November). Computing machines can’t be intelligent (. . . and Turing said so). Minds and
Machines 12(4), 563–579. http://cs.bc.edu/∼kugel/Publications/Hyper.pdf.

Kugel, P. (2004). Toward a theory of intelligence. Theoretical Computer Science 317, 13–30. http://cs.bc.
edu/∼kugel/Publications/Toward%20a%20theory%20of%20intelligence.pdf.

Kugel, P. (2005, November). It’s time to think outside the computational box. Communications of the
ACM 48(11), 33–37. http://cs.bc.edu/∼kugel/Publications/BoxTextandPictures.pdf.

Kuhn, T. S. (1957). The Copernican Revolution: Planetary Astronomy in the Development of Western
Thought. Cambridge, MA: Harvard University Press.

Kuhn, T. S. (1962). The Structure of Scientific Revolutions. Chicago: University of Chicago Press.

Kukla, A. (1989). Is AI an empirical science? Analysis 49, 56–60.

Kumar, D. (1994). From beliefs and goals to intentions and actions: An amalgamated model of inference and
acting. Unpublished PhD dissertation, Department of Computer Science, SUNY Buffalo, http://www.cse.
buffalo.edu/tech-reports/94-04.ps.

Kumar, D. (1996, January). The SNePS BDI architecture. Decision Support Systems 16(1), 3–19. http:
//www.cse.buffalo.edu/sneps/Bibliography/kum96.pdf.

Kyburg, Jr., H. E. (1968). Philosophy of Science: A Formal Approach. New York: Macmillan.

LaChat, M. R. (1986). Artificial Intelligence and ethics: An exercise in the moral imagination. AI Maga-
zine 7(2), 70–79. https://www.aaai.org/ojs/index.php/aimagazine/article/view/540/476.

LaChat, M. R. (2003). Moral stages in the evolution of the artificial superego: A cost-benefits trajectory. In
I. Smit, W. Wallach, and G. E. Lasker (Eds.), Cognitive, Emotive and Ethical Aspects of Decision Making
in Humans and in Artificial Intelligence, Vol. II, pp. 18–24. Windsor, ON, Canada: International Institute
for Advanced Studies in Systems Research and Cybernetics.

LaChat, M. R. (2004). “Playing God” and the construction of artificial persons. In I. Smit, W. Wallach, and
G. E. Lasker (Eds.), 16th International Conference on Systems Research, Informatics and Cybernetics,
pp. 39–44. Windsor, ON, Canada: International Institute for Advanced Studies in Systems Research and
Cybernetics.

Ladyman, J. (2009, 17 February). What does it mean to say that a physical system implements a computa-
tion? Theoretical Computer Science 410(4–5), 376–383. https://www.sciencedirect.com/science/article/
pii/S0304397508007238.

Ladyman, J. (2019). Structural realism. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Fall
2019 ed.). Metaphysics Research Lab, Stanford University.

Lakoff, G. (1987). Women, Fire, and Dangerous Things: What Categories Reveal about the Mind. Chicago:
University of Chicago Press.

BIBLIOGRAPHY 893

Lakoff, G. and M. Johnson (1980a). Conceptual metaphor in everyday language. Journal of Philoso-
phy 77(8), 453–486.

Lakoff, G. and M. Johnson (1980b). Metaphors We Live By. Chicago: University of Chicago Press.

Lammens, J. (1990). Universal program. http://www.cse.buffalo.edu/∼rapaport/lammens.lisp.

Lamport, L. (2011). Euclid writes an algorithm: A fairytale. International Journal of Software and Infor-
matics 5(1-2, Part 1), 7–20. Page references to PDF version at http://research.microsoft.com/en-us/um/
people/lamport/pubs/euclid.pdf.

Lamport, L. (2012, March). How to write a 21st century proof. Journal of Fixed Point Theory and Applica-
tions 11(1), 43–63. http://research.microsoft.com/en-us/um/people/lamport/pubs/proof.pdf.

Lamport, L. (2015, April). Who builds a house without drawing blueprints? Com-
munications of the ACM 58(4), 38–41. http://cacm.acm.org/magazines/2015/4/
184705-who-builds-a-house-without-drawing-blueprints/fulltext.

Landgrebe, J. and B. Smith (2019a). Making AI meaningful again. Synthese. https://doi.org/10.1007/
s11229-019-02192-y.

Landgrebe, J. and B. Smith (2019b, 14 June). There is no general AI: Why Turing machines cannot pass the
Turing test. https://arxiv.org/pdf/1906.05833.pdf.

Langacker, R. (1999). Foundations of Cognitive Grammar. Stanford, CA: Stanford University Press.

Langewiesche, W. (2009). Fly by Wire: The Geese, the Glide, the Miracle on the Hudson. New York: Farrar,
Strauss & Giroux.

Langton, C. G. (Ed.) (1989). Artificial Life: The Proceedings of an Interdisciplinary Workshop on the
Synthesis and Simulation of Living Systems (September 1987, Los Alamos). Reading, MA: Addison-
Wesley.

Langton, C. G. (Ed.) (1994). Artificial Life III: Proceedings of the Workshop on Artificial Life (June 1992,
Santa Fe). Reading, MA: Addison-Wesley.

Langton, C. G., C. Taylor, J. D. Farmer, and S. Rasmussen (Eds.) (1992). Artificial Life II: Proceedings of
the Workshop on Artificial Life (February 1990, Santa Fe). Reading, MA: Addison-Wesley.

Langton, R. and D. Lewis (1998, 1998). Defining ‘intrinsic’. Philosophy and Phenomenological Re-
search 58(2), 333–345. http://web.mit.edu/langton/www/pubs/DefiningIntrinsic.pdf.

Lanier, J. (2005, July-August). Early computing’s long, strange trip. American Scientist 93(4), 364–365.

Lawson, R. (2004). Division of labour. https://web.archive.org/web/20041024154815/http://
divisionoflabour.com/archives/000006.php.

Lazowska, E. (2014, 16 May). Letter to the editor. New York Times, A26. http://www.nytimes.com/2014/
05/16/opinion/should-young-children-learn-coding.html.

Leavitt, D. (2005). The Man Who Knew Too Much: Alan Turing and the Invention of the Computer.
W.W. Norton.

LeCun, Y., Y. Bengio, and G. Hinton (2015, 28 May). Deep learning. Nature 521, 436–444.

Ledgard, H. and M. Y. Vardi (2011, September). Solved, for all practical purposes. Communications of
the ACM 54(9), 7. https://cacm.acm.org/magazines/2011/9/122792-solved-for-all-practical-purposes/
fulltext.

Lee, J. (1994a). Charles Babbage. The History of Computing. http://ei.cs.vt.edu/∼history/Babbage.html.

894 BIBLIOGRAPHY

Lee, J. (1994b). Konrad Zuse. The History of Computing. http://ei.cs.vt.edu/∼history/Zuse.html.

Lee, J. (2002). The history of computing. http://ei.cs.vt.edu/∼history/.

Lehoux, D. and J. Foster (2012, 16 November). A revolution of its own. Science 338, 885–886.

Leiber, J. (2006). Turing’s golden: How well Turing’s work stands today. Philosophical Psychology 19(1),
13–46.

Leibniz, G. W. (1677). Towards a universal characteristic. In P. P. Wiener (Ed.), Leibniz: Selections, pp.
17–25. New York: Charles Scribner’s Sons, 1951. http://www.rbjones.com/rbjpub/philos/classics/leibniz/
meth math.htm.

Leibniz, G. W. (1683–1685). Introduction to a secret encyclopedia. In M. Dascal (Ed.), G.W. Leibniz:
The Art of Controversies, pp. 219–224. Dordrecht, The Netherlands: Springer (2008). http://tinyurl.com/
Leibniz1683.

Leibniz, G. W. (1714). The Principles of Philosophy Known as Monadology. Trans. by Jonathan Bennett
(July 2007). Accessed from Some Texts from Early Modern Philosophy, http://www.earlymoderntexts.
com/assets/pdfs/leibniz1714b.pdf.

Leiter, B. (2004, 8 October). Is economics a “science”? Leiter Reports: A Philosophy Blog. http://
leiterreports.typepad.com/blog/2004/10/is economics a .html.

Leiter, B. (2005, 12 October). Why is there a Nobel prize in economics? Leiter Reports: A Philosophy Blog.
http://leiterreports.typepad.com/blog/2005/10/why is there a .html.

Leiter, B. (2009, 20 September). Alex Rosenberg on Cochrane and economics. Leiter Reports: A Philosophy
Blog. http://leiterreports.typepad.com/blog/2009/09/alex-rosenberg-on-cochrane-and-economics.html.

Leler, W. (3 December 1985). net.ai newsgroup message; contribution to discussion of “definition of AI”.
https://www.cse.buffalo.edu//∼rapaport/definitions.of.ai.html.

Lem, S. (1971). Non serviam. In A Perfect Vacuum. New York: Harcourt Brace Jovanovich. 1979.

Lemonick, M. (2015, 6 March). The Pluto wars revisited. The New Yorker online, http://www.newyorker.
com/tech/elements/nasa-dawn-ceres-pluto-dwarf-planets.

Lepore, J. (2018). These Truths: A History of the United States. New York: W.W. Norton.

Leroy, X. (2009, July). Formal verification of a realistic compiler. Communications of the ACM 52(7),
107–115. http://gallium.inria.fr/∼xleroy/publi/compcert-CACM.pdf.

Lessing, G. E. (1778). Anti-Goetze: Eine Duplik. In H. Göpfert (Ed.), Werke, pp. Vol. 8, pp. 32–33.
http://harpers.org/blog/2007/11/lessings-search-for-truth/.

Levesque, H. J. (2009). Is it enough to get the behaviour right? In IJCAI’09: Proceedings of the 21st Inter-
national Joint Conference on Artifical Intelligence, pp. 1439–1444. San Francisco: Morgan Kaufmann.
https://www.ijcai.org/Proceedings/09/Papers/241.pdf.

Levesque, H. J. (2017). Common Sense, the Turing Test, and the Quest for Real AI. Cambridge, MA: MIT
Press.

Levin, J. (2018). Functionalism. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Fall 2018
ed.). Metaphysics Research Lab, Stanford University. https://plato.stanford.edu/archives/fall2018/entries/
functionalism/.

Levy, S. (1984, November). A spreadsheet way of knowledge. Harper’s Magazine. Reprinted in Wired
(24 October 2014), https://www.wired.com/2014/10/a-spreadsheet-way-of-knowledge/.

BIBLIOGRAPHY 895

Levy, S. (2013, November). 101 objects that made America: The brief history of the
ENIAC computer. Smithsonian, 62–64. http://www.smithsonianmag.com/history-archaeology/
The-Brief-History-of-the-ENIAC-Computer-228879421.html.

Lewis, D. (1970, December). General semantics. Synthese 22(1/2), 18–67.

Lewis, D. (1983, September). Extrinsic properties. Philosophical Studies 44(2), 197–200.

Lewis, W. (1953, October). Electronic computers and telephone switching. Proceedings of the Institute of
Radio Engineers 41(10), 1242–1244.

Lewis-Kraus, G. (2016, 14 December). The great A.I. awakening. New York Times Magazine. http://www.
nytimes.com/2016/12/14/magazine/the-great-ai-awakening.html.

Lewontin, R. (2014, 8 May). The new synthetic biology: Who gains? New York Review of Books 61(8),
22–23. http://www.nybooks.com/articles/archives/2014/may/08/new-synthetic-biology-who-gains/.

Liao, M.-H. (1998). Chinese to English machine translation using SNePS as an interlingua. Unpublished PhD
dissertation, Department of Linguistics, SUNY Buffalo, http://www.cse.buffalo.edu/sneps/Bibliography/
tr97-16.pdf.

Libbey, P. and K. A. Appiah (2019, 11 April). Socrates questions, a contemporary philosopher answers. New
York Times. https://www.nytimes.com/2019/04/11/theater/socrates-democracy-public-theater.html.

Licklider, J. and R. W. Taylor (1968, April). The computer as a communication device. Science and Tech-
nology. http://memex.org/licklider.pdf.

Lindell, S. (2001). Computer science as a liberal art: The convergence of technology and reason.
Talk presented at Haverford College, 24 January, http://www.haverford.edu/cmsc/slindell/Presentations/
Computer%20Science%20as%20a%20Liberal%20Art.pdf.

Lindell, S. (2004). Revisiting finite-visit computations. http://www.haverford.edu/cmsc/slindell/
Presentations/Revisiting%20finite-visit%20computations.pdf.

Lindell, S. (2006). A physical analysis of mechanical computability. http://www.haverford.edu/cmsc/
slindell/Presentations/A%20physical%20analysis%20of%20mechanical%20computability.pdf.

Linker, D. (2014, 6 May). Why Neil deGrasse Tyson is a Philistine. The Week. http://theweek.com/article/
index/261042/why-neil-degrasse-tyson-is-a-philistine.

Linker, D. (2015, 1 July). No, your brain isn’t a computer. The Week. http://theweek.com/articles/563975/
no-brain-isnt-computer.

Linnebo, Ø. (2018). Platonism in the philosophy of mathematics. In E. N. Zalta (Ed.), The Stan-
ford Encyclopedia of Philosophy (Spring 2018 ed.). Metaphysics Research Lab, Stanford University.
https://plato.stanford.edu/archives/spr2018/entries/platonism-mathematics/.

Linnebo, Ø. and R. Pettigrew (2011). Category theory as an autonomous foundation. Philosophia Mathe-
matica 19(3), 227–254.

Lipton, P. (2004). Inference to the Best Explanation, 2nd Edition. Routledge.

Lipton, R. J. (2019, 21 October). A polemical overreach? Gödel’s Lost Letter and P=NP. https://rjlipton.
wordpress.com/2019/10/21/a-polemical-overreach/.

Lipton, Z. C. (2016). The mythos of model interpretability. In 2016 ICML Workshop on Human Inter-
pretability in Machine Learning (WHI 2016). https://arxiv.org/abs/1606.03490.

Liskov, B. and S. Zilles (1974, April). Programming with abstract data types. ACM SIGPLAN Notices 9(4),
50–59. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.136.3043&rep=rep1&type=pdf.

896 BIBLIOGRAPHY

Livnat, A. and C. Papadimitriou (2016, November). Sex as an algorithm: The theory of evolution under the
lens of computation. Communications of the ACM 59(11), 84–93. http://cacm.acm.org/magazines/2016/
11/209128-sex-as-an-algorithm/fulltext.

Lloyd, S. (1990, September/October). The calculus of intricacy: Can the complexity of a forest be compared
with that of Finnegans Wake? The Sciences 38(44), 38–44.

Lloyd, S. (2000, 31 August). Ultimate physical limits to computation. Nature 406, 1047–1054. http://
arxiv.org/pdf/quant-ph/9908043.pdf?origin=publicationDetail and http://cds.cern.ch/record/396654/files/
9908043.pdf.

Lloyd, S. (2002, June). Computational capacity of the universe. Physical Review Letters 88(23), 237901–
1 – 237901–4. http://fab.cba.mit.edu/classes/862.16/notes/computation/Lloyd-2002.pdf.

Lloyd, S. (2006). Programming the Universe: A Quantum Computer Scientist Takes on the Cosmos. New
York: Alfred A. Knopf.

Lloyd, S. and Y. J. Ng (2004, November). Black hole computers. Scientific American 291(5), 52–61.

Locke, J. (1694). An Essay concerning Human Understanding. Oxford: Oxford University Press, 1975.
Edited by Peter H. Nidditch.

Lodder, J. (2014, 18 July). Introducing logic via Turing machines. http://www.math.nmsu.edu/hist projects/
j13.html.

Loebner, H. G. (1994). In response [to Shieber 1994a]. Communications of the ACM 37(6), 79–82. https:
//web.archive.org/web/20040206132330/http://www.loebner.net/Prizef/In-response.html.

Lohr, S. (1996, 19 February). The face of computing 50 years and 18,000 tubes ago. New York Times, D3.
http://www.nytimes.com/1996/02/19/business/the-face-of-computing-50-years-and-18000-tubes-ago.
html.

Lohr, S. (2001, 17 December). Frances E. Holberton, 84, early computer programmer. New York Times,
F5. http://www.nytimes.com/2001/12/17/business/frances-e-holberton-84-early-computer-programmer.
html.

Lohr, S. (2002, 6 August). Scientist at work: Frances Allen; would-be math teacher ended up ed-
ucating a computer revolution. New York Times, F3. http://www.nytimes.com/2002/08/06/science/
scientist-work-frances-allen-would-be-math-teacher-ended-up-educating-computer.html.

Lohr, S. (2006, 2 November). Group of university researchers to make Web science a field of study. New
York Times, C6. http://www.nytimes.com/2006/11/02/technology/02compute.html.

Lohr, S. (2008, 1 April). Does computing add up in the classroom? New York Times Bits (blog). http:
//bits.blogs.nytimes.com/2008/04/01/does-computing-add-up-in-the-classroom/.

Lohr, S. (2010, 3 April). Inventor whose pioneer PC helped inspire Microsoft dies. New York Times, A1–A3.
http://www.nytimes.com/2010/04/03/business/03roberts.html.

Lohr, S. (2013, 10 March). Algorithms get a human hand in steering Web. New York Times. http://www.
nytimes.com/2013/03/11/technology/computer-algorithms-rely-increasingly-on-human-helpers.html.

Lohr, S. (2017, 4 June). Jean Sammet, co-designer of a pioneering computer lan-
guage, dies at 89. New York Times. https://www.nytimes.com/2017/06/04/technology/
obituary-jean-sammet-software-designer-cobol.html.

Longo, G. (Ed.) (1999). Philosophy of Computer Science. Special issue of The Monist 82(1).

Loui, M. C. (1987, December). Computer science is an engineering discipline. Engineering Education 78(3),
175–178.

BIBLIOGRAPHY 897

Loui, M. C. (1995, March). Computer science is a new engineering discipline. ACM Computing Sur-
veys 27(1), 31–32.

Loui, M. C. (1996, March). Computational complexity theory. ACM Computing Surveys 28(1), 47–49.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.15.9179&rep=rep1&type=pdf.

Lu, J. J. and G. H. Fletcher (2009, March). Thinking about computational thinking. SIGCSE Bulletin 41(1),
260–264. https://ai2-s2-pdfs.s3.amazonaws.com/66b0/fb58a6091d3fec8c63046acd0eecff587c9f.pdf.

Lu, T. K. and O. Purcell (2016, April). Machine life. Scientific American 314(4), 58–63.

Ludlow, P. (2019). The social furniture of virtual worlds. Disputatio. https://doi.org/10.2478/
disp-2019-0009.

Lycan, W. G. (1990). The continuity of levels of nature. In W. G. Lycan (Ed.), Mind and Cognition: A
Reader, pp. 77–96. Cambridge, MA: Basil Blackwell. Excerpted from Chs. 4–5 of William G. Lycan,
Consciousness (Cambridge, MA: MIT Press, 1987).

Macari, M. (2012, 13 April). Oracle thinks you can copyright a programming lan-
guage, Google disagrees. The Verge. http://www.theverge.com/2012/4/13/2944440/
google-oracle-lawsuit-programming-language-copyright.

MacFarlane, A. (2013). Ada Lovelace (1815–1852). Philosophy Now 96. http://philosophynow.org/issues/
96/Ada Lovelace 1815-1852.

Machamer, P., L. Darden, and C. F. Craver (2000, March). Thinking about mechanisms. Philosophy of
Science 67(1), 1–25. https://mechanism.ucsd.edu/teaching/w10/machamer.darden.craver.pdf.

Machery, E. (2012). Why I stopped worrying about the definition of life . . . and why you should as well.
Synthese 185, 145–164. http://www.pitt.edu/∼machery/papers/Definition%20of%20life%20Synthese%
20machery.pdf.

Machlup, F. and U. Mansfield (Eds.) (1983). The Study of Information: Interdisciplinary Messages. New
York: John Wiley & Sons.

MacKenzie, D. (1992, November). Computers, formal proofs, and the law courts. Notices of the American
Mathematical Society 39(9), 1066–1069. Also see introduction by Keith Devlin (1992).

MacKenzie, D. (2001). Mechanizing Proof: Computing, Risk, and Trust. Cambridge, MA: MIT Press.

Madigan, T. (2014, January/February). A mind is a wonderful thing to meet. Philosophy Now 100, 46–47.
http://philosophynow.org/issues/100/A Mind is a Wonderful Thing to Meet.

Magnani, L. (Ed.) (2006). Computing and Philosophy: Proceedings of the Second European Conference,
Computing and Philosophy (ECAP2004-Italy). Pavia, Italy: Associated International Academic Publish-
ers.

Mahoney, M. S. (2011). Histories of Computing. Cambridge, MA: Harvard University Press. Edited by
Thomas Haigh.

Maida, A. S. and S. C. Shapiro (1982). Intensional concepts in propositional semantic networks. Cognitive
Science 6, 291–330. https://www.cse.buffalo.edu/∼shapiro/Papers/maisha82.pdf. Reprinted in Ronald J.
Brachman & Hector J. Levesque (eds.), Readings in Knowledge Representation (Los Altos, CA: Morgan
Kaufmann, 1985): 169–189.

Malpas, R. (2000, June). The universe of engineering: A UK perspective. Technical report, Royal Academy
of Engineering, London. http://www.engc.org.uk/ecukdocuments/internet/document%20library/The%
20Universe%20of%20Engineering%20Report%20(The%20Malpas%20Report).pdf.

Manchak, J. and B. W. Roberts (2016). Supertasks. In E. N. Zalta (Ed.), The Stanford Encyclopedia of
Philosophy (Winter 2016 ed.). Metaphysics Research Lab, Stanford University. https://plato.stanford.
edu/archives/win2016/entries/spacetime-supertasks/.

898 BIBLIOGRAPHY

Manchak, J. B. (2018). Malament-Hogarth machines. British Journal for the Philosophy of Science forth-
coming. https://doi.org/10.1093/bjps/axy023.

Mander, K. (February 2007). Demise of computer science exaggerated. BCS: The Chartered Institute for
IT; Features, Press and Policy, http://www.bcs.org/content/ConWebDoc/10138.

Manovich, L. (2013, 20 December). The algorithms of our lives. The Chronicle [of Higher Education]
Review 60(16), B10–B13. https://chronicle.com/article/The-Algorithms-of-Our-Lives-/143557/.

Manzano, M. (1997). Alonzo Church: His life, his work and some of his miracles. History and Philosophy
of Logic 18, 211–232.

Marcus, G. (2015, 28 June). Face it, your brain is a computer. New York Times, SR12. http://www.nytimes.
com/2015/06/28/opinion/sunday/face-it-your-brain-is-a-computer.html.

Marcus, G., F. Rossi, and M. Veloso (Eds.) (2016). Beyond the Turing Test. Special issue of AI Magazine
37(1) (Spring). https://aaai.org/ojs/index.php/aimagazine/issue/view/213.

Markoff, J. (1992, 3 January). Rear Adm. Grace M. Hopper dies; innovator in
computers was 85. New York Times. http://www.nytimes.com/1992/01/03/us/
rear-adm-grace-m-hopper-dies-innovator-in-computers-was-85.html.

Markoff, J. (2000, 18 September). A tale of the tape from the days when it was
still Micro Soft. New York Times, C1, C4. http://www.nytimes.com/2000/09/18/business/
technology-a-tale-of-the-tape-from-the-days-when-it-was-still-micro-soft.html.

Markoff, J. (2002, 10 August). Edsger Dijkstra, 72, physicist who shaped computer era. New York Times,
A11. http://www.nytimes.com/2002/08/10/obituaries/10DIJK.html.

Markoff, J. (2005). What the Dormouse Said: How the Sixties Counterculture Shaped the Personal Computer
Industry. New York: Viking. Reviewed in Lanier 2005.

Markoff, J. (2011, 8 November). It started digital wheels turning. New York Times, D1, D4. http://www.
nytimes.com/2011/11/08/science/computer-experts-building-1830s-babbage-analytical-engine.html.

Markoff, J. (2015, 7 April). Planes without pilots. New York Times, D1, D4. http://www.nytimes.com/2015/
04/07/science/planes-without-pilots.html.

Markov, A. (1954). Theory of algorithms. Tr. Mat. Inst. Steklov 42, 1–14. trans. by Edwin Hewitt, in
American Mathematical Society Translations, Series 2, Vol. 15 (1960).

Marr, D. (1977). Artificial Intelligence: A personal view. Artificial Intelligence 9, 37–48. Reprinted in
Partridge and Wilks 1990, pp. 97–107.

Marr, D. (1982). Vision: A Computational Investigation into the Human Representation and Processing of
Visual Information. New York: W.H. Freeman.

Marshall, D. (2016, March). The varieties of intrinsicality. Philosophy and Phenomenological Re-
search 92(2), 237–263. https://www.academia.edu/7096450/The Varieties of Intrinsicality.

Marshall, R. (2019). Philosophy, maths, logic and computers. 3:16. https://316am.site123.me/articles/
philosophy-maths-logic-and-computers?c=end-times-series.

Martin, C. (2015, 1 May). She seconds that emotion. The Chronicle [of Higher Education] Review 61(33),
B16. http://chronicle.com/article/Choosing-Love/229569/.

Martin, D. (2008, 29 June). David Caminer, 92, dies; a pioneer in computers. New York Times, 28. http:
//www.nytimes.com/2008/06/29/technology/29caminer.html.

Martin, D. (2013, 24 November). Mavis Batey, 92, Allied code breaker in World War II. New York Times, 32.
http://www.nytimes.com/2013/11/23/world/europe/mavis-batey-world-war-ii-code-breaker-dies-at-92.
html.

BIBLIOGRAPHY 899

Martinich, A. (2016). Philosophical Writing: An Introduction; 4th Edition. Chichester, UK: John Wiley.

Martins, J. P. and S. C. Shapiro (1988). A model for belief revision. Artificial Intelligence 35(1), 25–79.
http://www.cse.buffalo.edu/∼shapiro/Papers/marsha88.pdf.

Marx, K. (1845). Theses on Feuerbach. https://www.marxists.org/archive/marx/works/1845/theses/theses.
htm.

Mathews, W. M. and K. Reifers (1984, November). The computer in cartoons: A retrospective from The
Saturday Review. Communications of the ACM 27(11), 1114–1119.

Matthews, R. J. and E. Dresner (2017). Measurement and computational skepticism. Noûs 51(4), 832–854.

Mauchly, B., J. Bernstein, M. Dowson, D. K. Adams, and J. Holt (2012, 27 September). Who gets credit for
the computer?: An exchange. New York Review of Books, 96, 98.

Maudlin, T. (2019a, 26 August). Quantum theory and common sense: It’s complicated. IAI [Institute of Art
and Ideas] News. https://iai.tv/articles/quantum-theory-and-common-sense-auid-1254.

Maudlin, T. (2019b, 4 September). The why of the world. Boston Review. http://bostonreview.net/
science-nature/tim-maudlin-why-world.

McAllister, N. (2012, 19 April). Oracle vs. Google: Who owns the Java APIs? InfoWorld. http://www.
infoworld.com/article/2617268/java/oracle-vs\verb2--2google\verb2--2who-owns-the-java-apis-.html.

McBride, N. (22 January 2007). The death of computing. BCS: The Chartered Institute for IT; Features,
Press and Policy, urlhttp://www.bcs.org/content/ConWebDoc/9662.

McCain, G. and E. M. Segal (1969). The Game of Science. Belmont, CA: Brooks/Cole.

McCarthy, J. (1 November 1988). Contribution to newsgroup discussion of “AI as CS and the scientific
epistemology of the common sense world”. Article 1818 of comp.ai.digest, http://www.cse.buffalo.edu/
∼rapaport/mccarthy.txt.

McCarthy, J. (12 November 2007). What is AI? http://www-formal.stanford.edu/jmc/whatisai.html.

McCarthy, J. (1959). Programs with common sense. In D. Blake and A. Uttley (Eds.), Proceed-
ings of the [“Teddington”] Symposium on Mechanization of Thought Processes. London: HM Sta-
tionary Office. Original version at http://aitopics.org/sites/default/files/classic/TeddingtonConference/
Teddington-1.3-McCarthy.pdf; McCarthy archive version at http://www-formal.stanford.edu/jmc/mcc59/
mcc59.html.

McCarthy, J. (1963). A basis for a mathematical theory of computation. In P. Braffort and D. Hirshberg
(Eds.), Computer Programming and Formal Systems. North-Holland. Page references to PDF version at
http://www-formal.stanford.edu/jmc/basis.html.

McCarthy, J. (1974). Review of “Artificial Intelligence: A General Survey”. Artificial Intelligence 5, 317–
322.

McCarthy, J. and P. J. Hayes (1969). Some philosophical problems from the standpoint of Artificial Intel-
ligence. In B. Meltzer and D. Michie (Eds.), Machine Intelligence 4. Edinburgh: Edinburgh University
Press. http://www-formal.stanford.edu/jmc/mcchay69.html.

McCarthy, J., M. Minsky, N. Rochester, and C. Shannon (31 August 1955). A proposal for the Dart-
mouth Summer Research Project on Artificial Intelligence. http://www-formal.stanford.edu/jmc/history/
dartmouth.html.

McCulloch, W. S. and W. H. Pitts (1943). A logical calculus of the ideas immanent in nervous activity.
Bulletin of Mathematical Biophysics 7, 114–133. http://www.cs.cmu.edu/∼epxing/Class/10715/reading/
McCulloch.and.Pitts.pdf. Reprinted in Warren S. McCulloch, Embodiments of Mind (Cambridge, MA:
MIT Press, 1965): 19–39.

900 BIBLIOGRAPHY

McDermott, D. (1980). Artificial intelligence meets natural stupidity. In J. Haugeland (Ed.), Mind Design:
Philosophy, Psychology, Artificial Intelligence, pp. 143–160. Cambridge, MA: MIT Press. http://www.
inf.ed.ac.uk/teaching/courses/irm/mcdermott.pdf.

McDermott, D. (2001). Mind and Mechanism. Cambridge, MA: MIT Press.

McDermott, D. (2014, 31 December). What was Alan Turing’s imitation game? https://web.archive.org/
web/20150105021303/http://www.thecritique.com/articles/what-was-alan-turings-imitation-game/.

McEwan, I. (2019). Machines Like Me, and People Like You. New York: Nan A. Talese/Doubleday.

McGinn, C. (1989, July). Can we solve the mind-body problem? Mind 98(391), 349–366. http://mind.
oxfordjournals.org/content/XCVIII/391/349.full.pdf.

McGinn, C. (1993). Problems in Philosophy: The Limits of Inquiry. Oxford: Blackwell.

McGinn, C. (2003, November). Finding philosophy. Prospect (92). http://www.prospectmagazine.co.uk/
magazine/findingphilosophy/.

McGinn, C. (2015a). Philosophy of Language: The Classics Explained. Cambridge, MA: MIT Press.

McGinn, C. (2015b, January). The science of philosophy. Metaphilosophy 46(1), 84–103.
http://onlinelibrary.wiley.com/store/10.1111/meta.12116/asset/meta12116.pdf?v=1&t=i5dvrsm5&
s=210194c1272c25e8bac66889cc9db416aac0340d; video at https://www.youtube.com/watch?v=
TEkTbq5EE M; preprint at https://docs.google.com/file/d/0BzokFqaWjk4JZ0NPMHFiUnNnZWs/edit.

McGinn, C. (4 March 2012b). Philosophy by another name. The Stone/The New York Times Opinionator,
http://opinionator.blogs.nytimes.com/2012/03/04/philosophy-by-another-name/.

McGinn, C. (9 March 2012a). Name calling: Philosophy as ontical science. The
Stone/The New York Times Opinionator, http://opinionator.blogs.nytimes.com/2012/03/09/
name-calling-philosophy-as-ontical-science/.

McMillan, R. (2013, 7 July). The end of digital tyranny: Why the future of computing is analog. Wired.
http://www.wired.com/wiredenterprise/2013/07/analogfuture/.

McSherry, C. (2014, 9 May). Dangerous decision in Oracle v. Google: Federal circuit reverses sen-
sible court ruling on APIs. Electronic Frontier Foundation, https://www.eff.org/deeplinks/2014/05/
dangerous-ruling-oracle-v-google-federal-circuit-reverses-sensible-lower-court.

Mearian, L. (2013, 12 February). AI found better than doctors at diagnosing, treating
patients. Computerworld. http://www.computerworld.com/article/2494918/healthcare-it/
ai-found-better-than-doctors-at-diagnosing--treating-patients.html.

Meigs, J. B. (2012, 10 December). Inside the future: How PopMech predicted the next
110 years. Popular Mechanics. https://www.popularmechanics.com/technology/a8562/
inside-the-future-how-popmech-predicted-the-next-110-years-14831802/.

Melville, H. (1851). Moby-Dick (Norton Critical Edition, second edition, 2002). New York: W.W. Norton.
Hershel Parker & Harrison Hayford (eds.).

Menabrea, L. F. and A. A. Lovelace (1843, September 1843). English translation of Notions sur la machine
analytique de M. Charles Babbage. [Richard Taylor’s] Scientific Memoirs 3, 666ff. Trans. by Lovelace
at https://psychclassics.yorku.ca/Lovelace/menabrea.htm. Lovelace’s notes at https://psychclassics.yorku.
ca/Lovelace/lovelace.htm.

Menand, L. (2014, 20 October). Crooner in rights spat: Are copyright laws too strict? The New Yorker,
84–89. http://www.newyorker.com/magazine/2014/10/20/crooner-rights-spat.

Mendelovici, A. (2011). A sample philosophy paper. http://tinyurl.com/SamplePhilPaper.

BIBLIOGRAPHY 901

Mendelsohn, D. (2015, 4 June). The robots are winning! New York Review of Books 62(10), 51–54.
http://www.nybooks.com/articles/archives/2015/jun/04/robots-are-winning/.

Mendelson, E. (1990, May). Second thoughts about Church’s thesis and mathematical proofs. Journal of
Philosophy 87(5), 225–233.

Mertens, S. (2004, March-April). The revolution will be digitized. American Scientist 92, 195–196.

Mervis, C. B. and E. Rosch (1981). Categorization of natural objects. Annual Review of Psychology 32,
89–115.

Metz, C. (2017, 6 November). Building A.I. that can build A.I. New York Times, B1. https://nyti.ms/
2j1KU0d.

Metz, C. (2018, 7 March). Google researchers are learning how machines learn. New York Times, B3.
https://www.nytimes.com/2018/03/06/technology/google-artificial-intelligence.html.

Metz, C. (2019a, 16 August). A.I. is learning from humans. Many humans. New York Times. https://www.
nytimes.com/2019/08/16/technology/ai-humans.html.

Metz, C. (2019b, 27 March). Turing Award won by 3 pioneers in artificial intelligence. New York Times.
https://www.nytimes.com/2019/03/27/technology/turing-award-ai.html.

Metz, C. (2019c, 11 November). We teach A.I. systems everything, including our biases. New York Times.
https://www.nytimes.com/2019/11/11/technology/artificial-intelligence-bias.html.

Meyer, J.-A., H. L. Roitblat, and S. W. Wilson (Eds.) (1992). From Animals to Animats: Proceedings of the
2nd International Conference on Simulation of Adaptive Behavior. Cambridge, MA: MIT Press.

Meyer, J.-A. and S. W. Wilson (Eds.) (1991). From Animals to Animats: Proceedings of the 1st International
Conference on Simulation of Adaptive Behavior. Cambridge, MA: MIT Press.

Micali, S. (2015, January). What it means to receive the Turing Award. Communications of the ACM 58(1),
52–53. http://cacm.acm.org/magazines/2015/1/181611-what-it-means-to-receive-the-turing-award/
fulltext.

Michaelson, G. (2012, April). A visit to the Turing machine: A short story. CS4FN: Computer Science for
Fun 14. http://www.cs4fn.org/turing/avisittotheturingmachine.php.

Michie, D. (1961). Trial and error. Science Survey 2, 129–145. Reprinted in Donald Michie, On
Machine Intelligence (New York: John Wiley, 1974): 5–19; see also Donald Michie, “Experiments
on the Mechanization of Game-Learning Part I. Characterization of the Model and Its Parameters”,
http://comjnl.oxfordjournals.org/content/6/3/232.full.pdf.

Michie, D. (1971). Formation and execution of plans by machine. In N. Findler and B. Meltzer (Eds.),
Artificial Intelligence and Heuristic Programming, pp. 101–124. New York: American Elsevier.

Michie, D. (2008). Alan Turing’s mind machines. In P. Husband, O. Holland, and M. Wheeler (Eds.), The
Mechanical Mind in History, pp. Ch. 4, pp. 61–74. Cambridge, MA: MIT Press.

Mickevich, A. P. (1961, 15 June 2018). The game. http://www.hardproblem.ru/en/posts/Events/a-russian-
chinese-room-story-antedating-searle-s-1980-discussion/. Written under the pseudonym “A. Dneprov”.

Mili, A., J. Desharnais, and J. R. Gagné (1986, September). Formal models of stepwise refinement of
programs. ACM Computing Surveys 18(3), 231–276.

Miłkowski, M. (2018). From computer metaphor to computational modeling: The evolution of computation-
alism. Minds and Machines. https://doi.org/10.1007/s11023-018-9468-3.

Miller, C. A. (Ed.) (2004). Human-Computer Etiquette: Managing Expectations with Intentional Agents.
Special section of Communications of the ACM, 47(4) (April): 30–61.

902 BIBLIOGRAPHY

Miller, G. A., E. Galanter, and K. H. Pribram (1960). Plans and the Structure of Behavior. New York: Henry
Holt.

Mills, H. D. (1971). Top-down programming in large systems. In R. Rustin (Ed.), Debugging Techniques in
Large Systems, pp. 41–55. Englewood Cliffs, NJ: Prentice-Hall.

Milner, R. (1993, January). Elements of interaction: Turing Award lecture. Communications of the
ACM 36(1), 78–89. http://delivery.acm.org/10.1145/160000/151240/a1991-milner.pdf.

Minsky, M. (1967). Computation: Finite and Infinite Machines. Englewood Cliffs, NJ: Prentice-Hall.

Minsky, M. (1968). Preface. In M. Minsky (Ed.), Semantic Information Processing, pp. v. Cambridge, MA:
MIT Press.

Minsky, M. (1979). Computer science and the representation of knowledge. In L. Dertouzos and J. Moses
(Eds.), The Computer Age: A Twenty Year View, pp. 392–421. Cambridge, MA: MIT Press.

Misak, C. and R. B. Talisse (2019, 18 November). Pragmatism endures. Aeon. https://aeon.co/essays/
pragmatism-is-one-of-the-most-successful-idioms-in-philosophy.

Mish, F. C. (Ed.) (1983). Webster’s Ninth New Collegiate Dictionary. Springfield, MA: Merriam-Webster.

Misselhorn, C. (2019). Artificial systems with moral capacities? A research design and its implications in a
geriatric care system. Artificial Intelligence 278. https://doi.org/10.1016/j.artint.2019.103179.

Mitcham, C. (1994). Thinking through Techology: The Path between Engineering and Philosophy. Chicago:
University of Chicago Press.

Mitcham, C. (2009). A philosophical inadequacy of engineering. The Monist 92(3), 339–356.

Mitchell, M. (2011, February). What is computation? Biological computation. Ubiquity 2011. Article 3,
http://ubiquity.acm.org/article.cfm?id=1944826.

Mithen, S. (2016, 24 November). Our 86 billion neurons: She showed it. New York Review of Books 63(18),
42–44. http://www.nybooks.com/articles/2016/11/24/86-billion-neurons-herculano-houzel/.

Mizoguchi, R. and Y. Kitamura (2009). A functional ontology of artifacts. The Monist 92(3), 387–402.

Monroe, C. R. and D. J. Wineland (2008, August). Quantum computing with ions. Scientific American,
64–71. http://www.cs.virginia.edu/∼robins/Quantum Computing with Ions.pdf.

Montague, R. (1960, December). Towards a general theory of computability. Synthese 12(4), 429–438.

Montague, R. (1970). English as a formal language. In R. H. Thomason (Ed.), Formal Philosophy:
Selected Papers of Richard Montague, pp. 192–221. New Haven, CT: Yale University Press, 1974.
http://strangebeautiful.com/uwo/metaphys/montague-formal-philosophy.pdf.

Monticello, M. (2016, May). The state of the self-driving car; will self-driving cars make
our road safer? Consumer Reports 81(5), 44–49. https://www.consumerreports.org/
self-driving-cars/state-of-the-self-driving-car/ and https://www.consumerreports.org/self-driving-cars/
will-self-driving-cars-make-our-roads-safer/.

Moody, T. C. (1986, January). Progress in philosophy. American Philosophical Quarterly 23(1), 35–46.

Moody, T. C. (1993). Philosophy and Artificial Intelligence. Englewood Cliffs, NJ: Prentice-Hall.

Mooers, C. N. (1975, March). Computer software and copyright. Computing Surveys 7(1), 45–72.

Moor, J. H. (1978, September). Three myths of computer science. British Journal for the Philosophy of
Science 29(3), 213–222.

BIBLIOGRAPHY 903

Moor, J. H. (1979). Are there decisions computers should never make? Nature and System 1, 217–229. https:
//www.researchgate.net/publication/242529825 Are There Decisions Computers Should Never Make.

Moor, J. H. (1985, October). What is computer ethics? Metaphilosophy 16(4), 266–275. http://web.cs.
ucdavis.edu/∼rogaway/classes/188/spring06/papers/moor.html.

Moor, J. H. (Ed.) (2003). The Turing Test: The Elusive Standard of Artificial Intelligence. Dordrecht, The
Netherlands: Kluwer Academic.

Moor, J. H. and T. W. Bynum (Eds.) (2002). Cyberphilosophy: The Intersection of Computing and Philoso-
phy. Malden, MA: Blackwell.

Moravec, H. (1998, March). When will computer hardware match the human brain? Journal of Evo-
lution and Technology 1(1). http://www.jetpress.org/volume1/moravec.htm and http://www.jetpress.org/
volume1/moravec.pdf.

Morris, C. (1938). Foundations of the Theory of Signs. Chicago: University of Chicago Press.

Morris, F. and C. Jones (1984, April). An early program proof by Alan Turing. Annals of the History
of Computing 6(2), 139–143. https://fi.ort.edu.uy/innovaportal/file/20124/1/09-turing checking a large
routine earlyproof.pdf.

Morris, G. J. and E. D. Reilly (2000). Digital computer. In A. Ralston, E. D. Reilly, and D. Hemmendinger
(Eds.), Encyclopedia of Computer Science, Fourth Edition, pp. 539–545. New York: Grove’s Dictionaries.

Morrisett, G. (2009, July). A compiler’s story. Communications of the
ACM 52(7), 106. https://www.deepdyve.com/lp/association-for-computing-machinery/
technical-perspective-a-compiler-s-story-30zQuKanaE.

Moschovakis, Y. N. (1998). On founding the theory of algorithms. In H. Dales and G. Oliveri (Eds.), Truth in
Mathematics, pp. 71–104. Oxford: Clarendon Press. http://www.math.ucla.edu/∼ynm/papers/foundalg.
ps.

Moschovakis, Y. N. (2001). What is an algorithm? In B. Engquist and W. Schmid (Eds.), Mathematics
Unlimited: 2001 and Beyond, pp. 918–936. Berlin: Springer.

Moskin, J. (2018, 9 July). Overlooked no more: Fannie Farmer, modern cookery’s pioneer. New York Times,
B5. https://www.nytimes.com/2018/06/13/obituaries/fannie-farmer-overlooked.html.

Muggleton, S. (1994). Logic and learning: Turing’s legacy. In K. Furukawa, D. Michie, and S. Muggle-
ton (Eds.), Machine Intelligence 13: Machine Intelligence and Inductive Learning, pp. 37–56. Oxford:
Clarendon Press.

Mukherjee, S. (2017, 3 April). The algorithm will see you now. The New Yorker 93(7), 46–53. http:
//www.newyorker.com/magazine/2017/04/03/ai-versus-md.

Mukherjee, S. (2018, 7 January). This cat sensed death. What if computers could, too? New York Times
Magazine, MM14. https://nyti.ms/2DXqzyd.

Mullainathan, S. (2019, 6 December). Biased algorithms are easier to fix than biased people. New York
Times. https://www.nytimes.com/2019/12/06/business/algorithm-bias-fix.html.

Munroe, R. (2015). Thing Explainer: Complicated Stuff in Simple Words. New York: Houghton Mifflin
Harcourt.

Munroe, R. (2019). How To: Absurd Scientific Advice for Common Real-World Problems. New York:
Riverhead Books.

Murphy, G. L. (2019, May). On Fodor’s first law of the nonexistence of cognitive science. Cognitive
Science 43(5). https://doi.org/10.1111/cogs.12735.

904 BIBLIOGRAPHY

Mycielski, J. (1983, February). The meaning of the conjecture P 6= NP for mathematical logic. American
Mathematical Monthly 90, 129–130.

Myers, W. (1986, November). Can software for the strategic defense initiative ever be error-free? IEEE
Computer, 61–67.

Myhill, J. (1972, August-September). What is a real number? American Mathematical Monthly 79(7),
748–754.

Nagel, E., J. R. Newman, and D. R. Hofstadter (2001). Gödel’s Proof, Revised Edition. New York: New
York University Press.

Nagel, T. (1987). What Does It All Mean? A Very Short Introduction to Philosophy. New York: Oxford
University Press.

Nagel, T. (2016, 29 September). How they wrestled with the new (review of Gottlieb
2016). New York Review of Books 63(14), 77–79. http://www.nybooks.com/articles/2016/09/29/
hobbes-spinoza-locke-leibniz-hume-wrestled-new/.

Nahmias, E., S. G. Morris, T. Nadelhoffer, and J. Turner (2006, July). Is incompatibilism intuitive? Philos-
ophy and Phenomenological Research 73(1), 28–53.

Natarajan, P. (2014, 23 October). What scientists really do. New York Review of Books 61(16), 64–66.
http://www.nybooks.com/articles/archives/2014/oct/23/what-scientists-really-do/.

Natarajan, P. (2017, 25 May). Calculating women. New York Review of Books 64(9), 38–39. http://www.
nybooks.com/articles/2017/05/25/hidden-figures-calculating-women/.

Naur, P. (1995). Computing as science. Appendix 2 of his An Anatomy of Human Mental Life (Gen-
tofte, Denmark: naur.com Publishing): 208–217, http://www.naur.com/naurAnat-net.pdf, http://www.
naur.com/Nauranat-ref.html.

Naur, P. (2007, January). Computing versus human thinking. Communications of the ACM 50(1), 85–94.
http://www.computingscience.nl/docs/vakken/exp/Articles/NaurThinking.pdf.

Neumann, P. G. (1993, June). Modeling and simulation. Communications of the ACM 36(6), 124.

Neumann, P. G. (1996, July). Using formal methods to reduce risks. Communications of the ACM 39(7),
114.

Nevejans, N. (2016). European civil law rules in robotics. Technical Report PE 571.379, Directorate-
General for Internal Policies, Policy Department C: Citizens’ Rights and Constitutional Affairs, Brussels.
http://www.europarl.europa.eu/RegData/etudes/STUD/2016/571379/IPOL STU(2016)571379 EN.pdf.

New Scientist (2016, 2 January). Feedback. New Scientist 229(3054), 56. https://www.newscientist.com/
article/mg22930541-200-feedback-ibm-feels-the-heat-over-hairdryer-hacking-campaign/.

Newcombe, C., T. Rath, F. Zhang, B. Munteanu, M. Brooker, and M. Deardeuff (2015, April). How
Amazon web services uses formal methods. Communications of the ACM 58(4), 66–73. http://
delivery.acm.org/10.1145/2700000/2699417/p66-newcombe.pdf and http://m.cacm.acm.org/magazines/
2015/4/184701-how-amazon-web-services-uses-formal-methods/fulltext.

Newell, A. (1980). Physical symbol systems. Cognitive Science 4, 135–183. http://repository.cmu.edu/cgi/
viewcontent.cgi?article=3504&context=compsci.

Newell, A. (1985-1986). Response: The models are broken, the models are broken. University of Pittsburgh
Law Review 47, 1023–1031.

Newell, A., A. J. Perlis, and H. A. Simon (1967, 22 September). Computer science. Science 157(3795),
1373–1374.

BIBLIOGRAPHY 905

Newell, A., J. Shaw, and H. A. Simon (1958). Elements of a theory of human problem solving. Psychological
Review 65(3), 151–166.

Newell, A. and H. A. Simon (1976, March). Computer science as empirical inquiry: Symbols and search.
Communications of the ACM 19(3), 113–126.

New York Times (2006, 17 September). Editorial: Bush restrained. New York Times, WK13. http://www.
nytimes.com/2006/09/17/opinion/17sun1.html.

New York Times (2009, 8 November). Editorial: Quick, patent it! New York Times. http://www.nytimes.
com/2009/11/08/opinion/08sun3.html.

Nicas, J., N. Kitroeff, D. Gelles, and J. Glanz (2019, 1 June). Boeing built deadly assumptions into 737
Max, blind to a late design change. New York Times. https://www.nytimes.com/2019/06/01/business/
boeing-737-max-crash.html.

Nicas, J. and Z. Wichter (2019, 14 March). A worry for some pilots: Their hands-on flying skills are lacking.
New York Times. https://www.nytimes.com/2019/03/14/business/automated-planes.html.

Nichols, S. (2011, 18 March). Experimental philosophy and the problem of free will. Science 331(6023),
1401–1403.

Nilsson, N. J. (1971). Problem-Solving Methods in Artificial Intelligence. New York: McGraw-Hill.

Nilsson, N. J. (1983, Winter). Artificial Intelligence prepares for 2001. AI Magazine 4(4), 7–14.

Northcott, R. and G. Piccinini (2018). Conceived this way: Innateness defended. Philosophers’ Im-
print 18(18), 1–16. https://quod.lib.umich.edu/p/phimp/3521354.0018.018/1.

Nowak, M. A., N. L. Komarova, and P. Niyogi (2002, 6 June). Computational and evolutionary aspects of
language. Nature 417, 611–617. http://people.cs.uchicago.edu/∼niyogi/papersps/NKNnature.pdf.

O’Connor, J. and E. Robertson (1999). Abu Ja’far Muhammad ibn Musa Al-Khwarizmi. The Mac-
Tutor History of Mathematics Archive, http://www-groups.dcs.st-and.ac.uk/∼history/Mathematicians/
Al-Khwarizmi.html.

O’Connor, J. and E. Robertson (October 2005). The function concept. The MacTutor History of Mathematics
Archive, http://www-history.mcs.st-andrews.ac.uk/HistTopics/Functions.html.

O’Hanlon, R. (1982, 14 November). A calculating man. New York Times Book Review, BR26–BR27. Review
of Hyman 1982.

OHeigeartaigh, S. (2013, 9 August). Would you hand over a moral decision to a machine? Why not? Moral
outsourcing and Artificial Intelligence. Practical Ethics. http://blog.practicalethics.ox.ac.uk/2013/08/
would-you-hand-over-a-moral-decision-to-a-machine-why-not-moral-outsourcing-and-artificial-intelligence/.

Ohlsson, S., R. H. Sloan, G. Turàn, and A. Urasky (2015, 11 September). Measuring an Artificial Intelligence
system’s performance on a verbal IQ test for young children. http://arxiv.org/abs/1509.03390, http://arxiv.
org/pdf/1509.03390v1.pdf.

Oldehoeft, R., J. Montague, M. E. Thatcher, and D. E. Pingry (2007, December). Patented algorithms are
bad, copyrighted software is good. Communications of the ACM 50(12), 9–10. (Letter to the Editor).

Olszewski, A., J. Woleński, and R. Janusz (Eds.) (2006). Church’s Thesis after 70 Years. Frankfurt: Ontos
Verlag.

O’Neill, O. (2013, March/April). Interpreting the world, changing the world. Philosophy Now Issue 95, 8–9.
http://philosophynow.org/issues/95/Interpreting The World Changing The World.

O’Neill, S. (2015, 11 June). The human race is a computer. New Scientist 227(3029), 26–27. Interview with
César Hidalgo.

906 BIBLIOGRAPHY

Oommen, B. J. and L. G. Rueda (2005, May). A formal analysis of why heuristic functions work. Artificial
Intelligence 164(1-2), 1–22.

Oppy, G. and D. Dowe (2019). The Turing test. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philoso-
phy (Spring 2019 ed.). Metaphysics Research Lab, Stanford University.

Oracle America, I. (2012, 12 April). Oracle’s April 12, 2012 brief regarding copyright issues, case no. 3:10-
CV 10-03561-WHA, document 900. http://assets.sbnation.com/assets/1057275/Oracle s Brief.pdf.

O’Regan, G. (2008). A Brief History of Computing. Springer.

O’Regan, J. K. (2011). Why Red Doesn’t Sound Like a Bell: Understanding the Feeling of Consciousness.
New York: Oxford University Press.

Orr, H. A. (2013, 7 February). Awaiting a new Darwin. New York Review of Books 60(2), 26–28.

O’Sullivan, M. (2017, 12 May). The untold story of QF72: What happens when ‘psycho’ au-
tomation leaves pilots powerless? Sydney Morning Herald. https://www.smh.com.au/lifestyle/
the-untold-story-of-qf72-what-happens-when-psycho-automation-leaves-pilots-powerless-20170511-gw26ae.
html.

O’Toole, G. (2016, 5 January). In a woman the flesh must be like marble; in a statue the marble must be like
flesh. Quote Investigator, urlhttp://quoteinvestigator.com/2017/01/05/marble/.

Pandya, H. (2013, 23 April). Shakuntala Devi, ‘human computer’ who bested the ma-
chines, dies at 83. New York Times. http://www.nytimes.com/2013/04/24/world/asia/
shakuntala-devi-human-computer-dies-in-india-at-83.html.

Papadimitriou, C. H. (2001, March-April). The sheer logic of IT. American Scientist 89, 168–171. http:
//www.americanscientist.org/bookshelf/pub/the-sheer-logic-of-it.

Papakonstantinou, Y. (2015, June). Created computed universe. Communications of the ACM 58(6), 36–38.

Papert, S. (1980). Mindstorms: Children, Computers, and Powerful Ideas. New York: Basic Books.

Papert, S. (1996). An exploration in the space of mathematics education. International Jour-
nal of Computers for Mathematical Learning 1(1), 95–123. http://www.papert.org/articles/
AnExplorationintheSpaceofMathematicsEducations.html.

Papineau, D. (2003). Philosophy of science. In N. Bunnin and E. Tsui-James (Eds.), The Blackwell Compan-
ion to Philosophy, 2nd edition, pp. 286–316. Malden, MA: Blackwell. https://svetlogike.files.wordpress.
com/2014/02/the-blackwell-companion-to-philosophy-2ed-2002.pdf.

Papineau, D. (2017, 1 June). Is philosophy simply harder than science? Times Literary Supplement Online.
http://www.the-tls.co.uk/articles/public/philosophy-simply-harder-science/.

Pappano, L. (2017, 9 April). Thinking in code/learning to think like a computer. New York Times Education
Life, ED18. https://www.nytimes.com/2017/04/04/education/edlife/teaching-students-computer-code.
html.

Park, E. (1996, February). The object at hand. Smithsonian 26(11), 20–23.

Parker, M. W. (2009). Computing the uncomputable; or, the discrete charm of second-order simulacra.
Synthese 169, 447–463. http://philsci-archive.pitt.edu/3905/1/Discrete Charm i.pdf.

Parlante, N. (2005, June). What is computer science? Inroads—The SIGSCE Bulletin 37(2), 24–25.

Parnas, D. L. (1985). Software aspects of strategic defense systems. American Scientist 73(5), 432–440.
Reprinted in Communications of the ACM 28(12) (December 1985): 1326–1335.

BIBLIOGRAPHY 907

Parnas, D. L. (1998). Software engineering programmes are not computer science programmes. Annals of
Software Engineering 6, 19–37. Page references to pre-print at http://www.cas.mcmaster.ca/serg/papers/
crl361.pdf; a paper with the same title (but American spelling as ‘program’) appeared in IEEE Software
16(6) (1990): 19–30.

Parnas, D. L. (2017, October). The real risks of artificial intelligence. Communications of the ACM 60(10),
27–31. http://www.csl.sri.com/users/neumann/cacm242.pdf.

Parsons, K. M. (2015, 8 April 2015). What is the public value of philosophy? Huffington Post. http:
//www.huffingtonpost.com/keith-m-parsons/what-is-the-public-value-of-philosophy b 7018022.html.

Parsons, T. W. (1989, July). More on verification (letter to the editor). Communications of the ACM 32(7),
790–791.

Partridge, D. (1990). What’s in an AI program? In D. Partridge and Y. Wilks (Eds.), The Foundations of
Artificial Intelligence: A Sourcebook, pp. 112–118. Cambridge, UK: Cambridge University Press.

Partridge, D. and Y. Wilks (Eds.) (1990). The Foundations of Artificial Intelligence: A Sourcebook. Cam-
bridge, UK: Cambridge University Press.

Pasanek, B. (2015). The mind is a metaphor. http://metaphors.iath.virginia.edu/.

Paton, E. and V. Friedman (2018, 29 May). ‘Diamonds are forever,’ and made by machine. New York Times.
https://www.nytimes.com/2018/05/29/business/de-beers-synthetic-diamonds.html.

Pattis, R. E., J. Roberts, and M. Stehlik (1995). Karel the Robot: A Gentle Introduction to the Art of
Programming, Second Edition. New York: John Wiley & Sons.

Paulson, L., A. Cohen, and M. Gordon (1989, March). The very idea (letter to the editor). Communications
of the ACM 32(3), 375.

Pavese, C. (2015, November). Practical senses. Philosophers’ Imprint 15(29), 1–25. http://hdl.handle.net/
2027/spo.3521354.0015.029.

Pawley, A. L. (2009, October). Universalized narratives: Patterns in how faculty members define ‘engineer-
ing’. Journal of Engineering Education 98(4), 309–319.

Peacocke, C. (1995). Content, computation and externalism. Philosophical Issues 6, 227–264.

Peacocke, C. (1999, June). Computation as involving content: A response to Egan. Mind & Language 14(2),
195–202.

Peano, G. (1889). The principles of arithmetic, presented by a new method. In J. van Heijenoort (Ed.), From
Frege to Gödel: A Source Book in Mathematical Logic, 1879–1931, pp. 83–97. Cambridge, MA: Harvard
University Press.

Pearl, J. (2000). Causality: Models, Reasoning, and Inference. Cambridge, UK: Cambridge University
Press.

Pelletier, F. J. (1999). A history of natural deduction and elementary logic textbooks. History and Philosophy
of Logic 20, 1–31. http://www.sfu.ca/∼jeffpell/papers/NDHistory.pdf.

Penrose, R. (1989). The Emperor’s New Mind: Concerning Computers, Minds, and the Laws of Physics.
Oxford: Oxford University Press.

Perlis, A. (1962). The computer in the university. In M. Greenberger (Ed.), Management and the Computer
of the Future, pp. 181–217. Cambridge, MA: MIT Press.

Perovic, K. (2017). Bradley’s regress. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Winter
2017 ed.). Metaphysics Research Lab, Stanford University. https://plato.stanford.edu/archives/win2017/
entries/bradley-regress/.

908 BIBLIOGRAPHY

Perruchet, P. and A. Vinter (2002, June). The self-organizing consciousness. Behavioral and Brain Sci-
ences 25(3), 297–388. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.112.7056&rep=rep1&
type=pdf.

Perry, Jr., W. G. (1970). Forms of Intellectual and Ethical Development in the College Years: A Scheme.
New York: Holt, Rinehart and Winston.

Perry, Jr., W. G. (1981). Cognitive and ethical growth: The making of meaning. In
A. Chickering and Associates (Eds.), The Modern American College, pp. 76–116. San Fran-
cisco: Jossey-Bass. http://will.tip.dhappy.org/paper/William%20Perry/Cognitive%20and%20Ethical%
20Growth:%20The%20Making%20of%20Meaning/.

Peschl, M. and M. Scheutz (2001a). Some thoughts on computation and simulation in cognitive science. In
Proceedings of the 6th Congress of the Austrian Philosophical Society, pp. 534–540. publisher unknown.
Citations to online verison at http://hrilab.tufts.edu/publications/scheutzpeschl00linz.pdf.

Peschl, M. F. and M. Scheutz (2001b). Explicating the epistemological role of simulation in the development
of theories of cognition. In Proceedings of the 7th Colloquium on Cognitive Science (ICCS-01), pp.
274–280. publisher unknown. http://www.academia.edu/719102/Explicating the epistemological role
of simulation in the development of theories of cognition.

Pessin, A. (2009). The 60-Second Philosopher. London: Oneworld.

Petersen, S. (2007, March). The ethics of robot servitude. Journal of Experimental and Theoretical Artificial
Intelligence 19(1), 43–54. http://www.stevepetersen.net/petersen-ethics-robot-servitude.pdf.

Petersen, S. (2011). Designing people to serve. In P. Lin, K. Abney, and G. A. Bekey (Eds.), Robot Ethics:
The Ethical and Social Implications of Robotics, pp. 283–298. Cambridge, MA: MIT Press. http://www.
stevepetersen.net/petersen-designing-people.pdf.

Petroski, H. (2003, May-June). Early education. American Scientist 91, 206–209. http://
childrensengineering.org/resources/Petroski.pdf.

Petroski, H. (2005, July-August). Technology and the humanities. American Scientist 93, 304–307.

Petroski, H. (2007, March-April). Lab notes. American Scientist 95(2), 114–117.

Petroski, H. (2008a, September-October). Scientists as inventors. American Scientist 96(5), 368–371.

Petroski, H. (2008b, May-June). Twists, tags and ties. American Scientist 96(3), 188–192.

Petroski, H. (2010, January-February). Occasional design. American Scientist 98(1), 16–19.

Petzold, C. (2008). The Annotated Turing: A Guided Tour through Alan Turing’s Historic Paper on Com-
putability and the Turing Machine. Indianapolis: Wiley.

“Philonous” (1919, 3 December). A slacker’s apology. The New Republic, 19–20. Pseudonym of Morris
Raphael Cohen.

Picard, R. (1997). Affective Computing. Cambridge, MA: MIT Press.

Piccinini, G. (2000). Turing’s rules for the imitation game. Minds and Machines 10(4), 573–582.

Piccinini, G. (2003). Alan Turing and the mathematical objection. Minds and Machines 13, 23–48. http:
//www.umsl.edu/∼piccininig/Alan Turing and Mathematical Objection.pdf.

Piccinini, G. (2004a). The first computational theory of mind and brain: A close look at McCulloch and
Pitts’s “Logical calculus of ideas immanent in nervous activity”. Synthese 141, 175–215. For a reply, see
Aizawa 2010.

BIBLIOGRAPHY 909

Piccinini, G. (2004b, September). Functionalism, computationalism, and mental contents. Canadian Journal
of Philosophy 34(3), 375–410. http://www.umsl.edu/∼piccininig/Functionalism Computationalism and
Mental Contents.pdf.

Piccinini, G. (2005). Symbols, strings, and spikes: The empirical refutation of computationalism. Abstract at
https://philpapers.org/rec/PICSSA; unpublished paper at https://web.archive.org/web/20080216023546/
http://www.umsl.edu/∼piccininig/Symbols%20Strings%20and%20Spikes%2019.htm; superseded by
Piccinini and Bahar 2013.

Piccinini, G. (2006a). Computation without representation. Philosophical Studies 137(2), 204–241. http:
//www.umsl.edu/∼piccininig/Computation without Representation.pdf.

Piccinini, G. (2006b, December). Computational explanation in neuroscience. Synthese 153(3), 343–353.
http://www.umsl.edu/∼piccininig/Computational%20Explanation%20in%20Neuroscience.pdf.

Piccinini, G. (2007a). Computational explanation and mechanistic explanation of mind. In M. Marraffa,
M. D. Caro, and F. Ferretti (Eds.), Cartographies of the Mind: Philosophy and Psychology in Intersection,
pp. 23–36. Dordrecht, The Netherlands: Springer.

Piccinini, G. (2007b, March). Computational modelling vs. computational explanation: Is everything a
Turing machine, and does it matter to the philosophy of mind? Australasian Journal of Philosophy 85(1),
93–115. http://www.umsl.edu/∼piccininig/Is Everything a TM.pdf.

Piccinini, G. (2007c). Computationalism, the Church-Turing thesis, and the Church-Turing fallacy. Syn-
these 154, 97–120.

Piccinini, G. (2007d, October). Computing mechanisms. Philosophy of Science 74(4), 501–526.

Piccinini, G. (2008). Computers. Pacific Philosophical Quarterly 89, 32–73. http://www.umsl.edu/
∼piccininig/Computers.pdf.

Piccinini, G. (2009). Computationalism in the philosophy of mind. Philosophy Compass 4(3), 515–532.
10.1111/j.1747-9991.2009.00215.x.

Piccinini, G. (2010a, September). The mind as neural software? Understanding functionalism, computation-
alism, and computational functionalism. Philosophy and Phenomenological Research 81(2), 269–311.
http://www.umsl.edu/∼piccininig/Computational Functionalism.htm.

Piccinini, G. (2010b, December). The resilience of computionalism. Philosophy of Science 77(5), 852–861.

Piccinini, G. (2011). The physical Church-Turing thesis: Modest or bold? British Journal for the Philosophy
of Science 62, 733–769. http://www.umsl.edu/∼piccininig/CT Modest or Bold.pdf.

Piccinini, G. (2012). Computationalism. In E. Margolis, R. Samuels, and S. P. Stich (Eds.), The Oxford Hand-
book of Philosophy of Cognitive Science. Oxford University Press. http://www.umsl.edu/∼piccininig/
Computationalism.pdf.

Piccinini, G. (2015). Physical Computation: A Mechanistic Account. Oxford: Oxford University Press.

Piccinini, G. (2017). Computation in physical systems. In E. N. Zalta (Ed.), The Stanford Encyclopedia of
Philosophy (Summer 2017 ed.). Metaphysics Research Lab, Stanford University. https://plato.stanford.
edu/archives/sum2017/entries/computation-physicalsystems/.

Piccinini, G. (2018, Spring). Computation and representation in cognitive neuroscience. Minds and Ma-
chines 28(1), 1–6. https://link.springer.com/content/pdf/10.1007%2Fs11023-018-9461-x.pdf.

Piccinini, G. and S. Bahar (2013). Neural computation and the computational theory of cognition. Cognitive
Science 34, 453–488. http://www.umsl.edu/∼piccininig/Neural Computation and the Computational
Theory of Cognition.pdf.

910 BIBLIOGRAPHY

Piccinini, G. and C. Craver (2011). Integrating psychology and neuroscience: Functional analyses as mech-
anism sketches. Synthese 183(3), 283–311. http://philosophy.artsci.wustl.edu/files/philosophy/imce/
integrating psychology and neuroscience functional analyses as mechanism sketches 0.pdf.

Piccinini, G. and A. Scarantino (2011). Information processing, computation, and cognition. Journal of
Biological Physics 37, 1–38.

Pigliucci, M. (2014, 12 May). Neil deGrasse Tyson and the value of philosophy. Scientia Salon. http:
//scientiasalon.wordpress.com/2014/05/12/neil-degrasse-tyson-and-the-value-of-philosophy/.

Pigliucci, M. and M. Boudry (2013a, 10 October). The dangers of pseudoscience. New York Times. http:
//opinionator.blogs.nytimes.com/2013/10/10/the-dangers-of-pseudoscience/.

Pigliucci, M. and M. Boudry (Eds.) (2013b). Philosophy of Pseudoscience: Reconsidering the Demarcation
Problem. Chicago: University of Chicago Press.

Pincock, C. (2011). Philosophy of mathematics. In J. Saatsi and S. French (Eds.), Companion to the Philos-
ophy of Science, pp. 314–333. Continuum. http://pincock-yilmazer.com/chris/pincock%20philosophy%
20of%20mathematics%20final%20draft.pdf.

Pinker, S. and R. Jackendoff (2005). The faculty of language: What’s special about it? Cognition 95,
201–236. http://pinker.wjh.harvard.edu/articles/papers/2005 03 Pinker Jackendoff.pdf.

Plaice, J. (1995, March). Computer science is an experimental science. ACM Computing Surveys 27(1), 33.
https://www.cse.unsw.edu.au/∼plaice/archive/JAP/P-ACMcs95-experimentalCS.pdf.

Plato (1961a). Phaedrus. In E. Hamilton and H. Cairns (Eds.), The Collected Dialogues of Plato, including
the Letters. Princeton, NJ: Princeton University Press.

Plato (1961b). Republic. In E. Hamilton and H. Cairns (Eds.), The Collected Dialogues of Plato, including
the Letters, pp. 575–844. Princeton, NJ: Princeton University Press.

Pleasant, J. C. (1989, March). The very idea (letter to the editor). Communications of the ACM 32(3),
374–375.

Polger, T. W. (2011). Are sensations still brain processes? Philosophical Psychology 24(1), 1–21.

Pollan, M. (2013, 23 & 30 December). The intelligent plant. The New Yorker, 92–105. http://www.
newyorker.com/reporting/2013/12/23/131223fa fact pollan.

Pollock, J. L. (2008, March). What am I? Virtual machines and the mind/body problem. Philosophy and
Phenomenological Research 76(2), 237–309.

“PolR” (11 November 2009). An explanation of computation theory for lawyers. http://www.groklaw.
net/article.php?story=20091111151305785; also at http://www.groklaw.net/staticpages/index.php?page=
20091110152507492 and http://www.groklaw.net/pdf2/ComputationalTheoryforLawyers.pdf.

Polya, G. (1957). How to Solve It: A New Aspect of Mathematical Method, 2nd edition. Garden City, NY:
Doubleday Anchor.

Popek, G. J. and R. P. Goldberg (1974, July). Formal requirements for virtualizable third generation archi-
tectures. Communications of the ACM 17(7), 412–421. http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.141.4815&rep=rep1&type=pdf.

Popova, M. (2012). What is philosophy? An omnibus of definitions from prominent philosophers. http:
//www.brainpickings.org/index.php/2012/04/09/what-is-philosophy/.

Popper, K. (1953). Conjectures and Refutations: The Growth of Scientific Knowledge. New York: Harper &
Row.

Popper, K. (1959). The Logic of Scientific Discovery. New York: Harper & Row.

BIBLIOGRAPHY 911

Popper, K. (1972). Objective Knowledge: An Evolutionary Approach. Oxford: Oxford University Press.

Popper, K. (1978). Three worlds. http://tannerlectures.utah.edu/ documents/a-to-z/p/popper80.pdf.

Post, E. L. (1941). Absolutely unsolvable problems and relatively undecidable propositions: Account of an
anticipation. In M. Davis (Ed.), Solvability, Provability, Definability: The Collected Works of Emil L.
Post, pp. 375–441. Boston: Birkhaäuser.

Post, E. L. (1943). Formal reductions of the general combinatorial decision problem. American Journal of
Mathematics 65, 197–215.

Post, E. L. (1944). Recursively enumerable sets of positive integers. Bulletin of the American Mathematical
Society 5, 284–316. https://projecteuclid.org/download/pdf 1/euclid.bams/1183505800.

Pour-El, M. B. (1974, November). Abstract computability and its relation to the general purpose analog
computer (some connections between logic, differential equations and analog computers). Transactions
of the American Mathematical Society 199, 1–28.

Powell, C. S. (2006, 2 April). Welcome to the machine. New York Times Book Review, 19. http://www.
nytimes.com/2006/04/02/books/review/02powell.html.

Powell, L. (2014, 8 May). An open letter to Neil deGrasse Tyson. The Horseless Telegraph. http:
//horselesstelegraph.wordpress.com/2014/05/08/an-open-letter-to-neil-degrasse-tyson/.

Powers, R. (1995). Galatea 2.2: A Novel. New York: Farrar Straus & Giroux. Excerpts at
http://www.amazon.com/gp/reader/0312423136/ref=sib dp pt/104-4726624-5955928#reader-link
and https://play.google.com/store/books/details/Richard Powers Galatea 2 2?id=9xCw4QPsy88C.

Prasse, M. and P. Rittgen (1998). Why Church’s thesis still holds: Some notes on Peter Wegner’s tracts
on interaction and computability. The Computer Journal 41(6), 357–362. http://research.cs.queensu.ca/
∼akl/cisc879/papers/SELECTED PAPERS FROM VARIOUS SOURCES/Prasse.pdf.

Prescott, T. (2015, 21 March). Me in the machine. New Scientist 225(3013), 36–39. http://eprints.whiterose.
ac.uk/95397/1/NewSci preprint.pdf.

Press, L. (1993, September). Before the Altair: The history of personal computing. Communications of the
ACM 36(9), 27–33. http://bpastudio.csudh.edu/fac/lpress/articles/hist.htm.

Preston, B. (2013). A Philosophy of Material Culture: Action, Function, and Mind. New York: Routledge.

Preston, J. (2012). Paul Feyerabend. In E. N. Zalta (Ed.), Stanford Encyclopedia of Philosophy. Metaphysics
Research Lab, Stanford University. http://plato.stanford.edu/archives/win2012/entries/feyerabend/.

Preston, J. and M. Bishop (Eds.) (2002). Views into the Chinese Room: New Essays on Searle and Artificial
Intelligence. Oxford: Clarendon Press.

Price, C. B. (2007). Concepts and philosophy of computing. https://web.archive.org/web/20161114123147/
http://staffweb.worc.ac.uk/DrC/Courses%202006-7/Comp%204070/schedule.htm.

Primiero, G. (2016). Information in the philosophy of computer science. In L. Floridi (Ed.), The Routledge
Handbook of Philosophy of Information, pp. 90–106. London: Routledge. https://www.academia.edu/
26800126/Information in the Philosophy of Computer Science.

Proudfoot, D. and B. J. Copeland (2012). Artificial Intelligence. In E. Margolis, R. Samuels, and S. P. Stich
(Eds.), The Oxford Handbook of Philosophy of Cognitive Science. Oxford University Press.

Putnam, H. (1960). Minds and machines. In S. Hook (Ed.), Dimensions of Mind: A Symposium, pp. 148–179.
New York: New York University Press.

Putnam, H. (1965, March). Trial and error predicates and the solution to a problem of Mostowski. Journal of
Symbolic Logic 30(1), 49–57. http://www.ninagierasimczuk.com/flt2013/wp-content/uploads/2013/01/
Putnam 1965.pdf.

912 BIBLIOGRAPHY

Putnam, H. (1975). The meaning of ‘meaning’. In K. Gunderson (Ed.), Minnesota Studies in the Philosophy
of Science, Vol. 7: Language, Mind, and Knowledge, pp. 131–193. Minneapolis: University of Minnesota
Press. Reprinted in Hilary Putnam, Mind, Language and Reality (Cambridge, UK: Cambridge University
Press): 215–271; http://mcps.umn.edu/assets/pdf/7.3 Putnam.pdf.

Putnam, H. (1981). Reason, Truth, and History. Cambridge, UK: Cambridge University Press.

Putnam, H. (1988). Representation and Reality. Cambridge, MA: MIT Press.

Putnam, H. (2015, 18 February). Rational reconstruction. Sardonic Comment blog, http://putnamphil.
blogspot.com/2015/02/rational-reconstuction-in-1976-when.html.

Pylyshyn, Z. (2003, March). Return of the mental image: Are there really pictures in the brain? Trends in
Cognitive Sciences 7(3), 113–118. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.294.3609&
rep=rep1&type=pdf.

Pylyshyn, Z. W. (1973). What the mind’s eye tells the mind’s brain. Psychological Bulletin 80(1),
1–24. https://www.researchgate.net/publication/232553762 What the Mind%27s Eye Tells the Mind%
27s Brain A Critique of Mental Imagery.

Pylyshyn, Z. W. (1984). Computation and Cognition: Towards a Foundation for Cognitive Science. Cam-
bridge, MA: MIT Press. Ch. 3 (“The Relevance of Computation”), pp. 48–86, esp. §“The Role of Com-
puter Implementation” (pp. 74–78).

Pylyshyn, Z. W. (1992). Computers and the symbolization of knowledge. In R. Morelli, W. M. Brown,
D. Anselmi, K. Haberlandt, and D. Lloyd (Eds.), Minds, Brains & Computers: Perspectives in Cognitive
Science and Artificial Intelligence, pp. 82–94. Norwood, NJ: Ablex. Page references are to 1987 preprint
at http://ruccs.rutgers.edu/images/personal-zenon-pylyshyn/docs/suffolk.pdf.

qFiasco, F. (2018). Book review [of Kasparov & Greengard, Deep Thinking]. Artificial Intelligence 260,
36–41.

Qian, L. and E. Winfree (2011, 3 June). Scaling up digital circuit computation with DNA strand displacement
cascades. Science 332, 1196–1201. Reviewed in Reif 2011.

Quillian, M. R. (1994, September). A content-independent explanation of science’s effectivenss. Philosohy
of Science 61(3), 429–448.

Quine, W. V. O. (1948). On what there is. Review of Metaphysics 2(5), 21–38. Reprinted in W.V.O. Quine,
From a Logical Point of View: 9 Logico-Philosophical Essays, Second Edition, revised (Cambridge,
MA: Harvard University Press, 1980): 1–19; http://math.boisestate.edu/∼holmes/Phil209/Quine%20-%
20On%20What%20There%20Is.pdf.

Quine, W. V. O. (1951). Two dogmas of empiricism. Philosophical Review 60, 20–43. Reprinted in
W.V.O. Quine, From a Logical Point of View: 9 Logico-Philosophical Essays, Second Edition, re-
vised (Cambridge, MA: Harvard University Press, 1980): 20–46; http://www.theologie.uzh.ch/dam/jcr:
ffffffff-fbd6-1538-0000-000070cf64bc/Quine51.pdf.

Quine, W. V. O. (1976). Whither physical objects? In R. Cohen, P. Feyerabend, and M. Wartofsky (Eds.),
Essays in Memory of Imre Lakatos, pp. 497–504. Dordrecht, Holland: D. Reidel.

Quine, W. V. O. (1987). Quiddities: An Intermittently Philosophical Dictionary. Cambridge, MA: Harvard
University Press.

Quine, W. V. O. (1988, 4 May 2015). An unpublished letter from Quine to Hookway. In Hilary Putnam’s
Sardonic Comment blog, http://putnamphil.blogspot.com/2015/05/an-unpublished-letter-from-quine-to.
html.

Radó, T. (1962, May). On non-computable functions. The Bell System Technical Journal, 877–884. http:
//alcatel-lucent.com/bstj/vol41-1962/articles/bstj41-3-877.pdf.

BIBLIOGRAPHY 913

Rajagopalan, B. (2011). Halting problem is solvable. (Humor), http://www.netfunny.com/rhf/jokes/89q4/
halting.760.html.

Ralston, A. (1999). Let’s abolish pencil-and-paper arithmetic. Journal of Computers in Mathematics and
Science Teaching 18(2), 173–194. https://web.archive.org/web/20170719125406/http://tonyralston.com/
papers/abolpub.htm.

Ramakrishna, P. (2019, 18 June). ‘There’s just no doubt that it will change the world’: David
Chalmers on V.R. and A.I. New York Times/The Stone. https://www.nytimes.com/2019/06/18/opinion/
david-chalmers-virtual-reality.html.

Ramsey, F. P. (1929). Theories. In D. Mellor (Ed.), Foundations: Essays in Philosophy, Logic, Mathematics
and Economics; revised edition, pp. 101–125. Atlantic Highlands, NJ: Humanities Press, 1978.

Randell, B. (1994). The origins of computer programming. IEEE Annals of the History of Computing 16(4),
6–14. https://www.researchgate.net/publication/3330487 The origins of computer programming/.

Rapaport, W. J. (1978, May). Meinongian theories and a Russellian paradox. Noûs 12(2), 153–180. https:
//www.cse.buffalo.edu//∼rapaport/Papers/meinong-russell.pdf; errata, Noûs 13 (1979): 125, https://www.
cse.buffalo.edu//∼rapaport/Papers/meinong-russell-errata.pdf.

Rapaport, W. J. (1982). Unsolvable problems and philosophical progress. American Philosophical Quar-
terly 19, 289–298. http://www.cse.buffalo.edu/∼rapaport/Papers/apq.pdf.

Rapaport, W. J. (1984a, May/June). Can philosophy solve its own problems? The [SUNY] News 13, F2–F3.
http://www.cse.buffalo.edu/∼rapaport/Papers/rapaport84b.canphilsolve.pdf.

Rapaport, W. J. (1984b, Spring/Summer). Critical thinking and cognitive development. American Philo-
sophical Association Newsletter on Pre-College Instruction in Philosophy 1, 4–5. Reprinted in Pro-
ceedings and Addresses of the American Philosophical Association 57(5) (May 1984): 610–615; http:
//www.cse.buffalo.edu/∼rapaport/Papers/rapaport84-perryAPA.pdf.

Rapaport, W. J. (1985-1986b). Non-existent objects and epistemological ontology. Grazer Philosophische
Studien 25/26, 61–95. http://www.cse.buffalo.edu/∼rapaport/Papers/rapaport8586.pdf.

Rapaport, W. J. (1986a). Logical foundations for belief representation. Cognitive Science 10, 371–422.
http://csjarchive.cogsci.rpi.edu/1986v10/i04/p0371p0422/MAIN.PDF.

Rapaport, W. J. (1986c, Summer). Philosophy, Artificial Intelligence, and the Chinese-room argument.
Abacus: The Magazine for the Computer Professional 3, 6–17. Correspondence, Abacus 4 (Winter
1987): 6–7; 4 (Spring): 5–7; http://www.cse.buffalo.edu/∼rapaport/Papers/abacus.pdf.

Rapaport, W. J. (1986d, June). Philosophy of Artificial Intelligence: A course outline. Teaching Philoso-
phy 9(2), 103–120. http://www.cse.buffalo.edu/∼rapaport/Papers/teachphil1986.pdf.

Rapaport, W. J. (1986e, September). Review of Johnson and Snapper 1985. Teaching Philosophy 9(3),
275–278. https://cse.buffalo.edu/∼rapaport/Papers/johnson-snapper-review.pdf.

Rapaport, W. J. (1986f). Searle’s experiments with thought. Philosophy of Science 53, 271–279. http:
//www.cse.buffalo.edu/∼rapaport/Papers/philsci.pdf.

Rapaport, W. J. (1987, 23 February). God, the demon, and the cogito. https://cse.buffalo.edu/∼rapaport/
Papers/descartes-cogito.pdf.

Rapaport, W. J. (1988a). Syntactic semantics: Foundations of computational natural-language understanding.
In J. H. Fetzer (Ed.), Aspects of Artificial Intelligence, pp. 81–131. Dordrecht, The Netherlands: Kluwer
Academic Publishers. http://www.cse.buffalo.edu/∼rapaport/Papers/synsem.pdf; reprinted with numerous
errors in Eric Dietrich (ed.) (1994), Thinking Machines and Virtual Persons: Essays on the Intentionality
of Machines (San Diego: Academic Press): 225–273.

914 BIBLIOGRAPHY

Rapaport, W. J. (1988b, December). To think or not to think: Review of Searle 1980. Noûs 22(4), 585–609.
http://www.cse.buffalo.edu/∼rapaport/Papers/2Tor-2T.pdf.

Rapaport, W. J. (1990). Computer processes and virtual persons: Comments on Cole’s “Artificial Intelli-
gence and personal identity”. Technical Report 90-13, SUNY Buffalo Department of Computer Science,
Buffalo. http://www.cse.buffalo.edu/∼rapaport/Papers/cole.tr.17my90.pdf.

Rapaport, W. J. (1992). Logic, propositional. In S. C. Shapiro (Ed.), Encyclopedia of Artificial Intelligence,
2nd edition, pp. 891–897. New York: John Wiley. http://www.cse.buffalo.edu/∼rapaport/Papers/logic,
propositional.pdf.

Rapaport, W. J. (1995). Understanding understanding: Syntactic semantics and computational cognition.
In J. E. Tomberlin (Ed.), AI, Connectionism, and Philosophical Psychology (Philosophical Perspec-
tives, Vol. 9), pp. 49–88. Atascadero, CA: Ridgeview. http://www.cse.buffalo.edu/∼rapaport/Papers/
rapaport95-uu.pdf. Reprinted in Toribio, Josefa, & Clark, Andy (eds.) (1998), Language and Meaning
in Cognitive Science: Cognitive Issues and Semantic Theory (Artificial Intelligence and Cognitive Sci-
ence: Conceptual Issues, Vol. 4) (New York: Garland).

Rapaport, W. J. (1996). Understanding understanding: Semantics, computation, and cognition. Technical
Report Technical Report 96-26, SUNY Buffalo Department of Computer Science, Buffalo. http://www.
cse.buffalo.edu/∼rapaport/Papers/book.pdf.

Rapaport, W. J. (1998). How minds can be computational systems. Journal of Experimental and Theoretical
Artificial Intelligence 10, 403–419. http://www.cse.buffalo.edu/∼rapaport/Papers/jetai-sspp98.pdf.

Rapaport, W. J. (1999). Implementation is semantic interpretation. The Monist 82, 109–130. http://www.
cse.buffalo.edu/∼rapaport/Papers/monist.pdf.

Rapaport, W. J. (2000a). Cognitive science. In A. Ralston, E. D. Reilly, and D. Hemmendinger (Eds.),
Encyclopedia of Computer Science, 4th edition, pp. 227–233. New York: Grove’s Dictionaries. http:
//www.cse.buffalo.edu/∼rapaport/Papers/cogsci.pdf.

Rapaport, W. J. (2000b, October). How to pass a Turing test: Syntactic semantics, natural-language un-
derstanding, and first-person cognition. Journal of Logic, Language, and Information 9(4), 467–490.
http://www.cse.buffalo.edu/∼rapaport/Papers/TURING.pdf. Reprinted in Moor 2003, 161–184.

Rapaport, W. J. (2002). Holism, conceptual-role semantics, and syntactic semantics. Minds and Ma-
chines 12(1), 3–59. http://www.cse.buffalo.edu/∼rapaport/Papers/crs.pdf.

Rapaport, W. J. (2003). What did you mean by that? Misunderstanding, negotiation, and syntactic semantics.
Minds and Machines 13(3), 397–427. http://www.cse.buffalo.edu/∼rapaport/Papers/negotiation-mandm.
pdf.

Rapaport, W. J. (2005a). Castañeda, Hector-Neri. In J. R. Shook (Ed.), The Dictionary of Modern Ameri-
can Philosophers, 1860–1960, pp. 452–412. Bristol, UK: Thoemmes Press. http://www.cse.buffalo.edu/
∼rapaport/Papers/hncdict.tr.pdf.

Rapaport, W. J. (2005b, December). Implemention is semantic interpretation: Further thoughts. Jour-
nal of Experimental and Theoretical Artificial Intelligence 17(4), 385–417. https://www.cse.buffalo.edu/
/∼rapaport/Papers/jetai05.pdf.

Rapaport, W. J. (2005c, December). Philosophy of computer science: An introductory course. Teaching
Philosophy 28(4), 319–341. http://www.cse.buffalo.edu/∼rapaport/philcs.html.

Rapaport, W. J. (2005d). Review of Shieber 2004. Computational Linguistics 31(3), 407–412. https:
//www.aclweb.org/anthology/J05-3006.

Rapaport, W. J. (2006a). How Helen Keller used syntactic semantics to escape from a Chinese room. Minds
and Machines 16, 381–436. http://www.cse.buffalo.edu/∼rapaport/Papers/helenkeller.pdf. See reply to
comments, in Rapaport 2011b.

BIBLIOGRAPHY 915

Rapaport, W. J. (2006b, March). Review of Preston and Bishop 2002. Australasian Journal of Philoso-
phy 84(1), 129–133. https://cse.buffalo.edu/∼rapaport/Papers/crareview-ajp 129to133.pdf.

Rapaport, W. J. (2006c). The Turing test. In K. Brown (Ed.), Encyclopedia of Language and Linguistics,
2nd Edition, pp. Vol. 13, pp. 151–159. Oxford: Elsevier. http://www.cse.buffalo.edu/∼rapaport/Papers/
rapaport06-turingELL2.pdf.

Rapaport, W. J. (2007, Spring). Searle on brains as computers. American Philosophical Association Newslet-
ter on Philosophy and Computers 6(2), 4–9. http://c.ymcdn.com/sites/www.apaonline.org/resource/
collection/EADE8D52-8D02-4136-9A2A-729368501E43/v06n2Computers.pdf.

Rapaport, W. J. (2011a, December). A triage theory of grading: The good, the bad, and the middling.
Teaching Philosophy 34(4), 347–372. http://www.cse.buffalo.edu/∼rapaport/Papers/triage.pdf.

Rapaport, W. J. (2011b, Spring). Yes, she was! Reply to Ford’s “Helen Keller was never in a Chinese
room”. Minds and Machines 21(1), 3–17. http://www.cse.buffalo.edu/∼rapaport/Papers/Papers.by.Others/
rapaport11-YesSheWas-MM.pdf.

Rapaport, W. J. (2012a). Intensionality vs. intentionality. http://www.cse.buffalo.edu/∼rapaport/intensional.
html.

Rapaport, W. J. (2012b, January-June). Semiotic systems, computers, and the mind: How cognition could be
computing. International Journal of Signs and Semiotic Systems 2(1), 32–71. http://www.cse.buffalo.edu/
∼rapaport/Papers/Semiotic Systems, Computers, and the Mind.pdf. Revised version published as Rapa-
port 2018a.

Rapaport, W. J. (2013). How to write. http://www.cse.buffalo.edu/∼rapaport/howtowrite.html.

Rapaport, W. J. (2017a). On the relation of computing to the world. In T. M. Powers (Ed.), Philosophy
and Computing: Essays in Epistemology, Philosophy of Mind, Logic, and Ethics, pp. 29–64. Cham,
Switzerland: Springer. Preprint at http://www.cse.buffalo.edu/∼rapaport/Papers/rapaport4IACAP.pdf.

Rapaport, W. J. (2017b, Fall). Semantics as syntax. American Philosophical Association Newsletter on Phi-
losophy and Computers 17(1), 2–11. http://c.ymcdn.com/sites/www.apaonline.org/resource/collection/
EADE8D52-8D02-4136-9A2A-729368501E43/ComputersV17n1.pdf.

Rapaport, W. J. (2017c, Spring). What is computer science? American Philosophical Association Newslet-
ter on Philosophy and Computers 16(2), 2–22. https://cdn.ymaws.com/www.apaonline.org/resource/
collection/EADE8D52-8D02-4136-9A2A-729368501E43/ComputersV16n2.pdf.

Rapaport, W. J. (2018a). Syntactic semantics and the proper treatment of computationalism. In M. Danesi
(Ed.), Empirical Research on Semiotics and Visual Rhetoric, pp. 128–176. Hershey, PA: IGI Global. Ref-
erences on pp. 273–307; http://www.cse.buffalo.edu/∼rapaport/Papers/SynSemProperTrtmtCompnlism.
pdf. Revised version of Rapaport 2012b.

Rapaport, W. J. (2018b, Spring). What is a computer? A survey. Minds and Machines 28(3), 385–426.
https://cse.buffalo.edu/∼rapaport/Papers/rapaport2018-whatisacompr-MM.pdf.

Rapaport, W. J. (2019). What is Aritifical Intelligence? Journal of Artificial General Intelligence. Forth-
coming; https://cse.buffalo.edu/∼rapaport/Papers/wang.pdf.

Rapaport, W. J. and M. W. Kibby (2010). Contextual vocabulary acquisition: From algorithm to curriculum.
http://www.cse.buffalo.edu/∼rapaport/CVA/reading4CgSJnl.pdf.

Rapaport, W. J. and S. C. Shapiro (1984). Quasi-indexical reference in propositional semantic networks. In
Proceedings of the 10th International Conference on Computational Linguistics (COLING-84, Stanford
University), pp. 65–70. Morristown, NJ: Association for Computational Linguistics. https://www.aclweb.
org/anthology/P84-1016.

Rapaport, W. J., S. C. Shapiro, and J. M. Wiebe (1997). Quasi-indexicals and knowledge reports. Cognitive
Science 21, 63–107. http://csjarchive.cogsci.rpi.edu/1997v21/i01/p0063p0107/MAIN.PDF.

916 BIBLIOGRAPHY

Rees, R., C. Crawford, A. Bowyer, L. Schubert, and H. Loebner (1994). Forum: Notes on the Turing test.
Communications of the ACM 37(9), 13–15.

Reese, H. (2014a, 18 February). The joy of teaching computer science in the age
of Facebook. The Atlantic. http://www.theatlantic.com/education/archive/2014/02/
the-joy-of-teaching-computer-science-in-the-age-of-facebook/283879/.

Reese, H. (2014b, 27 February). Why study philosophy? ‘To challenge your own
point of view’. The Atlantic. http://www.theatlantic.com/education/archive/2014/02/
why-study-philosophy-to-challenge-your-own-point-of-view/283954/.

Reif, J. H. (2011, 3 June). Scaling up DNA computation. Science 332, 1156–1157. Review of Qian and
Winfree 2011.

Rendell, P. (2000). This is a Turing machine implemented in Conway’s Game of Life. http://rendell-attic.
org/gol/tm.htm.

Rendell, P. (2001). A Turing machine in Conway’s Game of Life. https://www.ics.uci.edu/∼welling/teaching/
271fall09/Turing-Machine-Life.pdf.

Rendell, P. (2010). This is a universal Turing machine (UTM) implemented in Conway’s Game of Life.
http://rendell-attic.org/gol/utm/.

Rescher, N. (1985). The Strife of Systems: An Essay on the Grounds and Implications of Philosophical
Diversity. Pittsburgh: University of Pittsburgh Press.

Rescorla, M. (2007). Church’s thesis and the conceptual analysis of computability. Notre Dame Jour-
nal of Formal Logic 48(2), 253–280. http://www.philosophy.ucsb.edu/people/profiles/faculty/cvs/papers/
church2.pdf.

Rescorla, M. (2012a, December). Are computational transitions sensitive to semantics? Australian Journal
of Philosophy 90(4), 703–721. http://www.philosophy.ucsb.edu/docs/faculty/papers/formal.pdf.

Rescorla, M. (2012b, January-March). How to integrate representation into computational modeling, and
why we should. Journal of Cognitive Science (South Korea) 13(1), 1–38. http://cogsci.snu.ac.kr/jcs/
issue/vol13/no1/01+Michael+Rescorla.pdf.

Rescorla, M. (2013, December). Against structuralist theories of computational implementation. British
Journal for the Philosophy of Science 64(4), 681–707. http://philosophy.ucsb.edu/docs/faculty/papers/
against.pdf.

Rescorla, M. (2014a, January). The causal relevance of content to computation. Philosophy and Phe-
nomenological Research 88(1), 173–208. http://www.philosophy.ucsb.edu/people/profiles/faculty/cvs/
papers/causalfinal.pdf.

Rescorla, M. (2014b). A theory of computational implementation. Synthese 191, 1277–1307. http:
//philosophy.ucsb.edu/docs/faculty/papers/implementationfinal.pdf.

Rescorla, M. (2015). The representational foundations of computation. Philosophia Mathematica 23(3),
338–366. http://www.philosophy.ucsb.edu/docs/faculty/michael-rescorla/representational-foundations.
pdf.

Rescorla, M. (2017). The computational theory of mind. In E. N. Zalta (Ed.), The Stanford Encyclopedia of
Philosophy (Spring2017 ed.). http://plato.stanford.edu/archives/spr2017/entries/computational-mind/.

Rey, G. (2012, 2nd Quarter). The Turing thesis vs. the Turing test. The Philosopher’s Magazine 57, 84–89.

Richards, R. J. (2009, September-October). The descent of man. American Scientist 97(5), 415–417. https:
//www.americanscientist.org/article/the-descent-of-man.

Richards, W. (1988). Natural Computation. Cambridge, MA: MIT Press.

BIBLIOGRAPHY 917

Rini, R. (2017, 18 April). Raising good robots. Aeon. https://aeon.co/essays/
creating-robots-capable-of-moral-reasoning-is-like-parenting.

Roberts, E. S. (2006). The Art and Science of Java. Stanford, CA: Stanford University. http://people.reed.
edu/∼jerry/121/materials/artsciencejava.pdf.

Roberts, P. and J. Knobe (2016). Interview on experimental philosophy with Joshua Knobe. Exchanges: The
Warwick Research Journal 4(1), 14–28. http://exchanges.warwick.ac.uk/index.php/exchanges/article/
view/128.

Roberts, S. (2018, 17 December). The Yoda of Silicon Valley. New York Times. https://www.nytimes.com/
2018/12/17/science/donald-knuth-computers-algorithms-programming.html.

Robertson, D. S. (2003). Phase Change: The Computer Revolution in Science and Mathematics. Oxford
University Press.

Robertson, J. I. (1979, June-July). How to do arithmetic. American Mathematical Monthly 86, 431–439.

Robinson, J. A. (1994). Logic, computers, Turing, and von Neumann. In K. Furukawa, D. Michie, and
S. Muggleton (Eds.), Machine Intelligence 13: Machine Intelligence and Inductive Learning, pp. 1–35.
Oxford: Clarendon Press. http://staffweb.worc.ac.uk/DrC/Courses%202013-14/COMP3202/Reading%
20Materials/robinson94.pdf.

Roelofs, L. and J. Buchanan (2018). Panpsychism, intuitions, and the great chain of being. Philosophi-
cal Studies. https://www.researchgate.net/publication/327605008 Panpsychism intuitions and the great
chain of being.

Rogers, Jr., H. (1959). The present theory of Turing machine computability. Journal of the Society for
Industrial and Applied Mathematics 7(1), 114–130.

Rogers, Jr., H. (1967). Theory of Recursive Functions and Effective Computability. New York: McGraw-
Hill.

Rohlf, M. (2010). Immanuel Kant. In E. N. Zalta (Ed.), Stanford Encyclopedia of Philosophy (Fall 2010 Edi-
tion). Metaphysics Research Lab, Stanford University. http://plato.stanford.edu/archives/fall2010/entries/
kant/.

Romanycia, M. H. and F. J. Pelletier (1985). What is a heuristic? Computational Intelligence 1(2), 47–58.
http://www.sfu.ca/∼jeffpell/papers/RomanyciaPelletierHeuristics85.pdf.

Rosch, E. (1978). Principles of categorization. In E. Rosch and B. B. Lloyd (Eds.), Cognition and Catego-
rization, pp. 27–48. Hillsdale, NJ: Lawrence Erlbaum Associates.

Rosch, E. and C. B. Mervis (1975). Family resemblances: Studies in the internal structure of categories.
Cognitive Psychology 7, 573–605.

Rosenberg, A. (1994). If economics isn’t science, what is it? In D. M. Hausman (Ed.), The Philosophy
of Economics: An Anthology, Second Edition, pp. 376–394. New York: Cambridge University Press.
http://philoscience.unibe.ch/documents/kursarchiv/SS07/Rosenberg1994.pdf.

Rosenberg, A. (2000). Philosophy of Science: A Contemporary Introduction. London: Routledge.

Rosenbloom, P. S. (2010, December). What is computation? Computing and computation. Ubiquity 2010.
Article 1, http://ubiquity.acm.org/article.cfm?id=1897729.

Rosenbloom, P. S. and K. D. Forbus (2019). Expanding and repositioning cognitive science. Topics in
Cognitive Science. https://doi.org/10.1111/tops.12468.

Rosenblueth, A. and N. Wiener (1945). The role of models in science. Philosophy of Science 12, 316–321.

918 BIBLIOGRAPHY

Ross, D. (1974, 5 September). Church’s thesis: What its difficulties are and are not. Journal of Philoso-
phy 71(15), 515–525.

Rosser, J. B. (1939, June). An informal exposition of proofs of Gödel’s theorems and Church’s theorem.
Journal of Symbolic Logic 4(2), 53–60.

Rosser, J. B. (1978). Logic for Mathematicians: Second Edition. Mineola, NY: Dover Publications. First
edition (1953) at https://archive.org/details/logicformathemat00ross.

Rothman, J. (2016, 9 June). What are the odds we are living in a computer sim-
ulation? The New Yorker (online). https://www.newyorker.com/books/joshua-rothman/
what-are-the-odds-we-are-living-in-a-computer-simulation.

Royce, J. (1900). The World and the Individual. London: Macmillan. https://archive.org/details/
worldindividual00royciala.

Rubinoff, M. (1953, October). Analogue vs. digital computers—a comparison. Proceedings of the
IRE 41(10), 1254–1262.

Rudin, W. (1964). Principles of Mathematical Analysis, Second Edition. New York: McGraw-Hill.

Ruff, C. (2016, 5 February). Computer science, meet humanities: In new majors, opposites attract. Chronicle
of Higher Education 62(21), A19. http://chronicle.com/article/Computer-Science-Meet/235075.

Rupp, N. A. (9 August 2003). Computer science is philosophy. https://web.archive.org/web/
20080906232002/https://weblogs.java.net/blog/n alex/archive/2003/08/computer scienc.html.

Russell, B. (1912). The Problems of Philosophy. London: Oxford University Press (1959).

Russell, B. (1917). Mysticism and Logic and Other Essays. London: George Allen & Unwin. http://archive.
org/details/mysticism00russuoft.

Russell, B. (1927). The Analysis of Matter. Nottingham, UK: Spokesman (2007). https://archive.org/details/
in.ernet.dli.2015.221533.

Russell, B. (1936). The limits of empiricism. Proceedings of the Aristotelian Society, New Series 36, 131–
150.

Russell, B. (1946). Philosophy for laymen. In B. Russell (Ed.), Unpopular Essays. London: George Allen
& Unwin. http://www.users.drew.edu/∼jlenz/br-lay-philosophy.html.

Russell, S. (1995). Rationality and intelligence. Artificial Intelligence 94, 57–77. http://www.cs.berkeley.
edu/∼russell/papers/aij-cnt.pdf.

Russell, S. J. and P. Norvig (2003). Artificial Intelligence: A Modern Approach; Second Edition. Upper
Saddle River, NJ: Pearson Education.

Russo, J. (1986). Saturn’s rings: What GM’s Saturn project is really about. Cornell University Labor
Research Review 1(9). http://digitalcommons.ilr.cornell.edu/cgi/viewcontent.cgi?article=1084&context=
lrr.

Rutenberg, J. (2019, 27 January). The tabloid myths of Jennifer Aniston and Don-
ald Trump. New York Times. https://www.nytimes.com/2019/01/27/business/media/
jennifer-aniston-donald-trump-tabloid-media-pregnancy.html.

Ryan, B. (1991, February). Dynabook revisited with Alan Kay. Byte 16(2), 203–204, 206–208.

Ryle, G. (1945). Knowing how and knowing that. Proceedings of the Aristotelian Society, New Series 46,
1–16. http://www.informationphilosopher.com/solutions/philosophers/ryle/Ryle KnowHow.pdf.

BIBLIOGRAPHY 919

Sackur, Jérôme, S. and S. Dehaene (2009). The cognitive architecture for chaining of two men-
tal operations. Cognition 111, 187–211. http://www.unicog.org/publications/SackurDehaene
ChainingOfArithmeticOperations Cognition2009.pdf.

Sale, T. (nd). The Colossus rebuild project. http://www.codesandciphers.org.uk/lorenz/rebuild.htm.

Salmon, W. C. (1984). Scientific Explanation and the Causal Structure of the World. Princeton: Princeton
University Press.

Salter, J. (2010, 14 January). The art of the ditch. New York Review of Books 57(1). http://www.nybooks.
com/articles/archives/2010/jan/14/the-art-of-the-ditch/.

Samet, J. and D. Zaitchik (2017). Innateness and contemporary theories of cognition. In E. N. Zalta (Ed.),
The Stanford Encyclopedia of Philosophy (Spring 2017 ed.). Metaphysics Research Lab, Stanford Uni-
versity. https://plato.stanford.edu/archives/spr2017/entries/innateness-cognition/.

Sammet, J. E. (1992, April). Farewell to Grace Hopper—end of an era! Communications of the ACM 35(4),
128–131.

Samuel, A. L. (1953, October). Computing bit by bit, or digital computers made easy. Proceedings of the
IRE 41(10), 1223–1230.

Samuelson, P. (1988, September). Is copyright law steering the right course? IEEE Software, 78–86.

Samuelson, P. (1989, May). Why the look and feel of software user interfaces should not be pro-
tected by copyright law. Communications of the ACM 32(5), 563–572. http://www.foo.be/andria/docs/
p563-samuelson.pdf.

Samuelson, P. (1990, August). Should program algorithms be patented? Communications of the ACM 33(8),
23–27. https://www.law.berkeley.edu/php-programs/faculty/facultyPubsPDF.php?facID=346&pubID=
94.

Samuelson, P. (1991, October). Digital media and the law. Communications of the ACM 34(10), 23–28.

Samuelson, P. (2003, October). Unsolicited communications as trespass? Communications of the
ACM 46(10), 15–20. http://people.ischool.berkeley.edu/∼pam/papers/acm vol46 p15.pdf.

Samuelson, P. (2007a, October). Does copyright law need to be reformed? Communications of the
ACM 50(10), 19–23.

Samuelson, P. (2007b, June). Software patents and the metaphysics of section 271(f). Communications
of the ACM 50(6), 15–19. https://www.law.berkeley.edu/php-programs/faculty/facultyPubsPDF.php?
facID=346&pubID=187.

Samuelson, P. (2008, July). Revisiting patentable subject matter. Communications of the ACM 51(7), 20–22.

Samuelson, P. (2013, November). Is software patentable? Communications of the ACM 56(11), 23–25.
https://www.law.berkeley.edu/php-programs/faculty/facultyPubsPDF.php?facID=346&pubID=257.

Samuelson, P. (2015, March). Copyrightability of Java APIs revisited. Communications of the ACM 58(3),
22–24. http://radar.oreilly.com/2014/11/copyrightability-of-java-apis-revisited.html.

Samuelson, P., R. Davis, M. D. Kapor, and J. Reichman (1994, December). A manifesto concerning the legal
protection of computer programs. Columbia Law Review 94(8), 2308–2431. http://scholarship.law.duke.
edu/cgi/viewcontent.cgi?article=1783&context=faculty scholarship.

Sanford, N. (1967). Where Colleges Fail. San Francisco: Jossey-Bass.

Savage, N. (2016, March). When computers stand in the schoolhouse door. Communications of the
ACM 59(3), 19–21. http://delivery.acm.org/10.1145/2880000/2875029/p19-savage.pdf.

920 BIBLIOGRAPHY

Sayre, K. M. (1986, March). Intentionality and information processing: An alternative model for cognitive
science. Behavioral and Brain Sciences 9(1), 121–165.

Scarantino, A. and G. Piccinini (2010, April). Information without truth. Metaphilosophy 41(3), 313–330.

Schächter, V. (1999, January). How does concurrency extend the paradigm of computation? The
Monist 82(1), 37–57.

Schagrin, M. L., W. J. Rapaport, and R. R. Dipert (1985). Logic: A Computer Approach. New York:
McGraw-Hill.

Schank, R. C. (1983, Winter-Spring). The current state of AI: One man’s opinion. AI Magazine 4(1), 3–8.

Scherlis, W. L. and D. S. Scott (1983). First steps towards inferential programming. In R. Mason (Ed.),
Information Processing 83, pp. 199–212. JFIP and Elsevier North-Holland. http://repository.cmu.edu/
cgi/viewcontent.cgi?article=3542&context=compsci; reprinted in Colburn et al. 1993, pp. 99–133.

Scheutz, M. (1998). Implementation: Computationalism’s weak spot. Conceptus Journal of Philoso-
phy 31(79), 229–239. http://hrilab.tufts.edu/publications/scheutz98conceptus.pdf.

Scheutz, M. (1999). When physical systems realize functions. Minds and Machines 9, 161–196. http:
//hrilab.tufts.edu/publications/scheutz99mm.pdf.

Scheutz, M. (2001). Computational versus causal complexity. Minds and Machines 11, 543–566. http:
//citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.21.8293&rep=rep1&type=pdf.

Scheutz, M. (2012, January-March). What it is not to implement a computation: A critical analysis of
Chalmers’ notion of implemention. Journal of Cognitive Science (South Korea) 13(1), 75–106. http:
//cogsci.snu.ac.kr/jcs/issue/vol13/no1/04 Matthias Scheutz.pdf.

Schmidhuber, J. (2002). Zuse’s thesis: The universe is a computer. http://www.idsia.ch/∼juergen/
digitalphysics.html.

Schmidhuber, J. (2006, July-August). The computational universe. American Scientist 94,
364ff. https://web.archive.org/web/20130314004426/http://www.americanscientist.org/bookshelf/pub/
the-computational-universe.

Schneider, D. (2007, May-June). Neatness counts: Messy computer code is normally frowned on—but
not always. Amerian Scientist, 213–214. https://web.archive.org/web/20160628161101/http://www.
americanscientist.org/issues/pub/neatness-counts.

Schulman, A. N. (2009, Winter). Why minds are not like computers. The New Atlantis, 46–68. http:
//www.thenewatlantis.com/publications/why-minds-are-not-like-computers.

Schweizer, P. (2017). Cognitive computation sans representation. In T. Powers (Ed.), Philosophy and
Computing: Essays in Epistemology, Philosophy of Mind, Logic, and Ethics,. Springer. http://www.
research.ed.ac.uk/portal/files/29364320/Schweizer IACAP15 1.pdf.

Schwitzgebel, E. (2015). Belief. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Summer
2015 ed.). Stanford University. https://plato.stanford.edu/archives/sum2015/entries/belief/.

Schwitzgebel, E. (9 January 2012). For all x, there’s philosophy of x. http://schwitzsplinters.blogspot.com/
2012/01/for-all-x-theres-philosophy-of-x.html.

Scott, J. and A. Bundy (2015, December). Creating a new generation of computational thinkers. Communi-
cations of the ACM 58(12), 37–40.

Seabrook, J. (2007a, 14 May). Fragmentary knowledge. The New Yorker, 94–102.

Seabrook, J. (2007b). Piees of history. https://web.archive.org/web/20071015201931/http://www.newyorker.
com/online/2007/05/14/slideshow 070514 antikythera.

BIBLIOGRAPHY 921

Seabrook, J. (2019, 14 October). The next word. The New Yorker, 52–63. https://www.newyorker.
com/magazine/2019/10/14/can-a-machine-learn-to-write-for-the-new-yorker. See also follow-up letters
at https://www.newyorker.com/magazine/2019/11/11/letters-from-the-november-11-2019-issue.

Searle, J. R. (1969). Speech Acts: An Essay in the Philosophy of Language. Cambridge, UK: Cambridge
University Press.

Searle, J. R. (1980). Minds, brains, and programs. Behavioral and Brain Sciences 3, 417–457.

Searle, J. R. (1982, 29 April). The myth of the computer. New York Review of Books, 3–6. See correspon-
dence, same journal, 24 June 1982, pp. 56–57.

Searle, J. R. (1983). Intentionality: An Essay in the Philosophy of Mind. Cambridge, UK: Cambridge
University Press.

Searle, J. R. (1984). Minds, Brains and Science. Cambridge, MA: Harvard University Press.

Searle, J. R. (1990, November). Is the brain a digital computer? Proceedings and Addresses of the American
Philosophical Association 64(3), 21–37. Reprinted in slightly revised form as Searle 1992, Ch. 9.

Searle, J. R. (1992). The Rediscovery of the Mind. Cambridge, MA: MIT Press.

Searle, J. R. (1995). The Construction of Social Reality. New York: Free Press.

Seligman, J. (2002, May). The scope of Turing’s analysis of effective procedures. Minds and Machines 12(2),
203–220.

Sellars, W. (1963). Philosophy and the scientific image of man. In Science, Perception and Reality, pp. 1–40.
London: Routledge & Kegan Paul. http://www.ditext.com/sellars/psim.html.

Shagrir, O. (1999). What is computer science about? The Monist 82(1), 131–149.

Shagrir, O. (2001, April). Content, computation and externalism. Mind 110(438), 369–400. http://moon.cc.
huji.ac.il/oron-shagrir/papers/Content Computation and Externalism.pdf.

Shagrir, O. (2002, May). Effective computation by humans and machines. Minds and Machines 12(2),
221–240.

Shagrir, O. (2006). Gödel on Turing on computability. In A. Olszewski, J. Wołenski, and R. Janusz (Eds.),
Church’s Thesis after 70 Years, pp. 393–419. Ontos-Verlag. Page references to online version at http:
//edelstein.huji.ac.il/staff/shagrir/papers/Goedel on Turing on Computability.pdf.

Shagrir, O. (2012a, April-June). Can a brain possess two minds? Journal of Cognitive Science (South
Korea) 13(2), 145–165. http://cogsci.snu.ac.kr/jcs/issue/vol13/no2/02Oron+Shagrir.pdf.

Shagrir, O. (2012b, Summer). Computation, implementation, cognition. Minds and Machines 22(2), 137–
148.

Shagrir, O. (2012c). Structural representations and the brain. British Journal for the Philosophy of Sci-
ence 63, 519–545. Preprint at https://oronshagrir.huji.ac.il/sites/default/files/oronshagrir/files/structural
representations and the brain.pdf.

Shagrir, O. (2017, July). Review of Piccinini 2015. Philosophy of Science 84(3), 604–
612. Preprint at https://oronshagrir.huji.ac.il/sites/default/files/oronshagrir/files/review of physical
computation a mechanistic account.pdf.

Shagrir, O. (2018a, Spring). The brain as an input-output model of the world. Minds & Machines 28(1), 53–
75. http://oronshagrir.huji.ac.il/sites/default/files/oronshagrir/files/the brain as an input-output model
of the world.pdf.

Shagrir, O. (2018b). In defense of the semantic view of computation. Synthese. https://doi.org/10.1007/
s11229-018-01921-z.

922 BIBLIOGRAPHY

Shagrir, O. and W. Bechtel (2015). Marr’s computational-level theories and delineating phenomena. In
D. Kaplan (Ed.), Integrating Psychology and Neuroscience: Prospects and Problems. Oxford: Ox-
ford University Press. http://philsci-archive.pitt.edu/11224/1/shagrir and bechtel.Marr’s Computational
Level and Delineating Phenomena.pdf.

Shannon, C. E. (1937). A symbolic analysis of relay and switching circuits. Technical report, MIT Depart-
ment of Electrical Engineering, Cambridge, MA. MS thesis, 1940; http://hdl.handle.net/1721.1/11173.

Shannon, C. E. (1948, July and October). A mathematical theory of communication. The Bell System Techni-
cal Journal 27, 379–423, 623–656. http://worrydream.com/refs/Shannon%20-%20A%20Mathematical%
20Theory%20of%20Communication.pdf.

Shannon, C. E. (1950, March). Programming a computer for playing chess. Philosophical Magazine,
Ser. 7 41(314). http://vision.unipv.it/IA1/ProgrammingaComputerforPlayingChess.pdf.

Shannon, C. E. (1953, October). Computers and automata. Proceedings of the Institute of Radio Engi-
neers 41(10), 1234–1241. http://tinyurl.com/yalw2rx3.

Shapiro, E. and Y. Benenson (2006, May). Bringing DNA computers to life. Scientific American 294(5),
44–51. http://www.wisdom.weizmann.ac.il/∼udi/papers/ShapiroBenensonMay06.pdf.

Shapiro, F. R. (1985, 24 March). Debugging etymologies. New York Times. letter to the editor, http:
//www.nytimes.com/1985/03/24/books/l-debugging-etymologies-114833.html.

Shapiro, F. R. (2000, April-June). Origin of the term software: Evidence from the JSTOR electronic journal
archive. IEEE Annals of the History of Computing 22(2), 69–71.

Shapiro, S. (1983). Remarks on the development of computability. History and Philosophy of Logic 4(1),
203–220.

Shapiro, S. (1993). Understanding Church’s thesis, again. Acta Analytica 11, 59–77.

Shapiro, S. (2009, March). We hold these truths to be self-evident: But what do we mean by that? Review of
Symbolic Logic 2(1), 175–207. http://www.pgrim.org/philosophersannual/29articles/shapirowehold.pdf.

Shapiro, S. (2013). The open texture of computability. In B. J. Copeland, C. J. Posy, and O. Shagrir (Eds.),
Computability: Turing, Gödel, Church, and Beyond, pp. 153–181. Cambridge, MA: MIT Press.

Shapiro, S. C. (1977). Representing numbers in semantic networks: Prolegomena. In Proceedings of the
5th International Joint Conference on Artificial Intelligence, pp. 284. Los Altos, CA: Morgan Kaufmann.
http://www.cse.buffalo.edu/∼shapiro/Papers/sha77b.

Shapiro, S. C. (1989). The Cassie projects: An approach to natural language competence. In J. Martins
and E. Morgado (Eds.), EPIA 89: 4th Portugese Conference on Artificial Intelligence Proceedings, pp.
362–380. Berlin: Springer-Verlag Lecture Notes in Artificial Intelligence 390. http://www.cse.buffalo.
edu/sneps/epia89.pdf.

Shapiro, S. C. (1992a). Artificial Intelligence. In S. C. Shapiro (Ed.), Encyclopedia of Artificial Intelligence,
2nd edition, pp. 54–57. New York: John Wiley & Sons. https://www.cse.buffalo.edu/∼shapiro/Papers/ai.
pdf. Revised version in Anthony Ralston, Edwin D. Reilly & David Hemmendinger (eds.), Encyclopedia
of Computer Science, 4th Edition (New York: Grove’s Dictionaries, 1993): 89–93, https://www.cse.
buffalo.edu/∼shapiro/Papers/ai-eofcs.pdf.

Shapiro, S. C. (1992b). Common Lisp: An Interactive Approach. New York: W.H. Freeman. https://www.
cse.buffalo.edu/∼shapiro/Commonlisp/.

Shapiro, S. C. (1995, November). Computationalism. Minds and Machines 5(4), 517–524. http://www.cse.
buffalo.edu/∼shapiro/Papers/computationalism.pdf.

BIBLIOGRAPHY 923

Shapiro, S. C. (1998). Embodied Cassie. In Cognitive Robotics: Papers from the 1998 AAAI Fall Symposium,
pp. 136–143. Menlo Park, CA: AAAI Press. Technical Report FS-98-02, http://www.cse.buffalo.edu/
∼shapiro/Papers/embodiedcassie.pdf.

Shapiro, S. C. (2001). Computer science: The study of procedures. Technical report, Department of Com-
puter Science and Engineering, University at Buffalo, Buffalo, NY. http://www.cse.buffalo.edu/∼shapiro/
Papers/whatiscs.pdf; see also http://www.cse.buffalo.edu/∼shapiro/Courses/CSE115/notes2.html.

Shapiro, S. C. and S. C. Kwasny (1975, August). Interactive consulting via natural language. Communica-
tions of the ACM 18(8), 459–462. http://www.cse.buffalo.edu/∼shapiro/Papers/shakwa75.pdf.

Shapiro, S. C. and W. J. Rapaport (1987). SNePS considered as a fully intensional propositional semantic
network. In N. Cercone and G. McCalla (Eds.), The Knowledge Frontier: Essays in the Representation of
Knowledge, pp. 262–315. New York: Springer-Verlag. https://www.cse.buffalo.edu/∼rapaport/676/F01/
shapiro.rapaport.87.pdf.

Shapiro, S. C. and W. J. Rapaport (1991). Models and minds: Knowledge representation for natural-language
competence. In R. Cummins and J. Pollock (Eds.), Philosophy and AI: Essays at the Interface, pp. 215–
259. Cambridge, MA: MIT Press. http://www.cse.buffalo.edu/∼rapaport/Papers/mandm.tr.pdf.

Shapiro, S. C. and W. J. Rapaport (1995). An introduction to a computational reader of narratives. In J. F.
Duchan, G. A. Bruder, and L. E. Hewitt (Eds.), Deixis in Narrative: A Cognitive Science Perspective,
pp. 79–105. Hillsdale, NJ: Lawrence Erlbaum Associates. http://www.cse.buffalo.edu/∼rapaport/Papers/
shapiro.rapaport.95.pdf.

Shapiro, S. C., S. Srihari, and B. Jayaraman (December 1992). email discussion. http://www.cse.buffalo.
edu/∼rapaport/scs.txt.

Shapiro, S. C. and M. Wand (1976, November). The relevance of relevance. Technical Report 46, Indiana
University Computer Science Department, Bloomington, IN. http://www.cs.indiana.edu/pub/techreports/
TR46.pdf.

Shaw, A., V. Li, and K. R. Olson (2012, November-December). Children apply principles of physical owner-
ship to ideas. Cognitive Science 36(8), 1383–1403. https://depts.washington.edu/uwkids/Shaw.Li.Olson.
2012.pdf.

Shelley, M. W. (1818). Frankenstein; or, the Modern Prometheus. http://www.literature.org/authors/
shelley-mary/frankenstein/.

Shepherdson, J. and H. Sturgis (1963, April). Computability of recursive functions. Journal of the
ACM 10(2), 217–255.

Sheraton, M. (1981, 2 May). The elusive art of writing precise recipes. New York Times. http://www.nytimes.
com/1981/05/02/style/de-gustibus-the-elusive-art-of-writing-precise-recipes.html.

Shieber, S. M. (1994a). Lessons from a restricted Turing test. Communications of the ACM 37(6), 70–78.

Shieber, S. M. (1994b). On Loebner’s lessons. Communications of the ACM 37(6), 83–84.

Shieber, S. M. (Ed.) (2004). The Turing Test: Verbal Behavior as the Hallmark of Intelligence. Cambridge,
MA: MIT Press.

Shieber, S. M. (2007, December). The Turing Test as interactive proof. Noûs 41(4), 686–713. https:
//dash.harvard.edu/bitstream/handle/1/2027203/turing-interactive-proof.pdf.

Shieh, D. and S. Turkle (2009, 27 March). The trouble with computer simulations: Linked in with Sherry
Turkle. Chronicle of Higher Education, A14. http://chronicle.com/article/The-Trouble-With-Computer/
5386.

924 BIBLIOGRAPHY

Shladover, S. E. (2016, June). What “self-driving” cars will really look like. Scientific Amer-
ican. http://endofdriving.org/wp-content/uploads/2016/10/What Self-Driving Cars Will Really Look
Like-ShladoverScientificAmericanJune2016.pdf.

Shneiderman, B. (2007, June). Web science: A provocative invitation to computer science. Communications
of the ACM 50(6), 25–27. https://www.academia.edu/2900348/Viewpoint-Web Science A Provocative
Invitation to Computer Science?auto=download.

Shoenfield, J. R. (1967). Mathematical Logic. Reading, MA: Addison-Wesley. https://www.karlin.mff.cuni.
cz/∼krajicek/shoenfield.pdf.

Shoham, Y. (2016, January). Why knowledge representation matters. Communications of the ACM 59(1),
47–49. http://cacm.acm.org/magazines/2016/1/195730-why-knowledge-representation-matters/fulltext.

Shustek, L. (2009, March). An interview with C.A.R. Hoare. Communications of the ACM 52(3), 38–41.

Sieg, W. (1994). Mechanical procedures and mathematical experience. In A. George (Ed.), Mathematics
and Mind, pp. 71–117. New York: Oxford University Press. http://repository.cmu.edu/cgi/viewcontent.
cgi?article=1248&context=philosophy.

Sieg, W. (1997, June). Step by recursive step: Church’s analysis of effective calculability. Bulletin of
Symbolic Logic 3(2), 154–180.

Sieg, W. (2000, 28 February). Calculations by man and machine: Conceptual analysis. Technical Re-
port CMU-PHIL-104, Carnegie-Mellon University Department of Philosophy, Pittsburgh, PA. http:
//repository.cmu.edu/philosophy/178.

Sieg, W. (2006, June). Gödel on computability. Philosophia Mathematica 14, 189–207. Page references to
preprint at http://repository.cmu.edu/cgi/viewcontent.cgi?article=1112&context=philosophy.

Sieg, W. (2007, June). On mind & Turing’s machines. Natural Computing 6(2), 187–205. https://www.cmu.
edu/dietrich/philosophy/docs/seig/OnmindTuringsMachines.pdf.

Sieg, W. (2008). Church without dogma: Axioms for computability. In S. Cooper, B. Löwe, and A. Sorbi
(Eds.), New Computational Paradigms: Changing Conceptions of What Is Computable, pp. 139–152.
Springer. https://www.cmu.edu/dietrich/philosophy/docs/tech-reports/175 Sieg.pdf.

Sieg, W. and J. Byrnes (1999, January). An abstract model for parallel computation: Gandy’s thesis. The
Monist 82(1), 150–164.

Siegelmann, H. T. (1995, 28 April). Computation beyond the Turing limit. Science 268(5210), 545–548.
https://binds.cs.umass.edu/papers/1995 Siegelmann Science.pdf.

Silver, D. (2016, September-October). Mathematical induction and the nature of British miracles. American
Scientist 104(5), 296ff.

Silver, D. et al. (2016, 28 January). Mastering the game of Go with deep neural networks and tree search.
Nature 539, 484–489.

Silver, D. et al. (2018, 7 December). A general reinforcement learning algorithm that masters chess, shogi,
and Go through self-play. Science 362(6419), 1140–1144.

Simon, H. A. (1947). Administrative Behavior. New York: Macmillan.

Simon, H. A. (1959, June). Theories of decision-making in economics and behavioral science. American
Economic Review 49(3), 253–283.

Simon, H. A. (1962, 12 December). The architecture of complexity. Proceedings of the American Philo-
sophical Society 106(6), 467–482. https://www.cc.gatech.edu/classes/AY2013/cs7601 spring/papers/
Simon-Complexity.pdf; reprinted as Simon 1996a, Ch. 8.

BIBLIOGRAPHY 925

Simon, H. A. (1966). Thinking by computers. In R. G. Colodny (Ed.), Mind and Cosmos: Essays in
Contemporary Science and Philosophy, pp. 3–21. Pittsburgh: University of Pittsburgh Press. http://
digitalcollections.library.cmu.edu/awweb/awarchive?type=file&item=39897.

Simon, H. A. (1977, 18 March). What computers mean for man and society. Science 195(4283), 1186–1191.

Simon, H. A. (1978). Rational decision-making in business organizations. In A. Lindbeck (Ed.), No-
bel Lectures, Economics 1969–1980, pp. 343–371. Singapore: World Scientific, 1992. http://www.
nobelprize.org/nobel prizes/economic-sciences/laureates/1978/simon-lecture.pdf. Also, American Eco-
nomic Review 69(4) (1979): 493–513.

Simon, H. A. (1996a). Computational theories of cognition. In W. O’Donohue and R. F. Kitchener (Eds.),
The Philosophy of Psychology, pp. 160–172. London: SAGE Publications.

Simon, H. A. (1996b). The Sciences of the Artificial, Third Edition. Cambridge, MA: MIT Press.

Simon, H. A. and A. Newell (1956). Models: Their uses and limitations. In L. D. White (Ed.), The State
of the Social Sciences, pp. 66–83. Chicago: University of Chicago Press. http://digitalcollections.library.
cmu.edu/awweb/awarchive?type=file&item=356856.

Simon, H. A. and A. Newell (1958, January-February). Heuristic problem solving: The next advance in
operations research. Operations Research 6(1), 1–10.

Simon, H. A. and A. Newell (1962). Simulation of human thinking. In M. Greenberger (Ed.), Computers
and the World of the Future, pp. 94–114. Cambridge, MA: MIT Press. http://digitalcollections.library.
cmu.edu/awweb/awarchive?type=file&item=33601.

Simon, T. W. (1990). Artificial methodology meets philosophy. In D. Partridge and Y. Wilks (Eds.), The
Foundations of Artificial Intelligence: A Sourcebook, pp. 155–164. Cambridge, UK: Cambridge Univer-
sity Press.

Simonite, T. (2009, 29 August). Soap bubbles to take the drag out of future cars. New Scientist. http:
//www.newscientist.com/article/dn17706-soap-bubbles-to-take-the-drag-out-of-future-cars.html.

Simonite, T. (2017, 18 October). AI experts want to end ‘black box’ algorithms in government. Wired.
https://www.wired.com/story/ai-experts-want-to-end-black-box-algorithms-in-government/.

Simons, P. M. and D. Michael (Eds.) (2009). Philosophy and Engineering. Special issue of The Monist 92(3)
(July). https://www.themonist.com/issues-1920-present/issuedata-2000-2009.

Singer, N. and C. Metz (2019, 19 December). Many facial-recognition systems are biased, says U.S. study.
New York Times. https://www.nytimes.com/2019/12/19/technology/facial-recognition-bias.html.

Skidelsky, R. (2014, 3 April). The programmed prospect before us. New York Review of Books 61(6), 35–37.
http://www.skidelskyr.com/site/article/the-programmed-prospect-before-us/.

Skinner, D. (2006, Spring). The age of female computers. The New Atlantis, 96–103. http:
//www.thenewatlantis.com/publications/the-age-of-female-computers and http://www.thenewatlantis.
com/docLib/TNA12-Skinner.pdf. Review of Grier 2005.

Skow, B. (2007). Are shapes intrinsic? Philosophical Studies 133, 111–130.

Slagle, J. R. (1971). Artificial Intelligence: The Heuristic Programming Approach. New York: McGraw-Hill.

Slocum, J. (1985). A survey of machine translation: Its history, current status, and future prospects. Com-
putational Linguistics 11(1), 1–17. http://www.aclweb.org/anthology/J85-1001.

Sloman, A. (1971). Interactions between philosophy and Artificial Intelligence. Artificial Intelligence 2,
209–225. http://www.cs.bham.ac.uk/research/projects/cogaff/sloman-analogical-1971/.

926 BIBLIOGRAPHY

Sloman, A. (1978). The Computer Revolution in Philosophy: Philosophy, Science and Models of Mind. At-
lantic Highlands, NJ: Humanities Press. Online with afterthoughts at http://www.cs.bham.ac.uk/research/
projects/cogaff/crp/crp-afterthoughts.html.

Sloman, A. (1996). Beyond Turing equivalence. In P. J. Millican and A. Clark (Eds.), Machines and
Thought: The Legacy of Alan Turing, Vol. I, pp. 179–219. Oxford: Clarendon Press. http://www.cs.bham.
ac.uk/research/projects/cogaff/Sloman.turing90.pdf.

Sloman, A. (1998, 25 January). Supervenience and implementation: Virtual and physical machines. http:
//www.cs.bham.ac.uk/research/projects/cogaff/Sloman.supervenience.and.implementation.pdf.

Sloman, A. (2002). The irrelevance of Turing machines to AI. In M. Scheutz (Ed.), Computationalism: New
Directions, pp. 87–127. Cambridge, MA: MIT Press. Page references to preprint at http://www.cs.bham.
ac.uk/research/projects/cogaff/sloman.turing.irrelevant.pdf.

Sloman, A. (2008). Why virtual machines really matter—for several disciplines. http://www.cs.bham.ac.uk/
research/projects/cogaff/talks/information.pdf.

Sloman, A. (2019a, 29 June). Jane Austen’s concept of information (not Claude Shannon’s). http://www.cs.
bham.ac.uk/research/projects/cogaff/misc/austen-info.html.

Sloman, A. (2019b, 18 September). What is it like to be a rock? http://www.cs.bham.ac.uk/research/projects/
cogaff/misc/rock.

Sloman, A. (6 August 1989). Contribution to newsgroup discussion of “Is there a definition of AI?”. Article
4702 of comp.ai, http://www.cse.buffalo.edu/∼rapaport/defs.txt.

Sloman, A. (7 January 2010). Why symbol-grounding is both impossible and unnec-
essary, and why symbol-tethering based on theory-tethering is more powerful anyway.
http://www.cs.bham.ac.uk/research/cogaff/talks/#models.

Sloman, A. and M. Croucher (1981). Why robots will have emotions. In Proceedings of IJCAI 1981, pp.
197–202. IJCAI. http://www.ijcai.org/Proceedings/81-1/Papers/039.pdf.

Smith, A. (1776). Wealth of Nations. http://www.econlib.org/library/Smith/smWN.html. For “On the Divi-
sion of Labor” (Book I, Ch. I), link to http://www.econlib.org/library/Smith/smWNCover.html.

Smith, A. R. (2014a, 2 August). A business card universal Turing machine. http://alvyray.com/
CreativeCommons/BizCardUniversalTuringMachine v2.2.pdf.

Smith, A. R. (2014b, September). His just deserts: A review of four books. Notices of the AMS 61(8),
891–895. http://www.ams.org/notices/201408/201408-full-issue.pdf.

Smith, A. R. (2014c). Turingtoys.com. http://alvyray.com/CreativeCommons/TuringToysdotcom.htm.

Smith, B. C. (1985, January). Limits of correctness in computers. ACM SIGCAS Computers and Society 14–
15(1–4), 18–26. Also published as Technical Report CSLI-85-36 (Stanford, CA: Center for the Study of
Language & Information); reprinted in Charles Dunlop & Rob Kling (eds.), Computerization and Contro-
versy (San Diego: Academic Press, 1991): 632–646; reprinted in Timothy R. Colburn, James H. Fetzer,
& Terry L. Rankin (eds.), Program Verification: Fundamental Issues in Computer Science (Dordrecht,
Holland: Kluwer Academic Publishers, 1993): 275–293.

Smith, B. C. (1987). The correspondence continuum. Technical Report CSLI-87-71, Center for the Study of
Language & Information, Stanford, CA.

Smith, B. C. (1996). On the Origin of Objects. Cambridge, MA: MIT Press.

Smith, B. C. (2002). The foundations of computing. In M. Scheutz (Ed.), Computationalism:
New Directions, pp. 23–58. Cambridge, MA: MIT Press. https://pdfs.semanticscholar.org/20d3/
845f972234c9e375e672869aed4d58db0f5c.pdf.

BIBLIOGRAPHY 927

Smith, B. C. (2019). The Promise of Artificial Intelligence: Reckoning and Judgment. Cambridge, MA: MIT
Press.

Smith, C. S. (2020, 2 January). Dealing with bias in artificial intelligence. New York Times. https://www.
nytimes.com/2019/11/19/technology/artificial-intelligence-bias.html.

Smith, P. (4 December 2010). Answer to “What good is it to study philosophy?”. AskPhilosophers.com,
http://www.askphilosophers.org/question/3710.

Smith, R. D. (2000). Simulation. In A. Ralston, E. D. Reilly, and D. Hemmendinger (Eds.), Encyclopedia
of Computer Science, 4th Edition, pp. 1578–1587. London: Nature Publishing Group.

Soames, S. (2016, 7 March). Philosophy’s true home. New York Times. http://opinionator.blogs.nytimes.
com/2016/03/07/philosophys-true-home/.

Soare, R. I. (1999). The history and concept of computability. In E. Griffor (Ed.), Handbook of Computability
Theory, pp. 3–36. Amsterdam: North-Holland. Page references are to the preprint at http://www.people.
cs.uchicago.edu/∼soare/History/handbook.pdf.

Soare, R. I. (2009). Turing oracle machines, online computing, and three displacements in computability
theory. Annals of Pure and Applied Logic 160, 368–399. Preprint at http://www.people.cs.uchicago.
edu/∼soare/History/turing.pdf; published version at http://ac.els-cdn.com/S0168007209000128/
1-s2.0-S0168007209000128-main.pdf? tid=8258a7e2-01ef-11e4-9636-00000aab0f6b&acdnat=
1404309072 f745d1632bb6fdd95f711397fda63ee2. A slightly different version appears as Soare
2013a.

Soare, R. I. (2012). Formalism and intuition in computability. Philosophical Transactions of the Royal
Society A 370, 3277–3304. doi:10.1098/rsta.2011.0335.

Soare, R. I. (2013a). Interactive computing and relativized computability. In B. J. Copeland, C. J. Posy, and
O. Shagrir (Eds.), Computability: Turing, Gödel, Church, and Beyond, pp. 203–260. Cambridge, MA:
MIT Press. A slightly different version appeared as Soare 2009.

Soare, R. I. (2013b). Turing and the art of classical computability. In S. B. Cooper and J. van Leeuwen (Eds.),
Alan Turing: His Work and Impact, pp. 65–70. Elsevier. http://www.people.cs.uchicago.edu/∼soare/Art/.

Soare, R. I. (2016). Turing Computability: Theory and Applications. Berlin: Springer.

Soni, J. and R. Goodman (2017, 12 July). A man in a hurry: Claude Shannon’s New York years. IEEE Spec-
trum. http://spectrum.ieee.org/geek-life/history/a-man-in-a-hurry-claude-shannons-new-york-years.

Sparrow, R. (2004). The Turing triage test. Ethics and Information Technology 6(4), 203–213. http://
citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.463.261&represent=rep1&type=pdf.

Sparrow, R. (2007). Killer robots. Journal of Applied Philosophy 24(1), 62–77. http://wmpeople.wm.edu/
asset/index/cvance/sparrow.

Sparrow, R. (2014). The Turing triage test: When is a robot worthy of moral respect? The Critique.
http://www.thecritique.com/articles/the-turing-triage-test-when-is-a-robot-worthy-of-moral-respect/.

Sprevak, M. (2010, September). Computation, individuation, and the received view on representation. Stud-
ies in History and Philosophy of Science 41(3), 260–270.

Sprevak, M. (2018). Triviality arguments about computational implementation. In M. Sprevak and C. Matteo
(Eds.), The Routledge Handbook of the Computational Mind, pp. 175–191. London: Routledge. https:
//marksprevak.com/pdf/paper/Sprevak---Triviality%20arguments%20about%20implementation.pdf.

Sprigman, C. J. (2015, May). Oracle v. Google: a high-stakes legal fight for the software industry. Commu-
nications of the ACM 58(5), 27–29.

928 BIBLIOGRAPHY

Spruit, L. and G. Tamburrini (1991). Reasoning and computation in Leibniz. History and Philosophy of
Logic 12, 1–14.

Squires, R. (1970, October). On one’s mind. Philosophical Quarterly 20(81), 347–356.

Srihari, S. N. (2010, 29 November). Beyond C.S.I.: The rise of computational forensics. IEEE Spectrum.
http://spectrum.ieee.org/computing/software/beyond-csi-the-rise-of-computational-forensics.

Stairs, A. (2014). Response to question about the definition of ‘magic’. http://www.askphilosophers.org/
question/5735.

Standage, T. (1998). The Victorian Internet: The Remarkable Story of the Telegraph and the Nineteenth
Century’s On-Line Pioneers. New York: Walker Publishing. Reviewed in Alden 1999.

Stanley, J. and T. Williamson (2001, August). Knowing how. Journal of Philosophy 98(8),
411–444. http://www.thatmarcusfamily.org/philosophy/Course Websites/Readings/Stanley%20and%
20Williamson%20-%20Knowing%20How.pdf.

Staples, M. (2014). Critical rationalism and engineering: Ontology. Synthese 191(10), 2255–2279. http:
//www.nicta.com.au/pub?doc=7397.

Staples, M. (2015). Critical rationalism and engineering: Methodology. Synthese 192(1), 337–362. http:
//www.nicta.com.au/pub?doc=7747.

Steed, S. (2013, February). Harnessing human intellect for computing. Computing Research News 25(2).
http://www.humancomputation.com/2013/CRN-Feb2013.pdf.

Steedman, M. (2008, March). On becoming a discipline. Computational Linguistics 34(1), 137–144. https:
//www.aclweb.org/anthology/J08-1008.pdf.

Stein, D. K. (1984, Autumn). Lady Lovelace’s notes: Technical text and cultural context. Victorian Stud-
ies 28(1), 33–67.

Stein, D. K. (1985). Ada: A Life and a Legacy. Cambridge, MA: MIT Press. Reviewed in Kidder 1985.

Stepney, S., S. L. Braunstein, J. A. Clark, A. Tyrrell, A. Adamatzky, R. E. Smith, T. Addis, C. Johnson,
J. Timmis, P. Welch, R. Milner, and D. Partridge (2005, March). Journeys in non-classical computation I:
A grand challenge for computing research. International Journal of Parallel, Emergent and Distributed
Systems 20(1), 5–19. https://www-users.cs.york.ac.uk/susan/bib/ss/nonstd/ijpeds20-1.pdf.

Stern, H. and L. Daston (1984, 26 April). Turing & the system. New York Review of Books, 52–53. http:
//www.nybooks.com/articles/archives/1984/apr/26/turing-the-system/.

Sternberg, R. J. (1985). Beyond IQ: A Triarchic Theory of Human Intelligence. Cambridge, UK: Cambridge
University Press.

Sternberg, R. J. (1990). Metaphors of Mind: Conceptions of the Nature of Intelligence. New York: Cam-
bridge University Press.

Stevens, Jr., P. (1996). Magic. In D. Levinson and M. Ember (Eds.), Encyclopedia of Cultural Anthropology,
pp. 721–726. New York: Henry Holt.

Stewart, I. (1994, September). A subway named Turing. Scientific American, 104, 106–107.

Stewart, I. (2000, January). Impossibility theorems. Scientific American, 98–99.

Stewart, I. (2001, March). Easter is a quasicrystal. Scientific American, 80, 82–83. http://www.whydomath.
org/Reading Room Material/ian stewart/2000 03.html.

Stewart, N. (1995, March). Science and computer science. ACM Computing Surveys 27(1), 39–41. Longer
version at http://www.iro.umontreal.ca/∼stewart/science computerscience.pdf.

BIBLIOGRAPHY 929

Stoll, C. (2006, May). When slide rules ruled. Scientific American 294(5), 80–87.

Stork, D. G. (1997). HAL’s Legacy: 2001’s Computer as Dream and Reality. Cambridge, MA: MIT Press.

Strasser, C. and G. A. Antonelli (2015). Non-monotonic logic. In E. N. Zalta (Ed.), Stanford En-
cyclopedia of Philosophy (Fall 2015 edition). Stanford University. http://plato.stanford.edu/entries/
logic-nonmonotonic/.

Strawson, G. (2012). Real naturalism. Proeedings and Addresses of the American Philosophical Associa-
tion 86(2), 125–154.

Strevens, M. (2013, 24 November). Looking into the black box. New York Times Opinionator. http:
//opinionator.blogs.nytimes.com/2013/11/24/looking-into-the-black-box.

Strevens, M. (2019, 28 March). The substantiality of philosophical analysis. The Brains Blog, http:
//philosophyofbrains.com/2019/03/28/the--substantiality--of--philosophical--analysis.aspx.

Suber, P. (1988). What is software? Journal of Speculative Philosophy 2(2), 89–119. Revised version at
http://www.earlham.edu/∼peters/writing/software.htm.

Suber, P. (1997a). Formal systems and machines: An isomorphism. http://www.earlham.edu/∼peters/
courses/logsys/machines.htm.

Suber, P. (1997b). The Löwenheim-Skolem theorem. https://legacy.earlham.edu/∼peters/courses/logsys/
low-skol.htm.

Suber, P. (1997c). Turing machines. http://www.earlham.edu/∼peters/courses/logsys/turing.htm.

Suber, P. (1997d). Turing machines II. http://www.earlham.edu/∼peters/courses/logsys/turing2.htm.

Suber, P. (2002). Sample formal system S. http://www.earlham.edu/∼peters/courses/logsys/sys-xmpl.htm.

Suits, D. B. (2005, July 1989). Out of the Chinese room. Computers & Philosophy Newsletter (4:1+4:2),
1–7. https://people.rit.edu/dbsgsh/Out%20of%20the%20Chinese%20Room.htm.

Sullivan, E. (2019). Understadning from machine learning models. British Journal for the Philosophy of
Science. https://philpapers.org/go.pl?id=SULUFM&u=https%3A%2F%2Fphilpapers.org%2Farchive%
2FSULUFM.pdf.

Swade, D. D. (1993, February). Redeeming Charles Babbage’s mechanical computer. Scientific American,
86–91.

Swoyer, C. (1991, June). Structural representation and surrogative reasoning. Synthese 87(3), 449–508.

Sydell, L. (2009, 10 December). A 19th-century mathematician finally proves himself. http://www.npr.org/
templates/story/story.php?storyId=121206408&ft=1&f=1001.

Talmy, L. (2000). Toward a Cognitive Semantics. Cambridge, MA: MIT Press.

Tam, W. C. (1992, March). Teaching loop invariants to beginners by examples. SIGSCE Bulletin 24(1),
92–96.

Tanaka, F., A. Cicourel, and J. R. Movellan (2007, 13 November). Socialization between toddlers and
robots at an early childhood education center. Proceedings of the National Academy of Sciences 104(46),
17954–17958. http://www.pnas.org/content/104/46/17954.full.

Tanenbaum, A. S. (2006). Structured Computer Organization, Fifth Edition. Upper Saddle River, NJ:
Pearson Prentice Hall. http://e-book.az/download?id=821.

Tarski, A. (1969, June). Truth and proof. Scientific American, 63–70, 75–77. https://cs.nyu.edu/mishra/
COURSES/13.LOGIC/Tarski.pdf.

930 BIBLIOGRAPHY

Tedre, M. (2007a). Know your discipline: Teaching the philosophy of computer science. Journal of Infor-
mation Technology Education 6, 105–122.

Tedre, M. (2007b, Winter-Spring). The philosophy of computer science (175616), University of Joensuu,
Finland. http://cs.joensuu.fi/∼mmeri/teaching/2006/philcs/.

Tedre, M. (2008, September+October). What should be automated? ACM Interactions 15(5), 47–49. https:
//homepages.dcc.ufmg.br/∼loureiro/cm/082/WhatShouldBeAutomated.pdf.

Tedre, M. (2009). Computing as engineering. Journal of Universal Computer Science 15(8), 1642–1658.
http://www.jucs.org/jucs 15 8/computing as engineering.

Tedre, M. (2011, August). Computing as a science: A survey of competing viewpoints. Minds and Ma-
chines 21(3), 361–387.

Tedre, M. (2015). The Science of Computing: Shaping a Discipline. Boca Raton, FL: CRC Press/Taylor &
Francis.

Tedre, M. and P. J. Denning (2016). The long quest for computational thinking. In Proceedings of the 16th
Koli Calling International Conference on Computing Education Research, Koli Calling ’16, New York,
pp. 120–129. ACM. http://denninginstitute.com/pjd/PUBS/long-quest-ct.pdf.

Tedre, M. and N. Moisseinen (2014). Experiments in computing: A survey. Scientific World Journal 2014.
Article ID 549398, http://dx.doi.org/10.1155/2014/549398.

Tedre, M. and E. Sutinen (2008, September). Three traditions of computing: What educators should know.
Computer Science Education 18(3), 153–170.

Tenenbaum, A. M. and M. J. Augenstein (1981). Data Structures using Pascal. Englewood Cliffs, NJ:
Prentice-Hall.

Teuscher, C. and M. Sipper (2002, August). Hypercomputation: Hype or computation? Communications of
the ACM 45(8), 23–30. http://www.cs.bgu.ac.il/∼sipper/papabs/hypercomp.pdf.

Thagard, P. (1978). Why astrology is a pseudoscience. PSA: Proceedings of the Biennial Meeting of the
Philosophy of Science Association 1, 223–234.

Thagard, P. (1984). Computer programs as psychological theories. In O. Neumaier (Ed.), Mind, Language
and Society, pp. 77–84. Vienna: Conceptus-Studien.

Thagard, P. (2006). Hot Thought: Mechanisms and Applications of Emotional Cognition. Cambridge, MA:
MIT Press.

Thagard, P. (2007, January). Coherence, truth, and the development of scientific knowledge. Philosophy of
Science 74, 28–47.

Thagard, P. (4 December 2012). Eleven dogmas of analytic philosophy. Psychology Today, http://www.
psychologytoday.com/blog/hot-thought/201212/eleven-dogmas-analytic-philosophy.

Tharp, L. H. (1975). Which logic is the right logic? Synthese 31, 1–21. Reprint at http://www.
thatmarcusfamily.org/philosophy/Course Websites/Logic F08/Readings/Tharp.pdf.

Thatcher, M. E. and D. E. Pingry (2007, October). Software patents: The good, the bad, and the messy.
Communications of the ACM 50(10), 47–52.

The Economist (2013, 19 October). Unreliable research: Trouble at
the lab. The Economist. http://www.economist.com/news/briefing/
21588057-scientists-think-science-self-correcting-alarming-degree-it-not-trouble.

Thomason, R. H. (2003). Dynamic contextual intensional logic: Logical foundations and an application. In
P. Blackburn (Ed.), CONTEXT 2003: Lecture Notes in Artificial Intelligence 2680, pp. 328–341. Berlin:
Springer-Verlag. http://link.springer.com/chapter/10.1007/3-540-44958-2 26#page-1.

BIBLIOGRAPHY 931

Thompson, C. (2019, 13 February). The secret history of women in coding. New York Times Magazine.
https://www.nytimes.com/2019/02/13/magazine/women-coding-computer-programming.html.

Thurston, W. P. (1994, April). On proof and progress in mathematics. Bulletin of the American Mathematical
Society 30(2), 161–177.

Tingley, K. (2013, 25 November). The body electric. The New Yorker, 78–80, 82, 86–86. https://www.
newyorker.com/magazine/2013/11/25/the-body-electric.

Toulmin, S. (1984, 19 January). Fall of a genius. New York Review of Books, 3–4, 6. http://www.nybooks.
com/articles/archives/1984/jan/19/fall-of-a-genius/.

Touretzky, D. (2008). Gallery of CSS descramblers. http://www.cs.cmu.edu/∼dst/DeCSS/Gallery/.

Toussaint, G. (1993, Summer). A new look at Euclid’s second proposition. The Mathematical Intelli-
gencer 15(3), 12–23. http://cgm.cs.mcgill.ca/∼godfried/publications/euclid.pdf.

Traub, J. (2011, January). What is computation? What is the right computational model for continuous
scientific problems? Ubiquity 2011. Article 2, http://ubiquity.acm.org/article.cfm?id=1925842.

Tucker et al., A. (2003). A model curriculum for K–12 computer science: Final report of the ACM K–12 Task
Force Curriculum Committee, second edition. Computer Science Teachers Association and Association
for Computing Machinery, http://www.acm.org/education/education/curric vols/k12final1022.pdf.

Tukey, J. W. (1958, January). The teaching of concrete mathematics. American Mathematical Monthly 65(1),
1–9.

Turing, A. M. (1936). On computable numbers, with an application to the Entscheidungsproblem. Proceed-
ings of the London Mathematical Society, Ser. 2, Vol. 42, 230–265. https://www.cs.virginia.edu/∼robins/
Turing Paper 1936.pdf.

Turing, A. M. (1937, December). Computability and λ-definability. Journal of Symbolic Logic 2(4), 153–
163.

Turing, A. M. (1938). On computable numbers, with an application to the Entscheidungsproblem: A
correction. Proceedings of the London Mathematical Society, Ser. 2 43(1), 544–546. https://www.
wolframscience.com/prizes/tm23/images/Turing2.pdf.

Turing, A. M. (1939). Systems of logic based on ordinals. Proceedings of the London Mathematical Soci-
ety S2-45(1), 161–228. Reprinted with commentary in Copeland 2004b, Ch. 3.

Turing, A. M. (1947). Lecture to the London Mathematical Society on 20 February 1947. In B. J. Copeland
(Ed.), The Essential Turing, pp. 378–394. Oxford: Oxford University Press (2004). Editorial commen-
tary on pp. 362–377; online at https://www.academia.edu/34875977/Alan Turing LECTURE TO THE
LONDON MATHEMATICAL SOCIETY 1947 .

Turing, A. M. (1948). Intelligent machinery. In B. J. Copeland (Ed.), The Essential Turing, pp. 410–
432. Oxford: Oxford University Press (2004). Editorial commentary on pp. 395–409. Typescript at:
http://www.alanturing.net/intelligent machinery/.

Turing, A. M. (1949). Checking a large routine. In Report of a Conference on High Speed Automatic
Calculating Machines, pp. 67–69. Cambridge, UK: University Mathematics Lab. Reprinted in Morris
and Jones 1984; manuscript online at http://www.turingarchive.org/browse.php/b/8.

Turing, A. M. (1950, October). Computing machinery and intelligence. Mind 59(236), 433–460. http:
//phil415.pbworks.com/f/TuringComputing.pdf.

Turing, A. M. (1951, 1996). Intelligent machinery, a heretical theory. Philosophia Mathematica 4(3), 256–
260. http://viola.informatik.uni-bremen.de/typo/fileadmin/media/lernen/Turing- Intelligent Machinery.
pdf; typescripts and further bibliographic information at http://www.turing.org.uk/sources/biblio1.html.

932 BIBLIOGRAPHY

Turing, A. M. (1953). Chess. In B. J. Copeland (Ed.), The Essential Turing, pp. 562–575. Oxford: Oxford
University Press (2004).

Turing, A. M. (1954). Solvable and unsolvable problems. Science News 31, 7–23. Page references are to the
reprint in Copeland 2004b, Ch. 17, http://www.ivanociardelli.altervista.org/wp-content/uploads/2018/04/
Solvable-and-unsolvable-problems.pdf.

Turner, R. (2010). Programming languages as mathematical theories. In J. Vallverdú (Ed.), Thinking
Machines and the Philosophy of Computer Science: Concepts and Principles, pp. 66–82. IGI Global.
http://www.irma-international.org/viewtitle/62539/.

Turner, R. (2011). Specification. Minds and Machines 21(2), 135–152. https://www.academia.edu/456275/
SPECIFICATION.

Turner, R. (2018). Computational Artifacts: Towards a Philosophy of Computer Science. Berlin: Springer.

Turner, R. (2019). Correctness, explanation and intention. In F. Manea, B. Martin, D. Paulusma, and
G. Primiero (Eds.), Computing with Foresight and Industry. CiE 2019, pp. 62–71. Cham, Switzerland:
Springer.

Turner, R. and A. H. Eden (Eds.) (2007a). Philosophy of Computer Science. Special issue of Minds and
Machines 17(2) (Summer): 129–247.

Turner, R. and A. H. Eden (2007b). Towards a programming language ontology. In G. Dodig-Crnkovic
and S. Stuart (Eds.), Computation, Information, Cognition: The Nexus and the Liminal, pp. 147–159.
Cambridge, UK: Cambridge University Press. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.
1.82.194&represent=rep1&type=pdf.

Turner, R. and A. H. Eden (Eds.) (2008). The Philosophy of Computer Science. Special issue of Journal of
Applied Logic 6(4) (December): 459–552.

Turner, Z. (2015, 30 March). Beautiful code. The New Yorker, 21–22. http://www.newyorker.com/magazine/
2015/03/30/beautiful-code.

Tversky, A. and D. Kahneman (1974, 27 September). Judgment under uncertainty: Heuristics and biases.
Science 185(4157), 1124–1131. http://psiexp.ss.uci.edu/research/teaching/Tversky Kahneman 1974.pdf.

Tye, M. (2017). Tense Bees and Shell-Shocked Crabs: Are Animals Conscious? New York: Oxford Univer-
sity Press.

Tye, M. (2018). Qualia. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Summer 2018 ed.).
Metaphysics Research Lab, Stanford University.

Tymoczko, T. (1979, February). The four-color problem and its philosophical significance. Journal of Philos-
ophy 76(2), 57–83. http://www.thatmarcusfamily.org/philosophy/Course Websites/Math S08/Readings/
tymoczko.pdf.

Tymoczko, T. and S. Goodhart (1986, March). From logic to computers: A suggestion for logic teachers.
Teaching Philosophy 9(1), 15–33.

Uebel, T. (2012). Vienna circle. In E. N. Zalta (Ed.), Stanford Encyclopedia of Philosophy (Summer 2012
Edition). Stanford University. http://plato.stanford.edu/archives/sum2012/entries/vienna-circle/.

Uglow, J. (2010, 24 June). The other side of science. New York Review of Books, 30–31, 34.

Uglow, J. (2018, 22 November). Stepping out of Byron’s shadow. New York Review of Books 65(18), 30–32.

Unger, P. (1979a). I do not exist. In G. F. Macdonald (Ed.), Perception and Identity. Ithaca, NY: Cornell
University Press.

BIBLIOGRAPHY 933

Unger, P. (1979b). Why there are no people. In Studies in Metaphysics (Midwest Studies in Philosophy,
Vol. 4), pp. 177–222. Minneapolis: University of Minnesota Press. http://www.thatmarcusfamily.org/
philosophy/Course Websites/Readings/Unger%20-%20No%20People.pdf.

Vahid, F. (2003, April). The softening of hardware. IEEE Computer 36(4), 27–34. http://www.cs.ucr.edu/
∼vahid/pubs/comp03 softerhw.pdf.

van Fraassen, B. C. (1989). Laws and Symmetry. Oxford: Clarendon Press. http://joelvelasco.net/teaching/
120/vanfraassen Laws and Symmetry.pdf.

van Fraassen, B. C. (2006, December). Representation: The problem for structuralism. Philosophy of
Science 73, 536–547. http://www.princeton.edu/∼fraassen/abstract/docs-publd/PSA04 Structure.pdf.

van Leeuwen, J. and J. Wiedermann (2000). The Turing machine paradigm in contemporary comput-
ing. In B. Engquist and W. Schmid (Eds.), Mathematics Unlimited—2001 and Beyond, pp. 1139–1155.
Berlin: Springer-Verlag. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.32.3925&rep=rep1&
type=pdf.

van Leeuwen, J. and J. Wiedermann (2013). The computational power of Turing’s non-terminating circular
a-machines. In S. B. Cooper and J. van Leeuwen (Eds.), Alan Turing: His Work and Impact, pp. 80–85.
Amsterdam: Elsevier.

Vardi, M. Y. (2010, September). Science has only two legs. Communications of the ACM 53(9), 5.

Vardi, M. Y. (2011a, December). Computing for humans. Communications of the ACM 54(12), 5.

Vardi, M. Y. (2011b, July). Solving the unsolvable. Communications of the ACM 54(7), 5. http://www.inf.
unibz.it/∼calvanese/teaching/tc/material/solving-the-unsolvable-CACM-2011-07.pdf.

Vardi, M. Y. (2012, March). What is an algorithm? Communications of the ACM 55(3), 5. http://cacm.acm.
org/magazines/2012/3/146261-what-is-an-algorithm/fulltext.

Vardi, M. Y. (2013, January). Who begat computing? Communications of the ACM 56(1), 5. http://cacm.
acm.org/magazines/2013/1/158780-who-begat-computing/fulltext.

Vardi, M. Y. (2014, March). Boolean satisfiability: Theory and engineering. Communications of the
ACM 57(3), 5. http://cacm.acm.org/magazines/2014/3/172516-boolean-satisfiability/fulltext.

Vardi, M. Y. (2016, May). The moral imperative of Artificial Intelligence. Communications of the
ACM 59(5), 5. http://delivery.acm.org/10.1145/2910000/2903530/p5-vardi.pdf.

Vardi, M. Y. (2017, November). Would Turing have won the Turing Award? Com-
munications of the ACM 60(11), 7. https://cacm.acm.org/magazines/2017/11/
222163-would-turing-have-won-the-turing-award/fulltext.

Varela, F. J. and P. Bourgine (Eds.) (1992). Toward a Practice of Autonomous Systems: Proceedings of the
1st European Conference on Artificial Life. Cambridge, MA: MIT Press.

Veblen, T. (1908). The evolution of the scientific point of view. The University of California Chronicle: An
Official Record 10(4), 395–416. http://archive.org/details/universitycalif08goog.

Venkatasubramanian, S. (2018, 10 May). Mr. Spock has left the building: The computational and ethical
ramifications of automated decision-making in society. Talk given to the SUNY Buffalo Department of
Computer Science & Engineering, https://www.youtube.com/watch?v=d5NXF5y1VlQ.

Vera, A. (2018, 30 April). Social animals. The New Yorker, 3. Letter to the editor, https://www.newyorker.
com/magazine/2018/04/30/letters-from-the-april-30-2018-issue.

Verity, J. W. (1985, 15 February). Bridging the software gap. Datamation, 84–88.

934 BIBLIOGRAPHY

Vincenti, W. G. (1990). What Engineers Know and How They Know It: Analytical Studies from Aeronautical
History. Baltimore: Johns Hopkins University Press.

von Neumann, J. (1945). First draft report on the EDVAC. IEEE Annals of the History of Computing 15(4
(1993)), 27–75. Michael D. Godfrey (ed.); page references to online version at http://virtualtravelog.net.
s115267.gridserver.com/wp/wp-content/media/2003-08-TheFirstDraft.pdf.

von Neumann, J. (1966). Theory of Self-Reproducing Automata. Urbana, IL: University of Illinois Press.
Arthur W. Burks (ed.).

von Tunzelmann, A. (2014, 20 November). The Imitation Game: Inventing a new slan-
der to insult Alan Turing. The Guardian. http://www.theguardian.com/film/2014/nov/20/
the-imitation-game-invents-new-slander-to-insult-alan-turing-reel-history.

Wade, N. (2017, 1 June). You look familiar. Now scientists know why. New York Times. https://www.
nytimes.com/2017/06/01/science/facial-recognition-brain-neurons.html.

Wadler, P. (1997, September). How to declare an imperative. ACM Computing Surveys 29(3), 240–263.
https://wiki.ittc.ku.edu/lambda/images/3/3b/Wadler - How to Declare an Imperative.pdf.

Wagner, A. R. and R. C. Arkin (2011). Acting deceptively: Providing robots with the capacity for decep-
tion. International Journal of Social Robotics 3(1), 5–26. http://www.cc.gatech.edu/∼alanwags/pubs/
Acting-Deceptively-Final.pdf.

Wainer, H. (2007, May-June). The most dangerous equation. American Scientist 95(3), 249ff. http://
citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.504.3301&rep=rep1&type=pdf.

Wainer, H. (2012, September-October). The survival of the fittists. American Scientist 100, 358–361. https:
//www.americanscientist.org/article/the-survival-of-the-fittists.

Waldrop, M. M. (2001, December). The origins of personal computing. Scientific American, 84–91.

Wallach, W. and C. Allen (2009). Moral Machines: Teaching Robots Right from Wrong. New York: Oxford
University Press.

Wallas, G. (1926). The Art of Thought. Kent, UK: Solis Press (2014).

Wallich, P. (1997, April). Cracking the U.S. code. Scientific American, 42.

Walsh, T. (2014, November-December). Candy Crush’s puzzling mathematics. American Scientist 102(6),
430–433. https://www.americanscientist.org/article/candy-crushs-puzzling-mathematics.

Walsh, T. (2016, July). Turing’s red flag law. Communications of the ACM 59(7), 34–37. https://arxiv.org/
pdf/1510.09033.pdf.

Wang, H. (1957, January). A variant to Turing’s theory of computing machines. Journal of the ACM 4(1),
63–92.

Wang, P. (2019). On defining Artificial Intelligence. Journal of Artificial General Intelligence 10(2), 1–37.
https://content.sciendo.com/view/journals/jagi/10/2/article-p1.xml.

Wang, Z., J. R. Busemeyer, H. Atmanspacher, and E. M. Pothos (Eds.) (2013). Topics in Cognitive Science
5(4) (October): The Potential of Using Quantum Theory to Build Models of Cognition. Cognitive Science
Society.

Wangsness, T. and J. Franklin (1966, April). “Algorithm” and “formula”. Communications of the ACM 9(4),
243.

Wartofsky, M. W. (1966). The model muddle: Proposals for an immodest realism. In M. W. Wartofsky
(Ed.), Models: Representation and the Scientific Theory of Understanding, pp. 1–11. Dordrecht, The
Netherlands: D. Reidel, 1979.

BIBLIOGRAPHY 935

Wartofsky, M. W. (1979). Introduction. In M. W. Wartofsky (Ed.), Models: Representation and the Scientific
Theory of Understanding, pp. xiii–xxvi. Dordrecht, The Netherlands: D. Reidel.

Weatherson, B. (18 July 2012). What could leave philosohy? http://tar.weatherson.org/2012/07/18/
what-could-leave-philosophy/.

Weatherson, B. and D. Marshall (2018). Intrinsic vs. extrinsic properties. In E. N. Zalta (Ed.), The Stanford
Encyclopedia of Philosophy (Spring 2018 ed.). Metaphysics Research Lab, Stanford University. https:
//plato.stanford.edu/archives/spr2018/entries/intrinsic-extrinsic/.

Wegner, P. (1976). Research paradigms in computer science. In ICSE ’76 Proceedings of the 2nd Interna-
tional Conference on Software Engineering, pp. 322–330. Los Alamitos, CA: IEEE Computer Society
Press.

Wegner, P. (1995, March). Interaction as a basis for empirical computer science. ACM Computing Sur-
veys 27(1), 45–48.

Wegner, P. (1997, May). Why interaction is more powerful than algorithms. Communications of the
ACM 40(5), 80–91. http://www.cs.brown.edu/people/pw/papers/ficacm.ps.

Wegner, P. (1999, January). Towards empirical computer science. The Monist 82(1), 58–108. http://www.
cs.brown.edu/people/pw/papers/monist.ps.

Wegner, P. (2010, November). What is computation? The evolution of computation. Ubiquity 2010. Arti-
cle 2, http://ubiquity.acm.org/article.cfm?id=1883611.

Wegner, P. and D. Goldin (1999). Interaction, computability, and Church’s thesis. http://cs.brown.edu/∼pw/
papers/bcj1.pdf.

Wegner, P. and D. Goldin (2003, April). Computation beyond Turing machines. Communications of the
ACM 46(4), 100–102. http://www.pld.ttu.ee/∼vadim/AIRT/8 computation beyond turing machines.pdf.

Wegner, P. and D. Goldin (2006a, March). Forum. Communications of the ACM 49(3), 11.

Wegner, P. and D. Goldin (2006b, July). Principles of problem solving. Communications of the ACM 49(7),
27–29. https://www.researchgate.net/publication/220420866 Principles of problem solving.

Weinberg, J. (2019, 15 May). Did a story about a computer made of humans scoop
Searle’s “Chinese room” by 20 years? Daily Nous. http://dailynous.com/2019/05/15/
story-computer-made-humans-scoop-searles-chinese-room-20-years/.

Weinberg, S. (2002, 24 October). Is the universe a computer? New York Review of Books 49(16). http:
//www.nybooks.com/articles/2002/10/24/is-the-universe-a-computer/.

Weinberg, S. (2017, 19 January). The trouble with quantum mechanics. New York Review of Books 64(1),
51–53. http://www.nybooks.com/articles/2017/01/19/trouble-with-quantum-mechanics/.

Weinberger, D. (2012, 27 April). Shift happens. The Chronicle [of Higher Education] Review, B6–B9.

Weiner, J. (2017, 15 March). The magician who wants to break magic. New York Times Magazine. https:
//www.nytimes.com/2017/03/15/magazine/derek-delgaudio-the-magician-who-wants-to-break-magic.
html.

Weir, A. (2015). Formalism in the philosophy of mathematics. In E. N. Zalta (Ed.), The Stanford En-
cyclopedia of Philosophy (Spring 2015 ed.). Metaphysics Research Lab, Stanford University. https:
//plato.stanford.edu/archives/spr2015/entries/formalism-mathematics/.

Weizenbaum, J. (1966, January). ELIZA—A computer program for the study of natural language commu-
nication between man and machine. Communications of the ACM 9(1), 36–45. http://web.stanford.edu/
class/linguist238/p36-weizenabaum.pdf; reprinted in Communications of the ACM 26(1) (January 1983:
23–28; be sure to read the correspondence between Weizenbaum and Arbib on p. 28 of the reprint.

936 BIBLIOGRAPHY

Weizenbaum, J. (1967, August). Contextual understanding by computers. Communications of the
ACM 10(8), 474–480.

Weizenbaum, J. (1976). Computer Power and Human Reason. New York: W.H. Freeman.

Welch, P. D. (2004). On the possibility, or otherwise, of hypercomputation. British Journal for the Philoso-
phy of Science 55, 739–746.

Welch, P. D. (2007). Turing unbound: Transfinite computation. In S. Cooper, B. Löwe, and A. Sorbi (Eds.),
CiE 2007, pp. 768–780. Berlin: Springer-Verlag Lecture Notes in Computer Science 4497.

Wells, B. (2003). The architecture of Colossus, the first PC (abstract). http://www.stanford.edu/class/ee380/
Abstracts/040204.html.

Wells, B. (2004). Hypercomputation by definition. Theoretical Computer Science 317,
191–207. http://research.cs.queensu.ca/home/akl/cisc879/papers/PAPERS FROM THEORETICAL
COMPUTER SCIENCE/05051011123316076.pdf.

Wescott, D. (2013, 29 March). Robots behind bars. The Chronicle [of Higher Education] Review 59(29),
B17. http://chronicle.com/article/When-Bots-Go-Bad/138009/.

Wheeler, D. L. (1997, 3 October). An ancient feud: Who invented the computer? Chronicle of Higher
Education, B2.

Wheeler, G. (2013, April). Models, models, and models. Metaphilosophy 44(3), 293–300. http:
//philsci-archive.pitt.edu/9500/1/Models.pdf.

White, T. I. (2007). In Defense of Dolphins: The New Moral Frontier. Oxford: Blackwell.

White, T. I. (2013). A primer on nonhuman personhood, cetacean rights and ‘flourishing’. http:
//indefenseofdolphins.com/wp-content/uploads/2013/07/primer.pdf.

Whitemore, H. (1966). Breaking the Code. Samuel French Inc., 2010.

Whitemore, H. (1988, March/April). The Enigma: Alan Turing confronts a question of right and wrong. The
Sciences 28(2), 40–41.

Wiebe, J. M. and W. J. Rapaport (1986). Representing de re and de dicto belief reports in discourse
and narrative. Proceedings of the IEEE 74, 1405–1413. http://www.cse.buffalo.edu/∼rapaport/Papers/
wieberapaport86.pdf.

Wiedermann, J. (1999, September). Simulating the mind: A gauntlet thrown to computer science. ACM
Computing Surveys 31(3es), Paper No. 16.

Wiener, N. (1961). Cybernetics, or Control and Communication in the Animal and the Machine, 2nd Edition.
Cambridge, MA: MIT Press.

Wiener, N. (1964). God and Golem, Inc.: A Comment on Certain Points Where Cybernetics Impinges on Re-
ligion. Cambridge, MA: MIT Press. http://www.scribd.com/doc/2962205/God-and-Golem-Inc-Wiener
and http://simson.net/ref/1963/God And Golem Inc.pdf.

Wiesner, J. (1958, October). Communication sciences in a university environment. IBM Journal of Research
and Development 2(4), 268–275.

Wigner, E. (1960, February). The unreasonable effectiveness of mathematics in the natural sci-
ences. Communications in Pure and Applied Mathematics 13(1). https://www.dartmouth.edu/
∼matc/MathDrama/reading/Wigner.html, http://www.maths.ed.ac.uk/∼aar/papers/wigner.pdf, and http://
nedwww.ipac.caltech.edu/level5/March02/Wigner/Wigner.html.

Wilford, J. N. (2006, 30 November). Early astronomical ‘computer’ found to be technically complex. New
York Times.

BIBLIOGRAPHY 937

Wilford, J. N. (2008, 31 July). A device that was high-tech in 100 B.C. (Discovering how Greeks computed
in 100 B.C.). New York Times, A12. https://www.nytimes.com/2008/07/31/science/31computer.html.

Wilkes, M. (1953, May). Can machines think? Discovery 14, 151. Reprinted in Proceedings of the Institute
of Radio Engineers 41(10) (October): 1230–1234.

Wilks, Y. (1974, January). One small head—models and theories in linguistics. Foundations of Lan-
guage 11(1), 77–95. Revised version in Partridge and Wilks 1990, pp. 121–134.

Williams, B. (1998, 19 November). The end of explanation? The New York Review of Books 45(18), 40–44.

Williamson, T. (2007). The Philosophy of Philosophy. Oxford: Blackwell.

Williamson, T. (2011, 4 September). What is naturalism? New York Times Opinionator: The Stone. http:
//opinionator.blogs.nytimes.com/2011/09/04/what-is-naturalism/.

Willingham, D. T. (2011, May). Trust me, I’m a scientist. Scientific American. http://www.
scientificamerican.com/article.cfm?id=trust-me-im-a-scientist.

Wilson, D. G. and J. Papadopoulos (2004). Bicycling Science, Third Edition. Cambridge, MA: MIT Press.

Wilson, E. and E. Frenkel (2013). Two views: How much math do scientists need? Notices of the AMS 60(7),
837–838. http://dx.doi.org/10.1090/noti1032.

Wing, J. M. (2006, March). Computational thinking. Communications of the ACM 49(3), 33–35. https:
//www.cs.cmu.edu/∼15110-s13/Wing06-ct.pdf.

Wing, J. M. (2008a). Computational thinking and thinking about computing. Philosophical Transactions of
the Royal Society A 366, 3717–3725. http://www.cs.cmu.edu/∼wing/publications/Wing08a.pdf.

Wing, J. M. (2008b, January). Five deep questions in computing. Communications of the ACM 51(1), 58–60.
http://www.cs.cmu.edu/∼wing/publications/Wing08.pdf.

Wing, J. M. (2010, 17 November). Computational thinking: What and why? The Link (Carnegie-Mellon
University), https://www.cs.cmu.edu/∼CompThink/resources/TheLinkWing.pdf.

Wing, J. M. (2016, 23 March). Computational thinking, 10 years later. Microsoft Research Blog. https:
//www.microsoft.com/en-us/research/blog/computational-thinking-10-years-later/; reprinted in Commu-
nications of the ACM 59(7) (July 2016): 10–11.

Winkler, J. F. H. (2012, October). Konrad Zuse and floating-point numbers. Communications of the
ACM 55(10), 6–7. (Letter to the Editor).

Winograd, T. (1983). Language as a Cognitive Process; Vol. 1: Syntax. Reading, MA: Addison-Wesley.

Winograd, T. and F. Flores (1987). Understanding Computers and Cognition: A New Foundation for Design.
Reading, MA: Addison-Wesley.

Winston, P. H. (1977). Artificial Intelligence. Reading, MA: Addison-Wesley.

Wirth, N. (1971, April). Program development by stepwise refinement. Communications of the
ACM 14(4), 221–227. http://oberoncore.ru/ media/library/wirth program development by stepwise
refinement2.pdf, http://sunnyday.mit.edu/16.355/wirth-refinement.html, and http://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.115.9376&rep=rep1&type=pdf.

Wittgenstein, L. (1921). Tractatus Logico-Philosophicus. New York: Humanities Press. Second Edition,
with corrections, 1972.

Wittgenstein, L. (1958). Philosophical Investigations, Third Edition. New York: Macmillan.

Wittgenstein, L. (1980). Remarks on the Philosophy of Psychology, Vol. I. Chicago: University of Chicago
Press.

938 BIBLIOGRAPHY

Woit, P. (2014, 19 November). The Imitation Game. Not Even Wrong. http://www.math.columbia.edu/
∼woit/wordpress/?p=7365.

Wolff, R. P. (1975). A simple foolproof method for writing philosophy papers. http://www.amyscott.com/
Philosophy%20Paper.pdf. From his About Philosophy (Prentice-Hall).

Wolfram, S. (2002a). Introduction to A New Kind of Science. http://www.stephenwolfram.com/publications/
introduction-to-a-new-kind-of-science/.

Wolfram, S. (2002b). A New Kind of Science. Wolfram Media. http://www.wolframscience.com/nks/.

Woodhouse, M. B. (2013). A Preface to Philosophy, 9th Edition. Boston: Wadsworth.

Wright, A. (2008, 17 June). The Web time forgot. New York Times, F1, F4. http://www.nytimes.com/2008/
06/17/science/17mund.html.

Wu, T. (2017, 15 July). Please prove you’re not a robot. New York Times. https://www.nytimes.com/2017/
07/15/opinion/sunday/please-prove-youre-not-a-robot.html.

Wulf, W. (1995, March). Are we scientists or engineers? ACM Computing Surveys 27(1), 55–57.

Yampolskiy, R. V. and J. Fox (2013). Safety engineering for artificial general intelligence. Topoi 32(2),
217–226. https://intelligence.org/files/SafetyEngineering.pdf.

Young, J. O. (2018). The coherence theory of truth. In E. N. Zalta (Ed.), Stanford Encyclopedia of Philosophy
(Fall 2018 Edition). http://plato.stanford.edu/archives/fall2018/entries/truth-coherence/.

Zach, R. (2019). Hilbert’s program. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Summer
2019 ed.). Metaphysics Research Lab, Stanford University. https://plato.stanford.edu/archives/sum2019/
entries/hilbert-program/.

Zalta, E. N. (Ed.) (2019). Stanford Encyclopedia of Philosophy. http://plato.stanford.edu/.

Zeigler, B. P. (1976). Theory of Modeling and Simulation. New York: Wiley Interscience.

Zemanek, H. (1971, August). Was ist Informatik? (What is informatics?). Elektronische Rechenanlagen
(Electronic Computing Systems) 13(4), 157–171.

Zenil, H. and F. Hernández-Quiroz (2007). On the possible computational power of the human mind.
In C. Gershenson, D. Aerts, and B. Edmonds (Eds.), Worldviews, Science and Us: Philosophy and
Complexity, pp. 315–337. Singapore: World Scientific Publishing. Page references to preprint at
http://arxiv.org/abs/cs/0605065.

Zimmer, C. (2016, 21 July). In brain map, gears of mind get rare look. New York Times, A1. http://www.
nytimes.com/2016/07/21/science/human-connectome-brain-map.html.

Zipes, J. (1995). Breaking the Disney spell. In M. Tatar (Ed.), The Classic Fairy Tales: Texts, Criticism, pp.
332–352. New York: W.W. Norton (1999).

Zobrist, A. L. (2000). Computer games: Traditional. In A. Ralston, E. D. Reilly, and D. Hemmendinger
(Eds.), Encyclopedia of Computer Science, 4th edition, pp. 364–368. New York: Grove’s Dictionaries.

Zremski, J. (2009, 18 February). Perspectives differ on autopilot, icing. Buffalo News, A1–
A2. http://www.buffalonews.com/Perspectives differ on autopilot icing Amid probe of crash no
federal consensus for deadly problem.html.

Zupko, J. (2011). John Buridan, §7. In E. N. Zalta (Ed.), Stanford Encyclopedia of Philosophy (Fall 2011
Edition). Stanford University. http://plato.stanford.edu/archives/fall2011/entries/buridan/.

Zylberberg, A., S. Dehaene, P. R. Roelfsema, and M. Sigman (2011, July). The human Turing machine: A
neural framework for mental programs. Trends in Cognitive Science 15(7), 293–300. https://neuro.org.
ar/sites/neuro.org.ar/files/Zylberberg%202011%20TiCS.pdf.

