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Abstract

We study the stabilizer orbit of the coadjoint action of the Virasoro algebra on its
dual. The vector field associated to the stabilizer orbit is called the projective vector
field and the equation associated to this is called the projective vector field equation. At
first we study the Riccati and higher Riccati equations associated to this equation. We
obtain the solutions of these special higher Riccati equations in terms of the solutions of
ordinary Riccati equation. We also derive Painlevé II equation (α = 2) from the second
order Riccati equation. Using the geometrical relation between the projective vector field
equation and Hill’s equation we obtain the solutions of various anharmonic oscillators.
Solutions of the Ermakov-Pinney equation, Kummer-Schwarz equation Emden-Fowler
and Painlevé II are given in terms of global projective connection. In the second half
of the paper we derive generalized Chazy equation for dihedral triangle case, Chazy
class XII equation and Painlevé II (α = −1/2) from the second and third order Riccati
equations. The relation between the Riccati and the projective vector field equations is
explored via invariant methods.

Mathematics Subject Classifications (2000): 35Q53, 14G32.
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1 Introduction

In our earlier paper [16] we investigated finite dimensional integrable Hamiltonian sys-
tems associated to the stabilizer orbit of the coadjoint action of the Virasoro algebra.
We studied several well known integrable ordinary differential equations [for example,
see 3] including the celebrated Painlevé II equation. The vector field connected to the
stabilizer space of the Virasoro orbit is known as projective vector field [17,19].

The importance of the projective vector field has been taken seriously in our earlier
paper [16]. We have explored its connection to various integrable anharmonic oscillators.
We show that using Kirillov’s superalgebra [22,23] it is possible to describe the solution
of the integrable systems associated to the stabilizer orbit. We formulate the solutions
of Ermakov-Pinney equation [6,28], Painlevé II [20] etc. in terms of the projective vector
field and its square roots in our earlier paper.

It is well known that a large number of integrable partial differential equations are
connected to Virasoro orbit [27,30,31] . These mostly follow from the Euler–Poincaré
flows with respect to various metrics on the Virasoro space. Naturally one would like
to investigate the role the stabilizer set of Virasoro orbit. Since this should be the most
natural place to tap for various integrable nonlinear ODEs and Painlevé equations.

The Painlevé equations have played a significant role in integrable systems. They
arise from similarity reductions of classical soliton equations and as monodromy pre-
serving deformation equations associated with linear systems of ordinary differential
equations with rational coefficient [4,20]. Painlevé’s original motivation was to search
for new special functions. It is known that a large family of classical special functions
are associated with a linear ordinary differential equation with polynomial or rational
coefficients, for examples, Gauss’ hypergeometric functions, Kummer’s confluent hy-
pergeometric functions, and various special functions with the name of Airy, Bessel,
Hermite, etc.

Chazy [8,9] attempted to generalize the work of Painlevé to third order differential
equations. In an attempt to classify the third-order ODEs y”′ = F (x, y, y′, y”) with F
polynomial in y, y′, y” having the Painlevé property, Chazy introduced 13 classes of
reduced equations. Chazy’s work is closely related to the theory of modular functions.
Modular functions are an important family of special functions that satisfy a third
order differential quation. It is known [2,18] that classically known generalizations of
the Chazy equation and Darboux-Halphen system are reductions of the self-dual Yang-
Mills (SDYM) equations with an infinite-dimensional gauge algebra. It has been shown
in [1] that the Darboux-Halphen system reduces to the generalized Chazy equation.
Recently, Clarkson and Olver [10] has expressed the general solution of classical Chazy
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equation as a ratio of two solutions to a hypergeometric equation. In fact, they have
shown that this equation can be reduced to Riccati equation. Thus Chazy equations are
always fascinating equations and can be considered to be a close analogue of Painlevé
equations of third order differential equations. In fact, Chazy’s third order equation
has a special solution that is also related to the sixth Painlevé equation. These special
solutions are known as Picard solutions of the sixth Painlevé equation.

Later, Bureau [7] extended Painlevés first objective, and gave a partial classification
of fourth-order equations. In recent years Cosgrove [12] presented at first in a superb
paper the results on the Painlevé classification of the fourth- and fifth-order ODEs of the
reduced forms y(4) = Ayy” +B(y′)2 +Cy3 and y(5) = Ayy”′ +By′y” +Cy2y′. The list
of the fourth-order ODEs contains six equations, F-I, · · ·, F-VI, including the Bureau
barrier equation F-II which fails some Painlevé tests. The known equations F-I, F-III, F-
IV, F-V are group-invariant reductions of known soliton equations. It was shown in [12]
that for some parameter values, solutions of F-III and F-IV are related to each other by
the Bäcklund transformation coming from the Miura transformation between the Kaup-
Kupershmidt and Sawada-Kotera equations. It also demonstrated by Cosgrove that the
F-I can be integrated in terms of the classical Painlevé-IV functions in the generic case
and in terms of the Painlevé-II and Painlevé-I functions for the special parameter values.
The integrability status of F-II is still unknown to us. The list of the fifth-order ODEs
contains equations Fif-I, Fif-II, Fif-III, which are group-invariant reductions of known
soliton equations, and a new equation Fif-IV. Most recently Cosgrove [13] completed
the Painlevé classification of fourth-order differential equations in the polynomial class,
Bureau symbol P1, that was begun in his earlier paper, where the subcase having Bureau
symbol P2 was treated.

In this paper we will study the Chazy and Bureau symbol P1 class of systems from
higher Riccati equations. All these higher Riccati equations or Riccati chain [14,15]
play a very important role in our paper. It is known that all the higher order Riccati
equations shares almost all the properties of Riccati equation and some special higher
Riccati equations associated to the stabilizer set play a significant role to understand
the geometrical origin of the Bureau and Chazy equations.

1.1 Motivation

The relation between the Riccati equation and the Painlevé is straight forward. The
special function solutions of a Painlevé equation is obtained from the Riccati equation

vx = p2v
2 + p1v + p0

for some function p2, p1, p0. Let us demonstrate its connection to Painlevé II.

Differentiating the Riccati equation yields

vxx = p′2v
2 + 2p2vv

′ + p′1v + p1v
′ + p′0
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= 2p2
2v

3 + (p′2 + 3p1p2)v
2 + (p′1 + 2p0p2 + p2

1)v + p′1 + p1p0

= 2v3 + xv + α.

Thus we obtain

p2(x) = ±1, p1(x) = 0, p0(x) = ±1

2
x, α = ±12.

This connection between a Riccati equation and a Painlevé transedents contains
reach geometry. We will explore this geometrical relation. But the main thrust of the
paper is to explore coonection between the higher Riccati equations and the higher
Painlevé type equations.

In this paper we study certain well-known ordinary diferential equations, higher
order Riccati equations or Riccati chains, Painlevé II and Chazy equation XII [12] from
the perspective of Virasoro orbit. In particular, we show that all these equations are
related to the stabilizer set of Virasoro orbit. Let f(x) ddx ∈ V ect(S1) be a vector field

on a circle and (udx2, 1) be its dual. Then f(x) ddx is called projective vector field or

f(x) ddx ∈ Stab (udx2, 1) if and only if

fxxx + 4ufx + 2uxf = 0. (1)

This equation is known as projective vector field equation [19,17]. The importance of
equation (1) is immense and this is as fundamental as KdV equation in a Virasoro
orbit. A large number of ODEs are associated to this equation. The importance of this
equation was unvieled by Kirillov while studying the classification of coadjoint orbits of
orientation preserving group of diffeomorphism Diff1(S1). So sometimes equation (1)
is also known as Kirillov equation.

Equation (1) popped up in various places of integrable systems. For example in an
interesting paper Rogers et al. [29] demonstrated that the extended Pinney equation

yxx + u(x)y =
α

y3
− 3

α
y4yx −

1

4α2
u9, α 6= 0, (2)

can be recasted to projective field equation via

y = (
α

2

y2

∫

y2 dx
)1/4.

In fact relation between the Pinney equation and equation (1) is well known and this
has appeared in various places. Geometrically, solutions of the Pinney equation are
given by a global projective vector field. In the language of differential equation. The
general solution of the Pinney equation can be expressed as a superposition of solutions
of the linear Schrödinger equation. Our goal is to study equation (1) and show that
many integrable ODEs including the extended Pinney equation follows from (1).

In this paper we explore that the projective vector field equation also plays a very
vital role to understand the Pinney [28,29], generalized Pinney type 0 + 1 dimensional
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integrable systems [5,6]. We obtain a series of Riccati equations, called Riccati chain
from equation (1). These higher order Riccati equations play a important role in our
paper.

The paper is organized as follows: We give all definitions of Virasoro algebra, coad-
joint action and projective vector field in Section 2. We describe Kirillov’s superalgebra
in Section 3. We describe Riccati chain and its connection to Virasoro orbit in Section
4. Section 5 is devoted to anharmonic oscillators, Painlevé II and its connection to
projective vector field equation. We also obtain the solutions of the Ermakov-Pinney
equation and the Kummer-Schwarz equation in terms of global projective vector field.
Section 6 is devoted to Painlevé II and Chazy equation. We explore the relation between
higher Riccati and the Bureau symbol P1 in Section 7. The relation between Riccati
and Eqn. (1) is explored from invariant method [26] in Section 8.

1.1.1 Main result

In this paper we bring three sets of idea together. We unveil the relation between
the projective vector field equation associated to the stabilizer set of Virasoro orbit
and various integrable anharmonic oscillator, Painlevé equations, Chazy equation and
Riccati chain.

Our work yields following results:
� We show that many integrable ODEs like the Pinney, extended Pinney, the

Duffing–van der Pol oscillator etc. are associated the stabilizer set of the Virasoro orbit.
In fact their solutions can be expressed in terms of the projective vector field.

� We obtain the Riccati chain or higher order Riccati equations associated to
projective vector field. We compute the solution of this special higher order Riccati
equations in terms of ordinary equation. We show that Painlevé II for parameter α = 2
follows from the second order special Riccati equation.

� We derive the solutions of the Ermakov-Pinney equation and the Kummer-
Schwarz equation in terms of global projective vector field. We also derive another
Painlevé II for parameter α = −1/2. These two Painlevé II equations are connected by
Bäcklund transformations as shown by Clarkson et al. [10].

� We show that generalized Chazy equation, Chazy class XII can be obtained
from the second and third Riccati equations, which in turn connected to stabilizer set
of Virasoro orbit. In particular, we derive the generalized Chazy equation and Chazy
class XII from third order Riccati equation.

� We demonstrate that two equations from the list of Cosgrove on Painlevé clas-
sification of fourth-order differential equations with Bureau symbol P1 follows from our
construction.

� We demonstrate further connection between Riccati and projective vector field
equation from the invariants method.
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2 Recap: Virasoro orbit and projective struc-

ture

Consider the Lie algebra of vector fields on S1, V ect(S1). The dual of this algebra is
identified with space of quadratic differential forms u(x)dx⊗2 by the following pairing,

< u(x), f(x) >=

∫ 2π

0
u(x) f(x)dx,

where f(x) ddx ∈ V ect(S1). The Virasoro algebra V ir has a unique nontrivial central
extension by means of R

0 −→ R −→ V ir −→ V ect(S1)

described by the Gelfand-Fuchs cocycle ω1(f, g) = 1
2

∫

S1 f
′g′′dx.

The elements of V ir can be identified with the pairs (2π periodic function, real
number ). The commutator in V ir takes the form

[(f(x)
d

dx
, a), (g(x)

d

dx
, b)] = ((fg′ − gf ′)

d

dx
,

∫

S1

1

2
f ′g′′ dx).

The dual space V ir∗ can be identified to the set {(µ, udx2) | µ ∈ R.
A pairing between a point (λ, f(x) ddx) ∈ V ir and a point (µ, udx2) is given by

λµ+

∫

S1

f(x)u(x) dx.

Lemma 2.1

ad∗
(λ,f(x) d

dx
)
(µ, udx2) =

1

2
µf ′′′ + 2f ′u+ 2fu′.

Proof: It follows from the definition

< ad∗(λ,f)(µ, u), (ν, g) > = < (µ, u), ad(λ, f)(ν, g) >

= < (µ, u), (
1

2

∫

S1

f ′g′′dx, [f
d

dx
, g

d

dx
]) > .

=

∫

S1

u(fg′ − f ′g)dx+
1

2
µ

∫

S1

f ′g′′.

2
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Corollary 2.2 The stabilizer space of the action of f d
dx ∈ V ect(S1) on the space of

third-order differential operators of special type is given by

f ′′′ + 2u′f + 4uf ′ = 0,

or

ff ′′ + 2uf2 − 1

2
(f ′)2 = c, (3)

where c is a constant.

Let Ω be the cotangent bundle of S1. Let Ω±1/2 be the square root of the tangent
and cotangent bundle of S1 respectively.

Definition 2.3 A projective connection on the circle is a linear second-order differential
operator

∆ : Γ(Ω−
1

2 ) −→ Γ(Ω
3

2 )

such that the symbol of

1. ∆ is the identity and

2.
∫

S1(∆s1)s2 =
∫

S1 s1(∆s2) for all si ∈ Γ(Ω−
1

2 ).

Let us take s = ψ(x)dx−
1

2 ∈ Γ(Ω−
1

2 ), then ∆s ∈ Γ(Ω3/2) is locally described by

∆s = (aψ′′ + bψ′ + cψ)dx
3

2 .

From the definition of the projective connection condition (1) implies a = 1 and
condition (2) implies b = 0, hence projective connection can be identified with the Hill
operator

∆(2) ≡ ∆ =
d2

dx2
+ u(x).

Definition 2.4 A vector field v = f(x) ddx is called a projective vector field which keeps

fixed a given projective connection ∆ = d2

dx2 + u(x)

Lv∆s = ∆(Lvs), (4)

for all s ∈ Γ(Ω−
1

2 ), where Lv is the Lie derivative of v.

Proposition 2.5 A projective vector field v = f d
dx ∈ Γ(Ω−1) satisfies

f ′′′ + 4f ′u+ 2fu′ = 0.
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Hence equation (1) is called projective vector field equation.

Lemma 2.6 If ψ1 and ψ2 are the solutions of

∆ψ = (
d2

dx2
+ u)ψ = 0, (5)

then the product ψiψj ∈ Γ(Ω−1) satisfies equation f ′′′ + 2u′f + 4uf ′ = 0 and traces out
a three-dimesional spaces of solution.

The sections of Γ(Ω−
1

2 ) which satisfy the equation (5) are not functions but the
square root of a projective vector field, since ψ ∈ Ω−1/2, the space of scalar densities of
weight −1/2, square root of f ∈ V ect(S1).

3 Kirillov Superalgebra and Stabilizer Orbit

We define
G = G0 ⊕ G1,

where we denote G0 ≡ V ect(S1) and G1 ≡ Ω−1/2(S1). G forms a super Lie algebra on
S1,1 [9,10,12] and G1 is the super-partner of G0. This is asserted since G1 is the G0 module
and it is compatible with the structure of G0 module and satisfies G1 × G1 −→ G0. A
typical element of G would be

f(x)
d

dx
+ ψ(x)

√

d

dx
,

and the super Lie Bracket is given by

[(f1, ψ1), (f2, ψ2)] = ([f1, f2] + ψ1ψ2, {f1, ψ2} + {ψ1, f2}).

Definition 3.1 A superprojective vector field is a pair (f d
dx , ψ

√

d
dx) which satisfies

f ′′′ + 4f ′u+ 2fu′ = 0

and
ψ′′ + uψ = 0.

In this realization (f(x) ddx ⊕ψ(x)
√

d
dx), i.e. (f(x), ψ(x)), forms a super Lie algebra.

(f(x), ψ(x)) satisfies
f(x+ 2π) = f(x)

ψ(x+ 2π) = ±ψ(x).
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When it is in the ‘+ ’ sector, it is called the Ramond sector super Lie algebra and the‘−’
sector is known as Neveu-Schwarz sector.

The cocycle may be extended to this superalgebra via

c(ψ1, ψ2) =

∫

S1

ψ′
1ψ

′
2dx. (6)

We concentrate on the coadjoint action of the odd ( or Fermionic) part of the Ramond
and Neveu-Schwarz superalgebras.

Proposition 3.2 Let ξ̂ = (ξ(x)
√

d
dx , a) and û = (u(x)dx2, c). Then the coadjoint ac-

tion of ξ̂ on û(x) yields

ad∗
ξ̂
û(x) = (−c d

2

dx2
+ u(x)) ξ. (7)

Sketch of Proof: It is clear that

[ξ(x)

√

d

dx
, η(x)

√

d

dx
] := ξ(x)η(x)

d

dx
.

Thus

〈ad∗
ξ(x)

q

d

dx

u(x)dx2, η(x)

√

d

dx
〉

= 〈u(x)dx2, [ξ(x)

√

d

dx
, η(x)

√

d

dx
]〉

= 〈(u(x)dx2, c), (ξη
d

dx
,

∫

S1

ξ′η′ dx〉

= 〈(−cξ′′ + u(x)ξ , 0), η̂

√

d

dx
〉

2

Thus the Hamiltonian operator corresponding to “Fermionic” part of the Kirillov’s
superalgebra is

OFer = −c d
2

dx2
+ u(x). (8)

4 Stabilizer set, Riccati chain and other inte-

grable systems

Consider the stabilizer equation of the odd part of Kirillov’s superalgebra which coincides
with the Hill’s equation

aψxx + uψ = 0,

where a is a constant.
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We make the change of variables

p(x) =
ψx
aψ

.

Then

px =
ψxx
aψ

− ψ2
x

aψ2
.

Thus after substituting this into Hill’s equation, we obtain the celebrated Riccati equa-
tion

px + a p2 + u = 0. (9)

Thus it is readily clear that the Riccati equation under a Cole-Hopf transformation
is connected to the stabilizer orbit of the “Fermionic” part of the Kirillov’s superalgebra.

There are some interesting featues of the Riccati equation. If one solution of a
Riccati equation is known, then we can get immediately general solutions of the whole
family of Riccati equations obtained from the original one under the change of variables

p̂ =
a(x)p + b(x)

c(x)p + d(x)
. (10)

It is also interesting to note that for the Riccati equation, if we know any three solutions
p1, p2, p3, we can construct all other solutions p using a simple formula known as cross
ratio.

Lemma 4.1 Given a triple (p1, p2, p3) of distinct points in RP 1, there is a unique
projective linear transformation µ mapping (p1, p2, p3) onto (0, 1,∞). It is given by the
formula

µ(p) =
(p − p1)(p2 − p3)

(p1 − p2)(p3 − p)
, (11)

where µ(p) is called the cross-ratio of the quadruple (p, p1, p2, p3).

Corollary 4.2 Let S be the solution space of Riccati equation passing through three
distinct points p1, p2, p3. Then S is the set of all points p ∈ RP 1 such that

p =
k(p1 − p2) + p1(p2 − p3)

k(p1 − p2) + (p2 − p3)
k ∈ RP 1. (12)

This formula is called superposition formula.
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4.1 Higher order Riccati and projective vector field equa-

tion

We wish to explore the connection between the projective vector field equation and the
second-order Riccati equation.

Assume that

v =
fx
f

(13)

where f satisfies projective vector field equation

fxxx + 4ufx + 2uxf = 0.

We obtain from equation (12)

fxxx
f

= vxx + 3vvx + v3

and, after substituting the results above in Eqn. (1), it takes form

vxx + 3vvx + v3 + 4uv + 2ux = 0, (14)

which is a particular case of the second-order Riccati equation. The coefficients are fixed
by the projective vector field equation.

It is quite natural to search for the Riccati analogue of Lemma 2.6. In other words,
we seek to find the relation between the solutions of the ordinary Riccati equation and
the second order Riccati equation associated to projective vector field.

Proposition 4.3 1. The projective vector field equation is equivalent to a particular
form of second order Riccati equation vxx + 3vvx + v3 + 4uv + 2ux = 0, where
v = fx/f .

2. Suppose p(x) = p1 be the solution of the Riccati equation. Then the second order
Riccati satisfies v(x) = 2p1.

Proof: By direct computation one can check this result.
2

Therefore the above result yields the correspondences between solutions of the second-
order Riccati and ordinary Riccati equation. At this stage we must give the definition
of Riccati chains. In fact all the higher order Riccati equations satisfy most of the
properties of the Riccati equation .

Definition 4.4 Let L be the following differential operator

L =
d

dx
+ v(x).

11



The nth–order equation of the Riccati chain is given by the following formula

Lnv(x) +
n−1
∑

j=1

αj(x)(L
j−1v(x)) + α0(x) = 0, (15)

where n is an integer characterizing the order of the Riccati equation in the chain and
αj(x), j = 0, 1, · · ·N , are arbitrary functions.

The lowest-order equations in the chain after the ordinary Riccati equation are:

n = 2, vxx + 3v(x)vx + v3(x) + α1(x)v(x) + α0(x) = 0 (16)

n = 3, vxxx + 4vvxx + 3v2
x + 6v2vx + α2(x)vx

+v4(x) + α2v
2(x) + α1(x)v(x) + α0(x) = 0. (17)

n = 4 vxxxx + 5vvxxx + 10vxvxx + 15vv2
x + 10v2vxx + 10v3vx + v5

+α3(x)(vxx + 3v(x)vx + v3(x)) + α2(V
2 + vx) + α1(x)v(x) + α0(x) = 0. (18)

Corollary 4.5 The Burgers hierarchy is defined as

vtn = Lnv(x) where L = ∂x + v (19)

Hence the Riccati chain reduces to stationary Burgers hierarchy for all αi = 0. Inciden-
tally this coincides with the famous Faá di Bruno polynomials defined by

v(j+1) = (∂x + v)v(j) (20)

Therefore the ordinary Riccati equation vx + v2 + u = 0 can be writen in the form

v(2) + uv(0) = 0 where v(2) = vx + v2. (21)

Remark The second Riccati equation can be also expressed in terms of Faa di Bruno
polynomial. It is given by

v(3) + α1v
(1) + α(0)v(0) = 0. (22)

The special second Riccati equation coincides with the n = 2 member of the Riccati
chain when α1 = 4u and α0(x) = 2ux.
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4.2 Construction and solutions of special higher order

Riccati equations

In this section we consider a special class of Riccati equations whose solutions can be
expressed in terms of ordinary Riccati equation. Let us consider the action of V ect(S1)
on ∆(n), defined by

∆(n) =
dn

dxn
+ αn−2

dn−2

dxn−2
+ · · · + α1

d

dx
+ α0 (23)

Definition 4.6 The V ect(S1) action on ∆n is defined by

[Lv,∆(n)] := L−(n+1)/2
v ◦ ∆(n) − ∆(n) ◦ L(n−1)/2

v . (24)

We consider a “special” fourth order differential equation

∆(4) = ∂4
x + 10u∂2

x + 10u′∂x + 9u2 + 3u′′ (25)

It is special in this sense that the operator (25) satisfies most of the properties of
projective connections on a circle.

Claim 4.7 Let f(x) ddx be a projective vector field. The action of a vector field f(x) ddx ∈
V ect(S1) on ∆(4) yields

[Lf(x) d

dx

,∆(4)] = 0.

Proof: It is easy to check that if f satisfies equation (1) then above result follows
immediately.

2

Proposition 4.8 Let ψ1 and ψ2 be the solution of Hill’s operator. The equation f ′′′′ +
10uf ′′ + 10u′f ′ + (9u2 + 3u′′)f = 0 traces out a four dimensional spaces of solution
spanned by

{ψ3
1 , ψ

2
1ψ2, ψ1ψ

2
2 , ψ

3
2}.

Proof: By direct computation.
2

We consider the third-order Riccati equation as

vxxx + 4vvxx + 3v2
x + 6v2vx + 10uvx + v4 + 10uv2 + 10uxv + 9u2 + 3uxx = 0. (26)

This third-order Riccati equation is associated to operator (25) is also known as the
projective third-order Riccati equation. By the Cole-Hopf transformation

v(x)f(x) =
df

dx
(x)
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one can easily linearize all these higher order Riccati equations to obtian higher order
linear equations. In other words the whole class of Riccati equations in Riccati chain
linearizes to a linear ordinary differential equation with variable coefficients

dnf

dxn
+

n−2
∑

j=0

αj
dn−2f

dxn−2
= 0. (27)

It is clear that for special third-order Riccati equation we identify α2 = 10u, α3 =
10ux and α3 = 9u2 + 3uxx.

By simple inspection and also from direct computation one can check that

Proposition 4.9 Let p(x) = p1 be the solution of the Riccati equation. Then the solu-
tion of the projective third order Riccati equation (18) is given by q(x) = 3p1

4.2.1 Kolchin closed and homogeneous differential polynomials

A differential polynomial P ∈ Der(ψ1, ψ2) is ∂ - homogeneous if there is a positive
integer n such that for all λ,

P (λψ1, λψ2) = λnP (ψ1, ψ2).

Definition 4.10 A subset of RP 1(Der(ψ1, ψ2)) is called Kolchin closed if it is the set
of zeros of a finite set of ∂ - homogeneous differential polynomials in Der(ψ1, ψ2). The
Kolchin closed set on a projective line is defined by the differential polynomial

Wr(ψ1, ψ2) = ψ2ψ
′
1 − ψ′

2ψ1.

Remark Notice that the above definition of Kolchin closed is analogous to the
Zariski closed for homogeneous polynomials. A subset of RP 1 is Zariski closed if it is
set of zeros of a finite set of homogeneous polynomials.

4.3 Finite-gap potential and generalized Schwarzian equa-

tion

In this Section we study the connection between the modified Schwarzian equation and
projective vector field. This equation appears various places in integrable systems.

Let us consider a polynomial generalized potential

u(x, λ) = λn + u1λ
n−1 + · · · + un. (28)

Hence, the projective vector field equation becomes

fxxx + 4u(x, λ)fx + 2ux(x, λ)f = 0. (29)
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A generalized potential u(x, λ) is called N -phase potential if (29) has a solution
which is a polynomial in λ of degree N , i.e.,

f(x, λ) = λN + f1λ
N−1 + · · · + fN .

It is easy to transform the projective vector field equation to

f ′′

f
+ 4u(x, λ) − f ′2

f2
=
Wr2

f2
(30)

where the constant part can be fixed by the Wronskian of its partner equation

ψ′′ + u(x, λ)ψ = 0.

Proposition 4.11 Let ψ1 and ψ2 be the solutions of ψ′′ + u(x, λ)ψ = 0. Let us define

vi =
ψ1ψ2 ∓Wr

2ψ1ψ2
, (31)

where Wr = ψ1ψ
′
2 − ψ2ψ

′
1 is the Wronskian. Then qi maps the Riccati equation

vix + v2
i + u(x, λ) = 0

to

ff ′′ + 2u(x, λ)f2 − 1

2
(f ′)2 = Wr2.

Proof: By substituting vi into the Riccati equation one obtains the proof.
2

Suppose we assume Wr(ψ1, ψ2) = λ. Thus corresponding to (30) we obtain the
following modified Schwarzian derivative equation

u(x, λ) =
1

2

gxx
g

− 3

4

g2
x

g2
+ λ2g2. (32)

This equation is called the modified Schwarzian equation by Kartashova and Shabat
[21]. This equation has a profound application in integrable systems.

Then Eqn. (32) has unique asymptotic solution represented by formal Laurent series,
such that

g(x, λ) = 1 +

∞
∑

l=1

λ−lgl(x),

where coefficients gl are different polynomials in all u1, · · · , un.
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5 Connection to Painlevé II and various anhar-

monic oscillators

Last section has been devoted to study Riccati chains related to projective vector field
equation. These are special classes of higher Riccati equations the coefficients of which
are governed by all (higher) projective connections.

In this Section we use various members of the Riccati chains to explore the connection
between stabilizer set of the Virasoro orbit and the various anharmonic oscillators, for
example, Embden equation, van der Pol Oscillator equation, Ermakov-Pinney equation
etc. We also derive the Painlevé II equation from the second Riccati equation. Thus, in
this section we establish a systematic method to obtain the solutions a class of integrable
ODEs via projective vector field and its global analogue.

5.1 Nonlinear oscillator equations

We start with an easy example. Consider the ordinary Riccati equation associated to
Hill’s equation

vx + v2 + u = 0.

Assume v takes the following form

v =
yx
y

+W (y(x))). (33)

It is straight forward to check that y satisfies

yxx + (2W + yW ′)yx + (W 2 + u)y = 0, (34)

where W ′ denotes the variational derivative or Frechet derivative with respect to y. Let
us give a few examples.

Case I Equation (34) boils down to the generalized Emden - type equation

yxx + 3cyyx + c2y3 + uy = 0 (35)

for W = cy.

Case II Let W = ky4. We have a freedom to choose u also. We set u = c(x)+k1y
−4.

Substituting these values of W and u in Eqn. (34) we obtain the extended Pinney
equation

yxx + 6ky4yx + k2y9 + c(x)y +
k1

y3
= 0.
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The standard form of the Pinney equation is

yxx + c(x)y +
k1

y3
= 0,

where k1 is a constant which can be normalized to k1 = ∓1.

Since the solution of the projective vector field equation is spanned by

Span(ψ2
1, ψ

2
2 , ψ1ψ2),

naturally, an arbitrary solution of projective vector field equation is given by

Ψ = Aψ2
1 + 2Bψ1ψ2 + Cψ2

2 , (36)

an arbitrary linear combination of basis vectors. This is periodic and hence a global
solution of the projective vector field equation. This Ψ is called global projective vector
field. After renaming the constants we can express the solution of the Pinney equation
in terms of the square root of the global projective vector field. We will consider this
case in next section.

Case III Similarly one can derive van der Pol oscillator type systems. We substitute
W = cy2 in to equation (34), we obtain

yxx + 4cy2yx + c2y5 + uy = 0. (37)

Therefore we can say that equation (34) can be viewed as a “master equation” for
various oscillator type nonlinear ODEs.

The solutions of these equations (35,37) can also be obtained from the linearization
method. In other words solutions of (!, !!) can be expressed in terms of ψi, solutions of
Hill’s operator

ψi = ye
R

x

0
W (y(x′) dx′.

It is known that the basis of solutions of Hill’s equation of type

∆ψ ≡ d2

dx2
+ u1 = 0

explicitly:

1. ψ1 = sin
√
u1x, ψ2 = cos

√
u1x u1 > 0.

2. ψ1 = 1, ψ2 = 0 u1 = 0.

3. ψ1 = eλx, ψ2 = e−λx u1 = −λ2 < 0.

The Floquet matrix is ±1 only if u1 = n2

4 for n ∈ Z. Therefore it is not hard to get
solutions of such integrable anharmonic oscillator equations.
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5.2 Second order Riccati equation and Painlevé II equa-

tion

Consider the Airy differential equation [cf. 2, 20]

ψxx + xψ = 0. (38)

It is clear that for a special choice of u = x, the Hill’s equation becomes the Airy
differential equation.

Proposition 5.1 Let v = ψx

ψ satisfy the second Riccati equation. If ψ satisfies the Airy
equation

ψ′′ − xψ = 0,

then the second Riccati equation satisfies the Painlevé II equation

v′′ = 2v3 + xv + 2 (39)

Proof: It is clear that u = −x. We make the change of variables

v =
ψx
ψ
. Then vx = x− v2.

When we substitute this result into second Riccati equation, it takes the form of equation
(42).

2

Remark Let us briefly describe the connection between Painlevé II hierarchy and our
approach. It is readily clear that the projective vector field equation is the stabilizer
set of Virasoro orbit. In other words, it yields the second Hamiltonian structure of the
KdV equation

O2 = ∂3
x + 4u∂x + 2ux. (40)

Using “ frozen Lie-Poisson structure” we can define the first Hamiltonian structure of
the KdV equation too. This satisfies famous Lenard scheme

∂xHn+1 = (∂3
x + 4u∂x + 2ux)Hn. (41)

The mKdV hierarchy is obtained from the KdV hierarchy through Miura map u =
vx − v2. Thus the Painlevé hierarchy defined by Clarkson et al. [10] is given as

PnII(v, βn) ≡ (
d

dx
+ 2v)Hn(vx − v2) − vx− βn = 0. (42)

Remark Let us combine the second Riccati and the ordinary Riccati equation. This
system can be reduced to the equation V I of the Painlevé-Gambier classification

vxx + 3vvx + v3 = q(x)(vx + v2). (43)
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5.3 Global projective vector field and integrable systems

The global projective vector field also plays an important role to the solutions of some
integrable systems. In this Section we demonstrate this property with some examples.

The simplest Ermakov system reads

ψ′′ + u(x)ψ =
σ

ψ3
. (44)

Proposition 5.2 If ψ1 and ψ2 satisfy Hill’s equation then the square root of the global
projective vector field, i.e.,

ψ =
√

Aψ2
1 + 2Bψ1ψ2 + Cψ2

2 (45)

satisfies Ermakov equation

ψ′′ + u(x)ψ =
σ

ψ3
, σ = AC −B2.

Proof: It follows from

ψψ′′ + uψ2 + ψ′2 = (Aψ′
1 +Bψ′

2)ψ
′
1 + (Bψ′

1 + Cψ′
2)ψ

′
2,

and unit Wronskian property.
2

Corollary 5.3 The solution of the Kummer-Schwarz equation

1

2

f ′′

f
− 3

4
(
f ′

f
)2 + σf2 = u(x)

is given by
f(x) = (Aψ2

1 + 2Bψ1ψ2 + Cψ2
2)

−1, (46)

where ψ1 and ψ2 satisfy the Hill’s equation.

Remark: The relation between the Ermakov equation and the Kummer-Schwarz
equation depicts the global version of the relation between Hill’s equation and projective
vector field equation.
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5.3.1 Second type of Painlevé II and Generalized Emden-Fowler equa-

tion

In this section we derive second type of Painlevé II with a different parameter value
(α = 1

2 ). Let us consider once again the Cole-Hopf transformation.

v =
ψx
ψ
.

Lemma 5.4 If ψ satisfies the Ermakov equation then y satisfies

vxx + 6vvx + 4v3 + 4vu+ ux = 0. (47)

This equation is called the generalized Embden-Fowler equation.

Proof: After differentiating twice the equation y = ψx

ψ we obtain

vxx + 2vvx + ux = −4v(
σ

ψ4
)

where vx + v2 + u = σ
ψ4 .

2

Let us consider the Airy differential equation

ψxx + xψ = 0,

Proposition 5.5 If ψ satisfies Airy equation

ψxx +
x

2
ψ = 0,

then y satisfies Painlevé II equation

vxx = 2v3 + xv − 1

2
(48)

Corollary 5.6 The solutions of the Painlevé II

vxx = 2v3 + xv − 1

2

can be obtained in terms of following Riccati equation

dv

dx
+ v2 +

1

2
x = 0,

which yields Airy equation under v = ψx

ψ .

Remark The Painlevé transcedents (P-II – P-VI) possess Bäcklund transformations
which map solutions of a given Painlevé equation to solutions of the same Painlevé
equation, but with different values of the parameters. Therefore two Painlevé equations
for α = 2 and α = −1/2 are connected by Bäcklund transformations.
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6 Higher Riccati equations and Chazy equation

We use the higher order Riccati equation to obtain the Chazy equation. We use both
the second-order Riccati and third order Riccati equations. We show that this equation
leads to Chazy class XII equation.

Case I Let us study Chazy class XII equation. This follows readily from the third
order Riccati equation.

Proposition 6.1 Let

vxxx + 4vvxx + 3v2
x + 6v2vx + 10uvx + v4 + 10uv2 + 10uxv + 9u2 + 3uxx = 0

be the special third order Riccati equation associated to fourth-order projective conection.
This boils down to a special case of the Chazy equation XII for u = v2, given by

vxxx + 10vvxx + 9v2
x + 36v2vx + 20v4 = 0. (49)

Case II We have already seen how ordinary Riccati equation can be effectively used to
study certain transformation to determine various other nonlinear oscillator equations.
We use similar technique for second order Riccati equation.

Proposition 6.2 We define v = yx

y + g(x). If v satisfies the second order Riccati
equation, then y satisfies

yxxx + 3gyxx + (3gx + 3g2 + 4u)yx + (3ggx + g3 + 4ug + 2ux)y = 0. (50)

Proof: One can check by direct computation that all the coefficients of y−3 and y−2

cancel and we obtain our desired result.
2

Corollary 6.3 Suppose we take g = 2y and u = yx. Then equation (50) yields the
Chazy XII type equation

yxxx + 8yyxx + 10y2
x + 32y2yx + 8y4 = 0 (51)

Therefore we derive the Chazy equation XII from the second order Riccati equation.
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6.1 Generalized Chazy equation

Recently Ablowitz et. al. studied a general class of Chazy equation, defined as

vxxx − 2vvxx + 3v2
x =

4

36 − n2
(6vx − v2)2. (52)

This equation was first written down and solved by Chazy and is known today as the
generalized Chazy equation. Clarkson and Olver showed that a necessary condition
for the equation (52) to possess the Painlevé property is that the coefficient must be
α = 4

36−n2 with 1 < n ∈ N, provided that n 6= 6. It has been further shown in [11], the
cases n = 2, 3, 4 and 5, correspond to the dihedral triangle, tetrahedral, octahedral and
icosahedral symmetry classes.

It should be noted that the classical Darboux–Halphen system, which is also equiv-
alent to the vacuum Einstein equations for Riemannian self dual Bianchi–IX metrics is
equivalent to classical Chazy ( also known as Chazy class III) equation

yxxx − 2yyxx + 3y2
x = 0 (53)

The classical Chazy equation is such that the only singularity of its general solution
is a movable noncritical natural boundary, a circle, whose centre and radius depend on
three initial conditions of the Cauchy problem. Therefore, it shares lots of properties
with Painlevé equation.

In this Section we will show that the generalized Chazy equation is a third Riccati
equation in disguise. Let us assume all αi = 0. Therefore, the third Riccati equation
becomes

vxxx + 3v2
x + 4vvxx + 6v2vx + v4 = 0. (54)

Proposition 6.4 The third Riccati equation (54) is equivalent to

vxxx − 2vvxx + 3v2
x =

1

8
(6vx − v2)2. (55)

Proof: Our proof follows from rescaling v → v/2 and x→ −x.
2

Therefore, we obtain the generalized Chazy equation for α = 1
8 , and this is related

to n = 2 dihedraltriangle case.

Remark: Originally the link between classical Chazy equation and Riccati appeared
in the work of Chazy. Most recently this has been investigated by Labrunie and Conte
[24]. They noticed that Eqn. (52) admits a two parameter solution

v(x) = −6
x− a

(x− b)2
, (56)
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where a, b are arbitrary parameters in the complex plane. Eliminating a and b between
v(x) calculated by (56) and its first two derivative yields

S ≡ 9v2
xx + 2(v2 − 9vx)vvxx + 3(8vx − v2)v2

x = 0.

Then it can be shown Sx − 2vS factorizes into second Riccati and Chazy class III
equation. One of the basic needs in Galois theory is, obviously, factoring polynomials.
This is a differential counter part. Usually, local differential Galois theory is studied for
differential equations over K((x)), that is, whose coefficients are (formal) meromorphic
functions. I leave this to our alert readers.

Finally, we show that another Chazy equation, namely, Chazy -IV is connected to
our programme.

Proposition 6.5 The Chazy -IV equation

vxxx = −3vvxx − 3v2
x − 3v2vx (57)

is a derivative of second order Riccati equation for αi = 0.

7 Higher-order Painlevé equations and Bureau

symbol P1

Most recently Cosgrove [13] has studied the more difficult subcase of the Painlevé classi-
fication of fourth-order differential equations in the polynomial class that was started in
[12]. In his celebrated paper Cosgrove carried out Painlevé classification of differential
equations of fourth order of the following form

yxxxx = A(x)yyxxx +B(x)yxyxx + C(x)y2yxx +D(x)yy2
x + E(x)y3yx + F (x)y5

+G(x)yxxx +H(x)yyxx + I(x)y2
x + J(x)y2yx +K(x)y4 + L(x)yxx +M(x)yyx

+N(x)y3 + P (x)yx +Q(x)y2 +R(x)y + S(x). (58)

The subcase treated here has Bureau symbol P1 and may be identified by its reduced
equations which take the form

yxxxx = Ayyxxx +Byxyxx + Cy2yxx +Dyy2
x + Ey3yx + Fy5, (59)

where A,B, · · ·F are all constants, not all of them are zero.

Cosgrove presented the results of the Painlevé classification for fourth-order differen-
tial equations where the Bureau symbol is P1. He gave a long list of the equations F-VII
– F-XVIII in this category. In addition to this list he added a non-Painlevé equation of
similar shape which triggered interest among mathematicians. It is a simplest example
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beyond the Chazy-XII equation that can be studied via Clarkson and Olver method. It
is known as Clarkson-Olver equation and defined by

F-XIX : (
d

dx
− 4

3
y)[yxxx − 2yyxx + 3y2

x − α(6yx − y2)2] = 0, (60)

where α is an arbitrary constant and this has a very complicated singularity structures.
The expression within the third brackets is already familiar to us - Chazy - XII. It is
known that the Chazy - XII equation has a single-valued general solution when α =
4/(36 − n2) for n 6= 1, 6.

We derive three different equations from the list of Cosgrove on the Painlevé classi-
fication of fourth order equations with Bureau symbol P1.

Proposition 7.1 The following two equations follow from the higher Riccati equations

F-XII vxxxx = −4vvxxx − 6v2vxx − 4v3vx

−12vv2
x − 10vxvxx. (61)

F-XVI vxxxx = −5vvxxx − 10vxvxx − 15vv2
x − 10v2vxx

−10v3vx − v5 +A(x)(vxxx + 4vvxx + 3y2
x + 6v2vx + v4)

+B(x)(vxx + 3v(x)vx + v3(x)) + C(x)(V 2 + vx) +D(x)v(x) + E(x) = 0. (62)

Proof: A) The equation F-XII follows directly from the fourth order Riccati (R4)
and the third order Riccati (R3) equations for all αi = 0 ( also known as Burgers higer
order flows). The F-XII fourth order equations with Bureau symbol P1 is given as

F-XII = R4 − vR3.

B) The F-XVI fourth order equations with Bureau symbol P1 is the combination of
all higher order Riccati equations.

2

8 Invariants, Riccati and differential algebra

In the previous Section we have constructed Riccati chains from projective vector field
equation. Some of the transformation we have made are not totally accidental. It has a
deeper connection to some other exciting branches of mathematics. In this Section we
shed some light on it.

For a differential equation in n-independent variables and one scalar dependent vari-
able u, we consider the space X × V ∋ (x, v), where X = Rn and V = R. Suppose G
is a Lie group acting on some open subset M ⊆ X × V . Then the transformation by
G ∈ G is

G · (x, v) = (x̄, v̄), v̄ = v̄(x̄).
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The vector field corresponding to g is

χ = f i(x, v)∂i + g(x, v)
∂

∂v
. (63)

Given a smooth function v = v(x), it induces a function v(n) = pr(n)v(x), called the
nth prolongation of v, where

pr(n)v : R −→ Rn+1

is the vector consisting of all the derivatives of v of orders from 0 to n. The total space
X × V (n) ⊆ Rn+1, whose coordinates represent the independent varaible, dependent
variable and the derivatives of v to order n is called the nth order jet space of the
underlying space X × V .

We are interested here on Riccati equation, so we concentrate on one dimension. In
local coordinates, we write the group action infinitesinally

x̄ = x+ ǫf(x, v) +O(ǫ2),

v̄ = x+ ǫg(x, v) +O(ǫ2).

The vector field and corresponding to G is given by

χ = f(x, v)
∂

∂x
+ g(x, v)

∂

∂v
, (64)

If we make a change of variables G(x, v) = (x̄, v̄), then first prolongation computes
the relation between dv̄/dx̄ to dv/dx.

Lemma 8.1
dv̄

dx̄
= (Dg − vxDf) = gx + (gv − fx)vx − fvv

2
x. (65)

Proof: It follows straight from

dv̄

dx̄
=
d(v + ǫg +O(ǫ2)

d(x+ ǫf +O(ǫ2)

=
vx + (gx + gvvx)ǫ+O(ǫ2)

1 + (fx + fvvx)ǫ+O(ǫ2)

= vx + [gx + (gv − fx)vx − fvv
2
x]ǫ+O(ǫ2).

2

Definition 8.2 The vector field corresponding to pr(1)G

pr(1)χ = f(x, v)
∂

∂x
+ g(x, v)

∂

∂v
+ (Dg − uxDf)

∂

∂vx
(66)

where

D =
∂

∂x
+ vx

∂

∂v
.

25



Proposition 8.3 Suppose v satisfies Riccati equation

vx − e(x, v) ≡ vx + v2 + u = 0.

Then the Riccati equation remains invariant with respect to first prolongation pr(1)χ for
all g(x, v) = a(x)v + b provided f satisfies projective vector field equation.

Outline of Proof: At first it is easy to check that

pr(1)χ(vx − e(x, v)) = gx + (gv − fx)e− fve
2 − fex − gev . (67)

Let us substitute

e(x, v) = −(v2 + u(x)), and g(x, v) = a(x)v + b

in equation (!). This yields

0 = [fv]v
4 + [a(x) + fx + 2fvu]v

2 + [2b(x) − ax]v

+[−bx + (−a(x) + fx)u− fvu
2 − fux]

Solving recursive above equations we obtain our result.
2

Remark: One would obtain the same result if one starts from vx+Av
2+Bv+C = 0.

In this case u must be expressed in terms of A, B and C and their derivatives.

9 Conclusion and Outlook

In this paper we have pursued integrable ODEs, Painleve II, Chazy XII, generalized
Chazy equation, Bureau symbol P1 type systems from the study of the Virasoro orbit.
We have shown that all these systems are connected to the stabilier set of Virasoro
orbit. In particular, a large class of all these systems can be elegantly described by the
projective vector field equation. Indeed we have shown in this paper that this equation
can give an unified description of several 0+1 dimensional integrable systems and their
solutions can be elegantly described from the geometry of projective structures on circle.

There are several interesting questions popped up in this paper. It would be interest-
ing to study the role of higher order Riccati equations to derive the modular functions.
In fact, a number of interesting examples are derived in this paper which show that
these symmetry algebras contain important information about the structure of the so-
lution space to the differential equation which cannot be obtained from the standard
Lie symmetries. The examples also suggest that these symmetry algebras may be the
natural candidates for a differential Galois theory of nonlinear equations.
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