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ABSTRACT 

We discuss three alternative approaches to sample size calculation: Traditional sample size 

calculation based on power to show a statistically significant effect, sample size calculation based 

on assurance, and sample size based on a decision-theoretic approach. These approaches are 

compared head-to-head for clinical trial situations in rare diseases. Specifically, we consider three 

case studies of rare diseases (Lyell’s disease, adult-onset Still’s disease, and cystic fibrosis) with 

the aim to plan the sample size for an upcoming clinical trial. We outline in detail the reasonable 

choice of parameters for these approaches for each of the three case studies and calculate sample 

sizes. We stress that the influence of the input parameters needs to be investigated in all 

approaches and recommend investigating different sample size approaches before deciding 

finally on the trial size. Highly influencing for the sample size are choice of treatment effect 

parameter in all approaches and the parameter for the additional cost of the new treatment in the 

decision-theoretic approach. These should therefore be discussed extensively. 
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1 | INTRODUCTION 

The choice of sample size for clinical trials is of key importance and should be made in a well-

informed way. Sample size planning is especially critical if the target population for the 

investigation is difficult to study, e.g. a rare disease population where not enough patients exist to 

conduct a trial of traditional size or a setting where possibilities for inclusion in trials are 

restricted, such as paediatric populations.  

 

There are different approaches to sample size calculation. In this paper, we will compare three 

approaches: 1) the traditional sample size calculation ensuring a prespecified power for showing 

a statistically significant effect versus control, 2) sample size calculation based on assurance 

where uncertainty about assumed treatment effects are modelled, 3) optimal sample size based on 

a decision-theoretic approach where we will distinguish between an acute and a chronic disease.  

 

During study planning an appropriate sample size approach needs to be chosen. In some 

situations it can turn out that the traditional goal, power for a significance test, is neither a 

reasonable nor a desired goal for the study. However, an important step to sample size calculation 

is not only to choose this approach but also to specify the required parameters for these 

approaches in a reasonable way. The specification of parameters can be a difficult step even 

when the traditional way of sample size determination is used.[1] A non-traditional sample size 

approach is often more difficult since there is less familiarity with it in the scientific community 

and therefore less agreement how parameters should be specified. Further, we will see in this 

paper that we have to specify more parameters in advance for the decision-theoretic approach 

since it is more flexible.  

 

The aim of this paper is to show how parameters in different sample size approaches can be 

chosen in rare disease settings. We will discuss good sample size praxis – a discussion which is 

needed in the literature especially for the decision-theoretic approach to increase the acceptance 

in clinical trials. Further we want to compare traditional and non-traditional sample size 

approaches head-to-head in rare disease case studies in this paper: Does the decision-theoretic 

approach lead to smaller sample sizes than the traditional approach? Which parameters drive the 

sample size? 

 

We focus in this article on the sample size recommendation coming from a primary efficacy 

variable for the study. This is simplifying the real situation as other aspects, such as the need for 

adequate safety data can influence sample sizes as well. Other approaches or combinations of 

approaches for sample size than the three considered here exist as well and we will briefly 

discuss alternatives in the concluding section. 

 

After a general description of the three considered approaches in Section 2, we discuss in Section 

3 three case studies of rare diseases and compare the different approaches to sample size 



calculation. In our first case study, a new cellular therapy (acute treatment) for Lyell’s disease is 

planned. The sample size was finally based on the decision-theoretic approach, pre-study 

preparation work is currently ongoing and the study is expected to start in 2018. In the second 

case, the topic is a study for use of an interleukin I antagonist for the chronic treatment of adult-

onset Still’s disease. The third case is looking for the size of a cystic fibrosis trial investigating 

the chronic treatment with inhaled dry powder mannitol. We highlight in the case studies that it is 

good praxis for all sample size approaches to consider robustness of the sample size by checking 

the influence on sample size when some specifications are changed.  

 

It turns out that specifications for the treatment effect are especially challenging for all three 

methods. Therefore, we discuss this choice in more detail in Section 4. We conclude this article 

by discussing some practical aspects important when the approaches (especially the decision-

theoretic approach) are to be used for an upcoming study. We give thoughts about a treatment-

licencing situation and the situation when a trial for an ultra-rare disease is planned. 

 

2 | METHODS FOR SAMPLE SIZE DETERMINATION 

2.1 | Traditional approach: Ensuring specific power for a target treatment effect 

Traditionally, the determination or motivation of the sample size for a clinical trial in many cases 

uses the following approach: A specific treatment effect δ is targeted and possibly additional 

values for nuisance parameters are assumed. As the goal is to reject the null hypothesis of no 

treatment effect after the study, a significance level is chosen (often 5%) and the necessary 

sample size can be calculated to ensure a specific power to reject the null hypothesis if the 

treatment has the target effect (typically 80-90%). Statistical methods for this approach are 

discussed e.g. by Julious[2] and Julious and Campbell.[3] Nevertheless, of key importance for the 

clinical trial is the appropriate choice of the above mentioned parameters which are the basis for 

the computation (target treatment effect, assumed nuisance parameters, significance level, 

power). We will discuss the choice of these values in the context of the case studies in Section 3.  

 

2.2 | Assurance approach: Handling uncertainty in assumed treatment effect 

Power as calculated conventionally depends on a targeted effect δ which might be an assumed true 

treatment effect, power(δ) = P(reject H0|δ). If current information on the likely true effect δ can be 

characterised in the form of a prior distribution π, the expected power of a proposed study can be 

calculated for a given sample size and this prior. This gives the expected probability of a 

successful trial (which shows a statistically significant treatment effect), also known as 

’assurance’:[4]-[6]  

 

assurance(π) = Eπ[P(reject H0|δ)] = ∫ P(reject H0|δ) π(dδ). 

 

The sample size can then be chosen to ensure a specific assurance (80-90%). This approach is 



useful when previous studies of the treatment of interest exist and their results can form a prior 

(we will see this in two of our case studies). When no previous studies exist, assurance can be 

calculated assuming ’sceptical’ or ’optimistic’ priors, or by elicitation from suitable experts. 

Methods and examples for how to elicit information from experts about treatment effects are 

discussed e.g. by O’Hagan et al.[7], Zohar et al.[8] and Kinnersley and Day.[9] In the same way as 

for the treatment effect, also uncertainties about nuisance parameters (like variability, success rate 

for control treatment) can be handled by using a prior distribution. We note that for priors with too 

large prior-probability for the new treatment being worse than control, the assurance can be below 

the target assurance even for infinitively large sample size. This issue occurring in Case Study 1 is 

well-known.[10]  

 

2.3 | Decision-theoretic approach  

The above approaches focus on the frequentist properties (type I error and power/assurance) since 

the intended analysis is to perform a significance test after the trial. As an alternative, decision-

theoretic approaches have been proposed. These can be applied when the intention is not to base a 

treatment recommendation on a significance test with a certain type I error but instead a treatment 

recommendation is desired which maximizes an expected “gain” for the total population. The idea 

for designing the study including the choice of the sample size is to compare the expected gain 

which results from different decisions about the design (here: different choices about the sample 

size). The sample size which maximizes the expected gain is then chosen for the clinical study. 

Hee et al.[11] review such approaches for small trials and pilot studies. “Gain” is interpreted very 

broadly and can be defined from the patient, sponsor, regulatory, public health or society 

perspective – or from a combined perspective. The gain will depend on which perspective is taken. 

It accounts for the benefits from the treatment and is reduced by costs (e.g. monetary costs for 

development but also costs in terms of adverse effects). For each patient, gain functions are 

defined which depend on the received treatment (new or control), whether they receive it in or 

outside the trial, and on the treatment outcome for the patient. Like the assurance approach 

(Section 2.2), this approach assumes that current information about the new treatment and the 

control is characterized in the form of prior distributions. 

 

2.3.1 Acute disease 

We start with having a one-chance treatment in mind intended for an acute disease. In this 

situation, we assume that each patient in a target population of size N is treated exactly once: 

either in a trial where n1 patients are allocated to the new treatment and n2 patients are allocated to 

control, or after the trial where all N-n1-n2 remaining patients receive the treatment which is 

estimated to be the better based on the posterior distribution after the trial.  Figure 1 shows this 

basic assumption for this approach assumed by Cheng et al.[12] and Stallard et al.[13]. Let δ1 be the 

effect of the new treatment and δ2 the effect of control. An overall expected gain is here defined to 

be 
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where hNew(δ1) and hControl(δ2) are expected gains for one patient when treated in the trial (“in-trial 

gain”) with New Treatment or Control, respectively, g is the corresponding expected gain when 

treated with a treatment outside of the trial (“out-trial gain”) and 1{} is the indicator function. 

Since there are no study specific costs for patients treated out-trial – it is assumed that the out-

trial-gain of the superior treatment is at least as large as either of the in-trial-gains. 

 

[Figure 1 around here] 

 

Sample size determination then corresponds to the choice of n1 and n2 to maximize the overall 

expected gain. Here additional expectations are taken over the possible observations in and outside 

the trial and over the prior distribution of the parameters, see Stallard et al.[13] for more details. 

Further, it is assumed that the treatment decision after the trial is to choose the treatment 

maximizing the expected gain given the posterior distribution after the trial. One would like to 

have a sufficiently high sample size to have a good probability to determine the better treatment. 

On the other hand, a too large sample size will imply that more patients are treated with the 

inferior treatment in the trial and fewer patients have the possibility to gain from the treatment 

outside the trial. These conflicting arguments are the basis for searching for the optimal sample 

size which will depend on the size of the target population N. In Section 5, we will discuss this 

dependence on N.  

 

Note that the described approach can be applied also when the trial is a single arm trial with n1 

patients on new treatment (formula (1) can be applied with n2=0). This is especially important in 

rare disease settings when comparison with this “historical” information about control is desired. 

In Section 3.1, we will discuss a single arm case study. 

 

2.3.2 Chronic disease 

There are many rare diseases of chronic nature and the treatment must be taken continuously over 

time for benefitting from it.  Patients included in the trial can benefit from one of the treatments 

for the trial duration and have an in-trial-gain. Let the treatment duration in the trial for each 

patient is be d. After being in the trial, the patients need further treatment. We assume that we are 

interested in a certain time horizon H for treating patients. Further we assume that the results from 

the trial can lead to a treatment policy recommending either new treatment or control from time S 

onwards which is after the end of the trial plus additional time e.g. for interactions between 

decision makers, drug production, advertisement, and marketing. We assume here that the N 

patients in the patient population will start the recommended treatment from a time-point with 

average at time S for the N patients. Since the time S depends on when the trial ends, it is a 



function of the recruitment speed and the trial’s sample size n1+n2 and we write S=S(n1+n2). In 

the case studies which consider chronic diseases, we will use functions S which depend linearly on 

the trial’s sample size: S= t0 + t1 (n1+n2) with a constant t0 and a recruitment speed t1 (time per 

patient recruited). Before time S, the control treatment is standard of care outside of the trial. 

Figure 2 shows these basic assumptions for a chronic disease graphically (where we illustrate for 

simplicity that all N patients start their out-trial treatment simultaneously at time S). We assume 

that the gain for a patient is proportional to the length of time a patient receives treatment. The 

overall expected gain for a chronic disease case is  
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where the functions h and g are now expected gain per time unit. Again – since there are no study 

specific costs for patients treated out-trial – it is assumed that the out-trial-gain of the superior 

treatment is at least as large as either of the in-trial-gains. Like in the acute treatment situation, we 

determine the sample sizes n1 and n2 to maximize the overall expected gain, now given by (2) 

instead of (1). 

 

[Figure 2 around here] 

 

2.4 | Summary of the three approaches 

Table 1 summarizes the specifications needed for the three sample size approaches discussed here. 

Irrespective which of the approaches is used, it is good practice to investigate the robustness of the 

calculated sample size with respect to changes in the specified values. To plot sample sizes versus 

a range of parameter values around the specified value helps understanding of the robustness and 

for discussions. If the result is that a certain parameter has big influence on the sample size, one 

can go back and critically reflect how likely certain values are. 

 

[Table 1 around here] 

 

3 | CASE STUDIES 

3.1 | Case study 1: New cellular therapy for Lyell’s disease 

Stevens–Johnson syndrome and toxic epidermal necrolysis, also called Lyell’s disease, are severe 

adverse drug reactions and are considered variants of the same pathologic process, differing only 

in severity.[14] The disease is characterized by necrolysis of the epithelium of skin and mucous 

membranes. Mortality is approximately 22% in Europe and estimated to be 9% in the French 



Referral Centre for Toxic Bullous Diseases where special disease management is applied.[15] The 

incidence is estimated at 2 per 1 million inhabitants in Europe.  

 

A new cellular therapy is considered as treatment; however, treatment costs are high. A single 

arm Phase I/II trial is planned to investigate the effect of the cellular therapy. This disease is 

considered as acute: following successful therapy complete healing can be expected after an 

average of two weeks. The gain function specified by equation (1) is therefore used in the 

decision-theoretic approach and hence, we assume that every patient of a target population of size 

N is treated either in the trial or afterwards outside the trial with the recommended treatment.  

The primary endpoint for the efficacy evaluation is complete healing at Day 7.  

 

The costs per patient and gain for a successfully treated patient were discussed in repeated 

meetings between the responsible physician and two statisticians. The cellular treatment is 

particularly expensive such that the costs are currently 25 000 EUR per patients. In case of a 

successful trial, a larger scale production for the treatment is expected to reduce the cost 

considerably to 5 000 EUR per patient which we use for the out-trial costs. Fewer days in 

hospital with fewer medical exams and fewer co-morbidities for a successfully treated patient 

compared to a non-successfully treated patient lead to a positive gain for a successfully treated 

patient corresponding to 100 000 EUR since the daily costs in these intensive care units are 

particularly high. 

 

Let p1 be the response rate of the new therapy, p2 the response rate of the current treatment. The 

in-trial gain for a patient, who in this single-arm trial will receive the new therapy, is then (in 

1000 Euro): hNew(p1)=100 p1-25. The out-trial gain is: gNew(p1)=100 p1-5 or gControl(p2)=100 p2 

depending on which treatment is recommended after the trial. This means that to achieve the 

same out-trial gain, the new cellular treatment needs to have a 5%-units higher response rate to 

compensate the higher costs. The total number of patients in the target population was considered 

to be N=500. This was based on the incidence of 2 per 1 million inhabitants and a judgement of 

the physicians how many of these patients could be reached with the new cellular therapy.  

 

As there was uncertainty in judging the prior assumptions for the new therapy, the sample size 

was calculated for a set of different prior assumptions and for different target differences in the 

traditional approach. The expected success rate prior to the trial ranged from 0.5 (pessimistic, 

equal to current treatment) to 0.9 (optimistic hopes of the physician). For the assurance and 

decision-theoretic approach, we consider therefore the prior mean being between 0.5 and 0.9. 

Further, the weight of this prior trial information was assumed to correspond to between 2 and 20 

patients, reflecting that there is only vague knowledge based on expert beliefs. Statistically, this 

prior information can be quantified using a beta distribution with two parameters a and b such 

that the mean is a/(a+b) and the weight is a+b. We show densities of assumed priors in Figure 3 

for 0.5, 0.55, 0.6, …, 0.9 and for weights corresponding to information from 2, 10, and 20 



patients. Note that the case of prior mean = 0.5 and information = 2 patients corresponds to an 

uninformative prior which judges all treatment-response-rates equally likely (uniform distribution 

for all rates between 0 and 1). The response rate of the current treatment is judged to be p2=0.5 

based on experience according to the discussions between responsible physician and statisticians. 

In the actual study planning, it was agreed not to include an uncertainty for this proportion 

p2=0.5 in the model – however an alternative would have been to consider a prior distribution for 

p2 based on previous data with mean 0.5 and higher weight than the prior distribution for p1 since 

the physicians have experience with the current treatment and there is less uncertainty than for 

the new treatment. The parameters needed for the sample size approaches are summarized in 

Table 2. 

 

[Table 2 and 3 around here] 

 

Table 3 shows the sample size for the traditional, the assurance approach, and the decision-

theoretic approach; for the first two approaches we specified a type I error of α=5% (two-sided) 

and require a power of 80%. We see that the sample sizes are in some cases unreasonably high 

for the first two approaches in relation to the population size N=500. From a theoretical 

perspective, the traditional approach can be viewed as assurance approach with infinitively large 

prior weight, therefore we can view the first four lines in Table 3 as assurance approach where the 

prior weight is infinity in the first row. When we look at these first four rows in Table 3 for fixed  

assumed mean response rate for new treatment (looking at each column separately), we see that 

the sample size is increasing when the prior weight decreases from infinity down to 2. Hence, 

with increasing prior uncertainty, larger sample sizes are needed.  

 

The optimal sample sizes for the decision-theoretic approach in the last three rows of Table 3 

range up to 17. When the prior belief is that the new treatment is equal or only a little better than 

the standard treatment (prior mean for p1 slightly above 0.5), the highest sample sizes are 

necessary for this decision-theoretic approach. In this situation more evidence for the treatment 

recommendation to the N-n patients outside the trial is needed. For large prior means (e.g. prior 

mean > 0.7 for prior weight = 10), even no trial can be best when it is optimal to recommend the 

new therapy based on the prior belief only. However, before really choosing to conduct no trial, 

one would need to ensure that all stakeholders agree with such a prior belief which led to sample 

size=0. Looking at all sample size calculations for the considered priors, a sample size of 15 was 

chosen for the trial which seems appropriate for all priors as it is close to the maximum optimal 

sample size. 

 

We see here a large difference between the recommended sample sizes from traditional or 

assurance approach versus the decision-theoretic approach. Especially if it is assumed that the 

new cellular therapy is only a little better than the previous treatment, a lot of trial-information is 

necessary to statistically demonstrate this small difference which increases the traditional and 



assurance sample size. However, in our situation for treatment of Lyell’s disease, it makes no 

sense to include a large part of the total population in the trial before making a recommendation 

for future patients. A justified treatment recommendation has the benefit for the society to reduce 

future treatment costs. Therefore, it was decided to apply a decision-theoretic approach based on 

specification of trial costs and – importantly – costs for future treatment and with this aim for 

optimizing the total treatment gain. Using this approach, it was accepted that we cannot 

necessarily hope to prove that one treatment is better if the treatment effects are very similar. The 

use of decision-theoretic sample size calculation for this clinical trial was accepted by ethical 

committee and the regulatory agency. The trial grant for this trial using decision-theoretic sample 

size calculation was approved by the French national hospital program for clinical research. The 

design and sample size was then approved by the regional direction of clinical research and by 

the ethical committee of Créteil university Hospital. 

 

[Figure 3 around here] 

 

3.2 | Case study 2: Treatment of adult-onset Still’s disease with Interleukin I (IL-1) 

antagonists 

Adult-onset Still’s disease is a rare chronic symptomatic disease. According to Gerfaud-

Valentin et al.,[16] “the reported prevalence rates range from 1 to 34 cases per 1 million 

persons” in Japan and Europe and they refer to published values of 1.6 and 4 (per 1 million) 

in France and Norway, respectively. If we assume approximately an incidence of 2 per 1 

million in the EU and a total EU population of roughly 500 million, the population size with 

the disease is around N=1000 in EU. 

 

When the work with this case study was done, no pharmaceutical treatment was licensed for 

the disease. A mechanistic justification has been proposed for treatment of adult-onset Still’s 

disease with IL-1 antagonists and a few observational studies, as well as one randomised 

controlled study, have been conducted.[17] Given the information from these previous studies, 

we consider here the sample size determination for a potentially upcoming trial comparing 

the IL-1 antagonist anakinra as investigational treatment with control when patients are 

randomized with 1:1-allocation. The treatment duration in the upcoming trial is going to be 6 

months and the intended primary outcome is remission rate. After the planning work with 

this case study, canakinumab, a fully human monoclonal anti-human IL-1 beta antibody, has 

been approved for the treatment of adult-onset Still’s disease. 

  

Hong et al.[17] report in their meta-analysis that 36 of 47 patients treated with anakinra and 

33 of 68 patients treated with control experienced remission. Therefore, we assume for the 

traditional approach, described in Section 2.1 above, a remission rate of 0.766 and 0.485 for 

treatment and control, respectively. For the assurance and decision-theoretic approach we 

assume that the remission rate has a beta prior distribution. Appropriate choices for treatment 



and control are Beta(36,11) and Beta(33,35), respectively corresponding to the data from 

Hong et al.[17] reported above, see Figure 4. For the traditional and assurance approach, we 

specify a type I error of α=5% (two-sided) and require a power (assurance) of 80% (β=20%). 

[Figure 4 around here] 

 

As this is a chronic condition, for the decision-theoretic approach we use the formulation of 

the gain function given by equation (2).  We assume that after the trial, a treatment 

recommendation is made for either the new drug or control. Until the patients can be treated 

according to this recommendation, they are treated with control (if they are not in the trial). 

In total, our time horizon H is 10 years. After these 10 years, we expect other improved 

treatments to take over. However, since there is uncertainty around this time horizon 

specification, we will below check how the sample size depends on changes in this 

parameter. The treatment recommendation is assumed to be made at time 

1 2 0 1 1 2( ) ( )S S n n t t n n     years with t0=2 (6 months treatment duration and an assumed 

1.5 years from the end of the trial until the average start of recommended treatment) and 

recruitment speed of t1=1/40 years per patient (we expect that recruitment of each 40 patients 

takes approximately one year). This recruitment speed is more optimistic than the experience 

from Nordström et al.[18] who could include 22 patients in 2 years, as it is hoped for more 

centres contributing to recruitment. 

 

Let the unknown probability of remission be p1 after anakinra treatment and p2 after control 

treatment. We define the benefit of being in remission for 1 year as 1 unit (considering the 

whole H=10 year period where we want to optimize treatment). The assumed cost for being 

in the trial was judged to be cP=0.05, i.e. the costs for 20 patients included in the trial was 

judged to correspond to the gain of one more patient experiencing remission. Outside of the 

trial, there are fewer costs; one more remission justifies treatment costs for 100 patients 

(cO=0.01). Consequently, the in-trial gain is hNew(p)=hControl(p)=p-0.05 per year and the out-

trial gain is gNew(p)=gControl(p)=p-0.01 per year, where p=p1 for anakinra, p=p2 for control 

treatment. For simplicity, we assume here that remission or non-remission is directly 

achieved and constant over the in-trial or out-trial treatment period. As we have restricted the 

possible allocation in the trial to 1:1, we have n1=n2=n. Table 4 summarizes the chosen 

parameters. 

[Table 4 around here] 

With these specifications, we can calculate recommended sample sizes according to the three 

approaches. Sample size for the traditional approach is n1=n2=46 to achieve 80% power based on 

the assumed remission rates of 0.766 and 0.485. To ensure 80% assurance, a sample size of 

n1=n2=56 is necessary based on the above specified beta prior distribution. 

The decision-theoretic approach which recommends the treatment with the higher posterior 



expected gain for the future, recommends in this situation not to run any trial at all but to rely 

fully on the prior distribution. The new treatment is recommended directly. It is not beneficial to 

postpone the start of out-trial treatment S to collect more data on the treatment-control 

comparison when we have the overall gain function as specified. One reason is that the prior 

distributions here (Figure 4) are very distinct, implying that the prior probability is 99.9% for 

anakinra being better than control. If we would have prior distributions which are much closer to 

each other than those here (i.e. if the prior mean for anakinra would be between 0.53 and the 

control mean 0.485 leaving anything else unchanged, implying a prior probability of 68.2% of 

anakinra being better than control), this decision-theoretic approach leads to optimal sample sizes 

>0. Another reason is that we have assumed that there are no specific costs for anakinra 

compared to control. However, one should reflect both additional monetary costs for the anakinra 

treatment and in general reflect concerns about safety differences: how much larger does the 

remission rate for anakinra need to be to compensate for additional monetary costs and for a 

potential increased safety burden? Even if we assume that 15 percentage points better remission 

rate are needed for anakinra compared to control (which is judged as a conservative assumption 

for this case study), we still get the decision-theoretic sample size recommended to be 0 

confirming the support for not doing any trial and recommending anakinra directly based on the 

decision-theoretic approach (the prior probability is 93.3% that anakinra is at least 0.15 better 

than control).  

For illustrative purposes, we assume now that the additional anakinra economic and safety costs 

correspond to cT=0.3, i.e. 30 percentage points higher remission needed for anakinra compared 

to control, hNew(p1)=p1-cP-cT and gNew(p1)=p1-cO-cT. In this case, we obtain the optimal sample 

size n*=45. The left panel in  

Figure 5 shows how the decision-theoretic sample size depends on the additional anakinra costs 

cT. For cT<0.25, no trial is recommended and anakinra should be the treatment recommendation 

for all out-trial patients. For cT between 0.25 and 0.37 a trial is recommended with roughly 

increasing sample size which is at most n=61. For cT>0.37, no trial is recommended and the 



treatment recommendation is to use control treatment. Note that the gain function which depends 

on n has for fixed cT around 0.25 and around 0.37 two local maxima, one of it at n=0. For cT<0.25 

and cT>0.37, the maximum at n=0 is the global maximum while between these boundaries, the 

global maximum is for n>0. Therefore, the graph in this left panel has two discontinuities.  

Using cT=0.3, the middle panel in  

Figure 5 shows how the sample size depends on the population size N: If N is smaller than the 

assumed N=1000, smaller sample sizes are necessary. At N=1000, a plateau is (almost) reached 

(for very higher population sizes, n*=47 would be the optimal sample size). Finally, using again 

cT=0.3 and N=1000, the right panel in  

Figure 5 shows the dependency on the time horizon H being in the interval from 8 to 15 years. 

The longer the time horizon, the larger is the sample size which is justified, but the dependency is 

not too drastic.  

[ 



Figure 5 around here] 

In this case study (as well as in the following case study), we determined sample sizes for trials 

with 1:1-allocation. The traditional and assurance approach can easily be modified by computing 

power/assurance for another prespecified allocation ratio. In the same way, we can apply the 

decision-theoretic approach for any prespecified allocation ratio. However, when using the 

decision-theoretic approach, we have even the possibility to optimize the allocation ratio by 

searching the optimal pair (n1, n2), i.e. by dropping the restriction n=n1=n2 which we made in the 

case studies. 

 

3.3 | Case study 3: Treatment of cystic fibrosis with inhaled dry powder mannitol 

(Bronchitol) 

Cystic fibrosis is a progressive, genetic disease that causes persistent lung infections and limits the 

ability to breathe over time.[19] The prevalence was determined to be around 0.7 per 10 000 in 

average in the EU-countries and around 0.8 per 10 000 in the US.[20] No cure exists; treatment is 

currently symptomatic and chronic. In two clinical Phase III trials, called CF301 and CF302, 

inhaled dry powder mannitol was investigated as treatment. The primary endpoint was lung 

function measured as forced expiratory volume in 1 s (FEV1). While results of CF301 showed a 

statistical significant advantage for mannitol,[21] in the primary analysis of the second pivotal study 

“statistical significance was narrowly missed” (p=0.058).[22] FDA required an additional Phase III 

trial in an adult cystic fibrosis population, called CF303, before potentially licencing on the US 

market. The trial is currently ongoing. We pretend here that we aim to calculate the sample size 

for an upcoming trial given the results of CF301 and CF302, with the US market in mind.  

 

To form prior distributions, we combine the results from the two available trials. For the mannitol 

treatment, the average change in FEV1 over the 26 weeks double-blind phase was 111 ml (based 

on 177 patients in CF301 and 184 patients in CF302). For the control treatment, the average was 

42 ml (based on 118 patients in CF301 and 121 patients in CF302). Given the confidence intervals 



in study CF302 for mannitol, the standard deviation was assumed to be 295 ml. Therefore we 

assumed a N(111,162) distribution for mannitol and a N(42,192) distribution for control (the 

variance in the mannitol prior is e.g. calculated as 295 177 184 16  ). The prior for the treatment 

difference δ is then N(δ0,σ0
2) with δ0=111-42=69 and 2 2 2 2

0 16 19 25    . For the traditional 

sample size calculation, we can assume the treatment difference 69 ml and a standard deviation of 

295 ml. In the traditional and assurance approach, we use α=0.05 (two-sided) and an (expected) 

power requirement of 1-β=0.8. 

 

Again, we use for the decision-theoretic approach the chronic disease formulation of the gain 

function given by equation (2).  The population size on the US market is around N = 325 000 000 

x 0.8 / 10 000 = 26 000. According to the timelines planned for recruitment in trial CF303,[23] the 

sponsor anticipated to need around two years for 440 patients. Therefore, we assume a recruitment 

speed of 20 patients/month (240/year) and that the recommended treatment is available after 

1 2 0 1 1 2( ) ( )S S n n t t n n     years with t0=2 and recruitment speed of t1=1/240 (fraction of a 

year for recruiting one patient). We assume a treatment horizon H=10 years for the treatment and 

will again as in the second case study investigate also values in the interval 8-15 years later. As a 

26 week treatment period is desired, we use d=0.5 years. 

 

In this case study, we use the base case (default treatment policy) to treat each of the N patients 

during the entire time of H years with the control treatment outside of any trial. We set the 

expected gain of this base case to 0 implying gControl(δ2) = 0 and are interested in the change of the 

gain when using another treatment policy.  

 

For specifying the gain functions, we translate clinical results (FEV1 improvement) into an 

economic value. According to Table 5 from DeWitt et al.[24], the mean total annual health care 

costs (without medication) decrease by 1700 USD when the variable percent predicted FEV1 

(FEV1%) is increased with 1 %-unit. In trials CF301 and CF302, the average treatment effect of 

mannitol was FEV1 = 69 ml and, measured in the variable FEV1%, was 3.5%, meaning that a 

change of FEV1% = 1% corresponded roughly to a change of FEV1 = 20 ml. Therefore, we justify 

a decrease of 1700 USD in costs when FEV1 is increased by 20 ml or in other words an increase of 

1 ml in FEV1 is expected to reduce health care costs by cU = 85 USD per year. We therefore use 

the gain function δ cU (where δ is the mean difference in FEV1 between treatment and control in 

ml) and deduce cP = 5000 USD estimated costs for inclusion in the 6-months trial of a patient for 

the visits and assessments at visits. Further, we deduce cT = 6000 USD per year treatment costs for 

a patients’ annual treatment with mannitol (not for the control treatment) roughly based on the 

price for treatment needed for one year. Using the functions h and g introduced in (2), we can 

write hNew(δ) = δ cU - cT - cP, hControl = -cP, gNew(δ) = δ cU - cT, gControl = 0. Recall that these functions 

relate to the base case (everyone treated with control outside the trial) and negative values of these 

functions mean that the base case gives a higher gain. The in-trial function hNew(δ) is negative if 

and only if δ<(cT + cP)/cU which has a very high prior probability for the parameter values 



discussed before and always hControl<0. Therefore the gain decreases with including patients into 

the trial – however, they give information about δ which can be needed to increase the overall 

gain. The out-trial function gNew(δ) is negative if and only if δ<cT/cU. 

 

As in the previous case study, we restrict the possible allocation in the trial to 1:1 and have 

n1=n2=n. A traditional sample size calculation for ensuring 80% power when the treatment 

difference is 69 ml with an assumed standard deviation of 295 ml for a significance test having 

α=5% (two-sided) yields a sample size of n=288 patients per group (for 1:1-allocation). Based on 

the prior distribution for the difference between mannitol and control, N(69,252), we compute the 

sample size ensuring 80% assurance to be n=390.  

 

[Table 5 around here] 

 

In this situation with a normally distributed prior and observations, the gain function can be 

computed to have a quite simple form. We show this in the appendix following the computation 

by Willan[25] and Pearce et al.[26] in a similar situation but for an acute treatment. Optimizing this 

computed gain function over the sample size, we obtain the decision-theoretic sample size as 

n*=221.  

 

When applying the decision-theoretic approach it is essential to check how changes in assumed 

parameters change the situation. Some of the above assumptions were well justified by evidence 

from literature, others are more rough assumptions. To identify the parameters with important 

influence on the sample size helps to focus on those when critically reflecting the assumptions. In 



Figure 7, we show the influence of 9 parameters on the optimal sample size n*. We keep the other 

8 parameters constant with values as described above and vary one parameter at a time.  

 

In the upper-left panel of 



Figure 7, we see that when changing the prior mean δ0, the optimal sample size is 0 for small 

δ0<35 ml where the control treatment is recommended and no attempt would be made to get the 

new treatment approved for this pessimistic prior. The sample size is between 300 and 360 for δ0 

between 35 ml and 59 ml. The optimal sample size is then decreasing for increasing prior mean 

until δ0=82 ml. For larger prior means, the recommendation would be for mannitol without further 

trial (n=0). However in a licencing situation, decision for active treatment without trial would 

require that the authority agrees with the prior mean as well.  Figure 6 shows the probability to 

choose the mannitol treatment after the study depending on the prior mean δ0 when the optimal n* 

is chosen. The optimal sample size is decreasing with increasing prior variance σ0
2 and increasing 

with increasing variance of the observations σ2 (second and third panel in top row of  



Figure 7), but the influence is not too strong.  

 

Looking at the cost parameters (panels in the middle row in 



Figure 7), we observe basically no influence of the trial cost per patient cP. In contrast, the annual 

treatment costs cT and gain per increased FEV1-unit cU are critical for the sample size. For small 

gains per increased FEV1-unit, cU<59 USD, no trial is recommended and the control treatment 

should be taken. The highest optimal sample size is then n=346 for cU=64 USD and is then 

decreasing with increasing gain. For cU = 105 USD or more, mannitol should be recommended 

directly (n*=0). In this case, the gain outweighs the treatment costs based on the prior for the 

treatment difference. From the formula for the gain function we see that the results depend on cU 

and cT through cT/cU only. Therefore, the dependence on cT when cU is fixed is related. As noted in 

the appendix, the ratio cT/cU has the following interpretation: When the posterior mean for the 

treatment difference is at least cT/cU, mannitol should be recommended; when it is smaller, control 

should be recommended. 

 

When the population size is at least N=10 000, the optimal sample size is basically constant – for 

very large population sizes, the optimal sample size tends to n*=227. If the population size would 

decrease below N=10 000, the optimal sample size will also decrease. We see some but not too 

drastic influence of the recruitment speed 1/t1 (the faster the recruitment, the higher sample size is 

justified) and of the treatment horizon H (the longer the treatment horizon, the higher the optimal 



sample size). 

 

Overall, we conclude from these figures that the treatment difference in the prior δ0 and the 

gain/cost-ratio cT/cU are the most critical parameters for the sample size. These should therefore be 

considered carefully in this situation before finally deciding on the sample size. 

 

Comparing the recommended sample sizes from the traditional or assurance approach with the 

optimal decision-theoretic sample size, we see here only a relatively small discrepancy, especially 

if we use some more conservative assumptions based on 

Figure 7 and use e.g. the maximum sample size recommended in these sensitivity calculations 

shown in the figure. 

 

[Figure 6 and 



Figure 7 around here] 

 

4 | SPECIFICATION OF THE TREATMENT EFFECT 

In the traditional approach, we need a specification for the targeted treatment effect. There are 

different ways of interpreting this target treatment effect: one possibility is to justify a “minimal 

clinically important difference” (MCID) and to require the desired power for this difference. 

While this concept is broadly applied, Burman and Carlberg[27] question the existence of a MCID 

by discussing that even very small differences in effect are important given two drugs with 

otherwise identical profile in e.g. safety, price, and dosing schedule. Another way of interpreting 

the target effect is to anticipate the likely effect difference which might be based on earlier 

experience. This interpretation is also often used when choosing the target effect for the 

traditional sample size determination. With this interpretation and when prior distributions are 

used with very small variability around the likely values in the assurance approach, i.e. when the 

uncertainty becomes smaller and smaller, then the assurance approach converges to the traditional 

approach. 

 



We have seen in the case studies that the assurance approach led to higher sample sizes compared 

to the traditional approach with the prior mean equal to the target effect. This can be explained 

since for the sample size leading to a traditional power of 80-90%, the assurance is lower since 

the power function is concave around the target effect so that the average of the power is lower 

than the power at the average assumed effect size. 

 

For the assurance and decision-theoretic approach, a prior distribution for the treatment effect 

needs to be specified, which can be challenging in applications. In our first case study, there was 

only vague information elicitated from experts. We investigated therefore the optimal sample 

sizes for a large set of different priors and have chosen a sample size close to the maximum of all 

recommended decision-theoretic sample sizes. In the other two case studies, results from earlier 

studies were available and formed beta and normal priors, respectively. The underlying 

justification was: When using uninformative priors before the earlier, published studies, the 

posterior after the earlier studies is the likelihood which is then used as prior for the study we are 

planning. However, there are limitations with this way of specifying the priors: Firstly, the earlier 

results may have a risk for bias, e.g. if they are from early phase, from unblinded or non-

randomized studies. This could be especially a risk in Case Study 2. Secondly, starting with an 

uninformative prior before the earlier results might be challenged as well since e.g. for a disease 

difficult to treat where several other compounds failed, an uninformative prior could be too 

optimistic and more pessimistic priors might be justified. 

 

5 | DISCUSSION AND CONCLUSION 

In this manuscript, we have compared the traditional, assurance and decision-theoretic sample size 

approaches. These are not the only possible approaches. In some situations the interest is not in 

hypothesis testing but in estimating e.g. a treatment difference with good precision. Then the 

sample size can be motivated to ensure a certain confidence interval length for the treatment 

difference. When the intention is to analyse the data with Bayesian methods but a decision-

theoretic specification of gain functions is not desired, Bayesian sample size determination as 

described by Adcock[28] can be applied. Several criteria to ensure limited length of posterior 

credibility intervals can be defined to determine a Bayesian sample size; see Joseph and Bélisle[29] 

for normal means and their differences and M'Lan, Joseph and Wolfson[30] for the binomial case. 

Moreover, aspects from different approaches might be combined: E.g. a significance test to decide 

upon treatment recommendation could be incorporated into the decision-theoretic frame[26],[31],[32]. 

Uncertainties about cost- or recruitment-parameters might be handled using prior distributions for 

these parameters as well.  

 

We recommend not to use a single approach in isolation, but to compare results of several ways to 

determine sample size. An informed choice of sample size is ideally made after challenging the 

specifications made using several of the considered approaches. When very different 

recommendations result from different approaches the reasons should be understood before a 



choice is made.  

 

We considered a single efficacy endpoint in this work but there are situations where several 

endpoints are important for sample size determination. A sample size chosen based on 

considerations for efficacy might be too small to ensure a sufficiently large safety database and 

then the minimum requirement for safety would define the sample size. In other situations when 

specific important safety endpoints are identified, these could be integrated in the decision-

theoretic framework by using a utility score as a primary endpoint (for an example of a utility 

score incorporating efficacy and safety see Ouellet et al.[33]) Alternatively, the decision-theoretic 

framework could be used with more complex models with several endpoints, specifying priors, 

and gain functions based on them.[34-35] 

 

An important and often difficult step in sample size determination is to specify the required 

parameters for these methods. It is good practice for all sample size approaches to consider 

robustness of the sample size by checking the influence on sample size when some of these 

specifications are changed. The parameters which are especially influential can be critically 

reflected, maybe re-discussed with subject-matter-experts and if necessary revised. In the 

investigated case studies, the parameter for the additional treatment cost of the new treatment and 

the assumed difference in prior means were parameters highly influencing the sample size for the 

decision-theoretic approach. The importance of the treatment cost parameter for sample size and 

treatment decision making was highlighted by Pearce et al.[26] 

 

If the intention of the trial is to support drug licensing by regulatory agencies, the question arises if 

a decision-theoretic approach is acceptable. There are a lot of parameters which need to be 

specified upfront. Some of them have to be elicited from the subject matter experts and agreement 

with regulatory agencies needs to be achieved. A critical parameter in the planning of the decision-

theoretic design is in our view the treatment cost parameter: this parameter can reflect safety costs 

and can then be interpreted as safety penalty. The new treatment is only recommended for future 

treatment of patients when the data suggests that the effect is sufficiently better than control’s 

effect to justify these safety costs. Therefore, we think that especially this parameter, in addition to 

the prior distribution for the effect, needs to be carefully discussed with regulatory agencies. If this 

is done, the decision-theoretic approach is appealing for a licencing situation. While the traditional 

and assurance approach build on an underlying significance test which aims to demonstrate that 

the new treatment is better than control, a positive demonstration says nothing about how much 

better the new treatment is and if it justifies the additional safety or monetary costs for the new 

treatment. In contrast, the decision-theoretic approach uses gain functions which connect directly 

to societal and regulatory considerations. By this, the approach defines the level of evidence 

required to make a treatment decision. Given the study with optimized sample size and treatment 

decision rule, the corresponding type I and II errors can be calculated (see e.g. Stallard et al.[13] and 

Pearce et al.[26]). Despite the importance of the treatment cost parameter which we discussed, it 

needs to be pointed out that current regulatory practice, e.g. from FDA, is not to consider 



monetary costs in the review process. 

 

For the decision-theoretic approach, the optimal sample size is increasing with increasing 

population size. Cheng et al.[12] and Stallard et al.[13] have shown for the acute case that the optimal 

sample size is proportional to the square root of N and is therefore unbounded. In contrast, we 

have seen for the approach with chronic diseases in Case study 2 and 3, that this optimal sample 

size reaches a plateau for large populations, i.e. is bounded. We explain this by following 

considerations: If N is relatively large, the trial covers only a small area of the total area of 

treatment need in Figure 2. It might then be reasonable to approximate the overall gain by 

ignoring the gain in the trial. The overall gain becomes 

 

1 2 1 2 1 2 1 2 1

1 2 2 1 2 2
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1

1
     (3) 

 

The difference between (2) and the approximation (3) is that the trial part (dark blue and red in 

Figure 2) is handled as if these patients had been treated outside the trial with control. Since the 

overall gain in (3) is proportional to the population size, the sample size which maximises the gain 

depends no longer on the population size N. This means that if population size N increases, the 

optimal sample size according to (2) converges to a constant sample size (which can be computed 

based on (3)). These arguments showing that the optimal sample size has an upper bound were 

obtained assuming a recruitment speed independent of the population size. For smaller 

populations, it is reasonable that the recruitment depends heavily on the size of the population; for 

larger populations, we think it is meaningful that the speed cannot exceed a certain level even if 

the population is very big. The independence of recruitment speed on population size would be 

true for very big populations.  

 

We have considered three case studies for rare disease with population sizes 500, 1000, or 26 000. 

There are also even smaller populations, “ultra-rare” diseases where e.g. around 100 or fewer 

patients exist worldwide. E.g. the Hutchinson–Gilford progeria syndrome which is a chronic 

disease of segmental premature aging syndrome and fatal by teenage years, had 54 known cases 

worldwide in 2009 and 146 in 2016.[36] In studies with enrolment during 2005-2006[37] and during 

2007,[38] the authors state that they succeeded to include at least half of cases known at enrolment. 

A currently ongoing trial with objective to study survival when treated aims to include 80 

patients.[36] The approach to sample size in the last study was to include as many as possible from 

the children with disease. A requirement for this approach is the existence of a good patient 

registry which is available here. In the case of an ultra-rare disease, the approach to collect as 

much information as possible instead of applying a sample size approach as considered in this 

paper seems to be the best alternative. 
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Tables 

Table 1  Required specifications for sample size calculation 

Traditional approach Assurance approach  Decision-theoretic approach 

Target / assumed effect of 

treatment and control 

Prior distribution for effect of 

treatment and control 

Prior distributions for effect 

of treatment and control 

Nuisance parameters Nuisance parameters or prior 

distribution for them 

Nuisance parameters or prior 

distribution for them 

Type I error allowed (α) Gain functions for patients 

treated with new treatment 

and treated with control (for 

in-trial patients and out-trial 

patients) including cost 

parameters 

Power required (1-β) Expected power (assurance) 

required (1-β) 

Size of the population; for the 

chronic case even recruitment 

speed and time horizon 

 

 

Table 2  Parameter specifications for Lyell's disease case study 

Parameter Specification 

Significance level (α) 0.05 (two-sided) 

Required power (1-β) or assurance 0.80 

Prior mean proportion, new treatment Uncertain, range 0.5 to 0.9 considered 

Prior information weight, new treatment Uncertain, range 2 to 20 considered 

Mean proportion, current treatment 0.5 

Gain for successfully treated patient 100 000 EUR 

Costs for one patient in trial (cellular 

treatment) 

25 000 EUR 

Costs for one patient outside trial with cellular 

treatment 

5 000 EUR 

Population size N 500 

 



Table 3  Sample size for Lyell's disease trial for traditional and assurance approach 

Target / assumed mean response 

rate for new treatment  

(control response rate = 0.5) 

0.55 0.60 0.65 0.70 0.75 0.80 

 

0.85 0.90 

Traditional approach >500 197 88 50 32 22 17 13 

Assurance, prior weight=20 * >500 283 88 44 27 18 13 

Assurance, prior weight=10 * * >500 158 59 31 20 14 

Assurance, prior weight=  2 * * * * >500 79 27 18 

Decision-theoretic, prior weight=20 17 14 0 0 0 0 0 0 

Decision-theoretic, prior weight=10 17 16 14 9 0 0 0 0 

Decision-theoretic, prior weight=  2 11 12 12 11 11 10 9 8 

*for these cases, the assurance would be < 80% even for infinitively large sample size since there is >20% 

prior-probability for the new treatment’s response rate to be worse than previous treatment 
 

Table 4  Parameter specifications for adult-onset Still’s disease case study 

Parameter Specification 

Significance level (α) 0.05 (two-sided) 

Required power (1-β) or assurance 0.80 

Prior mean proportion, treatment 0.766 

Prior information weight (in patients), 

treatment  

47 

Prior mean proportion, control 0.485 

Prior information weight (in patients), control 68 

Gain for successfully treated patient 1 unit 

Costs for one patient in trial 0.05 units 

Costs for one patient outside trial 0.01 units 

Recruitment function S(n) (in years)  2+n/40 

Time horizon H and treatment time d (in years) H=10, d=0.5 

Population size N 1000 
 

Table 5  Parameter specifications for cystic fibrosis case study 

Parameter Specification 

Significance level (α) 0.05 (two-sided) 

Required power (1-β) or assurance 0.80 

Prior mean difference (in ml), treatment-

control 

69 

Prior information standard deviation for 

treatment difference  

25 

Standard deviation of observations (ml) 295 

Gain cU from 1 ml increase in FEV1 (in USD) 85 

Costs cP for one patient in trial (in USD) 5000 

Costs cT for new treatment per year (in USD) 6000 

Recruitment function S(n) (in years)  2+n/240 

Time horizon H and treatment time d (in years) H=10, d=0.5 

Population size N 26 000 

 



Figures 

 

Figure 1  Basic assumption for decision-theoretic approach 

 

 

 

Figure 2  Basic assumption for decision-theoretic approach in chronic diseases 

 



 

Figure 3  Prior distributions considered for Lyell’s disease case study: Beta distributions with weight = 2 (left 

panel), 10 (middle panel), 20 (right panel), and mean = 0.5, 0.55, 0.6, …, 0.9 (from left to right in each panel) 

 

 

Figure 4  Prior distributions for case study on adult-onset Still’s disease: Anakinra has Beta(36,11)-prior and 

control has Beta(33,35)-prior 

 

 

 



Figure 5  Anakinra case study: Dependence of optimal decision-theoretic sample size n* on treatment costs cT, 

on population size N, and on the time horizon H. Vertical dashed lines mark the values cT=0.3, N=1000, and 

H=10 discussed in the text which give the optimal sample size n*=45 (horizontal dashed lines).   



 

 

 

Figure 6  Probability to choose the mannitol treatment when the optimal decision-theoretic design is used 

depending on the prior mean δ0 of the treatment difference 

 



 

Figure 7  Influence of parameter changes on optimal decision-theoretic sample size n* for cystic fibrosis case 

study. Vertical dashed lines mark the motivated parameter specifications which give the optimal sample size 

n*=221 (horizontal dashed lines). 



APPENDIX | The expected gain for decision-theoretic approach in Case Study 3 

When everyone in the population would be treated with control over the whole treatment horizon 

H outside of a clinical trial (n=0), the gain would be N * H * gControl(δ2). Our interest is how we 

can change this gain by using the new treatment (having effect δ1 but additional costs of cT per 

year) instead of control (having effect δ2). The gain function (or more exactly the additional gain 

compared to treating everyone with control outside of the trial) is: 

 

1 2 1 2
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which is for n1=n2=n and the functions h and g from Case Study 3: 
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The factor (δcU – cT) is positive if δ> cT/cU and therefore it is optimal for the overall expected gain 

to recommend the new treatment if and only if the posterior mean for the treatment effect δ is at 

least cT/cU. 

 

For the prior N(δ0,σ0
2) for δ and n observations made in two groups with mean difference δ and 

known variance σ2 having observed mean difference y , the posterior mean is 
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In a similar way as by Willan[25] and Pearce et al.,[26] we derive the expected gain by integrating 

over observed treatment difference and the parameter δ. Here, for the chronic disease case, we 

obtain  
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   . We maximize this expression with respect to n. 


