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Kinetic critical radius in nucleation and growth process&sapping éfect
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Abstract

The critical nucleus size—above which nuclei grow, belogsdive—during dtusion controlled nucleation in binary solid-solid
phase transformation process is calculated using kinetiot®Carlo. If atomic jumps are slower in &rrich nucleus than in the
embeddingB-rich matrix, the nucleus traps thReatoms approaching its surface. It has not enough time td gjatoms before
new ones arrive, even if it would be favourable thermodymaithy. In this case the critical nucleus size can be even byrder of
magnitude smaller than expected from equilibrium thernmagyics or without trapping.
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1. Introduction the lower-energyA — A or B — B homoatomic bonds. This gain

is proportional to the volume (or tm,o;, the number of atoms in

Thousands of studies probing the nucleation and growth prope \olume of the nucleus). The energy loss originates frem t
cesses of incommensurate materials or using the classieal Nereation of the nuclevimatrix interface; the number of atoms

cleation theory to interpret the results have been pulidishe  peing at the interfacengy) is obviously proportional to the sur-
the last years [1]. This is because the fabrication of mamgho  ¢4c6 of the nucleus. Thus the sum of these two terms is not a
materials requires the ability to exercise precise comvet the  \onotonic function of the sizen] but has a maximum, deter-
growth of precipitates in a host material or in thin films orosth mining ne. According to this phenomenological picture, below

substrate or of precipitates ina host[2, 3], in crystali@apro- 1y 3 small increase in increases, while above decreases the
cesses [4], in preparation of nanoparticles [5, 6], in isatimal energy of a nucleus.

austenite decomposition in nearly eutectoid steel [7], A
cordingly, also the theory itself has been discussed a Igt (¢ From kinetic aspects, nucleation is known to occur by forma-
three ways of implementing classical nucleation and growttiion of atomic clusters of various sizes (see e.g. Refs. 48, 1
theories was presented and discussed recently in Ref. 8, 9) The cluster size changes randomly as a result of succedsive a
According to the classical (thermodynamic) "nucleatiod an tachments and detachments of Single atoms to and from the
growth” theory [10, 11] of phase transformation processréh cluster. As atomic attachments and detachments are random
exists a critical nucleus size or @g critical number of atoms €vents, a givem-sized cluster can decay or grow and reach a
(or molecules, ions, etc.) being in the nucleus. The nudeic Macroscopic size with a certain probability. There exigtsa
taining atoms less tham, dissolve into the matrix, whereas the ticular cluster size = n* when atoms are attached and detached
larger ones grow continuously. This can be obtained from simto and from the cluster with equal frequency, i.e. B{a = n")
ple considerations on the radius dependence of the fregyenerdrowth probability of the cluster is/2. Clusters of size < n*
of a nucleus (see e.g. Ref. 12). The equation, describingrthe tend to decay, i.eP(n < n") < 1/2, because per unit time less
ergy gain and loss of the system when a nucleus is Created, COmOleCUleS are attached to than detached from them. On the
tains two terms, the chemical energy gain and surface energgPntrary, the clusters of size> n* are characterised by attach-
loss. For instance in the case of creation offarich nucleus Mment frequencies greater than the detachment ones andafor th
(in a B-rich matrix) the energy gain arises from the eliminationeason these clusters tend to grow up to macroscopic siees, i
of the higher energ— B heteroatomic bonds for the benefit of P(n>n%) > 1/2.

In principle, there is no reason for supposing that the ther-
Email addresszerdelyi@dragon. unideb.hu (Z. Erdélyi) modynamically defined, called as “thermodynamic critical
URL: http://dragon.unideb.hu/~zerdelyi (Z. Erdélyi) size”, and the kinetically defined*, called as “kinetic criti-
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2 THEORY

Table 1: Examples of self and impurityfflision data for Fe-Cr and Cu-Co form of composition dependence of the jump probabilities in

binary systems [16]. The columns are the pre-exponentiifathe activation kinetic M_Ont? Carlo (see Appgndix Appendix A) and the jump
energy and the €fusion co@icient calculated for 800 K, respectively. The frequencies in kinetic mean field models [17], where the-acti

footnote shows the calculated valuegwf(see also the text). vation energies of the jump frequencies depend linearhhen t
Do Q D composition in a homogeneous alloy (see Appendix Appendix
(104 m?/s)  (kJmol) (m?/s) B).
Fe-Cr2 In principle one has to distinguish between the (tracer) dif
Fe in Fe 2.01 240.7 3.86x 1020 fusion codficients ofA andB atoms:Da = DS exp(maca) and
CrinFe 8.52 250.8 358x10°2%0 Dg = DY exp(mgca), whereDS as well asD§ are composition
CrinCr 1.6 339.1 1.15x10°% independent factorga is the composition of thé atoms,mj
Fein Cr 0.47 332 9.86x10%7 andmg are parameters determining the strength of the compo-
Cu-Co° sition dependence. It is worth introducing timg = ma log, e
CuinCu 0.35 203.6 1.78x 1018 andmg = mglog, e parametersg(is the base of natural loga-
CoinCu 0.43 214.3 437x 101 rithm), which give in orders of magnitude the ratios of the di
CoinCo 0.55 288.5 7.99x 104 fusion codficients in the puré and B matrixes. For instance,
CuinCo 1 275 1.11x10? nv, = 4 means that th& atoms jumps 1®00 times faster in the
a — Dromre _ . — Dornre _ A matrix than in theB. Accordingly,nY, andm, parameters can
Mee = 10010 551 = 659; M, = 10010 peicy = 649 be obtained form the ratio of the co?respor?dir@uﬁion coef-
bmeu = logy %ﬁ =4.21; m, =109, %ﬁ =474 ficients as shown in Table 1 (and can also be calledféission

asymmetry parameters) [18].

Taking into account that, = m, andng,, = mg in Ta-
cal size” are identical. For example Nishioka showed aialyt ble 1, we assumed in our investigations that ttéudion coef-
cally for a single-component system thgtmay be somewhat ficients have identical composition dependencenie= mg =
smaller tham* [15]. For example for water nucleation from n. Of course, this does not mean tig¢ = Dg, sinceDS # D
vapour this diference is 1%. in general.

In this paper, based on kinetic Monte Carlo calculations of It can also be seen from Table 1 that a ratio of four to eight
nucleation and growth processesbinary solids we demon- orders of magnitude of the fliisivitiegjump probabilities in
strate that if the atomic jumps are orders of magnitude slowethe nucleus and in the matrix are not unrealistic valuesg-esp
in the nucleus than in the embedding matrix, the kineti¢azit ~ Cially for low temperature experiments. For example at 800 K
nucleus size can be even &g order of magnitude smalléghan M = 6.5 in Fe-Cr,nm’ = 4.5 in Cu-Co systems (see also some
otherwise (when the atomic jumps are equal in the nucleus arether examples and interesting phenomena related to the lar
in the matrix, or the jumps are faster in the nucleus). Siifce, asymmetry in Ref. 19, 20, 21, 22, 23, 24). Note, that accordin
for instance thé\—Abonds are much stronger than theBand  to the Arrhenius-type temperature dependence of tiiasion
B — B ones, amA atom jumps frequently in thB (rich) matrix ~ codficient,n increases with decreasing temperature due to the
but after attaching to thA (rich) nucleus can hardly jump any different activation energies ivandB. As a final remarknt
more. Practically the nucleus traps thatoms approaching its can also be calculated from theigrence in thé\—AandB-B
surface. Therefore, we show that a kinetic parameter dedlsti  pair interaction energies (see e.g. Ref. 18 and Appendix Ap-
influences* and so also its deviation from in binary solids. ~ pendix A).

Besides its theoretical importance, our finding can have-pra  In the following, we show hown influences the critical nu-
tical interest in crystallization processes (see e.g. Refr in  cleus size in a supersaturated phase separatiigjalloy (from
diffusion controlled solid state transformations (e.g. quemch NOW on, the “critical size’ and the “critical nucleus sizeeam
and phase Separation; precipitation) of Supersaturatﬂjm alWﬁyS the kinetic ones if it is not stated OtherWise). Imprl

lutions, which is an important step in many technologicatpr Ciple, two cases should be considered: positive (the jumps a
cedures. faster in the matrix) and negative (the jumps are slower én th

matrix) values ofnY. However, since fom’ < 0 values we
found that the critical nucleus size was independent'obnly
2. Theory the results of the calculations performed for > 0, i.e. when
the atomic jumps are faster in the matrix, are described in de
The ratio of the atomic jump probabilities orfiilision co-  tails. In this case significant change in the critical sizesue
efficients in the nucleus and in the matrix is several orders ofrv was observed.
magnitude in real systems (see e.g. Table 1 and Ref. 16), and One dimensional kinetic mean filed (KMF) and three dimen-
originates from the dierence in the bonding strength. There- sional kinetic Monte Carlo (KMC) models (see Ref. 25, 26, 17
fore, the jump probabilities of the atoms depends on thel locaand the Appendixes for more information on the models) were
environment, i.e. on thimcal composition used to study hown influences the critical nucleus size. Al-
It is very common in the diusion literature to describe the though the KMF is deterministic and limited to one dimension
composition dependence of thefdsion codficients by an ex- and its results cannot be exactly compared to that of KMC, in
ponential function [16]. This is also in accordance with theorder to save time we used the KMF to map roughly the ade-
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3 RESULTS AND DISCUSSION 3.1 Homogeneous matrix

quate range of input parameters and the expectable temdenci '**'

Then, with each chosen input parameter set we run the KMC  1000] %

several times. wl N
The temperature and the regular solid solution parameter

(proportional to the mixing energy; see Appendixes for ifleda 105

information) were chosen to e = 800 K andV = 0.025 eV, 1] e

respectively. These parameters correspond e.g. to thef@C & ®, op

[27, 28] system, af /T ~ 0.51, whereT, is the maximum tem- 014 o o

perature of the miscibility gap; and to the bcc Fe-Cr [29,3(, 0.014 o

like system, all /Tc = 0.73. ' was varied between4 and 8 can %

in our calculations. 3 ’ ~d
It is worth mentioning that the ratio of theftlisivities can 0 P e S

also be very dterent from unity in crystallisation processes,

when solid nuclei are in a “liquid matrix”. Thus the trapping

effect may play important role here, too. Figure 1: Nucleus size distribution function fof = 0. The hollow squares rep-
resent an earlier stage. The filed circles show a more deselstate, where a
gap between the embryos of the solid solution and the ptatasi was formed.

oot

3. Results and Discussion

3.1. Homogeneous matrix 10000 5

[ |
33
I

O

As a first step nucleation from a homogeneous supersaturated "3 2
solid solution was studied. To avoid the spinodal decomposi 100
tion, the initially homogeneous matrix was supersaturaigd
its composition was outside the spinoda. After some estima-
tions and numerous KMC test runs, the composition of migiorit 1
(A) atoms in the matrix was chosen to be 17%.

We counted the number éfatoms in each nucleus (see Ap-

10 4

0.1+

pendixes for a detailed description of the evaluation pssre 0014

and plotted, from time to time, thg, nucleus size distribution €3]

(related to the number density of nuclei) on a log-log sdale;

better statistics, we summed the results of 3KMC runs (ig. 1~ "™, o o e
One can distinguish two regimes in the graph, a faster and a n

slower decaying part. _ R _
The faster decaying part, left hand side of the distributiorf'gure 2: Nucleus site distribution functions fof = 0 andnf = 4. Although
" . he embedding matrixes are practically identical, the dis&ributions of the
curve, corres_pqnd; to the S!Jb-CI‘ItI(.:al sized, unstabléense—  ,ecipitates drer. The precipitates are smaller and more numerous in case of
embryos—existing in the solid solution. These embryos appeainr = 4 than in case aft = 0.
and dissolve continuously, forming an embryos-solid sofut
system being in dynamic equilibrium. This part of the curve

is characterised by a power function with a diitog,: P - . . ..
yap iy P o< of the precipitates is, the smaller the critical nucleug s&

n~*expEn/ngy). The position of the cutd is determined b . ) S
PEN/New) P . . . y Consequently, for diierent critical nucleus sizes the distribu-
the current composition of the solid solution matrix. ) )
tion functions look diterent.

If the size of an embryo in the solid solution becomes larger
than the critical nucleus size, the nucleus absérhtoms from Fig. 2 shows the distribution functions for two cases, when
the matrix and grows continuously. The super-critical djze the atomic jums are faster in the matrix than in the nucleus
continuously growing, stable nucleiprecipitates—form the  (m' = 4) and when they are identicain{ = 0). The parts
slower decaying, right hand side of the curve in Fig. 1. describing the solid solution are practically identical Bmth

With time, more and more precipitates appear, meanwhile theases, however, the other parts, corresponding to theppreci
existing ones grow further (shift to the right in the plotjor€  tates, are dferent. This shows clearly that the size distributions
sequently, the concentration of the solid solution and #iso  of the precipitates dlier, although the embedding matrixes are
cutof value decreases (shifts to the left). At a certain point, thedentical. In case ofit = 4, the smallest precipitates consist of
cutof value will be smaller than the critical nucleus size, thusmore than 440@\ atoms, whereas in case wf = 0 the small-
no new precipitates will appear. Since the size of the precip est precipitates contain less than 189@toms. The number
tates increases with time, a gap will be formed between tbe twof precipitates is also flerent: e.g. 8 fonY = 0; and 12 for
parts of the distribution curve in Fig. 1. m = 4in a 100x 100x 100 box. This, approximately 50%, dif-

The position (lower and upper limits) of the gap and the numference remains throughout the later ripening stage. Tinesaw
ber of stable precipitates are related to the critical uskize. the atomic jumps are faster in the nucleus than in the emhgddi
The critical nucleus size is in the gap; the higher the numbematrix, smaller and more numerous precipitates are exgecte
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3 RESULTS AND DISCUSSION 3.2 Single nucleus
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Figure 3: Nuclei size -AY map. The black squares show the initial size of the
nuclei and the numbers give the probability of growth. Thehaal curve at the
border of the red and green areas corresponds to the estiBG#e probability

of growth, i.e. to the critical nucleus size. The green amaesponds to super-
critical while the red to sub-critical nuclei, respectixel

3.2. Single nucleus

number of layers

Figure 5: Radial distribution functions of similar sizecbgting nuclei calcu-
lated with diterent asymmetry parameter/. It can be seen that fart = 0
symmetrical case the interface is rather wide. For positiehe interface
width decreases with the asymmetry, while the negativléas no €ect on it.
(The dashed lines are only to guide the eyes.)

can also be observed visually in 3D images of the nuclei in

For a deeper understanding of the processes, we also invesiild- 6. On the other hand, the shape of the interface is the sam

gated the behaviour of a single spherical nucleus put into-a h
mogeneous solid solution matrix. The initial size of thelaus
was varied to find the critical nucleus depending@nThe nu-
cleus contained 2003200 atoms initially andY was chosen to
be 0, 2, 4, 8. Initially 85% of the atoms wa&sand 15% wa®

in the nucleus. Whereas in the matrix 15% of the atomsAvas

for Y = 0 andm’ = —4. We have also checked that after very
long time the shape of the interfaces in all cases (i.emfor 0
values, too) was similar to those obtainedrtr= 0, which can
be called as the equilibrium shape.

Regarding the interpretation of the phenomena observed,
first, one has to understand why the obtained critical size is

and 85% wag. These compositions correspond approximatelysmaller for positiven’ values (fast diusion in the matrix, slow

to the composition of the spontaneously growing precipgat
and to the concentration of the matrix after the gap fornmatio
respectively. Thus the probability of spontaneous préaii
formation is very low. This allowed us to investigate theieri
cal nucleus size under similar conditions as in the spootase
formation case but without any interaction between large pr
cipitates.

diffusion in the nucleus). The explanation is plausible: An
atom jumps frequently in thB matrix but after attaching to the

A (rich) nucleus cannot jump for relatively long time. Practi
cally the nucleus traps th& atom. The nucleus does not have
enough time to ejech atoms before new ones arrive, even if
the size of the nucleus is smaller than the critical sizeutated
form thermodynamic considerations, and so the free endrgy o

Figure 3 summarises the results of the calculations. It ean bthe nucleus increases. After the size of the nucleus extkeds

seen, as expected from thermodynamics, tharfoct 0 the nu-
clei with super-critical size grow, whereas the sub-caitnes
dissolve (Fig. 4). Furthermore, there is a size range, atthm
critical size, where the nucleus may either grow or dissdlve
to the stochastic processes. If the random motion oAtams
in the matrix leads to temporary enrichment or depletiorhef t
matrix in the vicinity of the nucleus, then it grows or shrénk
respectively. The growtHissolution ratio is equal to 0.5 for
the exact critical size, otherwiseft#irs from 0.5, proportion-
ally how the current nucleus size deviates from the criticed.
Obviously around 0.5 the nucleus “hesitates” to grow or 8 di
solve. This means that before the nucleus dissolves coatplet
or starts to grow definitely its size may fluctuate.

“thermodynamic critical size”, thermodynamics also dsdise
growth process. Obviously, the trapping is much stronger fo
largernm (larger diference in theéA — A andB — B pair inter-
action energies), thus the “kinetic critical size” devgtaore
from the “thermodynamic critical size”, even by one order of
magnitude for realistic values of .

For similar reason, the shape of the interface fiedént from
the equilibrium one form' > 0: The system practically do
not have enough time to reach the local equilibrium [33] (see
Fig. 5). The formation of the “equilibrium shape” of the in-
terface would require fast rearrangements of atoms at the nu
cleugmatrix interface. However, inside the nucleus the jump
probabilities are much lower, disallowing the fast reagen

Figure 3 also clearly shows that the border between th&ents of atoms.

growth and dissolution ranges shifts towards smaller nuscle
sizes with increasingt .

If m = 0, anA atom in theB matrix jumps as frequently as
in the nucleus. Thus after attaching to the nucleus its juebe r

Figure 5 shows another interesting consequence of the traploes not change. Consequently, the rearrangement of tims ato
ping &fect. As can be seen in the radial distribution functionsat the interface takes place on the same time scale asAnew

of three growing precipitates, calculated for= 0, 4 and 8,
sharper precipitatmatrix interface belongs to larger. This

atoms arrive. Thus, in the interface region the local eqiilim
can be reached continuously. Far< 0, the jump frequencies



Almost identical to the published version:
Z. Erdélyi et al. Acta Materialia 58 (2010) 5639-5645
httpy/dx.doi.org10.1016j.actamat.2010.06.037

3 RESULTS AND DISCUSSION 3.2 Single nucleus

Number of A neighbours
01234586 7 8

Figure 4: Sequence of 3D images of a nucleus during a digsolprocessw = 0. Only theA atoms are plotted. The colour scale illustrates how many
neighbours has aA atom. (a) initial nucleus; (b) the nucleus shrinks and somalls unstableA-rich nuclei (embryos) forms in the matrix; (c) the nucless i
practically dissolved; (d) later on only some unstaiteich nuclei (embryos) can be observed. (only a small pathefKMC cell, around the dissolving nucleus,
is plotted) [32]

Figure 6: The figures show the morphology of precipitatesraftgrowth of 10% for (a)n’ = 0 and (b)nY = 8. The initial nucleus — translucent orange sphere —
consisted of 1679 minorityX) atoms in both cases. Now they consist of (a) 1846 and (b) &@Abrity atoms. The precipitate (b) is much more compaat the
(a) one of which surface is much rougher (there are not omgtsron the sphere surface but also valleys underneat}). [32
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APPENDIX A THREE DIMENSIONAL KINETIC MONTE CARLO MODEL (KMQ

are much faster in tha (rich) nucleus than in th8 (rich) ma-  size. Thus, by changing the box size, not only the size inglepe

trix. Consequently, the attachédatom has enough time (even dence but also the vacancy concentration independence of th

more than in case afY = 0) either to go inside the nucleus results were checked. Furthermore, we note that for compari

and form the local equilibrium or to escape from the nucleusson to real time scale, our simulation time should be reddale

until newA atoms arrive. Thus, the whole nucleus, and also theorresponding real concentrations.

interface region can continuously be in local equilibrium. If only atom-vacancy exchange is allowed, the exchange
Itis also worth mentioning that in the framework of the clas- probability of a vacancy-atom pair can be calculated from th

sical model of nucleation and growth the interface energy is binding energy of the atom. This energy can be calculated eas

very important input parameter determining the criticaliva  ily in a simple nearest-neighbour interaction approxiomgi-

[11, 12], because they are proportional to each other. Therer for anA (Ea) or B (Eg) atom:

is long standing debate in the literature [12] about the grop

value of the interface energy and estimations of the cfitea

dius (or the interface energy from the critical radius). Hét Ea = naVaa+nsVas,

diffusion is much faster in the matrix than in the nucleus, these Eg = naVag+ NgVas, (A.1)

estimations can contain considerable errors, becausértéick

critical radius can be even an order of magnitude less than ot wheren, andng are the number ohandB atoms in the vicinity

erwise (or the equilibrium critical radius). In additiom, this  of the given atomy;; (i, j = A or B) is the interaction energy
case the shape and thus the energy of the interface can also lbetween anj atom pair. Introducing/ = Vag — % and
different from the equilibrium one. M= % Egs. (A.1) can be written as:

4. Conclusions En = —na(V—M)+nVag,

In this paper, we have shown that if the atomic jumps are  Es —(N=na)(V + M) + nVpg.
slower in theA-rich nucleus nucleus than in tiigrich embed-
ding matrix, peculiar behaviour is observed. With the iase
of the ratio of the jump probabilities in the matrix and in the
nucleus, the kinetic critical nucleus size—for which thewgth i )
probability is ¥2—may decrease by an order of magnitude.?’ ordering ¥ < 0) tendency] andv measures the fiu-
The origin of this &ect is that thed-rich nuclei trap the attach- SION asymmetryrtf = —2nM/kTlog,,e, wheree is the base
ing A atoms. The nuclei do not have enough time to efect qf natgral logarithm) [25]_. L-Jsmg the usual (;Arrhenlus- rela
atoms before new ones arrive, even if their size is smalkan th t|(())n.sh|p between th? activation epergyi (= E° - B, where
the thermodynamic critical size, and thus the ejection ddel E_ s the saddle point energy, amd= A, B) and th?_ proba-
favourable thermodynamically. When thefdsion is the same  Pility [Tiv = vexpt-Qi/KT)], the exchange probabilities of a
in the matrix and the nucleus or if it is faster in the nucleus,Yacancyratom pair are:

such dfects were not observed.

wheren = na + ng is the number of neighbors of an atom,
V, is the regular solid solution parameter [proportionalhe t
mixing energy and measures the phase separating- (0)

r ox [ EO + na(V — M)
= vy -,
Acknowledgments VA P KT
_ E%+ (n—na)(V + M)
This work was supported by the OTKA Board of Hungary I've = vexp|- KT 5

(Nos K67969, CK80126). One of the authors (Z. Erdélyi) of

this paper is a grantee of the 'Bolyai Janos’ scholarship. wherek and T are the Botzmann's constant and the absolute
temperaturey is the attempt frequency, ahtf = —E° + nVag.
E° is taken to be constant for a given system, and thus it may
be set to zero during calculations (but can be considerdukin t
Appendix A. Three dimensional kinetic Monte Carlo time scalingif needed). Note thEya # I'vgin a pureB matrix.
model (KMC) This means that—as the jump probability is proportionaht t
diffusion codficient-DS # DY.

Monte Carlo simulations of the kinetic process were per- Itis worth noting that in a one-vacancy KMC calculation the
formed using the residence-time algorithm [26]. The sitiola  vacancy concentration is defined by the finding probabilfty o
box containedl(xxLyxL,) sites in body and face centered cubic the vacancy in a small volume. (This definition is also valid
(BCC and FCC, respectively) structures with periodic bargd even in a multi-vacancy model, since in case of dilute vaganc
conditions. Typically, 108100x100 boxes (one million atoms) concentration the probability to find more than one vacancy i
were used but larger and smallsy # L, # L, boxes were also  a small volume is negligible.) It is obvious that if the exoga
used to test the independency of the results from the box sizgrobability of the vacancy and amtom pair is larger e.g. in the
and geometry. As there was always one vacancy in the simuld (rich) matrix than in theA (rich) nucleus, the finding prob-
tion box, the vacancy concentration was proportional tdothee  ability of a vacancy in théB matrix is also larger than in the
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