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Kinetic critical radius in nucleation and growth processes- Trapping effect
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Abstract

The critical nucleus size—above which nuclei grow, below dissolve—during diffusion controlled nucleation in binary solid-solid
phase transformation process is calculated using kinetic Monte Carlo. If atomic jumps are slower in anA-rich nucleus than in the
embeddingB-rich matrix, the nucleus traps theA atoms approaching its surface. It has not enough time to eject A atoms before
new ones arrive, even if it would be favourable thermodynamically. In this case the critical nucleus size can be even by anorder of
magnitude smaller than expected from equilibrium thermodynamics or without trapping.
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1. Introduction

Thousands of studies probing the nucleation and growth pro-
cesses of incommensurate materials or using the classical nu-
cleation theory to interpret the results have been published in
the last years [1]. This is because the fabrication of many novel
materials requires the ability to exercise precise controlover the
growth of precipitates in a host material or in thin films on a host
substrate or of precipitates in a host [2, 3], in crystallisation pro-
cesses [4], in preparation of nanoparticles [5, 6], in isothermal
austenite decomposition in nearly eutectoid steel [7], etc. Ac-
cordingly, also the theory itself has been discussed a lot (e.g.
three ways of implementing classical nucleation and growth
theories was presented and discussed recently in Ref. 8, 9)

According to the classical (thermodynamic) ”nucleation and
growth” theory [10, 11] of phase transformation process, there
exists a critical nucleus size or annc critical number of atoms
(or molecules, ions, etc.) being in the nucleus. The nuclei con-
taining atoms less thannc dissolve into the matrix, whereas the
larger ones grow continuously. This can be obtained from sim-
ple considerations on the radius dependence of the free energy
of a nucleus (see e.g. Ref. 12). The equation, describing theen-
ergy gain and loss of the system when a nucleus is created, con-
tains two terms, the chemical energy gain and surface energy
loss. For instance in the case of creation of anA-rich nucleus
(in a B-rich matrix) the energy gain arises from the elimination
of the higher energyA−B heteroatomic bonds for the benefit of
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the lower-energyA− A or B− B homoatomic bonds. This gain
is proportional to the volume (or tonvol, the number of atoms in
the volume of the nucleus). The energy loss originates from the
creation of the nucleus/matrix interface; the number of atoms
being at the interface (nint) is obviously proportional to the sur-
face of the nucleus. Thus the sum of these two terms is not a
monotonic function of the size (n) but has a maximum, deter-
mining nc. According to this phenomenological picture, below
nc a small increase inn increases, while abovenc decreases the
energy of a nucleus.

From kinetic aspects, nucleation is known to occur by forma-
tion of atomic clusters of various sizes (see e.g. Refs. 13, 14).
The cluster size changes randomly as a result of successive at-
tachments and detachments of single atoms to and from the
cluster. As atomic attachments and detachments are random
events, a givenn-sized cluster can decay or grow and reach a
macroscopic size with a certain probability. There exists apar-
ticular cluster sizen = n∗ when atoms are attached and detached
to and from the cluster with equal frequency, i.e. theP(n = n∗)
growth probability of the cluster is 1/2. Clusters of sizen < n∗

tend to decay, i.e.P(n < n∗) < 1/2, because per unit time less
molecules are attached to than detached from them. On the
contrary, the clusters of sizen > n∗ are characterised by attach-
ment frequencies greater than the detachment ones and for that
reason these clusters tend to grow up to macroscopic sizes, i.e.
P(n > n∗) > 1/2.

In principle, there is no reason for supposing that the ther-
modynamically definednc, called as “thermodynamic critical
size”, and the kinetically definedn∗, called as “kinetic criti-
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Table 1: Examples of self and impurity diffusion data for Fe-Cr and Cu-Co
binary systems [16]. The columns are the pre-exponential factor, the activation
energy and the diffusion coefficient calculated for 800 K, respectively. The
footnote shows the calculated values ofm′ (see also the text).

D0 Q D
(10−4 m2/s) (kJ/mol) (m2/s)

Fe-Cra

Fe in Fe 2.01 240.7 3.86× 10−20

Cr in Fe 8.52 250.8 3.58× 10−20

Cr in Cr 1.6 339.1 1.15× 10−26

Fe in Cr 0.47 332 9.86× 10−27

Cu-Cob

Cu in Cu 0.35 203.6 1.78× 10−18

Co in Cu 0.43 214.3 4.37× 10−19

Co in Co 0.55 288.5 7.99× 10−24

Cu in Co 1 275 1.11× 10−22

am′Fe = log10
DFeinFe
DFeinCr

= 6.59; m′Cr = log10
DCrinFe
DCrinCr

= 6.49

bm′Cu = log10
DCuinCu

DCuinCo
= 4.21; m′Co = log10

DCoinCu

DCoinCo
= 4.74

cal size” are identical. For example Nishioka showed analyti-
cally for a single-component system thatnc may be somewhat
smaller thann∗ [15]. For example for water nucleation from
vapour this difference is 1%.

In this paper, based on kinetic Monte Carlo calculations of
nucleation and growth processesin binary solids, we demon-
strate that if the atomic jumps are orders of magnitude slower
in the nucleus than in the embedding matrix, the kinetic critical
nucleus size can be even byan order of magnitude smallerthan
otherwise (when the atomic jumps are equal in the nucleus and
in the matrix, or the jumps are faster in the nucleus). Since,if
for instance theA−Abonds are much stronger than theA−Band
B− B ones, anA atom jumps frequently in theB (rich) matrix
but after attaching to theA (rich) nucleus can hardly jump any
more. Practically the nucleus traps theA atoms approaching its
surface. Therefore, we show that a kinetic parameter drastically
influencesn∗ and so also its deviation fromnc in binary solids.

Besides its theoretical importance, our finding can have prac-
tical interest in crystallization processes (see e.g. Ref.4) or in
diffusion controlled solid state transformations (e.g. quenching
and phase separation; precipitation) of supersaturated solid so-
lutions, which is an important step in many technological pro-
cedures.

2. Theory

The ratio of the atomic jump probabilities or diffusion co-
efficients in the nucleus and in the matrix is several orders of
magnitude in real systems (see e.g. Table 1 and Ref. 16), and
originates from the difference in the bonding strength. There-
fore, the jump probabilities of the atoms depends on the local
environment, i.e. on thelocal composition.

It is very common in the diffusion literature to describe the
composition dependence of the diffusion coefficients by an ex-
ponential function [16]. This is also in accordance with the

form of composition dependence of the jump probabilities in
kinetic Monte Carlo (see Appendix Appendix A) and the jump
frequencies in kinetic mean field models [17], where the acti-
vation energies of the jump frequencies depend linearly on the
composition in a homogeneous alloy (see Appendix Appendix
B).

In principle one has to distinguish between the (tracer) dif-
fusion coefficients ofA andB atoms:DA = D0

A exp(mAcA) and
DB = D0

B exp(mBcA), whereD0
A as well asD0

B are composition
independent factors,cA is the composition of theA atoms,mA

andmB are parameters determining the strength of the compo-
sition dependence. It is worth introducing them′A = mA log10 e
andm′B = mB log10 e parameters (e is the base of natural loga-
rithm), which give in orders of magnitude the ratios of the dif-
fusion coefficients in the pureA andB matrixes. For instance,
m′A = 4 means that theA atoms jumps 10, 000 times faster in the
A matrix than in theB. Accordingly,m′A andm′B parameters can
be obtained form the ratio of the corresponding diffusion coef-
ficients as shown in Table 1 (and can also be called as diffusion
asymmetry parameters) [18].

Taking into account thatm′Fe � m′Cr andm′Cu � m′Co in Ta-
ble 1, we assumed in our investigations that the diffusion coef-
ficients have identical composition dependence, i.e.m′A = m′B ≡
m′. Of course, this does not mean thatDA = DB, sinceD0

A , D0
B

in general.
It can also be seen from Table 1 that a ratio of four to eight

orders of magnitude of the diffusivities/jump probabilities in
the nucleus and in the matrix are not unrealistic values, espe-
cially for low temperature experiments. For example at 800 K,
m′ � 6.5 in Fe-Cr,m′ � 4.5 in Cu-Co systems (see also some
other examples and interesting phenomena related to the large
asymmetry in Ref. 19, 20, 21, 22, 23, 24). Note, that according
to the Arrhenius-type temperature dependence of the diffusion
coefficient,m′ increases with decreasing temperature due to the
different activation energies inA andB. As a final remark,m′

can also be calculated from the difference in theA−A andB−B
pair interaction energies (see e.g. Ref. 18 and Appendix Ap-
pendix A).

In the following, we show howm′ influences the critical nu-
cleus size in a supersaturated phase separatingA−B alloy (from
now on, the ’critical size’ and the ’critical nucleus size’ mean
always the kinetic ones if it is not stated otherwise). In prin-
ciple, two cases should be considered: positive (the jumps are
faster in the matrix) and negative (the jumps are slower in the
matrix) values ofm′. However, since form′ < 0 values we
found that the critical nucleus size was independent ofm′, only
the results of the calculations performed form′ ≥ 0, i.e. when
the atomic jumps are faster in the matrix, are described in de-
tails. In this case significant change in the critical size versus
m′ was observed.

One dimensional kinetic mean filed (KMF) and three dimen-
sional kinetic Monte Carlo (KMC) models (see Ref. 25, 26, 17
and the Appendixes for more information on the models) were
used to study howm′ influences the critical nucleus size. Al-
though the KMF is deterministic and limited to one dimension,
and its results cannot be exactly compared to that of KMC, in
order to save time we used the KMF to map roughly the ade-
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3.1 Homogeneous matrix

quate range of input parameters and the expectable tendencies.
Then, with each chosen input parameter set we run the KMC
several times.

The temperature and the regular solid solution parameter
(proportional to the mixing energy; see Appendixes for detailed
information) were chosen to beT = 800 K andV = 0.025 eV,
respectively. These parameters correspond e.g. to the fcc Cu-Co
[27, 28] system, atT/Tc ≈ 0.51, whereTc is the maximum tem-
perature of the miscibility gap; and to the bcc Fe-Cr [29, 30,31]
like system, atT/Tc ≈ 0.73. m′ was varied between−4 and 8
in our calculations.

It is worth mentioning that the ratio of the diffusivities can
also be very different from unity in crystallisation processes,
when solid nuclei are in a “liquid matrix”. Thus the trapping
effect may play important role here, too.

3. Results and Discussion

3.1. Homogeneous matrix

As a first step nucleation from a homogeneous supersaturated
solid solution was studied. To avoid the spinodal decomposi-
tion, the initially homogeneous matrix was supersaturatedbut
its composition was outside the spinoda. After some estima-
tions and numerous KMC test runs, the composition of minority
(A) atoms in the matrix was chosen to be 17%.

We counted the number ofA atoms in each nucleus (see Ap-
pendixes for a detailed description of the evaluation process)
and plotted, from time to time, thePn nucleus size distribution
(related to the number density of nuclei) on a log-log scale;for
better statistics, we summed the results of 3 KMC runs (Fig. 1).
One can distinguish two regimes in the graph, a faster and a
slower decaying part.

The faster decaying part, left hand side of the distribution
curve, corresponds to the sub-critical sized, unstable nucleus—
embryos—existing in the solid solution. These embryos appear
and dissolve continuously, forming an embryos-solid solution
system being in dynamic equilibrium. This part of the curve
is characterised by a power function with a cutoff, ncut: Pn ∝

n−α exp(−n/ncut). The position of the cutoff is determined by
the current composition of the solid solution matrix.

If the size of an embryo in the solid solution becomes larger
than the critical nucleus size, the nucleus absorbsA atoms from
the matrix and grows continuously. The super-critical sized,
continuously growing, stable nuclei—precipitates—form the
slower decaying, right hand side of the curve in Fig. 1.

With time, more and more precipitates appear, meanwhile the
existing ones grow further (shift to the right in the plot). Con-
sequently, the concentration of the solid solution and alsothe
cutoff value decreases (shifts to the left). At a certain point, the
cutoff value will be smaller than the critical nucleus size, thus
no new precipitates will appear. Since the size of the precipi-
tates increases with time, a gap will be formed between the two
parts of the distribution curve in Fig. 1.

The position (lower and upper limits) of the gap and the num-
ber of stable precipitates are related to the critical nucleus size.
The critical nucleus size is in the gap; the higher the number
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Figure 1: Nucleus size distribution function form′ = 0. The hollow squares rep-
resent an earlier stage. The filed circles show a more developed state, where a
gap between the embryos of the solid solution and the precipitates was formed.
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Figure 2: Nucleus site distribution functions form′ = 0 andm′ = 4. Although
the embedding matrixes are practically identical, the sizedistributions of the
precipitates differ. The precipitates are smaller and more numerous in case of
m′ = 4 than in case ofm′ = 0.

of the precipitates is, the smaller the critical nucleus size is.
Consequently, for different critical nucleus sizes the distribu-
tion functions look different.

Fig. 2 shows the distribution functions for two cases, when
the atomic jums are faster in the matrix than in the nucleus
(m′ = 4) and when they are identical (m′ = 0). The parts
describing the solid solution are practically identical for both
cases, however, the other parts, corresponding to the precipi-
tates, are different. This shows clearly that the size distributions
of the precipitates differ, although the embedding matrixes are
identical. In case ofm′ = 4, the smallest precipitates consist of
more than 4400A atoms, whereas in case ofm′ = 0 the small-
est precipitates contain less than 1800A atoms. The number
of precipitates is also different: e.g. 8 form′ = 0; and 12 for
m′ = 4 in a 100×100×100 box. This, approximately 50%, dif-
ference remains throughout the later ripening stage. Thus when
the atomic jumps are faster in the nucleus than in the embedding
matrix, smaller and more numerous precipitates are expected.
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Figure 3: Nuclei size –m′ map. The black squares show the initial size of the
nuclei and the numbers give the probability of growth. The dashed curve at the
border of the red and green areas corresponds to the estimated 50% probability
of growth, i.e. to the critical nucleus size. The green area corresponds to super-
critical while the red to sub-critical nuclei, respectively.

3.2. Single nucleus

For a deeper understanding of the processes, we also investi-
gated the behaviour of a single spherical nucleus put into a ho-
mogeneous solid solution matrix. The initial size of the nucleus
was varied to find the critical nucleus depending onm′. The nu-
cleus contained 200−3200 atoms initially andm′ was chosen to
be 0, 2, 4, 8. Initially 85% of the atoms wasA and 15% wasB
in the nucleus. Whereas in the matrix 15% of the atoms wasA
and 85% wasB. These compositions correspond approximately
to the composition of the spontaneously growing precipitates
and to the concentration of the matrix after the gap formation,
respectively. Thus the probability of spontaneous precipitate
formation is very low. This allowed us to investigate the criti-
cal nucleus size under similar conditions as in the spontaneous
formation case but without any interaction between large pre-
cipitates.

Figure 3 summarises the results of the calculations. It can be
seen, as expected from thermodynamics, that form′ = 0 the nu-
clei with super-critical size grow, whereas the sub-critical ones
dissolve (Fig. 4). Furthermore, there is a size range, around the
critical size, where the nucleus may either grow or dissolvedue
to the stochastic processes. If the random motion of theA atoms
in the matrix leads to temporary enrichment or depletion of the
matrix in the vicinity of the nucleus, then it grows or shrinks,
respectively. The growth/dissolution ratio is equal to 0.5 for
the exact critical size, otherwise differs from 0.5, proportion-
ally how the current nucleus size deviates from the criticalone.
Obviously around 0.5 the nucleus “hesitates” to grow or to dis-
solve. This means that before the nucleus dissolves completely
or starts to grow definitely its size may fluctuate.

Figure 3 also clearly shows that the border between the
growth and dissolution ranges shifts towards smaller nucleus
sizes with increasingm′.

Figure 5 shows another interesting consequence of the trap-
ping effect. As can be seen in the radial distribution functions
of three growing precipitates, calculated form = 0, 4 and 8,
sharper precipitate/matrix interface belongs to largerm′. This
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Figure 5: Radial distribution functions of similar sized growing nuclei calcu-
lated with different asymmetry parameter,m′. It can be seen that form′ = 0
symmetrical case the interface is rather wide. For positivem′ the interface
width decreases with the asymmetry, while the negativem′ has no effect on it.
(The dashed lines are only to guide the eyes.)

can also be observed visually in 3D images of the nuclei in
Fig. 6. On the other hand, the shape of the interface is the same
for m′ = 0 andm′ = −4. We have also checked that after very
long time the shape of the interfaces in all cases (i.e. form > 0
values, too) was similar to those obtained form′ = 0, which can
be called as the equilibrium shape.

Regarding the interpretation of the phenomena observed,
first, one has to understand why the obtained critical size is
smaller for positivem′ values (fast diffusion in the matrix, slow
diffusion in the nucleus). The explanation is plausible: AnA
atom jumps frequently in theB matrix but after attaching to the
A (rich) nucleus cannot jump for relatively long time. Practi-
cally the nucleus traps theA atom. The nucleus does not have
enough time to ejectA atoms before new ones arrive, even if
the size of the nucleus is smaller than the critical size calculated
form thermodynamic considerations, and so the free energy of
the nucleus increases. After the size of the nucleus exceedsthe
“thermodynamic critical size”, thermodynamics also assists the
growth process. Obviously, the trapping is much stronger for
largerm′ (larger difference in theA − A andB − B pair inter-
action energies), thus the “kinetic critical size” deviates more
from the “thermodynamic critical size”, even by one order of
magnitude for realistic values ofm′.

For similar reason, the shape of the interface is different from
the equilibrium one form′ > 0: The system practically do
not have enough time to reach the local equilibrium [33] (see
Fig. 5). The formation of the “equilibrium shape” of the in-
terface would require fast rearrangements of atoms at the nu-
cleus/matrix interface. However, inside the nucleus the jump
probabilities are much lower, disallowing the fast rearrange-
ments of atoms.

If m = 0, anA atom in theB matrix jumps as frequently as
in the nucleus. Thus after attaching to the nucleus its jump rate
does not change. Consequently, the rearrangement of the atoms
at the interface takes place on the same time scale as newA
atoms arrive. Thus, in the interface region the local equilibrium
can be reached continuously. Form < 0, the jump frequencies

4
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3.2 Single nucleus

Figure 4: Sequence of 3D images of a nucleus during a dissolution processm′ = 0. Only theA atoms are plotted. The colour scale illustrates how manyA
neighbours has anA atom. (a) initial nucleus; (b) the nucleus shrinks and some small, unstableA-rich nuclei (embryos) forms in the matrix; (c) the nucleus is
practically dissolved; (d) later on only some unstableA-rich nuclei (embryos) can be observed. (only a small part ofthe KMC cell, around the dissolving nucleus,
is plotted) [32]

Figure 6: The figures show the morphology of precipitates after a growth of 10% for (a)m′ = 0 and (b)m′ = 8. The initial nucleus – translucent orange sphere –
consisted of 1679 minority (A) atoms in both cases. Now they consist of (a) 1846 and (b) 1845minority atoms. The precipitate (b) is much more compact than the
(a) one of which surface is much rougher (there are not only crests on the sphere surface but also valleys underneath). [32]
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are much faster in theA (rich) nucleus than in theB (rich) ma-
trix. Consequently, the attachedA atom has enough time (even
more than in case ofm′ = 0) either to go inside the nucleus
and form the local equilibrium or to escape from the nucleus
until newA atoms arrive. Thus, the whole nucleus, and also the
interface region can continuously be in local equilibrium.

It is also worth mentioning that in the framework of the clas-
sical model of nucleation and growth the interface energy isa
very important input parameter determining the critical radius
[11, 12], because they are proportional to each other. There
is long standing debate in the literature [12] about the proper
value of the interface energy and estimations of the critical ra-
dius (or the interface energy from the critical radius). If the
diffusion is much faster in the matrix than in the nucleus, these
estimations can contain considerable errors, because the kinetic
critical radius can be even an order of magnitude less than oth-
erwise (or the equilibrium critical radius). In addition, in this
case the shape and thus the energy of the interface can also be
different from the equilibrium one.

4. Conclusions

In this paper, we have shown that if the atomic jumps are
slower in theA-rich nucleus nucleus than in theB-rich embed-
ding matrix, peculiar behaviour is observed. With the increase
of the ratio of the jump probabilities in the matrix and in the
nucleus, the kinetic critical nucleus size—for which the growth
probability is 1/2—may decrease by an order of magnitude.
The origin of this effect is that theA-rich nuclei trap the attach-
ing A atoms. The nuclei do not have enough time to ejectA
atoms before new ones arrive, even if their size is smaller than
the thermodynamic critical size, and thus the ejection would be
favourable thermodynamically. When the diffusion is the same
in the matrix and the nucleus or if it is faster in the nucleus,
such effects were not observed.
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Appendixes

Appendix A. Three dimensional kinetic Monte Carlo
model (KMC)

Monte Carlo simulations of the kinetic process were per-
formed using the residence-time algorithm [26]. The simulation
box contained (Lx×Ly×Lz) sites in body and face centered cubic
(BCC and FCC, respectively) structures with periodic boundary
conditions. Typically, 100×100×100boxes (one million atoms)
were used but larger and smallerLx , Ly , Lz boxes were also
used to test the independency of the results from the box size
and geometry. As there was always one vacancy in the simula-
tion box, the vacancy concentration was proportional to thebox

size. Thus, by changing the box size, not only the size indepen-
dence but also the vacancy concentration independence of the
results were checked. Furthermore, we note that for compari-
son to real time scale, our simulation time should be rescaled to
corresponding real concentrations.

If only atom-vacancy exchange is allowed, the exchange
probability of a vacancy-atom pair can be calculated from the
binding energy of the atom. This energy can be calculated eas-
ily in a simple nearest-neighbour interaction approximation ei-
ther for anA (EA) or B (EB) atom:

EA = nAVAA + nBVAB,

EB = nAVAB+ nBVBB, (A.1)

wherenA andnB are the number ofA andB atoms in the vicinity
of the given atom,Vi j (i, j = A or B) is the interaction energy
between ani j atom pair. IntroducingV = VAB −

VAA+VBB
2 and

M = VAA−VBB
2 , Eqs. (A.1) can be written as:

EA = −nA(V − M) + nVAB,

EB = −(n− nA)(V + M) + nVAB.

wheren = nA + nB is the number of neighbors of an atom,
V, is the regular solid solution parameter [proportional to the
mixing energy and measures the phase separating (V > 0)
or ordering (V < 0) tendency] andM measures the diffu-
sion asymmetry (m′ = −2nM/kT log10 e, wheree is the base
of natural logarithm) [25]. Using the usual Arrhenius- rela-
tionship between the activation energy (Qi = E0

− Ei , where
E0 is the saddle point energy, andi = A, B) and the proba-
bility [ ΓiV = νexp(−Qi/kT)], the exchange probabilities of a
vacancy-i atom pair are:

ΓVA = νexp

[

−
Ê0 + nA(V − M)

kT

]

,

ΓVB = νexp

[

−
Ê0 + (n− nA)(V + M)

kT

]

,

wherek andT are the Botzmann’s constant and the absolute
temperature,ν is the attempt frequency, and̂E0 = −E0 + nVAB.
Ê0 is taken to be constant for a given system, and thus it may
be set to zero during calculations (but can be considered in the
time scaling if needed). Note thatΓVA , ΓVB in a pureB matrix.
This means that–as the jump probability is proportional to the
diffusion coefficient–D0

A , D0
B.

It is worth noting that in a one-vacancy KMC calculation the
vacancy concentration is defined by the finding probability of
the vacancy in a small volume. (This definition is also valid
even in a multi-vacancy model, since in case of dilute vacancy
concentration the probability to find more than one vacancy in
a small volume is negligible.) It is obvious that if the exchange
probability of the vacancy and ani atom pair is larger e.g. in the
B (rich) matrix than in theA (rich) nucleus, the finding prob-
ability of a vacancy in theB matrix is also larger than in the
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Z. Erd élyi et al. Acta Materialia 58 (2010) 5639–5645

http://dx.doi.org/10.1016/j.actamat.2010.06.037

A nucleus. This shows that the faster diffusion in theB ma-
trix originates not only from the faster exchange of a vacancy-i
atom pair but also form that the vacancy is in theB matrix more
frequently than in theA nucleus, i.e. the vacancy concentration
is larger in theB matrix than in the nucleus.

Appendix B. One dimensional kinetic mean filed model
(KMF)

Our model to calculate the time evolution of the composi-
tion on a one-dimensional lattice is based on Martin’s equa-
tions [17]. However, we use our own composition dependent
activation barriers (diffusion asymmetry) in the exchange fre-
quencies, which unify the advantages of other barriers usedin
the literature as was shown in Ref. 25.

The net flux of A atoms from planei to (i + 1) is given by

Ji,i+1 = zv
[

ci(1− ci+1)Γi,i+1 − ci+1(1− ci)Γi+1,i
]

,

whereci is the atomic fraction ofA atoms in planei, Γi,i+1 is
the frequency with which anA atom in planei exchanges with
a B atom in planei + 1 andzv is the vertical coordination num-
ber. It is usually assumed that the exchange frequencies have
an Arrhenius type temperature dependence:

Γi,i+1 = Γiγi and Γi+1,i = Γi/γi

with

Γi = Γ0 exp[αi/kT] and γi = exp[−εi/kT],

wereΓ0 = νexp[−Ê0/kT], ν denotes the attempt frequency,Ê0

is composition independent and contains the saddle point en-
ergy,k is the Boltzmann constant,T is the absolute temperature,
and

αi = [zv(ci−1 + ci+1 + ci + ci+2) + zl(ci + ci+1)] M

as well as

εi = [zv(ci−1 + ci+1 − ci − ci+2) + zl(ci − ci+1)] V.

Herezl is the lateral coordination number,V is the same regular
solid solution parameter as in KMC, and also similarly to the
KMC model,M measures the diffusion asymmetry. Herem′ =
−2ZM/kT log10 e, whereZ = 2zv + zl [25].

Note that in a homogeneous alloyα = 2ZMc andε = 0, i.e.
the activation energy is proportional to the composition.

The input parameters in the model are, therefore [25]:V reg-
ular solid solution parameter;T temperature;zv, zl vertical and
lateral coordination numbers [zv = 4,zl = 0 for a BCC structure
andzv = 4, zl = 4 for an FCC structure in (100) direction]; and
m′ diffusion asymmetry parameter.

Appendix C. Evaluation

The simulations started form initially homogeneous solid so-
lution matrixes involved multiple stable precipitates andsub-
critical, unstable nuclei. To identify and count them, the fol-
lowing algorithm was used [34]:

• if a minority (A) atom has at leastn (n = 3 in BCC,n = 4
in FCC structures) minority neighbours, the atoms form a
nucleus;

• a new minority atom is added to a nucleus if it has at least
2 minority neighbours form the nucleus.

Note that in the case when a single spherical nucleus was put
into a homogeneous solid solution matrix, we used the same
algorithm to determine its evolution in size.

To plot the data in a histogram, the size of the nuclei was
grouped into logarithmically spaced bins. Each decade was di-
vided into twenty bins. The frequency was calculated as the
total number of the given sized nuclei divided by the bin length
[35].
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