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Abstract
We report on the nonlinear cotunneling spectroscopy of a carbon nanotube
quantum dot coupled to Nb superconducting contacts. Our measurements show
rich subgap features in the stability diagram which become more pronounced as
the temperature is increased. Applying a transport theory based on the Liouville–
von Neumann equation for the density matrix, we show that the transport
properties can be attributed to processes involving sequential as well as elastic
and inelastic cotunneling of quasiparticles thermally excited across the gap. In
particular, we predict thermal replicas of the elastic and inelastic cotunneling
peaks, in agreement with our experimental results.

Keywords: cotunneling, thermal quasiparticles, carbon nanotube, quantum dot,
superconducting contacts

1. Introduction

Due to proximity effects, a hybrid device made of a superconductor coupled to a mesoscopic
normal conductor makes it possible to study a wide range of quantum phenomena. In particular,
in the Coulomb blockade (CB) regime these include supercurrent transport carried by Cooper
pairs [1–6], coherent electron transport in terms of multiple Andreev reflections [7–10], and
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quasiparticle transport [5, 11–18]. Andreev reflections lead to subgap structures with steps at
bias voltage Δ ne2 ( ∈ +n ) in the current–voltage characteristics [8–11, 13, 19, 20], which are
smeared out by increasing the temperature [10, 13]. In contrast, increasing the temperature
favors quasiparticle transport, as it increases the probability of thermal activation of
quasiparticles across the gap. The emergence of a zero-bias peak inside the Coulomb diamond
by increasing the temperature [10, 13] was explained in terms of resonant tunneling [11] of
thermal quasiparticles. Recently the additional possibility of observing transport features due to
sequential tunneling of thermally excited quasiparticles was theoretically proposed in [17] and
experimentally confirmed in [18]. Such processes lead to thermal resonance lines within the
Coulomb blockade region, parallel to the Coulomb diamond edges. Cotunneling processes due
to quasiparticles, however, have so far been reported only for bias voltages above the
superconducting energy gap [14, 15]. In this work we present measurements in complete
agreement with theoretical predictions regarding thermally excited quasiparticle transport in the
cotunneling regime.

Cotunneling is a transport process in which the quantum dot (QD) is either excited
(inelastic cotunneling) or kept in the same state as the initial state (elastic cotunneling) by means
of events involving tunneling to an intermediate virtual state. Thus, for the inelastic case a bias
threshold corresponding to the excitation energy is required to enable charge transfer [21]. In
contrast with sequential tunneling processes, cotunneling at the lowest order is expected to be
independent of the gate voltage.

We report on elastic and inelastic cotunneling spectroscopy on individual carbon nanotube
(CNT) devices coupled to Nb superconducting leads. In the low-temperature limit, transport
theory predicts for a CNT quantum dot superconductivity enhanced transport features at bias
voltages Δ± e2 and Δ δ± + e(2 )m due to elastic and inelastic cotunneling of quasiparticles,
respectively [14]. Here {δm} is the set of excitation energies of the CNT from an N-particle
ground state. With increasing temperature, we predict and observe the appearance of elastic and
inelastic cotunneling features in the subgap region (i.e., for bias voltage amplitudes smaller than
Δ e2 ) due to thermally excited quasiparticles. In particular, the emergence of a zero-bias peak,
corresponding to the thermal replica of the elastic cotunneling resonance, is expected. Our
theoretical predictions are in good quantitative agreement with our experimental findings.

Individual single wall carbon nanotubes were grown on a highly p-doped Si/SiO2 substrate
by chemical vapor deposition [22]. The substrate acting as a global back gate is used to tune the
electron occupation of the CNT. The source and drain electrodes were patterned on an
individual single wall carbon nanotube by standard electron beam lithography and lift-off
techniques. Here we report on measurements of two distinct samples. For sample A, figure 1,
electrodes made of 3 nm Pd and 45 nm sputtered Nb with a spacing between electrodes on the
order of 300 nm were used (see figure 1(a)); for sample B, figure A1 in the appendix, a
metalization of 3 nm Pd and 60 nm sputtered Nb with a contact spacing on the order of 430 nm
was applied (see figure A1(a)). To perform four-point measurements and as a resistive on-chip
element, each superconducting electrode was connected to two leads made of AuPd to damp
oscillations at the plasma frequency of the Josephson junction [23, 24]. Low-temperature
electrical transport measurements were performed inside a 3He/4He dilution refrigerator with a
base temperature of 25 mK.

In both samples we observe regular CB diamonds over a large gate voltage range.
Signatures of fourfold periodicity are observed in the measured gate range only for sample A.
Figures 1(b) and A1(b) show the high-resolution measurements for the selected gate range for
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contacts in the superconducting state at temperature T = 25mK and 30 mK, respectively. In
both samples, lines of high conductivity are observed well inside the Coulomb diamonds; all
these lines are horizontal, independent of gate voltage. To clearly identify them we restrict the
gray scale for the differential conductance below the maximum conductance. Figure 1(c) shows
a zoom corresponding to the region inside the diamond denoted ③ in figure 1(b)3. Horizontal
lines are clearly visible and indicated by arrows in the conductance curve.

Figure 1. (a) Scanning electron micrograph of device A. The gray line indicates the
approximated location of the nanotube (not visible itself). (b) Differential conductance
at =T 24 mK as a function of bias voltage and back gate voltage. (c) (d) Zoom into the
Coulomb blockade region of the third Coulomb diamond for temperatures =T 300 mK
and =T 1700 mK, respectively. The dashed white box corresponds to the range of gate
voltages that is averaged to obtain the differential conductance curve shown on the left
side of each figure.

3 The discrepancy in gate voltage range between figures 1(b)–(d) is caused by a long-time scale drift of all
Coulomb blockade features. Sequential tunneling features of this data set have already been discussed in [18].
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One set of lines occurs at bias voltage ∼ ±V 0.52SD mV (gray arrows). We ascribe it to
elastic cotunneling processes at Δ= ±V e2SD . We extract Δ ∼ 0.26 meV for our super-
conducting film, compared with the expected value of Δ = 1.5 meV for bulk Nb. The mismatch
of about a factor of 5 has already been reported in similar Nb-based devices [14, 25–27]. The
reason for the gap reduction is still an open question. Possible explanations are the formation
of niobium oxide, the thin composite of Nb and Pd, or the contamination of the lower Nb
interface. For the deposited Nb/Pd strip a critical temperature of about 8 K was measured,
where the resonant features remain present up to temperatures of about 4–5K. Thus the
transition temperature of the thin film is comparable to bulk Nb, that is, in contrast with the
observed small value of Δ and the BCS relation Δ = k T1.76 B . The inelastic part of the
cotunneling spectra reveals excitations of the CNT quantum dot. Our data show a broad
inelastic feature at a distance δ = 1.3 meV from the elastic line (black arrows). From
additional stability diagrams for sample A, recorded at higher temperature and finite magnetic
field to suppress superconductivity, we extract a charging energy ≃E 15C meV, implying

Δ ∼E 50C for sample A. Similarly, from the elastic and inelastic line, we can also extract
Δ ∼ 0.23 meV and δ ∼ 0.11meV for sample B. From additional stability diagrams in a regime
in which superconductivity is largely suppressed, we identify a smaller charging energy

≃E 3.2C meV. The two samples have roughly the same superconducting gap Δ but differ in
the charging energy EC, leading to different transport regimes. In both samples charging
effects and the small coupling strength Γ Δ< suppress Andreev processes, such that current
is carried by quasiparticles. In sample Athe large charging energy further suppresses multiple
quasiparticle processes. Thus the transport is dominated by sequential and cotunneling events.
For sample B a simple description in terms of resonant tunneling of quasiparticles [11] may be
conceived.

As the temperature is increased, new horizontal lines are observed. In sample A the novel
lines arise for temperatures above ≈T 600 mK at zero-bias and at bias voltage δ= ±V eSD .
Figure 1(d) shows the same gate region as in figure 1(c) but now for the temperature =T 1.7 K.
The additional lines, marked by stars, become more and more pronounced with increasing
temperature. Andreev reflections do not give an explanation for the thermal behavior of such
transition lines [4, 6–8, 27]. Also, the Kondo effect cannot be the reason for the resonant peak at
zero bias, as it has an opposite thermal behavior [28–33].

The feature of a zero-bias conductance peak is also supported by sample B, as shown in
figure A1(c) in appendix A. The bias trace is taken in the middle of the Coulomb blockade
valley at gate voltage ≈ −V 11.71gate V. Upon increase of the temperature, one observes a rising
conductance peak at zero bias and pairs of symmetrically displaced elastic and inelastic
cotunneling peaks at finite bias. The feature at bias voltage Δ= ±V eSD and the thermal zero-
bias peak resemble data already reported in [10, 13]. In analogous fashion, we expect these to
be reproducible within the simple resonant model of [11]. The more complex behavior of
sample A, where several cotunneling and sequential lines are observed within the CB diamond,
clearly goes beyond the capability of the simple resonant picture that excludes Coulomb
interaction. As shown hereafter, a full transport theory that includes all tunneling processes up
to the second order in the strength Γ of coupling to the leads can capture the experimental
behavior in great detail.
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2. Transport theory for S-CNT-S junctions

To understand the experimental observations, we consider a minimal model for a CNT quantum
dot connected to two BCS-type superconducting leads. For the back-gated CNT we consider a
single longitudinal mode incorporating orbital, m, and spin, σ, degrees of freedom. Coulomb
interaction effects are considered within a constant interaction model, with U being the charging
energy. The quadruplet CNT Hamiltonian thus reads

∑ α= + − −
σ

σ σ σ ( )H E d d
U

N N eV Nˆ ˆ ˆ
2

ˆ ˆ 1 ˆ , (1)
m

m m mCNT
†

gate

where N̂ is the charge number operator of the dot and α a conversion factor for the gate voltage.
Finally, ϵ σδ= +σE mm d

1

2
(with = ±m 1, σ = ±1), where δ accounts for the breaking of the

fourfold degeneracy of a longitudinal mode with energy ϵd due to spin-orbit interaction and
valley mixing [34].

The BCS superconducting leads are described by a conventional pair-interaction
Hamiltonian on a mean-field level with respect to an offset energy El

0:

∑ γ γ μ= + +
σ

σ σ
⃗

⃗ ⃗ ⃗H E E Nˆ ˆ ˆ ˆ . (2)l l

k

lk lk lk l l
0 †

This can be obtained by means of a particle-conserving Bogoliubov–Valatin transformation
[35, 36]:

γ σ γ

γ σ γ

= +

= +
σ σ σ

σ σ σ

⃗ ⃗ ⃗ ⃗ − ⃗

⃗ ⃗ ⃗ ⃗
− ⃗

c u v S

c u v S

ˆ ˆ ˆ ˆ ,

ˆ ˆ ˆ ˆ , (3)

lk lk lk lk l l k

lk lk lk lk l l k

† † *
†

¯

*
¯

†

for the leads’ electron creation and annihilation operators σ⃗ĉ
lk
† and σ⃗ĉlk , respectively. The

electron operators are represented in terms of quasiparticle operators γ σ⃗ˆ
lk
(†) and of Cooper pair

operators Ŝl
(†)

with the corresponding prefactors ⃗u
lk
(*) and ⃗v

lk
(*) [37, 38]. Furthermore, the

quasiparticles have an excitation energy ϵ μ Δ= − +⃗ ⃗E ( )lk k l
2 2 measured with respect to the

electrochemical potential μl. Finally, the BCS gap is defined by,

∑Δ ≡
⃗

− ⃗↓ ⃗↑V S c cˆ ˆ ˆ (4)
k

l l k lk
†

where V| | characterizes the interaction potential between a pair of electrons.
The connection with the superconducting leads is achieved by a single-particle tunneling

Hamiltonian = ∑ +σ σ σ⃗ ⃗( )H T d cˆ ˆ ˆ h.c.T l l k m m lk,
†

where, for the sake of simplicity, the tunnel

coefficient Tl of lead l is considered to be spin, wave vector, and valley independent. The tunnel
coupling strength can then be defined as Γ π δ ω ϵ≡ ∑ −⃗ ⃗ T2 | | ( )l l k k

2 , which is assumed to be
energy independent.

We describe the time evolution of the system with the generalized master equation [39]:

⎡⎣ ⎤⎦ ∫ρ ρ τ τ ρ τ= − +


t
i

H t K tˆ̇ ( ) ˆ , ˆ ( ) d ˆ ( , ) ˆ ( ) (5)
t

t

red CNT red red
0
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for the dynamics of the reduced density operator ρ̂red. This (still exact) equation allows a

systematic perturbation expansion of the kernel superoperator τK tˆ ( , ) in powers of the coupling
strength Γ [40, 41]. In the steady state limit and charge-conserved regime the master equation
can be simplified further by applying the Laplace transform ∫λ τ τ≡ ′ ′λτ∞ − ′f f( ) d e ( )

0
and its

properties:

∑ ∑δ δ ρ ρ= − − +
′

′ ′ ′ ′
′

′
′

′
χ χ

χ χ χ χ χ χ χ χ
χ χ

χ χ
χ χ

χ χ ( )i
E E K0 , (6)

i i

i f i f i i i i

i i

f f

i i

i i

with χ λ χ χ χ≡ 〈 = 〉〈 ′ ′ 〉χ χ
χ χ

′
′ +K K| ˆ ( 0 )[| |] |f i i ff f

i i and ρ χ ρ χ≡ 〈 → ∞ ′〉χ χ′ t| ˆ ( ) |i iredi i
. The matrix ele-

ments are evaluated in the basis χ〉{| } of the eigenstates of the Hamiltonian ĤCNT . Noticeably,

each term in the perturbation expansion of χ χ
χ χ

′
′

K
f f

i i can be represented in a diagrammatic language

in which simple rules exist to directly obtain the corresponding analytical expression. In [42]
these rules are derived and discussed in detail for the case of hybrid S–QD–S nanostructures.

An expression for the steady state current in terms of a perturbative expansion can be
obtained in the same way. In particular, the net current of lead l is described by

∑∑ ρ→ ∞ =
′

′

′
′

χ χ χ
χ χ

χ χ
χ χ( )I t e K( ) . (7)l I

f i i

l
f f

i i

i i

In the charge-conserved regime the reduced density matrix ρχ χ′i i
is block diagonal (see

appendix D). Thus the kernel element χ χ
χ χ

′
′

K
f f

i i up to the second order also represents the physical

rate for processes transferring 0, 1, or 2 charges, depending on the charge difference between
the states χ 〉| i and χ 〉| f .

The problem of non-equilibrium hybrid superconducting–quantum dot junctions with an
applied bias voltage is intrinsically time dependent. This can lead to time-dependent harmonic
contributions to the stationary current associated with Andreev tunneling [9]. However, in the
charge-conserved regime considered in this work, these harmonics are absent, and hence
ρ →tˆ̇ ( ) 0red at long times. This is because the expectation values τ〈 〉σ σ⃗ ′ ′⃗ ′c t cˆ ( ) ˆ ( )

lk l k
† † and

τ〈 〉σ σ⃗ ′ ⃗′ ′c t cˆ ( ) ˆ ( )lk l k vanish since they break the conservation of total charge. Let us emphasize
that, according to equation (4), we still have a finite superconducting gap and superconducting
features (see appendix C for a detailed discussion).

Thermally assisted quasiparticle transport has up to now only been discussed in the context
of sequential [17, 18] and resonant [10, 13] tunneling. Also responsible for the energy
distribution of the fermionic quasiparticles, in addition to the BCS density of states (DOS), is
the Fermi function. For high enough temperatures the Fermi function is thermally smeared, in
the sense that quasiparticles can also occupy the high-energy branch of the DOS and thus can
contribute to an additional transport channel. In the sequential tunneling regime, this gives rise
to thermal replicas of the sequential tunneling transitions displaced by Δ± e4 in bias voltage
(solid orange lines in figure 2(a)). When cotunneling processes are also taken into account, the
number of expected thermal lines is greatly increased, as sketched in figure 2(a). In the figure
we restrict ourselves to the exemplary Coulomb diamond denoted ③. Gate-dependent lines,
induced by sequential processes, can be clearly distinguished from gate-independent
cotunneling induced lines. Solid and dashed blue lines are transitions which are due to
‘standard’ sequential tunneling and cotunneling processes, respectively, i.e., contributions that
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are also present at low temperatures. Solid and dashed orange lines, in contrast, are due to
thermally excited quasiparticles. Hence, they are present only at sufficiently high temperatures.

As already mentioned, standard elastic cotunneling lines are expected at bias Δ= ±V e2SD ,
and the inelastic cotunneling features occur at a bias Δ δ= ± +V e(2 )SD , reflecting the
excitation energy δ. Figure 2(b) visualizes the elastic cotunneling events in the many-body
spectrum where the three-particle ground state is used as the reference energy. Choosing the
center of diamond ③, corresponding to a certain gate voltage, the two-particle and four-particle
ground states have the same energy. Thus, transitions from the three-particle ground state to the
two-particle ground state and vice versa have the same probability as those from the three-
particle ground state to the four-particle ground state and vice versa, leading to elastic
cotunneling. As shown following, thermal excitation of the lead quasiparticles yields thermal
replicas at a bias Δ e2 , smaller than for standard cotunneling features. We thus predict, in
particular, the emergence of a cotunneling line at zero bias, being the thermal replica of the
standard elastic lines at Δ± e2 .

An exemplary contribution to elastic cotunneling in the diagrammatic language is shown
in figure 3(a). Using the diagrammatic rules [41, 42], the analytic expression is given by the
kernel element

∫

∫

∑

∑

Γ Γ ω
π

ω
π

ω Δ ω Δ

ω ω

ω δ ω ω ω δ

Γ Γ ω
π

ω
π

ω ω

≡ − ′ ′

×
− ′

− + + ′ − + ′ − +

≡ − ′ ′

χχ

χχ

ν

ν

+ + +





( )

( )
( )( )( )

K i D D

f f

E i i E i

i
I

ˆ d
2

d
2

( , ) ( , )

( ) 1 ( )

0 0 0

d
2

d
2

( , ), (8)

EC S D S D

S D

S D

Figure 2. (a) Theoretically expected transition lines in the stability diagram of a CNT
for a specific Coulomb diamond. Solid and dashed blue lines correspond to standard
sequential tunneling and cotunneling processes, respectively. The thermal replicas of
these transition lines are shown as solid and dashed orange lines. (b) Many-body
spectrum of the 2-, 3- and 4-electron subspace for a gate voltage corresponding to center
of the Coulomb diamond ③. The tunneling events contributing to the elastic cotunneling
lines are shown.
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including ω ω μ≡ − +f k T( ) 1 [exp (( ) ) 1]l l B , the DOS ω Δ ≡ ω μ

ω μ Δ

−
− −

D ( , )l
( )

( )
l

l

2

2 2

Θ ω μ Δ× − −(| | )l , and the energy difference δ = −ν χE E E between the energy νE of the
virtual dot state ν〉| and χE of the dot state χ〉| . Notice that in the example of figure 3(a), the state
ν〉| has one unit of charge more than state χ〉| .The charges entering and leaving the dot carry the
energies ω and ω′, respectively. An analysis of the double integral shows that, at low
temperatures, it gives a pronounced contribution only in the case Δ⩾V e2SD (see appendix E).
The bias threshold Δ=V e2SD corresponds to the resonant case in which the highest occupied
quasiparticle states in the source are aligned with the lowest empty quasiparticle states in the
drain, such that elastic cotunneling onto and out of the CNT is possible. However, at higher
temperatures thermally excited quasiparticles enable cotunneling transport also at zero bias.
This mechanism is visualized in figure 3(b), where the numbers 1, 2, 3, 4 correspond to the
tunneling events occurring at times τ ≡ ⩽ ⩽ ⩽ ≡t t t t t1 2 3 4 shown in figure 3(a). As seen in
figure 3(b), if the thermally occupied quasiparticle states of the source are in resonance with the
unoccupied quasiparticle states of the drain, elastic cotunneling through the dot can also occur
at zero bias. The tunneling rate Γ ≡χ χ

χχ
χχ→ K2 Re ( ˆ )EC EC for such a process is given by the

expression in equation (8), adding the hermitian conjugated.
Mathematically, the condition for the onset of elastic cotunneling can be obtained from the

analysis of the integrand ω ω′I ( , ) of equation (8). This integrand is schematically depicted in
figure 3(c) for the case of zero bias and Δ μ δ+ ≪ ES D , such that the system is in the Coulomb
blockade regime and no sequential transport occurs. Due to the product −D D f f(1 )S D S D , the

Figure 3. (a) Exemplary diagrammatic representation of a major contribution to elastic
cotunneling. (b) Energy–DOS diagram explaining the transport mechanism for
thermally assisted elastic cotunneling. The time ordering of the tunnel processes has
the same declaration as in the diagram (a). A measurable elastic cotunneling current is
observed if thermally occupied quasiparticle states in the source are simultaneously
aligned with empty quasiparticle states in the drain. (c) Integrand of equation (8) for the
parameter regime of figure (b). Blue corresponds to the low-temperature parameter
regime Δ≪T kB, where the product of Fermi functions and density of states is finite.
Orange represents the area where the product has to take higher temperatures Δ<T kB

into account.
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integrand ω ω′I ( , ) in equation (8) is non-vanishing at only low temperatures in the blue region
of the ω ω− ′ plane, depicted in figure 3(c). Upon increasing the temperature, the product is
also non-vanishing along the orange stripes and on the orange spot.

In figure 3(c) the roots of the denominators are represented by dashed lines. It is evident
that the integral of K̂EC has a large magnitude only in the case where the root line ω ω= ′ and
the colored regions meet when varying the bias voltage. Thus at low temperatures and =V 0SD

no transport is possible because the corner of the blue region and the ω ω= ′ line cannot touch.
Upon increasing the temperature, transport is accessible through the orange regions at
ω μ Δ′ = −D and ω μ Δ= −S ; see the scheme in figure 3(c). This corresponds to the gate-
independent resonance at zero bias. In this simple resonance picture, we obtain the elastic
forward cotunneling rate (see appendix E) in the middle of a Coulomb diamond by a first
approximation of the integrand in equation (8):

⎜ ⎟⎛
⎝

⎞
⎠

⎡⎣ ⎤⎦
∫Γ Γ Γ ω

π
ω Δ ω Δ

ω ω

= +

× − +

χ χ
χ

→  ( )

( )

N
U

D D eV

f f eV

2 d
2

( , ) ,

( ) 1 , (9)

S D SD

SD

EC

2

where we directly pointed out the bias dependence of the rate and introduced a degeneracy
factor χN depending on the state χ〉| . Also including the backward process, the linear
conductance is then approximated by

⎜ ⎟⎛
⎝

⎞
⎠ ∫Γ Γ ω

π
ω Δ ω ω= ≈ −χ

= 


G
I

V
N

e

U k T
D f f

d
d

2 d
2

( , ) ( ) ( ). (10)
SD V

S D

0

2 2 2

B

2

SD

This expression already shows a Boltzmann-like behavior Δ− k Texp [ ( )]B for low temperatures

Δ≪T kB and reproduces the normal conducting result = χ
Γ Γ

G N e

h U

S D
2 2

2 in the limit Δ ≪ k TB .
In particular, the former asymptotic characteristics indicate a transport property based on
thermal excitation.

Analogously, subgap thermal replicas of the standard inelastic cotunneling lines are
expected. We present a detailed analysis of the inelastic processes in appendix F and quote here
the approximate result for the inelastic cotunneling rate:

⎜ ⎟⎛
⎝

⎞
⎠

⎡⎣ ⎤⎦
∫Γ Γ Γ ω

π
ω Δ ω δ Δ

ω ω δ

= − +

× − − +

χ χ
χ

→ ′  ( )

( )

N
U

D D eV

f f eV

2 d
2

( , ) ,

( ) 1 , (11)

S D SD

SD

EC

2

similar to what was found in [14].

3. Comparison of theoretical and experimental predictions

In the following we use the BCS gap Δ, the excitation energy δ, and the charging energy EC

extracted from the measured differential conductance plots to calculate the current through
the CNT by means of the generalized master equation. Since the measured data revealed a
relatively large critical temperature, we can assume a temperature-independent gap size in the
considered temperature regime <T T 2c . The calculations are performed by approximating
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Figure 4. (a) Calculated differential conductance of a CNT with level splitting
δ = 1.3 meV and charging energy =E 15C meV. The temperature is =T 1.7 K and the
BCS gap Δ = 0.26 meV. The onset of inelastic and elastic cotunneling at

Δ δ= ± +V e(2 )SD and Δ= ±V 2SD , respectively, yields horizontal transition lines.
Also, gate-independent features at bias voltages δ= ±V eSD and at zero bias can be
pointed out. (b) Right panel: zoom into the right corner of diamond ③ indicated in (a).
Left panel: bias trace corresponding to the gate voltage marked by the dashed white line
in the right panel. In the bias trace the peaks indicated by stars are due to thermally
activated quasiparticles. (c) Calculated bias traces for different temperatures. The peaks
marked by stars correspond to thermal replicas of the standard cotunneling processes.
To compare with the experiment we add a conductance offset of about e h0.002 2 to our
numerical data. (d) Equivalent experimental data for comparison. The bias-dependent
background results from the gradual increase of the conductance in the vicinity of the
diamond edges.
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the divergent DOS ω ΔD ( , )l with a smoothened function.4 controlled by an empirical
parameter γ similar to the Dynes parameter [43]. A good fit to the experimental data for
sample A is obtained by γ μ≈ 5.0 eV, a coupling strength Γ = 0.01 meV, and a conversion
factor α = 0.1 for the gate voltage. The results of our transport calculations for sample A are
shown in figures 4(a)–(c) for temperature =T 1.7 K, such that Δ =k T 0.56B . Figure 4(d)
shows the corresponding experimental data for diamond ③. A short analysis of diamond ② is
given in appendix B. In the bias and gate voltage range of figure 4(a) pronounced sequential
tunneling lines and elastic and inelastic cotunneling features are seen. For better resolution
we restrict the gray scale of the differential conductance below the maximum value. In
figure 4(b) we focus on the Coulomb diamond denoted as ③. Beside the density plot we show
the bias trace taken at the gate voltage marked by a white line, which supports the good
quantitative agreement with the experimental data of figure 1(d). The standard cotunneling
peaks (arrows) as well as their thermal replicas (stars) can be clearly recognized. The thermal
behavior of the cotunneling features is illustrated in figures 4(c), (d), where the calculated and
the measured differential conductance curves for different temperatures are presented. For the
calculated curves we choose the same gate voltage as for the dashed white line in figure 4.
For the experimental data we averaged a series of gate voltages marked by the box in
figure 1(d). In both cases we emphasize that the standard cotunneling peaks are almost
temperature independent, whereas the thermal replicas at zero bias and at δ= ±V eSD rise
with increasing temperature.

4. Conclusions

In summary, we report on new cotunneling transport properties of a CNT contacted with two
superconducting Nb leads based on thermally assisted quasiparticle tunneling. We observe
the thermal replica of the elastic and inelastic cotunneling resonances with increasing
temperature above 600 mK. These lead to an extra zero-bias peak and to an inelastic peak
corresponding to the lowest excitation energy in the I Vd d characteristics. To explain these
non-equilibrium phenomena we derive a generalized master equation based on the RDM
approach in the charge-conserved regime, applicable to any intradot interaction and finite
superconducting gap. Modeling the CNT with a low-energy interacting spectrum, we find
remarkable agreement with the experimental results concerning the thermal behavior of the
additional cotunneling peaks.
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4 We replace the Heaviside function Θ ω Δ− → +
γ ω Δ γ ω Δ+ + − + +− −(| | ) 1

exp ( ( )) 1

1

exp ( ( )) 11 1
by a blurred step

function. Despite γ being introduced empirically in this work, it can be shown that higher order processes involving
quasiparticles lead to level broadening in the quantum dot and thus also to regularization of the divergence caused
by the BCS density of states [11] similar to that provided by γ here.
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Appendix A. Experimental data of sample B

We have in addition confirmed the prediction of a zero-bias peak due to thermally excited
elastic cotunneling in another experimental setup. The description of sample B can be found in
the main text. An atomic force micrograph of the studied quantum dot device is shown in
figure A1(a).

We observe regular Coulomb blockade diamonds over a large gate voltage range, also
suggesting a defect-free CNT. In figure A1(b) we show high-resolution measurements for the
selected gate range, including four Coulomb diamonds at temperature =T 30 mK. Inside the
Coulomb diamonds we can identify gate-independent transition lines suggesting a symmetric
coupling to the superconducting leads. To clarify the bias threshold of these horizontal lines, we
take a bias trace of the region of interest at a fixed gate voltage ≈ −V 11.71gate V pointed out by
the dashed line. This enables us to observe the onset of a stable conductance peak for
temperatures above ≈T 600 mK which is more and more pronounced with increasing
temperature. For that reason we assign the gate-independent conductance peak to a thermally
assisted elastic cotunneling process. A detailed theoretical discussion follows in appendix D.
However, a thermal replica of the inelastic cotunneling peak at bias voltage = ±V 0.11SD meV
cannot be clearly seen. This may be due to an overlap with the zero-bias peak.

Appendix B. Analysis of the Coulomb diamond ② of sample A

In figure B1 we show the bias trace of the measured differential conductance in the middle of
the Coulomb diamond ② defined in the main text. It was obtained by the same averaging
procedure as for the bias trace of diamond ③ explained in the main text. The curves for different
temperatures include a richer peak structure than for the other diamond. We can identify the
standard elastic cotunneling peaks at = ±V 0.55SD mV as well as the inelastic peaks at

= ±V 2.2SD mV. The shift of the bias threshold for the excitation energy δ in comparison with

Figure A1. (a) Atomic force micrograph of device B. (b) Differential conductance at
=T 30 mK as a function of bias voltage and back gate voltage. (c) Differential

conductance curves in the low-bias regime for different temperatures at gate voltage
≈ −V 11.71gate V (dashed black line in b)). The bias trace shows a zero-bias peak

emerging at increasing temperature. To see the feature more clearly a conductance
offset of about e h0.03 2 was added systematically to each curve. The zero-bias peak is
accompanied by the elastic and inelastic cotunneling peaks at negative and positive bias.
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the diamond ③ can be explained by a gate-dependent spin-orbit coupling in multielectron
carbon nanotubes [44], as can also be seen in the overview figure 1(b). Besides, we can clearly
recognize the rise of the thermal elastic cotunneling peak at zero bias with increasing
temperature.

The additional features at bias voltage = ±V 1.2SD mV cannot be explained by a single-
shell model. Since the peak height is not temperature dependent, it must be a standard inelastic
cotunneling feature. For our calculations we thus have to include a more complex excitation
spectrum where the splitting to the next higher shell is smaller than δ. As was shown in [45], a
two-particle ground state can lead to a rather complicated excitation spectrum where
energetically close shells interact with each other, resulting in an effective shell splitting smaller
than δ. Calculating such an effective Hamiltonian will remain a future task.

Also, the small peak at bias voltage ≈ −V 1.9SD mV is almost temperature independent.
By inspection of the stability diagram, we classify it as a cotunneling assisted sequential
tunneling process (COSET). In such a COSET an excited state is populated by a preceding
inelastic cotunneling process yielding to a gate-dependent sequential resonance peak inside
the Coulomb blockade regime [41, 46, 47]. A more detailed discussion is left for
future work.

Appendix C. BCS theory in the charge-conserved regime

In macroscopic superconductors with a large number of particles, the boson-like condensate is
well described by a phase coherent state Φ〉| with definite phase Φ. The presence of a relative
phase between two weakly linked superconductors is at the origin of the Josephson effect
[37, 48, 49]. In mesoscopic superconductors, charging effects due to Coulomb interaction
break the degeneracy of states with a different number M of Cooper pairs. In such cases the
phase Φ becomes uncertain and one has to project the state Φ〉| onto a state 〉M|2 with a fixed
Cooper pair number M [50, 51]. In this phase incoherent regime, the BCS Hamiltonian is thus
properly diagonalized by means of the particle number–conserving Bogoliubov–Valatin
transformation

γ σ γ= +
σ σ σ⃗ ⃗ ⃗ ⃗ − ⃗c u v Sˆ ˆ ˆ ˆ , (C.1)

k k k k k
† † *

†
¯

Figure B1. Measurement of the differential conductance of sample A taken in the
middle of diamond ② for different temperatures. More features are observed than for
diamond ③, indicating a more complex excitation structure of the CNT spectrum. We
can see two additional excitation transition resonances, indicated by arrows, not
observed in diamond ③.
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γ σ γ= +σ σ σ
⃗ ⃗ ⃗ ⃗

− ⃗c u v Sˆ ˆ ˆ ˆ , (C.2)k k k k k
*

¯
†

including quasiparticle, γ σ⃗ˆ
k
(†) , as well as Cooper pair, Ŝ

(†)
, operators. From the fermionic

excitations described by the quasiparticle operators we demand γ γ δ δ=σ σ σσ⃗ ′⃗ ′ ⃗ ⃗′ ′{ˆ , ˆ }k k kk
† .

Moreover, the Cooper pair condensate and the quasiparticles are decoupled, i.e.,

⎡
⎣⎢

⎤
⎦⎥γ =

σ⃗′ ′
Ŝ , ˆ 0. (C.3)

k

(†) (†)

By means of these commutator relations, we can further show that for the number operator N̂ of
the electrons it holds that

⎡
⎣⎢

⎤
⎦⎥ =N S Sˆ , ˆ 2 ˆ , (C.4)

† †

i.e., the Cooper pair operator keeps the system in a state with a well-defined charge number:

= −S M Mˆ 2 2 2 . (C.5)

Together with equation (C.3), we conclude that the Cooper pair condensate is the vacuum state
for the quasiparticles and that fermionic excitations can be described by

γ σ= ⃗
σ⃗

M k Mˆ 0, 2 , 2 , (C.6)
k
†

γ =σ⃗ Mˆ 0, 2 0. (C.7)k

In the phase incoherent regime, the equilibrium grand canonical density operator of the
superconductor is given by

ρ =
β−e

Z
ˆ , (C.8)R

Ĥgc

with β ≡− k T1
B the inverse temperature. Here ≡ β−( )Z eTrR

Ĥgc is the partition function, where

we introduced the grand canonical Hamiltonian μ≡ −H H Nˆ ˆ ˆgc , and Ĥ is as defined in equation
(2) of the main text. Accounting for the properties in equations (C.5)–(C.7) of the quasiparticle
and Cooper pair operators, the calculation of the thermal expectation value,

∑
ρ

ρ

≡

= σ σ⃗ ⃗

σ⃗

( )O Tr O

n M O n M

ˆ ˆ ˆ

{ }, 2 ˆ ˆ { }, 2 , (C.9)

R R

n M

k R k

{ },k

of an operator Ô in the basis 〉σ⃗n M{|{ }, 2 }k of the superconducting lead remains a
standard task.

In the main text we claimed that the superconducting gap is not vanishing in the charge-
conserved regime. The statement can be proved in the following way:
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∑

∑

∑

Δ

ρ γ γ γ γ γ γ

γ γ

≡

= − −

+

= − + −

⃗
− ⃗↓ ⃗↑

⃗
− ⃗ ⃗ − ⃗↓ ⃗↑ − ⃗ ⃗ ⃗↑ − ⃗↓ ⃗ − ⃗ ⃗↑ ⃗↑

− ⃗ ⃗ − ⃗↓ − ⃗↓

⃗
⃗ − ⃗ ⃗

− ⃗ ⃗ − ⃗

(
)

(
)

( )( ) ( )

V S c c

V S u u v v S S u v S

u v S

V u v f E u v f E

ˆ ˆ ˆ

Tr ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ

1 , (C.10)

k

k k

k

R R k k k k k k k k k k k k

k k k k

k
k k k k k k

†

†
* * † † * †

* †

* *

where in the last line we have used the orthogonality δ〈 〉 = −M S S M2 |( ˆ ˆ)|2 (1 )M
†

0 of the

Cooper pair states, and σ σ δ δ〈 ⃗ ′⃗ ′〉 = σσ⃗ ⃗′ ′k k| kk of the quasiparticle states. Moreover,
γ γ〈 〉 =⃗↑ ⃗↑ ⃗f Eˆ ˆ ( )

k k k
† , with = +f x e( ) 1 ( 1)x . Indeed, the superconducting gap has a finite

magnitude whose value depends on the temperature, as known from the BCS theory.
In the same manner it can be shown that the expectation values 〈 〉σ σ⃗ ′⃗ ′c cˆ ˆ

k k
† † and 〈 〉σ σ⃗ ⃗′ ′c cˆ ˆk k

vanish in the charge-conserved regime.

Appendix D. Transport in the charge-conserved regime

For superconducting leads in the phase incoherent regime charge is conserved. This fact has
important consequences when viewing quantum transport through a quantum dot coupled to
such charge-conserved BCS leads. Because the tunneling Hamiltonian ĤT (equation (9) of the
main text) and the quantum dot Hamiltonian are also charge conserving, charge is conserved
during transport. As a consequence, the quantum dot density operator ρ̂red is block diagonal in
the charge representation. In other words, there are no coherences between states with different
numbers of Cooper pairs. Let us emphasize that Cooper pairs still take part in tunneling events,
as we will show in appendix E when analyzing a contribution to elastic cotunneling in terms of
transport characteristics.

Appendix E. Analysis of the elastic cotunneling diagram

From a standard evaluation of the multiple commutators [41] constituting the kernel τK tˆ ( , ), we
obtain for the matrix element ∫ χ χ χ χ≡ ′ 〈 − ′ 〉〈 〉χχ

χχ ∞ − ′+
K t e K t t t( ˆ ) d | ˆ ( , )[| |] |t

EC 0
0 the expression

∫ ∫ ∫∑ ∑ τ

χ ν ν χ χ τ ν ν χ

= ′ ′ ′

×

′

χχ

χχ

σ σ ν
σ σ

σ σ

σ σ σ σ

⃗ ⃗ ′ ′ ′

∞
− ′

′

⃗ ⃗

⃗′ ′ ⃗′ ′

′ ′ ′ ′

+



( )K t e t t c c t

c t c t
T T

d t d t d d t

ˆ d d d ˆ ( ) ˆ ( )

ˆ ( ) ˆ ( )

ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ,

k k mm

t
t t

Sk Sk

Dk Dk

S D

m m m m

EC

,
0

0

0
1

0
2

†
2

1
†

2 2

4

†
2

†
1

1

whose diagrammatic representation is shown in figure E1 (a). For the time differences we used
the notation τ′ ≡ −t t , ′ ≡ −t t t1 1 and ′ ≡ −t t t2 2. When evaluating the expectation values of
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the electron lead operators we need the Bogoliubov transform, equations (C.1) and (C.2). We
then see also that Cooper pairs give contributions to the transport process through the acting

operators Ŝ
(†)
. We find:

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥⎡⎣ ⎤⎦

⎡
⎣⎢

⎤
⎦⎥⎡⎣ ⎤⎦

⎡
⎣⎢

⎤
⎦⎥⎡⎣ ⎤⎦

τ

γ τ σ τ γ τ

γ σ γ

μ γ γ

μ γ γ

μ β

μ β

μ β

= +

× +

= − + ′ − ′

+ − − ′ − ′

= − + ′ − ′ +

+ − + ′ − ′ +

= − + ′ − ′ +

σ σ

σ σ

σ σ

σ σ

σ σ

⃗ ⃗

⃗ ⃗ ⃗ − ⃗

⃗ ⃗ ⃗
− ⃗

⃗ ⃗ ⃗ ⃗

⃗ ⃗ − ⃗ − ⃗

⃗ ⃗ ⃗
−
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−

⃗ ⃗
−











( )
( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

c c t

u v S

u t v S t t

u E t t

v E t t S S

u E t t E

v E t t E
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ˆ ( ) ˆ ( )
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exp
i

ˆ ˆ

exp
i ˆ ˆ ˆ ˆ

exp
i

exp 1

exp
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exp 1

exp
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exp 1 ,

Sk Sk

Sk Sk Sk S S k
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Sk S Sk
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†

¯

* 2 2 ¯
†
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2
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†

2
2

1

2
2
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2
1

where in the last line we used the normalization condition + =⃗ ⃗u v| | | | 1lk lk
2 2 . The second

expectation value can be calculated in a similar way such that for the kernel component of the
elastic cotunneling we obtain

Figure E1. Diagrammatic representation of a relevant contribution to elastic (a) and
inelastic (b) cotunneling. Necessary for the inelastic part is the energetic excitation of
the final state χ′ in comparison with the initial state χ, with both states having the same
amount of charge.
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which is the same result as in the main text with χ ν ρ χ ν≡ ∑ 〈 〉σ σT T d( , ) ˜ | ˆ |l l m l m and the
electron density of states ρ̃l in lead l. In the last step the variable transformation ≡ ′ − ′t t t1̃ 1 2,

≡ ′ − ′t t t˜ 1 was applied in order to decouple the three time integrations. In addition, we
expressed the energies ω, ω′ with respect to the electrochemical potential μl.

To investigate the case when the double integral, and thus the kernel component, gives a
relevant contribution to the transport dynamics, we analyze the integrand in detail. We are
mainly interested in the region in the bias and gate voltage range in which the system is blocked
into the ground state of the corresponding Coulomb blockade region in the sense of the
sequential tunneling limit. If N electrons are trapped in the N-Coulomb diamond, the condition
for a strong Coulomb blockade is μ Δ− ≪ −±E ES D N N1 . In our example the ground state
energy for N charges is χE , whereas νE is the energy of the ( +N 1)-particle state ν〉| . Hence, in
the blockade regime is μ Δ− ≪ −ν χE ES D . Moreover, taking the product of the Fermi
function and the BCS density of states (figure E2 (a)) into account, only the blue region of the
ω ω− ′ plane, depicted in figure E2(b), is relevant for the integrand ω ω′I ( , ) in equation (E.1)
at low temperatures. Upon increasing the temperature, the product of Fermi functions and BCS
density of states in the integrand ω ω′I ( , ) is also non-vanishing along the orange stripes
(figures E3 (a) and (b)).

The colored regions in the figure are the relevant energy region where the product of the
density of states and the Fermi functions − ≫D D f f(1 ) 0S D S D is not vanishing.

In figures E2(b) and E3(b) the roots of the denominators are represented by dashed lines.
As explained in the main text, we are looking for the cases in which the roots meet the colored
regions. In particular, the threshold for the onset of standard elastic cotunneling processes is
obtained for those values of the bias voltage such that the ω ω= ′ root touches the corner of the
blue region (see figure E2(b)). In that case the blue region includes the horizontal and the
diagonal (ω ω′ = ) zeros of the denominators. Thus the bias threshold Δ= ±V e2SD for the low-
temperature regime is obtained when the condition Δ μ ω ω Δ μ+ = ′ = = − +D S is used
together with μ μ− = eVS D SD. Note that for this bias voltage the diagonal zeros are located at
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the corner of the blue region, as seen in figure E2(b), where the product of density of state and
the Fermi function has its largest value, resulting in a peak structure in the voltage
characteristics.

For higher temperatures additional scenarios have to be taken into account because the
orange regions in figure E3(b) can no longer be neglected. Thus the condition for a strong
Coulomb blockade has to be adapted to the low-bias regime, meaning μ Δ+ ≪ −±E ES D N N1 ,
to prevent thermally excited sequential tunneling as shown in [18]. For our case this yields
μ Δ+ ≪ −ν χE ES D . To see a rising of thermal elastic cotunneling, the diagonal ω ω= ′ root
has to meet the orange region. Then one has to investigate the cases when the orange regions
include the horizontal and the diagonal zeros of the denominators. In this situation we need only
a minimal bias ⩾V| | 0SD . Thus, for large enough temperatures a remarkable contribution of the
component of the kernel K̂EC for elastic cotunneling is always present in the bias-gate voltage
range since the onset occurs at zero bias, as one can see by means of the condition

Δ μ ω ω Δ μ− + = ′ = = − +D S.
After analyzing the property of the integrand of the kernel element we can give a first

approximation for the elastic cotunneling rate in the middle of a Coulomb diamond for the
process shown in figure E1(a). As already explained we have to investigate only the integrand
in the energy area, where ω ω≈ ′. Furthermore we investigate the Coulomb diamond ③, in
particular, as in the main text, where the center is placed at a gate voltage

δ= +V E e( ) .Cgate
5

2

1

2
Then the energy difference − = − =ν χE E E E U 24 3

0 , with the

ground-state energy being E3
0 for the three-particle state and E4 for the four-particle state. Thus

in the energy region where the product of the Fermi functions ω ω−f f( )[1 ( )]S D is non-zero the
denominator is almost constant, with magnitudes ±U 2. This leads to the result

Figure E2. (a) Product of the Fermi function and the BCS density of states for low
temperatures. (b) Integrand ω ω′I ( , ) occurring in the two-dimensional integral of
equation (E.1). The three dashed lines correspond to the roots of the denominator of

ω ω′I ( , ). The figure shows the parameter regime at low temperatures Δ≪T kB and
finite bias μ μ= − >V e( ) 0SD S D at which the onset of elastic cotunneling occurs.
When the bias voltage is set such that Δ μ Δ μ− + = +S D, the corner of the blue region
meets the root line ω ω= ′, as shown in the figure, yielding the threshold for elastic
cotunneling.
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In a last step one can transform the parameter ω to obtain the bias voltage
μ μ= −V e( )SD S D as in equation (9). The result of a calculation of the linear cotunneling

conductance in terms of the foregoing rate expression at zero bias is shown in figure E3(c).
Other diagrams contribute to elastic cotunneling. However, using the diagrammatic rules

to evaluate their analytic expression, one realizes that they contain two different intermediate

Figure E3. (a) Product of the Fermi function and the BCS density of states for high
temperatures. (b) The figure shows the parameter regime at high temperatures Δ≲T kB

and =V 0SD at which thermally assisted elastic cotunneling occurs. When the root line
ω ω= ′ hits the corners of the orange area, it holds Δ μ Δ μ− + = − +S D,
corresponding to zero bias. Thus, even in the zero-bias regime, thermally excited
elastic cotunneling features emerge which are absent for low temperatures. The dark
orange color is important only for high temperatures Δ≳T kB. (c) Temperature
dependence of the appearing zero-bias peak in the stability diagram. For comparison we
add a conductance offset of about 0.002 e h2 to our numerical data. For small
temperatures Δ≪T kB a Boltzmann-like behavior Δ− k Texp [ ( )]B can be identified.
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states, with one unit of charge more and one unit less than the state χ〉| ; hence the two zeros of
the corresponding denominator in the integrand are energetically far away from each other,
resulting in a smaller contribution to the integral.

We also want to mention the dark orange dot in figure E3(b). In that region the kernel
component K̂EC contributes at high temperatures only. This can be explained for the case where
the diagonal zeros hit the area, resulting in a condition Δ μ ω ω Δ μ− + = ′ = = +D S for the
bias threshold Δ= −V e2SD . The conductance peak in this bias region corresponds to an onset
of a resonant charge current based on thermally excited quasiparticles in the drain producing
unoccupied states in the low-energy branch of the BCS density of states even for high
temperatures.

Appendix F. Inelastic cotunneling contributions

In the same manner as in the preceding section, we can investigate leading contributions to
inelastic cotunneling. To this end we identify the diagram shown in figure E1(b) as a relevant
inelastic cotunneling contribution to the kernel component χ χ

χχ
′ ′K( ˆ )IC . Here the final state χ′ has

the same charge state as the initial state χ but is energetically excited compared with the initial
state. To obtain the analytic expression of the diagram, we can follow the same prescription as
in appendix E or simply use the diagrammatic rules derived in [42]. Thus we obtain
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The analysis of the kernel component and its remarkable contributions is done in the same
way as depicted before for the elastic cotunneling case. Again we first focus on the low-
temperature regime and derive the condition for the standard inelastic cotunneling events in the
Coulomb blockade region. We consider only the case in which the diagonal zeros of the
denominator touch the corner of the blue region in figure E2(b). In that case the condition for
the bias threshold results in Δ μ ω ω Δ μ+ = ′ = + − = − + + −χ χ χ χ′ ′E E E ED S . If we
further use the energy difference δ− =χ χ′E E between the states of the CNT, we obtain the
onset of the inelastic cotunneling peak in the current-voltage characteristics at bias voltage

Δ δ= +V e| | (2 )SD . For higher temperatures an additional situation has to be considered. For
thermally excited transport features we investigate the case when the diagonal zeros hit the
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orange regions in figure E3(b). Here we can give an additional requirement,
Δ μ ω ω Δ μ− + = ′ = + − = − + + −χ χ χ χ′ ′E E E ED S , resulting in an onset of a thermal-

dependent peak in the conductance measurements at bias voltage δ=V e| |SD . The peak height
of the thermal replica of the standard inelastic cotunneling grows with increasing temperature as
more quasiparticles occupy the excited states and thus can contribute to the corresponding
transport processes.

A quantitative approximation for the inelastic cotunneling rates in the middle of the
Coulomb diamond for the process shown in figure E1(b) can now be obtained when we
investigate the integrand in the energy region ω ω δ′ ≈ − . In the same manner as before we can
then write the rate in Coulomb diamond ③ as
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∫
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π
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where the three-particle energy E3
* of the excited state was used.
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