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D R A F T   M A N U S C R I P T 

 

Abstract 

This paper provides an aspirational multiple objective framework for behavioral portfolio modeling (BPM) for both 

the portfolio selection and rebalancing decision.  The aim is to extend BPM to a framework that has the flexibility to 

incorporate newly extracted ESG factors that proxy investor sustainability bias. The proposed framework 

complements the transition from modern portfolio theory to behavioral portfolio theory with support for dynamic 

rebalancing. Assuming sustainability bias is proxied by investor attention for firm ESG production, we extract three 

new ESG factors from the Thompson Reuters large-cap ESG portfolio database. These same factors also serve as 

stylistic control variables in a machine-learning algorithm when modeling Fama-French asset returns. As such, this 

research incapsulates recent findings that challenge characteristic-based asset return prediction by implicating a 

shallow learning radial basis function neural network with production-theoretic signals.  Lastly, we model loss 

aversion bias by dynamically estimating an option-priced CVaR metric. The results of solving the aspirational 

multiobjective BPM provide three important observations. We find that when only two hierarchical goal objectives 

are specified the BPM approximates the traditional mean-variance solution.  Secondly, alternate model 

specifications demonstrate the importance of wealth goal setting when there is investor ESG sustainability bias.  

Lastly, research findings demonstrate the importance of dynamically estimating CVaR metrics to achieve 

aspirational goals related to loss-aversion bias. 

 

 

Keywords: Behavioral Portfolio Theory, Multiple Objective Portfolio Optimization, Factor Estimation, Option-

theoretic CVaR, Artificial intelligence 
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1 Introduction 

Traditional finance models have long assumed economic agents are unbiased processors of 

relevant information and, therefore, make decisions in a manner consistent with utility 

maximization. But, as rational financial decision-making came under academic scrutiny, 

acceptance grew for the alternative notion some investors execute financial decisions guided by 

behavioral biases (Byrne & Brooks, 2008)). Behavioral portfolio theory (BPT) emerged as a 

plausible alternative to traditional financial models. The implication for advancing models 

predicated on the classic Markowitz mean-variance model (Markowitz, 1959) became evident.  

BPT offered a new, but yet efficient, way to approach portfolio selection when investors make 

decisions based on emotions and context-sensitive heuristics. When applied to the portfolio 

selection problem heuristic, or rule-based decision-making, is also referred to as goals-based 

wealth management (Das, Markowitz, Scheid, & Statman, 2010; Howard, 2014). Combining 

BPT and goals-based portfolio management offers a concise way to model behavioral factors.  

Behavioral portfolio factors are expressed by metrics that capture individualized characterization 

of loss aversion, hindsight bias, age, gender, recency bias and more (Frijns, Koellen, & Lehnert, 

2008).  Recently, new contributions present behaviorally biased portfolios as a layered mental 

account pyramid (MAL). In a study of investment beliefs of retail investors, (Giglio, Maggiori, 

Stroebel, & Utkus, 2019) provided evidence to support layered (hierarchical) MAL bias. The 

study also yielded incremental insight into how beliefs shape portfolio choice. The following two 

findings are particularly noteworthy: investor optimism is conditioned by individual 

heterogeneity; and, expected returns and the subjective probability of rare disasters are 

negatively related. 

As contemporary behavioral fund managers turned their attention to judgment errors in financial 

investment decision‐making, they also came to the understanding that in portfolio selection and 

rebalancing, behavioral errors (optimism, pessimism, depression, anxiety, etc.) steadily win the 

dispute against reasonable and rational behavior (Costa, Carvalho, & Moreira, 2019; Oprean, 

2014). Multiple criteria decision analysis (MCDA) and its variants like multiobjective 

optimization emerged as an appropriate method to model hierarchical bias models under risk 

(Ogryczak, 2002). This research seeks to extend multiple objective behavioral portfolio 

modeling (MBPM) to include sustainability bias while explicitly considering the dynamic 

portfolio selection and rebalancing decision on different intervals (i.e., daily, monthly, quarterly, 

etc.). The interplay among optimal portfolio allocation, transaction costs and investment horizon 

defines the process of portfolio rebalancing.  Active portfolio rebalancing implements some level 

of broadly defined periodic calendar schemes and ad hoc tolerance band methodologies.  To 

begin the process of extending the dynamic selection and rebalancing MBPM framework to 

include a sustainability bias, we argue for a closer examination of what constitutes an efficient 

proxy for the ESG dimension. 
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1.1 ESG Dimensions and Firm Sustainability 

Under the principle of shared value creation, also referred to as enlightened stakeholder theory, it 

is widely held that the firm’s stakeholders (e.g., shareholders, employees, customers, suppliers, 

the environment, the community) all experience value enhancement from corporate social 

responsibility (CSR) activities (Cook, Romi, Sanchez, & Sanchez, 2018). Developing a 

commitment to transparency, corporate governance, life principles, ethical conduct, and giving 

back to communities leads firm managers to consider ESG criteria as a part of their CSR process 

(CFA Institute, curriculum support). Table 1 provides a representative list of the requirements 

that form the focus of the three sustainability dimensions: 

Table 1: ESG Sustainable Impact Dimensions 

Environmental Social Governance 

Environment Policy Human Rights Corporate Governance 

Environment Performance Labor Standards Code of Ethics 

Climate Change Health and Safety Bribery and Corruption 

Nuclear Energy Employee Development Death Penalty 

Biodiversity Supply Chain Standards Military Expenses 

Source: Invesco, Vigeo Eiris, https://www.invesco.com/corporate/about-us/esg 

The problem facing investment managers is twofold: a) determining how a firm’s commitment to 

ESG influences firm financial performance; and, b) reconciling the wide variation in 

methodology in use across the plethora of published scores (Chatterji, Durand, Levine, & 

Touboul, 2016; Chiu, 2010; Seubert, Jan 28. 2017; Windolph, 2011).  By way of example, 

consider the evolution of the proprietary Thomson Reuters (TR) ESG factor score methodology 

(Thomson Reuters ESG Scores, 2017; note: the financial and risk division is now owned by 

Refinitiv, Inc.). The TR approach evaluates 10 main themes (Thomson-Reuters & S-Networks, 

2018). After calculating relative sub-domain scores, the TR methodology reduces relative 

scoring to metrics for each ESG sub-domain as well as an overall ESG combined score.  

Subsequently, the combined score is discounted for news controversies that may materially 

impact firm performance. Passive portfolio managers adopt ESG metrics to align a portfolio with 

these stated values. Alternatively, active portfolio managers use these scores to dynamically 

summarize the financial materiality of sustainable corporate behavior (Tarmuji, Maelah, & 

Tarmuji, 2016). Post selection of a scoring representation, one question persists: does a firm’s 

commitment to ESG factor scores translate into sustainable investment value?   

1.2 ESG and Financial Performance 

There is a growing literature investigating the relationship between ESG investments and firm 

financial performance.  Overcoming prior research that failed to address the interrelationships 

among ESG with market conditions and corporate governance, Tseng et al., (2019) reported 

causal interrelationships among ESG and firm performance. The study examined ESG 

dimensions using the fuzzy set method DEMATEL (fuzzy linguistic modeling) to transform 

https://www.invesco.com/corporate/about-us/esg
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human judgments into fuzzy variables.  Subsequently, the fuzzy variables were converted into 

crisp values of cause and effect groups. This approach found that investors expressed a 

preference for firms to improve ESG practices as they believed ESG-oriented firms perform best 

at asset deployment and generating risk-adjusted market returns. 

Cho et al. (2019) examined the relationship between a single sustainability dimension, CSR 

performance, and corporate financial performance. Eschewing the use of ESG scores, the authors 

related a CSR proxy, the KEJI economic justice index, to firm financial performance.  Financial 

performance proxies were the rate-of-return on assets ratio and the growth rate of assets. The 

authors found partial support for the hypotheses that CSR performance exerts positive effects on 

financial performance. Moreover, the reported results support the conclusion that CSR activities 

are investments that can enhance both corporate performance and value. Prior to Cho et al. 

(2019) contribution, Tarmuji, et al., (2016) researched the unique effect each ESG dimension on 

firm economic performance. Their study found that, over the long-run, sustainability investments 

directly impact firm size.  

The primary aim of our research is to extend dynamic BPM by directly encapsulating investor 

aspirational bias towards sustainability. To achieve our object, we begin by delineating a set of 

efficiently derived pervasive ESG factors that maintain consistency with dynamic rebalancing 

objectives. Lastly, investor bias towards extreme shortfall is extended to a dynamic metric by 

incorporating an option-implied shortfall risk objective.  

The paper proceeds as follows. In section 2, we identify three portfolios sorted by ESG scoring 

dimensions. Using these portfolios, we extract a set of orthogonal factors that form the 

foundation for creating the proposed pervasive ESG factors. In section 3, we invoke a well-

known factor disentanglement algorithm to estimate efficient and ubiquitous ESG factors.  

Section 4 provides the theory and application of dynamic return and risk estimation. Also 

developed in section 4 is the networked-based production-theoretic asset pricing model, and the 

dynamic expected shortfall objective. Section 5 ties the manuscript sections together by 

presenting the dynamic MBPM optimization problem. A summary and conclusions are provided 

in section 6. 

2 Pervasive ESG Factor Estimation 

It has long been understood that most day-to-day variation in the returns of securities is due to 

the constant arrival of information through both priced and pervasive return generating factors. 

This explains why the academic finance literature focuses on the creation of factor portfolios by 

sorting on characteristics positively associated with expected returns (Daniel, Mota, Rottke, & 

Santos, 2018)  

The first step in the process is to describe the taxonomy of pervasive ESG factors in security 

returns. In a comprehensive examination of over 300 factors (i.e., the factor zoo) reported in the 
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existing literature, Harvey et al. (2016) make the point that a risk factor should have 

unpredictable variation through time as well as be able to explain cross-sectional return patterns. 

Previously, Cochrane (2011) had already argued for methods to identify prevalent and 

dominating risk factors. To test whether factors are priced efficiently and to overcome a data-

mining bias in error specification, Ang, et al. (2009) refined the factor quest by arguing for the 

use of stocks over portfolios in studies of identification and number of risk factors. Lettau and 

Pelger (2018) provide an augmented principal component analysis (PCA) methodology for 

successfully estimating latent factors that explain covariance and expected returns structure in 

equity data. Under their approach, the extracted latent factor estimators work on projected data. 

A projection that is necessary to control for the time-variation in the loadings of individual 

stocks. The authors provide further evidence that their technique is superior to natural PCA or 

unobservable factor models when enumerating the optimal portfolio.  

Backtested results published in academic outlets are mainly responsible for commercial products 

as well as exaggerated expectations based on inflated backtested results and are then 

disappointed by the live trading experience (Arnott, Harvey, Kalesnik, & Linnainmaa, 2019). 

Harvey and Liu (2019) attribute this to the out-of-control production of factors. These findings 

notwithstanding, the literature is in agreement that factor models provide three pillars of support 

– identifying risk premia; pricing behavioral biases; and, identifying structural impediments.  

While the production of factors may be excessive, what is needed is a clear statement on best 

practice for factor extraction.  A best practice approach is found in the recent contribution from 

Pukthuanthong, Roll, and Subrahmanyam (2018), or PRS. The authors develop a protocol for 

palpable risk factor extraction based on the factor’s relationship to the covariance matrix of asset 

returns, it’s priced relationship in the cross-section of returns, and the factor’s overall reward-to-

risk ratio.  Before deploying a modified PRS application, it is useful to abstract the arguments of 

Lettau and Pelger (2018). We state the following assumptions. 

Assumption 1. Assume that excess returns follow the standard approximate factor model where 

the assumptions of arbitrage pricing theory are satisfied. In this case, asset 𝑋𝑗,𝑡, have a systematic 

component captured by K factors and a nonsystematic, idiosyncratic component that captures 

asset-specific risk. Excess returns of J assets over T time periods are described as: 

𝑋𝑗,𝑡 = 𝐅𝑡Ʌ𝑗
𝑇 + 𝜀𝑗,𝑡, 𝑗 = 1, … , 𝐽; 𝑡 = 1, … , 𝑇      (1) 

⟺ 𝑋⏟
𝑇𝑥𝐽

= 𝐹⏟
𝑇𝑥𝐾

Ʌ𝑇⏟
𝐾𝑥𝐽

+ ɛ⏟
𝑇𝑥𝐽

        (2) 

Assumption 2. The factors and residuals are uncorrelated; hence, the covariance matrix of the 

returns consists of a systematic and idiosyncratic part. 

𝑉𝑎𝑟(𝐗) = Ʌ𝑉𝑎𝑟(𝐅)Ʌ𝑇 + 𝑉𝑎𝑟(ɛ)       (3) 



 

6 
15-Jan-2020  

Dash & Kajiji 

Multiobjective Behavioral Portfolio Selection with Efficient ESG Factors and Learning Network Estimation of Asset Returns 

 

The factors drive the largest eigenvalues of  𝑉𝑎𝑟(𝐗) ; hence, PCA is available to estimate 

loadings and factors. In the next section, we estimate the unknown latent factors, F, and loadings 

Ʌ, from the Thomson Reuters constitutive ESG portfolios.  

2.1 Portfolio Data 

We refer to the three uniquely separated ESG portfolios maintained as part of the Thomson 

Reuters/S-Network ESG Best Practices Ratings and Indices (http://bit.ly/TRandSNetworkESG). 

Each collection (TRENVUS, TRSCUS, and TRCGVUS) contains n vetted securities such that 

𝐵 = {𝑛𝐸 , 𝑛𝑆 , 𝑛𝐺}. Tickers with incomplete data were removed to create a research sample set 

𝑁 ⊆ 𝐵  where 𝑛𝐸 = 245, 𝑛𝑆 = 245, and 𝑛𝐺 = 243.  For the market proxy (S&P 500) and all 

securities in N, we compute daily log-differenced returns from January 2015 through March 

2018, inclusive (𝑇 = 816). 

Following extant literature, we choose an enhanced beta estimate to capture systematic market 

variation in equity returns. Across all j securities, we implement the Vasicek (1973) adjusted 

market beta (𝑖. 𝑒. , 𝛽𝑗
𝑉 ). Although Hollstein and Prokopczuk (2016) find that option-implied 

estimators of systematic risk consistently outperform all other approaches tested on both daily 

and monthly datasets, both Sarker (2013) and Cloete et al., (2002) report on the efficiency and 

robustness of Vasicek estimators compared to using unfiltered OLS methods. In a follow-up 

study, Wang et al., (2017) demonstrate improved stock return predictability using Vasicek-

adjusted betas in both the CAPM and Fama-French three-factor model. Accordingly, for all 

securities after-market residuals are formed by equation (4).  

𝜀𝑖,𝑡 = 𝑟𝑖,𝑡 − 𝛼𝑖,𝑡 − 𝛽𝑖
𝑣 𝑟𝑀,𝑡  where, t=1..T, i=1..N (4) 

2.2 Latent ESG Factor Identification 

Latent factors are extracted by applying PCA to the matrix of return residuals for each of the 

three portfolios. First, we test the return residuals for each set, 𝜺𝑛𝐸
, 𝜺𝑛𝑆

, 𝑎𝑛𝑑 𝜺𝑛𝐺
, for PCA 

suitability. We test the hypothesis that the correlation matrix for each 𝜺𝑛𝐸
, 𝜺𝑛𝑆

, 𝑎𝑛𝑑 𝜺𝑛𝐺
 is an 

identity matrix. Based on the results of applying Bartlett’s test of sphericity (see table 2) the null 

hypothesis of no common factors is rejected at the 1% level. We reach the conclusion that an 

exploratory factor analysis (EFA) is statistically supportable. The Kaiser-Meyer-Olkin (KMO) 

measure is also applied to the three residual matrices. The results of the KMO test indicates a 

high proportion of the variance in the variables is caused by the underlying factors.  

  

http://bit.ly/TRandSNetworkESG
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Table 2: Results from the Bartlett’s Test and the KMO Test  

Domain 

Bartlett’s Test of Sphericity 

Ho: No Common Factors; 

Ha: At least one common factor 

KMO 

Measure of 

Sampling 

Adequacy 

Environmental 𝜒29890
2 = 109690.280, 𝑝 < 0.001 0.85349 

Social 𝜒29890
2 = 105587.052, 𝑝 < 0.001 0.85222 

Governance 𝜒29403
2 = 99281.5095, 𝑝 < 0.001 0.83165 

 

Following Han (2002), we calibrate the arbitrage return-generating framework based on equation 

4  using an exploratory factor analysis (EFA) model on the after-market residuals (Jackson, 

2005). Subsequently, after-market factors were rotated orthogonally. The results obtained from 

the rotation corroborated extant literature as far back as the mid-1970s (Fertuck, 1975).  End-

product industry effects were clearly separated (see figure 1). To the aim of this study, we 

observed, for example, that the factor labeled ‘Banks and Bank Hldg’ accounts for 46% of the 

after-market variation in the residuals. Extending these results to consider the ESG effects, we 

point to identifiable E- S-, and G sub-domains within the ‘Banks and Bank Hldg’ domain. The E-

, S-, and G-domains account for 16-, 16-, and 15-percent of the after market variation, 

respectively. Similarly, for the second orthogonal factor (‘Energy and Oil & Gas’), which 

accounts for 22% of the total after-market residual return variation, the ESG contribution is 6-, 8-

, and 8-percent, respectively. 

 
Figure 1: Percent of industry wide after-market variation  

explained by the E, S, & G domains. 

Invoking the Kaiser-Guttman criteria leads us to retain 36 factors in each of the individual sub-

domains, CE, CS, and CG. The percent total after-market variation explained is 81.14%, 80.66%, 

and 79.99%, respectively. 
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2.3 Determinate Factor Scores as Reproducible Factor Proxies 

The next step in the algorithmic process is to create E, S, and G factor-based proxy variables.  

The index creation process requires transforming the rotated factors into hypothetical, but 

genuine, factor-policy variables. We compute a refined regression-based factor score estimates 

using SAS 9.4. The regression method proposed by Thurstone (1935) assures “maximum 

validity” or “highly determinate” estimates for a given analysis (Grice, 2001). Additionally, as 

shown by Beauducel (2007), Thurstone’s calculations can reproduce the same covariance matrix. 

Although the problem of indeterminacy is resolved by the Thurston method, the scores are not 

correlation preserving. As amplified by Grice, the factor score estimates may be contaminated 

with variance from other orthogonal factors within the analysis. However, the ESG factor 

creation process is predicated on summing individual scores. Hence, we proceed with computing 

the index using the matrix of factor score estimates, f. The formulae to calculate each sub-

domain index value at time t is as shown below: 

 FSIt
E =  

∑ fti

CE  i = (1, … , CE)  (5) 

 FSIt
S =  

∑ fti

CS  i = (1, … , CS)  (6) 

 FSIt
G =  

∑ fti

CG  i = (1, … , CG)  (7) 

2.4 Stationarity Conditions 

Continuing with the Lettau and Pelger (2018) procedure first introduced in section 2.1, we 

evaluate the stationarity condition of the three new hypothetical factors using the Philips-Perron 

(PP) test. The null hypothesis for the PP test states that the series has a unit root. When applied to 

the 𝐹𝑆𝐼𝐸, 𝐹𝑆𝐼𝑆, and 𝐹𝑆𝐼𝐺, we reject the respective hypotheses for trend, single mean, and zero 

mean. Specifically, reported results are as follows: trend (E: τ = -7.88, S: τ = -7.60 and G: τ = -

9.29; all p < 0.001); single mean (E: τ = -7.96, S: τ = -7.65 and G: τ = -9.41; all p < 0.002); and 

zero mean (E: τ = -8.06, S: τ = -7.75 and G: τ = -9.53; all p < 0.001). By implication, when 

applied to each factor index, there is a high probability no unit root exists, a finding that each 

index is stationary with a zero mean. 

3 The Augmented PRS Algorithm for Disentanglement 

This section of the study is devoted to the disentanglement of embedded ESG factors in an 

investor-formed portfolio. To accomplish the task, we invoke the PRS protocol for identifying 

risk factors. The PRS protocol is used to identify factors associated with risk premia as well as 

‘pervasive’ factors. Pervasive factors are unobserved and must be extracted from the asset 

returns of portfolios.  
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3.1 Derive Pervasive ESG Factors   

The pervasive factor score variables computed above utilized daily residual returns data across 

the three E-, S- and G-portfolios. As the remainder of the analysis is focused on the behavior of 

investment portfolios, we follow the literature and use monthly returns from this point forward 

(Zibri & Kukeli, 2015).  Accordingly, for each ESG domain derived in section 2.3, we average 

the daily factor score indices (FSI) observations into monthly observations. 

3.2 The Investor Portfolio 

The naively diversified investor portfolio in this study is owned and managed by a regional unit 

of the national non-profit The Girl Scouts of the United States of America (GSUSA). The 

national office transmits public policy and investment goals to its subordinate councils. In 

addition to earnings from current year operations, regional councils are expected to make 

investment decisions in a manner that is consistent with the organization’s socially responsible 

narrative. The investor portfolio used in this study is naively diversified and is comprised of 

n=65 instruments representing 41 industries across 12 sectors. 

3.3 Investor Portfolio Heterogeneity 

The first step in the PRS algorithm is to identify an equity portfolio representing different 

industries with a ‘good’ level of heterogeneity. For the subject investor portfolio used in this 

research the industry and sector classifications are as shown in figure 2 (Source: Yahoo! 

Finance). 

 
Figure 2: Diversification of investor portfolio 

 

Two portfolio heterogeneity tests are applied: a) average correlation; and b) network analysis. 

Including the market index (S&P 500), we calculate monthly log-differenced returns for all 65-

instruments in the investor portfolio from January 2015 through March 2018, inclusive (T=39).  



 

10 
15-Jan-2020  

Dash & Kajiji 

Multiobjective Behavioral Portfolio Selection with Efficient ESG Factors and Learning Network Estimation of Asset Returns 

 

Pollet and Wilson (2010) report that average correlation, 𝜌̅ , has predictive power for stock 

market returns. In their study, the authors find returns predictability from average correlation 

over the periods 1963-1974, 1974-1985, and 1996-2007. With some exceptions noted, the 

authors report that average correlations from the late 1980s forward are between 0.15 and 0.55. 

For the investor portfolio, we find an average correlation of 𝜌̅ = 0.28. This finding lies within the 

bounds of extant research results. 

As a further test of heterogeneity, we subject the correlation of asset returns to a Fruchterman-

Reingold (FR) network analysis (Fruchterman & Reingold, 1991). The FR analysis is a force-

directed network graph that distributes vertices evenly in a frame. As such, it is a useful method 

to examine the correlation structure. In the FR network, edges are similar in length and cross 

each other as little as possible. Nodes may be considered as electrically charged particles that 

repulse each other when they get too close. The edges act like springs that attract connected 

nodes closer together. As a result, nodes are evenly distributed through the graph and the layout 

is intuitive in that nodes that share more connections are closer to each other. A review of the FR 

network, figure 3, demonstrates the high intercorrelation among assets in the subject portfolio.  

 

Figure 3: FR Network of Security Correlations 

 

3.4 Extract L Principal Components 

Step two of the PRS algorithm requires the extraction of L principal components from the asset 

return series computed from the investor portfolio. With T time-series units up to time t, we 

compute the 𝑇𝑥𝑇 matrix, Ω𝑡 = (
1

𝑇
) 𝑅𝑅′, where RTxn is the return matrix. As suggested by PRS, 

the cutoff point for the cumulative variance explained by the principal components is set to 90%. 

From this procedure, 16 principal components (PC) are retained. By way of example, figure 4 

displays the cross-loading of the first three principal components (PC-1, PC-2, and PC-3). The 

16 eigenvectors will form the dependent domain for subsequent canonical correlation analysis. 
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Figure 4: Excess Returns across Time.  

Legend: PC-1=Green; PC-2=Blue; PC-3=Lime  

3.5 The Canonical Correlation Between Pervasive Factors and the Investor Portfolio 

The third step in the PRS protocol requires the identification of what is expected to be pervasive 

factor candidates. This step was completed as discussed in sections 2.2 and 2.3. Our aim to 

disentangle the latent after-market effects due to firm investments in sustainability (E, S, and G) 

are represented by the previously constructed genuine factor score policy variables (i.e., see: 

equations 5, 6, and 7).  

The final step of the PRS algorithm, step four, requires conducting a canonical correlation 

analysis (CCA) between the set of pervasive ESG factors from step three and the corresponding 

16 eigenvectors of the investor portfolio. To be labeled as the “best” (ESG) pervasive factors for 

the multifactor estimation of portfolio returns, the factors must exhibit a significant canonical 

correlation with the investment portfolio’s best linear combination of eigenvectors. In the CCA 

model, the observed data 𝑥 ∈ ℂ𝑛and 𝑦 ∈ ℂ𝑚 are transformed into p-dimensional internal (latent) 

representations 𝐚 = 𝐒𝐱  and 𝐛 = 𝐓𝐲 , where 𝑝 = min(𝑛, 𝑚). Using linear transformations 

described by the matrices 𝐒 ∈ ℂ𝑝𝑥𝑛 and 𝐓 ∈ ℂ𝑝𝑥𝑚 the key is to determine S and T such that most 

of the correlation between x and y is captured in a low-dimensional subspace (Song, Schreier, 

Ramírez, & Hasija, 2016). Specifically, we examine the null hypothesis that the surrogate E, S, 

G pervasive factors systematically influence the movement of portfolio asset prices.  

The results from the CCA analysis of the first approximate F-value, indicates that as a group the 

factor candidates are conditionally related to the covariance matrix of market returns (λ = 0.6411, 

F48, 63.253 = 2.0, p < 0.05). The inference from the second approximate F-value (F=1.63; p < 0.1) 

is that the second and the third canonical correlations are equal zero. Lastly, the third 

approximate F-value (F=1.18, p-value > 0.1) suggests that, at the 90% level, the third correlate is 

not significant. 
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The canonical correlates of the three factors (E = -1.1622; S = -0.5230; and G = 1.0375) indicate 

that the contribution to the first canonical variate is primarily due to the E and G domains. The 

social factor shows an inverse relationship and, comparatively, at a much smaller level. To 

clarify, consider the following scenario. When all other variables in the model are held constant, 

an asset experiencing a one standard deviation increase in monthly returns in the environmental 

policy area (factor) would expect a -1.1622 standard deviation decrease in the score on the first 

canonical variate. 

In a manner consistent with the PRS algorithm, this application of CCA yields statistical 

evidence that the multivariate E, S, and G, factor set is pervasive and linearly correlated with the 

set of asset returns in the investor portfolio.  

In the next section, we demonstrate how pervasive factors produce asset returns. Instead of 

simple linear regression model on pooled cross-section time-series panel with real returns 

between dependent variables and betas on the pervasive factors, we exploit the 

interconnectedness of the pervasive ESG factors and the production of asset-level returns using a 

radial basis function artificial neural network. 

4 Network Estimation of Cognitive Biases on Risk and Return 

Evolutionary financial network theory seeks to understand asset return interconnectedness as a 

source of uncertainty in systematic risk using data science methodology (for a review, see 

(Priestley & McGrath, 2019) and (Roukny, Battiston, & Stiglitz, 2018)). This section of the 

study extends the traditional asset pricing model by inserting ESG asset pricing factors into the 

pricing equation. Under the evolutionary approach, the parameters of the pricing equation are 

estimated by an interconnected information network. We expect the interconnected factors to 

price complex asset returns in a manner contemplated by behaviorist decision-makers (Ozsoylev 

& Walden, 2011). Supporting evidence is provided by Hong et al., (2004) in a study on how fund 

managers exhibit collective (or, networked) behaviors. These findings are supported by Ivkovic 

and Weisbenner (2007) in a study that augments the hypothesis by providing results of collective 

action among individual investors.  

In a comprehensive study of financial institutions, Billio et al., (2016) extend the classic factor-

based asset pricing model to include network linkages of exogenous lagged and 

contemporaneous links across assets. In a related study, Horrace et al. (2016) provided evidence 

that peer effect networks interact with production functions to transform inputs into outputs. 

More recently, Herskovic (2018) provides an essential extension to asset pricing theory by 

uncovering a link between equilibrium asset prices and the two network attributes that drive 

systematic risk – network concentration and network sparsity. Herskovic observes how a sparse 

asset network has fewer but stronger linkages. By assuming firms experience a Cobb-Douglas 

shaped production technology, he reports innovations in the network factors are priced where the 
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two production-based asset pricing factors of sparsity and concentration account for return 

spreads of 4.6% and -3.2% per year, respectively.  

Guided by Sornett’s (2017) vision of how “…a complex system is the possible occurrence of 

coherent largescale collective behaviors with a very rich structure, resulting from the repeated 

nonlinear interactions among its constituents,” the next section of the study presents a nonlinear 

production-theoretic return-generating model. In addition to the market excess returns (S&P 

500), the model estimation includes the Fama-French SMB and HML factors as well as the three 

pervasive ESG factors. Under this formulation, the E-, S-, and G-factor elasticity estimates 

provide a measurement of how firm market returns respond to a unit change in a respective ESG 

factor.  

4.1 Double-Log Production Functions 

The efficiency of ESG utilization by management in a manner that influences asset return 

production depends on the ability of management to disaggregate and assimilate a noisy ESG set. 

Hence, we argue that the production of firm-level market returns requires management to 

identify the relative contribution of return-defining different factors. 

4.1.1 A Cobb-Douglas ESG Model for Returns Production 

For all j firms in the investor portfolio, we expect each j-th firm to combine capital (k) and labor 

(l) to produce output using a Cobb-Douglas production technology, 

𝑦𝑗 = 𝐴𝑗𝑘𝑗
𝛼𝑙𝑗

1−𝛼       (8) 

Without considering a firm’s age or it’s learning rate we further assume 𝐴𝑗 = 𝑒𝛽𝑗∆𝑎, where ∆𝑎is 

a common interconnected ESG shock that affects the returns productivity of all firms and 𝛽𝑗is 

the firm-specific exposure to the common shock ∆𝑎.  Before implementing a firm-specific 

production decision, firm j observes a noisy ESG signal that is unique to the firm’s market 

exposure: 𝑠𝑖𝑔𝑗 = 𝛽𝑗 + 𝜖𝑗 where 𝜖𝑗~𝑖. 𝑖. 𝑑. , 𝑁(0,
1

Δ𝑎
𝜏2). In this abstraction, the amount of noise in 

a firm’s signal is captured by parameter 𝜏2. Perfect information occurs when τ = 0 whereas as τ 

→∞ the signal to firm j is not informative or firm management is numb to ESG factors. When 

observed and controlled for, the ESG signal 𝑠𝑖𝑔𝑗 helps firm j make efficient input factor choices. 

We define the model as a nonlinear regression with a corresponding nonparametric estimation of 

model coefficients: 

𝐸(𝑟𝑗) = 𝑓(𝜲) + 𝜀𝑗        (9) 

In equation 9 X denotes the factor input mix (𝑋 = 𝑋1, … , 𝑋𝑑) where d is the dimensionality of 

the factor inputs and 𝜀𝑗  is a symmetric random noise term 𝜀𝑗 ~𝑖. 𝑖. 𝑑. , 𝑁(𝜇, 𝜎). For the ESG-

controlled asset-level returns production estimation model we use the establishment-specific 
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equation (d = 4) to derive our factor elasticity estimates under the assumption that ESG signals 

are fully incorporated (i.e., τ → 0): 

𝐸(𝑟𝑗) = 𝛼𝑗 + 𝛽1𝑙𝑛(1 + (𝑟𝑀 − 𝑟𝑓)) + 𝛽2𝑙𝑛(1 + 𝐹𝑆𝐼𝐸)  + 𝛽3𝑙𝑛(1 + 𝐹𝑆𝐼𝑆) + 

𝛽4𝑙𝑛(1 + 𝐹𝑆𝐼𝐺) + 𝛽5𝑙𝑛(1 + 𝑆𝑀𝐵) + 𝛽6𝑙𝑛(1 + 𝐻𝑀𝐿) + 𝜖𝑗   (10) 

where 𝑟𝑀 is the total market portfolio return; 𝑟𝑓 is the risk-free rate; FSI is the average return for 

each pervasive factor: E-, S-, and G, respectively; SMB is the size premium; and, HML is the 

value premium. 

4.1.2 Neural Network Estimators and the Cobb-Douglas Production Function 

Arreola et al., (2016) argue for new estimators based on modern machine learning algorithms for 

studies of complex observed (and statistically enumerated) datasets. In a comprehensive and 

comparative study of analytics across alternative machine learning methods, Gu et al., (2019) 

find that “shallow” learning networks perform best in studies of asset return estimation.  

Accordingly, this study introduces a “shallow” radial basis function artificial neural network 

(RANN) as a universal estimator to map asset returns in a Cobb-Douglas production function 

network. Artificial neural networks have previously provided a viable nonparametric alternative 

to fit nonlinear production functions and to describe the estimated technical efficiency (Santín, 

Delgado, & Valiño, 2007; Vouldis, Michaelides, & Tsionas, 2010). Specifically, we employ an 

augmented RANN known as the K4-RANN (Dash, Kajiji, & Vonella, 2018; Kajiji, 2001).  

In the generalized RANN method, the optimal weighting values, wj, are generally extracted by 

applying a supervised least-squares method to a subset (training set) of the data series. The 

supervised learning function is stated as, y = f(x) where y, the output vector, is a function of the 

input vector x with p number of inputs. The function can be restated as: 

1

( ) ( )
m

j ji

j

f x xw h


       (11) 

where, m is the number of basis functions (centers), h is the number of hidden units, w is the 

weight vector, and i = 1...p where p is the number of input vectors. As shown in equation (12) the 

K4-RANN minimizes a modified SSE cost function: 

 2 2

1 1

argmin
( ( | ))

p m

i j j

i j

y f x k k w
k




 

 
  

 
      (12) 

The result of applying the K4-RANN is the extraction of a set of weights (wj) such that error 

(SSE) is minimized while simultaneously optimizing the accuracy of the predicted fit 

(smoothness). The estimated weights are analogous to nonlinear least-squares regression 

parameters. When applied to the networked production function, for all j in N (securities in the 

investor portfolio), the procedure maps the production of monthly returns, 𝑟𝑗, for all j-firms.   
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4.2 RANN Estimated ESG Returns-to-Scale  

The K4-RANN weights associated with equation 10 are interpreted as the factor elasticity 

coefficients. The next section identifies the parameter settings applied to the K4-RANN 

algorithm. This is followed by a discussion of the model weights (4.2.2) and the associated 

production returns-to-scale (4.2.3). 

4.2.1 Algorithmic Control Parameters 

The K4-RANN algorithm requires several algorithmic parameters. In this study, the model 

parameters were identically applied to all j pricing models. Before invoking the algorithm, all 

data were standardized. The underlying transfer function chosen for the K4-RANN was 

Gaussian. The RANN radius was uniformly set to 1.0, and the error minimization rule was set to 

‘generalized cross-validation’ (GCV). The GCV rule is known to perform well for both smooth 

and rough functions (Wahba, 1985). 

4.2.2 Factor Elasticity Network Connectedness 

The degree of asymmetric ESG connectedness among sectors and firms is shown in figure 5. The 

commonality in findings between the sector-limited Granger-causality networks reported by 

Billio et al. (2012) is evident. The network graph depicts the interrelated production of a standard 

ESG signal that binds the firms within the investor portfolio.  

To understand the change in a firm’s returns given a unit change in an ESG factor (any factor), 

we interpret the K4-RANN weights as quasi-factor elasticity metrics. Before explaining the K4-

RANN weights it is useful to view the weights in two different network graphs. The left-side 

graph (figure 5) presents an overall view of interconnectedness among the ESG pervasive 

factors. The right-side network chart (figure 6) shows the unique directional impact on return 

production from each pervasive ESG factor.  

 

 

 

 

 

Figure 5: Interconnectedness of E, S, & G  Figure 6: Directional impact of E, S, & G 

From the common core ESG signal, the proportional impact of E-, S-, and G- pervasive factor 

effects are captured by the direction and length of the individual firm’s spoke from the ESG 

centroid.   
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This proportional impact of ESG factors on return productivity differences among firms is also 

evident in the elasticity weights generated by the K4-RANN (figure 7; and table 3). We 

purposely abbreviate the K4-RANN weights to direct the analytical focus on the asymmetric 

connectedness of firms within the ‘Financial Services’ sector (see: Appendix A for complete 

results). Firm and sector connectedness was established in section 4.1.2; hence, we can utilize 

table 3 to identify the asymmetric influence of ESG factors. 

 
Figure 7: Network Elasticity Weights for ExxonMobil  

 

Table 3: RANN Estimated Weights for Selected Assets 

 Ticker E S G Scale 

Banks – Global 

(Financial 

Services) 

JPM 0.0101 0.3325 0.3058 0.6484 

WFC -0.1957 0.2673 0.2562 0.3278 

BAC 0.0808 0.2226 0.1862 0.4896 

C -0.2620 -0.0870 -0.1650 -0.5140 

Oil&Gas 

(Energy) 
XOM -0.0943 -0.0388 0.7870 0.6538 

CVX -0.2114 0.5529 0.7629 1.1045 

COP 0.4275 0.3749 0.7556 1.5580 

iShares Oil Equip 

& Services ETF 
IEZ 0.1224 0.0645 0.7072 0.8942 

 

We begin with a detailed look at the ESG elasticity weights for the financial services industry.  

For Bank of America (BAC), the weights for E, S, and G are positive (0.0808; 0.2226; and, 

0.1862, respectively).  Conversely, all weights for Citigroup (C) are negative (-0.2620; -0.0870; -

0.1650).  We find clear evidence of how the common ESG signal is decomposed into a unique 

‘Financial Services’ signal that is asymmetrically differentiated among individual sector-related 

firms.  Given changes in sustainability performance, the expectation is for BAC to experience a 

positive increase to returns, while for the same change in sustainability investments, Citicorp will 

likely experience depreciated returns. Of further interest is the G dimension.  Except for Citicorp, 
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all firms displayed in table 3 are expected to benefit by firm responses to government 

sustainability changes. The asymmetric ESG weights within this sector offer further evidence of 

the need to understand the contribution of pervasive ESG factor variation to the returns 

producing process.  In the next section, we extend the MBPM to include a dynamic loss-aversion 

metric. 

4.3 Dynamic Option-Theoretic Shortfall Estimation 

To meet the aim of this research, we focus on estimating a dynamic risk measure to proxy for 

‘loss aversion’ bias.  We limit our focus to the popular frequency-based conditional value-at-risk 

(CVaR) metric of Rockafeller and Uryasev (2002).  CVaR captures the conditional expectation 

of losses in top (100 – β)% over a given investment horizon (e.g., β = 0.95 or 0.99).   

𝐶𝑉𝑎𝑅𝛼(𝑋) =
1

𝛼
∫ 𝑉𝑎𝑅𝛽𝑑𝛽

𝑋

−∝
       (13) 

CVaR is a coherent risk measure (Artzner, Delbaen, Eber, & Heath, 1999), and when used in the 

context of portfolio risk minimization the measure can be expressed as a continuous and convex 

function with respect to the optimization variables in a convex program (R.T.  Rockafellar, 

Uryasev, & Zabarankin, 2006) and Rockafellar; Uryasev (2002); and, Krokhmal, et al. (2002)). 

CVaR in linear and multiple goal optimization models is also in evidence. Ogryczak (2002) was 

one of the first to contribute evidence on the incorporation of CVaR in a goal constraint.  

Kaminski et al. (2009) extended this line of research by providing a CVaR-based goal 

programming portfolio selection method to account for investor risk attitudes.   

The implementation of CVaR (and VaR) is dependent on knowing the exact distribution 

information of market parameters.  Often, these parameters are characterized by sampling error. 

There is a significant strain of literature devoted to the calculation of CVaR and its associated 

sensitivities. For example, Hong, Jeff, and Liu (2011) provide a detailed review of the 

performance of Monte Carlo methods used to estimate VaR and CVaR (including sensitives). 

Hsieh et al. (2014) extend the use of Monte Carlo methods by providing a fast algorithm to 

estimate VaR and CVaR. By contrast, Yao et al. (2013) employ nonparametric estimation of 

CVaR when applied to the portfolio selection problem.  

In this paper, we adopt the put-option market algorithm of Barone-Adesi (2016). This method is 

consistent with our objective to develop a dynamic approach to the behavioral multiple objective 

portfolio selection and rebalancing model. Under the Barone-Adesi plan, for a given 𝛼 , we 

estimate CVaR for an optionable asset by capturing the instantaneous spot price (S), the risk-free 

rate (r), and time to expiration (T). Then for a given near-the-money strike (X(put)), the algorithm 

calculates p = BSOPM(put) using the Black-and-Scholes price approximation. The algorithm 

proceeds by restating CVaR as the expected dollar loss beyond VaR given S. As such, it is 

affected by fatness in the tail of the distribution of S. In Barone-Adesi model CVaR is stated as:  
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𝐶𝑉𝑎𝑅 =
1

𝛼
∫ 𝐿(𝑆)𝑓(𝑆)𝑑𝑆

𝑋

−∝
       (14) 

𝐶𝑉𝑎𝑅 = 𝑒𝑟𝑇 𝑝

𝛼
+ 𝑉𝑎𝑅       (15) 

5 Modeling The ESG-Goal-Directed Investor Portfolio 

Multi-criteria decision analysis (MCDA) is a featured method of decision support studies.  In this 

section, we blend and formalize the behavioral specification by introducing a multiple criteria 

decision model (MCDM) that is commensurate with the aim of this research. Because 

multiobjective optimization methods are capable of handling various conflicting objectives at the 

same time, the methodology is well-suited for MBPM. When the number of conflicting 

hierarchical objectives is no more than two, the solutions generated by this model can form a 

Pareto optimal front – a set of compromised trade-off solutions from which the best possible 

compromise solution can be selected. Likewise, whenever the number of hierarchical objectives 

is higher than two, choosing an optimal compromise solution is not a trivial task (Ruotsalainen, 

2010).  

5.1 Quadratic Optimization  

The Quadratic optimization (QO) problem where the objective function is convex quadratic, and 

the constraints remain linear is routinely applied to the portfolio selection model. The QO 

problem finds the global minimizers of a quadratic form over the standard simplex.  That is,  

𝑝 ≔
𝑚𝑖𝑛

𝑥 ∈ ∆𝑛
𝑥𝑇𝑄𝑥. Where 𝑄 ∈ 𝑆𝑛 (the space of symmetric 𝑛 𝑥 𝑛 matrices), and ∆𝑛is the standard 

simplex in ℝ𝑛, namely ∆𝑛= {𝑥 ∈ ℝ𝑛: ∑ 𝑥𝑗 = 1, 𝑥 ≥ 0𝑛
𝑗=1 } . 

Despite QO being NP-hard, it is amenable to a polynomial-time approximation scheme that has 

an exponentially sized linear programming reformulation (de Klerk, Pasechnik, & Schrijver, 

2007). Various optimization approaches to the portfolio problem have exploited this fact.  

Mokhtar, Shib, and Mohamad (2014) survey over 40 related articles and classify solution 

algorithms according to their nature in heuristic and exact methods. They report that goal 

programming constitutes the highest number of mathematical programming techniques applied 

to the portfolio optimization problem. Based on the goal programming approach, Dash, 

Hanumara, and Kajiji (2003) proposed a methodology for the construction of a futures-hedged 

equity portfolio using a separable nonlinear mixed integer goal programming algorithm. The 

application focused on the ability of the separable programming algorithm to replicate the mean-

variance approach to enumerating the efficient set.  In the second stage, the authors demonstrate 

binary control over the decision to hedge the portfolio based on the next-period forecast of the 

market futures contract.  
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5.2 The Multiobjective Optimization Problem 

𝑚𝑖𝑛{𝑓1(𝑥), 𝑓2(𝑥), … , 𝑓𝑘(𝑥)} 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝑥 ∈ 𝑆, 

Where 𝑥 is a vector of continuous decision variables form the feasible set 𝑆 ⊂ ℝ𝑛 defined by 

linear, nonlinear and box constraints (𝑘 ≥ 2).   An objective vector is defined by 𝒇(𝑥) =

(𝑓1(𝑥), 𝑓2(𝑥), … , 𝑓𝑘(𝑥))
𝑇

. The image of a feasible set is denoted by 𝒇(𝑆) = 𝑍  represents a 

feasible set.  This is a subset of the objective space ℝ𝑘 .  The elements of 𝑍 are objective vectors 

denoted by 𝒇(𝒙)  or 𝒛 = (𝑧1, 𝑧2, … , 𝑧𝑘)𝑇 , where 𝑧𝑖 = 𝑓𝑖(𝒙)  for all 𝑖 = 1, … , 𝑘  are objective 

function values. 

When there is no conflict between the objective functions, then multiobjective optimization 

methods are not required as there is a single optimal solution. The multiobjective optimization 

problem is linear if all the objective functions and constraint functions are linear.  Conversely, 

the nonlinear multiobjective optimization problem occurs if any of the objective or constraint 

functions are nonlinear.   

5.3 Behavioral Portfolio Theory and Goal Programming 

The MBPM is, in part, based on investor’s utility maximization.  As such part of the formulation 

is expressed as a parametric quadratic optimization problem.  By this definition, the MBPM is a 

nonlinear optimization problem.  Below, we specify the use of a  nonlinear goal programming 

formulation to solve this model. 

Before presenting the complete model, it is essential to review how the Markowitz mean-

variance model is easily approximated by the Sharpe single-index model (Frankfurter, Phillips, 

& Seagle, 1976; Sharpe, 1971). The Sharpe single-index model (SIM) is known to produce an 

identical maximum rate of return portfolio (top-most portfolio on the efficient set) but a slightly 

inefficient replication of the global minimum variance portfolio. In the context of a bi-goal 

optimization of the SIM the first objective fixes the level of expected return and the second 

objective seeks to minimize the variance of portfolio returns. The alternative behavioral models 

presented below all share the foundation statement to assure the enumeration of efficient 

portfolios. Goal programming models are differentiated by the formulated goal hierarchy. The 

cardinal constraints/goals define the decision-making attributes of the portfolio selection model.  

In this section, four alternative models are formulated and solved.  

5.3.1 Goal Hierarchy 

The goal hierarchy for the first model, equation 16, is equivalent to solving the SIM portfolio 

optimization model. Hereafter referred to as M1, this model and the comparable efficiency 

solution is provided for reference. The remaining three models are present preliminary evidence 

on how to state and solve aspirational bias-driven portfolio selection. 
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The second model, M2, represented by the goal hierarchy, is stated in equation 17. This goal 

structure does not minimize portfolio return variance in the second objective.  Instead, the model 

seeks to reduce ‘loss aversion’ bias (CVaR) before reducing portfolio return variation in the third 

hierarchical objective. Models 3 through 4 demonstrate the ability to specify returns-to-scale 

goals as a proxy for minimizing some part of both ‘recency bias’ and ‘overoptimism bias.’ 

Model 3, M3, adds to the first objective, the desire to mimimize deviation from the client’s focus 

on environmental returns-to-scale in the ESG dimension. The second goal has both the 

traditional risk minimization of portfolio returns and adds to that returns-to-scale on social 

policy.  Lastly, model 4 demonstrates goal complexity. The first level objective represents the 

investor who places equal importance on achieving a fixed level of portfolio return while 

meeting complete ESG scale goals. 

𝑀𝑜𝑑𝑒𝑙 1: 𝑀𝑖𝑛 𝑍 = {𝑃1[ℎ4
−], 𝑃2[ℎ1

+], 𝑃3[ℎ8
+]}  (16) 

𝑀𝑜𝑑𝑒𝑙 2: 𝑀𝑖𝑛 𝑍 = {𝑃1[ℎ4
−], 𝑃2[ℎ8

+], 𝑃3[ℎ1
+]}  (17) 

𝑀𝑜𝑑𝑒𝑙 3: 𝑀𝑖𝑛 𝑍 = {𝑃1[ℎ4
− + ℎ5

−], 𝑃2[ℎ1
+ + ℎ6

−], 𝑃3[ℎ8
+ + ℎ7

−]}  (18) 

𝑀𝑜𝑑𝑒𝑙 4: 𝑀𝑖𝑛 𝑍 = {𝑃1[ℎ4
− + ℎ5

− + ℎ6
− + ℎ7

−], 𝑃2[ℎ1
+], 𝑃3[ℎ8

+]}  (19) 

5.3.2 Portfolio Selection Goals 

 ∑ 𝜀𝑗
2𝑥𝑗

𝑛+1
𝑗=1 − ℎ1

+ = 0  (20) 

 ∑ 𝛽𝑗
𝑉𝑛

𝑗=1 𝑥𝑗 = 𝛽𝑀  (21) 

 ∑ 𝑥𝑗 = 1.0𝑛
𝑗−1   (22) 

 ∑ 𝐸(𝑟𝑗)𝑛
𝑗=1 𝑥𝑗 + ℎ4

− − ℎ4
+ = 𝑅𝑅𝑝

  (23) 

 ∑ 𝑅𝑡𝑆𝑗
𝐸𝑛

𝑗=1 𝑥𝑗 + ℎ5
− − ℎ5

+ = 𝑅𝑡𝑆𝑝
𝐸  (24) 

 ∑ 𝑅𝑡𝑆𝑗
𝑆𝑛

𝑗=1 𝑥𝑗 + ℎ6
− − ℎ6

+ = 𝑅𝑡𝑆𝑝
𝑆  (25) 

 ∑ 𝑅𝑡𝑆𝑗
𝐺𝑛

𝑗=1 𝑥𝑗 + ℎ7
− − ℎ7

+ = 𝑅𝑡𝑆𝑝
𝐺  (26) 

 ∑ 𝐶𝑉𝑎𝑅
𝑗

𝐵𝑆𝑂𝑃𝑀𝑝𝑢𝑡𝑛
𝑗=1 + ℎ8

− − ℎ8
+ = 0.0  (27) 

Where, ∑ 𝐸(𝑟𝑗)𝑛
𝑗=1 𝑥𝑗 depends on equation (red eq); and,  𝑅𝑆𝑝

𝐸, 𝑅𝑆𝑝
𝑆 𝑅𝑆𝑝

𝐺= 1.0, respectively. 

Equation 20 and 21 state the unsystematic and systematic risk goals, respectively. Equation 20 

expresses the variance of the idiosyncratic risk ( )j  for n investment securities and 𝜎2  the 

variance of returns for the market proxy as the n+1 security. Structural systematic risk ( )
j

 is 
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expressed by equation 21. The canonical form of the Sharpe market model requires equation 21; 

an expression that forces the portfolio beta to equal the weighted sum of the individual security 

beta coefficients. Equation 22 forces the portfolio to be fully invested (short-sales prohibited). 

Equation 23 is the goal constraint used to set the required return for the efficient portfolio,
pRR . 

Individual security responses to pervasive ESG systemic risk production factors are modeled in 

equations 24 through 26. These goal constraints equate the j-th securities contribution to 

sustainable investing in return-to-scale units (Scale).  The goal expression of the dynamically 

estimated option-priced CVaR for each j-th security is expressed in equation 27. 

5.4 The Investor Equally Weighted Portfolio 

For comparative purposes with the optimized ESG diversification plan, we create an equally 

weighted client portfolio (EqWg). As shown by equation 28, the equally weighted portfolio 

requires adding n additional constraints: 

 
1

1 ( )
(1/ )

0 ( )

n

j j

j

if i j
x n where x

if i j


 


 . (28) 

5.5 Comparative Investment Efficiency 

The dominant Markowitz mean-variance efficient set is obtained by application of Lemke’s 

complementary slackness algorithm (Cottle, Pang, & Stone, 1992). The efficient set produced by 

solving the approximate Sharpe diagonal model (model 1). This solution is also enumerated by 

an application of Lemke’s algorithm and, for comparative purposes, the nonlinear goal 

programming algorithm. Reference is made to figure 8. By observation, and in a manner 

reflective of extant literature, material differences between the mean-variance and Sharpe 

diagonal efficient is most visible at low expected rates of portfolio return.  

The Cartesian coordinates for the ESG portfolio, the non-optimized equally weighted portfolio 

(EqWg), and the initial, that is naively diversified, client diversification plan is plotted against 

the risk and return axis in figure 8. Interestingly, the EqWg and the investor’s naïve selection 

scheme produce numerical coordinates that share approximately the same level of portfolio risk. 

NOTE: Abbreviated results are presented in this draft version of the manuscript.   

The solution results for the alternative models are presented in table 4. The notation 

differentiates the various solutions.  As previously stated, M1, M2, M3, and M4 refer to goal-

hierarchy statements already defined.  To enhance the comparative analysis across the four-goal 

structures, three alternative solutions are generated for each model.  By way of example, for 

model M1, alternate solutions are presented as M1-1, M1-2, and M1-3.  This labeling convention 

is applied to the four-goal models. Graphical efficient set results are presented in figure 8. 
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Figure 8: Comparative Efficient Frontiers  

 

Reference is made to table 4. This table presents the parameter settings for each solution, the 

diversified selection plan, and the risk-return cartesian coordinates.   

 The standard QP mean-variance and SIM dominate all behavioral portfolio selection 

results.   

 Firm incorporation of ESG production opportunities results in increased portfolio risk to 

investors. 

 ESG portfolio diversification ratios measured by the coefficient of variation (CV) 

demonstrates how, over moderate expected return levels, a firm’s commitment to ESG 

production opportunities can result in increased portfolio risk-adjusted return 

opportunities. 

 Performance attributes of behavioral portfolios show a preference for eliminating ESG 

bias over that of ‘loss aversion bias’; or CVaR emphasis. 
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Table 4: Prioritized ESG Portfolio Selection   

 

These preliminary results extend our understanding of how to use the hierarchical goal 

programming approach to solving BPM decision problems. For the rational investor, the 

multiobjective model produces efficient portfolio selection while meeting bias goals as closely as 

possible.  

6  Summary and Conclusions 

The aim of this research was to extend the dynamic BPM to encapsulate aspirational bias 

towards sustainability. To achieve this aim this research employed a factor disaggregation model 

to derive new ESG pervasive factors.  In the course of developing a multiple objective BPM for 

portfolio selection and rebalancing, machine learning was combined with a Cobb-Douglas 

production function specification for asset returns. The networked-based asset return model 

proved to offer new insight into new research seeking alternatives to the traditional capital asset-

based pricing alternatives.  Lastly, the dynamic estimation of ‘loss aversion bias’ was proxied by 

the introduction of an option-priced CVaR metric.  

Upon solving alternative statements of the multiple goal behavioral model, we were able to 

establish the importance of ESG control in behavioral portfolio selection.  We also report how an 

emphasis on ‘loss aversion’ is likely to produce less reward ratio efficient portfolios. These 

preliminary findings notwithstanding, there are several important areas where new research is 

needed.  The time-variation of the new ESG factors received attention but deserves a more 

detailed study.  Also, the examination of alternate priority structure models is warranted in 

further research.  The question of a machine-learning estimation of a production-theoretic model 

of asset returns is new and now surfacing in the literature.  The contribution provided by the 

application in this paper should provoke more pointed studies in this area. 



 

 

Appendix A:  Weights from the K4-RANN Analysis  

 
 Rm-Rf SMB HML E_FSI S_FSI G_FSI 

ESG 

Elasticity MSE 

XOM Exxon Mobil Corporation -1.746 -0.737 0.585 -0.094 -0.039 0.787 0.654 0.00020 

CVX Chevron Corporation -1.532 -0.001 0.554 -0.211 0.553 0.763 1.104 0.00028 

COP ConocoPhillips -0.034 0.279 1.000 0.428 0.375 0.756 1.558 0.00032 

IEZ iShares US Oil Eqp & Srv ETF -0.457 0.040 0.408 0.122 0.065 0.707 0.894 0.00012 

PFE Pfizer Inc -0.284 0.016 0.000 -0.163 0.128 0.087 0.051 0.00000 

JNJ Johnson & Johnson -1.407 -0.519 -0.518 -0.265 -0.159 -0.097 -0.520 0.00007 

ABT Abbott Laboratories -0.034 0.266 -0.224 0.058 0.071 0.439 0.567 0.00002 

CI Cigna Corporation -1.670 -2.011 -0.582 0.341 0.125 0.236 0.701 0.00046 

AMGN Amgen Inc -0.340 0.008 -0.629 -0.661 0.000 0.316 -0.345 0.00006 

AGN Allergan plc -0.712 -0.218 0.013 -0.819 -0.432 0.336 -0.915 0.00018 

TMO Thermo Fisher Scientific Inc 0.079 0.085 0.085 0.075 0.064 0.136 0.275 0.00000 

IBB iShares Nasdaq Biotech ETF 0.044 0.157 -0.026 -0.057 0.162 0.256 0.361 0.00009 

ABBV AbbVie Inc 0.925 -0.533 -1.805 0.196 0.134 0.778 1.108 0.00055 

CSCO Cisco Systems, Inc 0.612 0.715 0.048 0.729 0.924 0.998 2.652 0.00016 

MSFT Microsoft Corporation 0.180 0.223 0.063 0.756 0.125 0.642 1.524 0.00006 

QCOM QUALCOMM Incorporated -0.223 -0.773 -1.052 2.315 0.037 0.524 2.876 0.00087 

AAPL Apple Inc -0.338 0.279 -0.261 0.604 0.133 0.026 0.762 0.00005 

GOOG Alphabet Inc -0.818 -0.311 -0.976 0.204 -0.372 0.562 0.395 0.00010 

V Visa Inc -0.152 0.072 -0.045 0.400 0.243 1.043 1.685 0.00004 

NTAP NetApp, Inc 0.123 0.746 0.598 0.966 0.829 0.729 2.523 0.00052 

ACN Accenture plc -0.067 -0.097 -0.261 0.185 0.159 0.186 0.530 0.00000 

TEL TE Connectivity Ltd 0.073 0.089 -0.012 0.194 0.049 0.159 0.402 0.00000 

NEE NextEra Energy, Inc -0.106 0.287 0.193 0.196 0.140 -0.272 0.064 0.00001 

DUK Duke Energy Corporation -0.667 -0.172 0.032 0.096 -0.318 -1.059 -1.281 0.00006 

F Ford Motor Company -0.747 0.007 0.131 -0.081 -0.021 -0.157 -0.258 0.00004 

TJX The TJX Companies, Inc 0.513 0.673 0.567 0.477 0.712 0.623 1.812 0.00005 

LOW Lowe's Companies, Inc -0.480 -1.682 -0.248 -0.363 1.187 1.689 2.513 0.00053 
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GPS The Gap, Inc 0.063 0.236 -0.014 0.270 0.822 0.226 1.318 0.00021 

EBAY eBay Inc 0.659 -0.248 -0.556 -0.553 0.043 0.234 -0.276 0.00009 

WYN Wyndham Worldwide Corp -0.079 -0.135 -0.158 0.007 0.074 0.253 0.335 0.00001 

HBI Hanesbrands Inc -0.951 -0.565 -0.675 -1.949 0.691 0.561 -0.696 0.00059 

TWX Time Warner Inc 0.034 -0.108 -0.044 -1.196 -0.031 0.058 -1.169 0.00009 

JPM JPMorgan Chase & Co 0.044 -0.061 -0.247 0.010 0.333 0.306 0.648 0.00002 

WFC Wells Fargo & Company -0.694 -0.603 -0.595 -0.196 0.267 0.256 0.328 0.00008 

BAC Bank of America Corp.  0.070 0.037 -0.108 0.081 0.223 0.186 0.490 0.00002 

CB Chubb Limited -0.663 -0.908 -0.787 -0.446 -0.541 -0.402 -1.389 0.00006 

PNC PNC Financial Srv Grp, Inc.  0.109 -0.115 -0.816 -0.270 0.472 0.330 0.532 0.00006 

MMC Marsh & McLennan Co. Inc -0.306 -0.294 -0.350 -0.330 -0.326 -0.327 -0.983 0.00001 

BBT BB&T Corporation 0.171 0.080 -0.154 0.084 0.402 0.553 1.039 0.00003 

AMG Affiliated Managers Group, Inc -0.500 -0.031 -0.553 -0.242 0.216 -0.014 -0.040 0.00008 

AIV 
Apartment Investment and 

Management Company -0.937 -0.105 0.061 -0.125 -0.230 -0.707 -1.062 0.00005 

GNW Genworth Financial, Inc -0.116 -0.069 -0.101 -0.101 -0.088 -0.098 -0.287 0.00003 

C Citigroup Inc -0.261 -0.345 -0.353 -0.262 -0.087 -0.165 -0.514 0.00004 

GE General Electric Company -2.113 -0.936 -0.534 -2.518 -1.083 -0.297 -3.897 0.00110 

BA The Boeing Company 0.491 -0.341 -0.131 0.105 0.981 1.007 2.093 0.00018 

UTX United Technologies Corp. -0.104 -0.049 -0.139 -0.017 0.098 0.243 0.324 0.00000 

CTAS Cintas Corporation -0.186 0.382 -0.196 -0.243 0.445 0.169 0.371 0.00002 

GD General Dynamics Corporation 0.054 -0.046 -0.451 -0.629 -0.309 0.232 -0.706 0.00002 

DHR Danaher Corporation -0.193 0.250 0.026 0.721 -0.166 0.802 1.358 0.00004 

AME AMETEK, Inc 0.082 0.224 -0.196 0.282 0.372 0.421 1.075 0.00002 

ATU Actuant Corporation -0.430 -0.243 -0.102 -0.256 -0.137 -0.221 -0.615 0.00004 

MON Monsanto Company 0.059 0.011 0.158 -0.076 -0.015 0.148 0.057 0.00000 

XLB Materials Sector SPDR Fund -0.333 -0.211 -0.209 -0.112 -0.077 0.114 -0.076 0.00001 

WMT Walmart Inc -0.882 -2.064 -0.237 1.781 1.094 1.057 3.931 0.00054 

CVS CVS Health Corporation -1.367 -1.106 0.019 -0.778 0.387 1.128 0.737 0.00027 

KO The Coca-Cola Company -1.112 -0.550 -0.164 -0.217 -0.160 0.103 -0.274 0.00002 

PG Procter & Gamble Company -1.820 -0.726 -0.685 -0.575 0.760 -0.341 -0.155 0.00018 
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PEP PepsiCo, Inc -1.878 -0.687 -1.071 0.408 0.828 0.058 1.294 0.00010 

HSY The Hershey Company -1.231 -0.243 -0.570 -0.215 0.308 -0.370 -0.277 0.00012 

CL Colgate-Palmolive Company -0.519 -0.309 -0.275 -0.309 -0.167 -0.193 -0.669 0.00001 

DPS Dr Pepper Snapple Group, Inc 2.540 0.059 0.333 -0.193 1.192 0.734 1.733 0.00043 

VZ Verizon Communications Inc -0.867 -0.629 0.034 -0.725 1.795 0.157 1.227 0.00027 

T AT&T Inc -0.296 -0.324 -0.498 -0.703 0.847 -0.194 -0.050 0.00007 

IJR iShares S&P SmallCap ETF -0.482 0.064 -0.157 -0.170 -0.114 0.114 -0.170 0.00001 

MDY SPDR S&P MIDCAP 400 ETF -0.868 0.059 -0.344 0.034 -0.014 0.370 0.391 0.00002 
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