J Sched (2009) 12: 417-431
DOI 10.1007/s10951-008-0090-8

A survey of dynamic scheduling in manufacturing systems

Djamila Ouelhadj - Sanja Petrovic

Published online: 28 October 2008
© Springer Science+Business Media, LLC 2008

Abstract In most real-world environments, scheduling is an
ongoing reactive process where the presence of a variety of
unexpected disruptions is usually inevitable, and continually
forces reconsideration and revision of pre-established sched-
ules. Many of the approaches developed to solve the prob-
lem of static scheduling are often impractical in real-world
environments, and the near-optimal schedules with respect
to the estimated data may become obsolete when they are
released to the shop floor. This paper outlines the limitations
of the static approaches to scheduling in the presence of real-
time information and presents a number of issues that have
come up in recent years on dynamic scheduling.

The paper defines the problem of dynamic scheduling
and provides a review of the state-of-the-art of currently de-
veloping research on dynamic scheduling. The principles of
several dynamic scheduling techniques, namely, heuristics,
meta-heuristics, multi-agent systems, and other artificial in-
telligence techniques are described in detail, followed by a
discussion and comparison of their potential.

Keywords Dynamic scheduling - Robust scheduling -
Predictive-reactive scheduling - Agent-based scheduling

D. Ouelhadj () - S. Petrovic

Automated Scheduling, Optimisation and Planning Research
Group, School of Computer Science, University of Nottingham,
Nottingham NG8 1BB, UK

e-mail: dxs@cs.nott.ac.uk

S. Petrovic
e-mail: sxp@cs.nott.ac.uk

1 Introduction

Most manufacturing systems operate in dynamic envi-
ronments where usually inevitable unpredictable real-time
events may cause a change in the scheduled plans, and a
previously feasible schedule may turn infeasible when it
is released to the shop floor. Examples of such real-time
events include machine failures, arrival of urgent jobs, due
date changes, etc. MacCarthy and Liu (1993) addressed
the nature of the gap between the scheduling theory and
scheduling practice, the failure of classical scheduling the-
ory to respond to the needs of practical environments, and
recent trends in scheduling research which attempt to make
it more relevant and applicable. Shukla and Chen (1996), in
their comprehensive survey on intelligent real-time control
in flexible manufacturing systems, stated that comparison
of theory and scheduling practice showed very little corre-
spondence between the two. Cowling and Johansson (2002)
addressed an important gap between scheduling theory and
practice, and stated that scheduling models and algorithms
are unable to make use of real-time information.

The problem of scheduling in the presence of real-time
events, termed dynamic scheduling, is of great importance
for the successful implementation of real-world scheduling
systems. However, very few surveys have been published
in this area. In this paper, we focus on a number of issues
that have come up in recent years on dynamic scheduling
in manufacturing systems. We are primarily concerned with
the issue of how to handle the occurrence of real-time events
during the execution of a given schedule on the shop floor.

The paper is organised as follows. Section 2 defines the
problem of dynamic scheduling and the categories of real-
time events. Next, Section 3 discusses the rescheduling poli-
cies and rescheduling strategies. Section 4 gives a review
on previous research work on techniques used to solve the

@ Springer

mailto:dxs@cs.nott.ac.uk
mailto:sxp@cs.nott.ac.uk

418

J Sched (2009) 12: 417-431

problem of dynamic scheduling. Section 5 presents a com-
parative study of the different techniques. Finally, summary
and conclusions are presented in Section 6.

2 The dynamic scheduling problem

Literature on dynamic scheduling has considered a signifi-
cant number of real-time events and their effects considering
various manufacturing systems, including single machine
systems, parallel machine systems, flow shops, job shops,
and flexible manufacturing systems.

Real-time events have been classified into two categories
(Stoop and Weirs 1996; Suresh and Chaudhuri 1993; Cowl-
ing and Johansson 2002; Vieira et al. 2003):

e Resource-related: machine breakdown, operator illness,
unavailability or tool failures, loading limits, delay in the
arrival or shortage of materials, defective material (mate-
rial with wrong specification), etc.

e Job-related: rush jobs, job cancellation, due date chan-
ges, early or late arrival of jobs, change in job priority,
changes in job processing time, etc.

Dynamic scheduling has been defined under three cate-
gories (Mehta and Uzsoy 1999; Vieira et al. 2000a, 2003;
Aytug et al. 2005; Herroelen and Leus 2005): completely
reactive scheduling, predictive-reactive scheduling, and ro-
bust pro-active scheduling.

2.1 Completely reactive scheduling

In completely reactive scheduling no firm schedule is gener-
ated in advance and decisions are made locally in real-time.
Priority dispatching rules are frequently used. A dispatch-
ing rule is used to select the next job with highest priority
to be processed from a set of jobs awaiting service at a ma-
chine that becomes free. The priority of a job is determined
based on job and machine attributes. Dispatching rules are
quick, usually intuitive, and easy to implement. However,
global scheduling has the potential to significantly improve
shop performance compared to myopic dispatching rules,
where it is hard to predict system performance as decisions
are made locally in real-time.

2.2 Predictive—reactive scheduling

Predictive-reactive scheduling is the most common dy-
namic scheduling approach used in manufacturing systems.
Most of the definitions reported in the literature on dy-
namic scheduling refer to predictive-reactive scheduling.
Predictive—reactive scheduling is a scheduling/rescheduling
process in which schedules are revised in response to real-
time events.

@ Springer

Most of the predictive-reactive scheduling strategies are
based on simple schedule adjustments which consider only
shop efficiency. The new schedule may deviate significantly
from the original schedule, which can seriously affect other
planning activities that are based on the original schedule
and may lead to poor performance of the schedule. It is
therefore desirable to generate predictive—reactive schedules
that are robust. Robust predictive-reactive scheduling fo-
cuses on building predictive-reactive schedules to minimise
the effects of disruption on the performance measure value
of the realised schedule (Wu et al. 1991, 1993; Leon et al.
1994). A typical solution to generate a robust schedule is
to reschedule considering both shop efficiency and devia-
tion from the original schedule (stability) simultaneously.
Stability measures the deviation from the original predictive
schedule caused by schedule revision to quantify the unde-
sirability of making changes to the initial schedule (Wu et
al. 1991, 1993; Cowling and Johansson 2002; Leus and Her-
roelen 2005). Wu et al. (1991, 1993) defined a bi-criterion
robustness measure for one-machine rescheduling problem
with machine breakdown. The criteria include the minimi-
sation of the makespan (schedule efficiency) and the im-
pact of schedule change (schedule stability). For the stabil-
ity, they investigated two measures: the deviation from the
original job starting time, and the deviation from the orig-
inal sequence. The experimental results showed the effec-
tiveness of the robustness measure due to the fact that the
schedule stability can be increased significantly with little or
no reduction in makespan. In the same order of idea, Abu-
maizar and Svestka (1997) used two measures to define a
robust schedule: efficiency (makespan) and stability (start-
ing time deviation and sequence deviations). The schedul-
ing objective is to maximise shop efficiency, and at the same
time minimise system impact caused by schedule changes.
Jensen (2001) investigated different robustness measures to
improve tardiness and total flow-time for machine break-
downs. Leon et al. (1994) developed robustness measures
and robust scheduling to deal with machine breakdowns and
processing time variability when a right-shift repair strategy
is used. The robustness is defined as the minimisation of the
bi-criterion objective function expressed in terms of both
expected makespan and expected delay. The expected de-
lay is the deviation between the deterministic makespan be-
fore disruption, and the actual makespan after applying right
shifting. The experimental results showed that robust sched-
ules significantly outperform schedules based on makespan
alone. Daniels and Kouvelis (1995) defined robustness mea-
sures for a single machine environment to cope against
processing time uncertainty where the scheduling objective
is to minimise the flow time of jobs. The robustness is de-
fined as the minimisation of both the flow time and the ab-
solute deviation from the original schedule caused by sched-
ule revision. Extensive computational results reported the ef-

J Sched (2009) 12: 417-431

419

ficiency and effectiveness of the proposed robustness mea-
sures. Cowling and Johansson (2002), and Ouelhadj et al.
(2003b) defined general measures of utility and stability to
guide the decision as what strategy should be used to react to
real-time events in order to define a robust schedule. Utility
measures the change in the value of the schedule objective
function following a schedule revision. It is expressed by the
difference between the value of the objective function of the
new schedule after reacting to the real-time events and the
objective function of the predictive schedule before taking
into account real-time events. They have then investigated a
number of utility and stability measures for single machine
scheduling model with the objective of minimising the aver-
age completion time.

2.3 Robust pro-active scheduling

Robust pro-active scheduling approaches focus on build-
ing predictive schedules which satisfy performance require-
ments predictably in a dynamic environment (Mehta and
Uzsoy 1999; Vieira et al. 2003). The main difficulty of this
approach is the determination of the predictability measures.
Mehta and Uzsoy (1999) proposed a predictable schedul-
ing model for a single machine subject to breakdowns with
the objective to minimise the maximum lateness. The ef-
fect of disruption is measured by the deviation of the job
completion time of the realised schedule from its planned
completion time in the predictive schedule. The deviation
is reduced by inserting additional time in the predictive
schedule with the objective of achieving high predictabil-
ity. Extensive computational experiments showed that pre-
dictable scheduling provides a significant improvement in
predictability at the expense of very little degradation in the
maximum lateness. O’Donovan et al. (1999) extended the
predictable scheduling approach of Mehta and Uzsoy where
the measure of schedule performance is the tardiness of jobs.

3 Rescheduling in the presence of real-time events

Rescheduling in the presence of real-time events needs to
address two issues: how and when to react to real-time
events. The first issue concerns the definition of reschedul-
ing strategies to react to real-time events, and the second
issue addresses the problem of when to reschedule.

3.1 Rescheduling strategies

Regarding the first issue, what strategies to use to resched-
ule, the literature provided two main rescheduling strate-
gies (Sabuncuoglu and Bayiz 2000; Cowling and Johans-
son 2002; Vieira et al. 2003): schedule repair, and complete
rescheduling.

Schedule repair refers to some local adjustment of the
current schedule and may be preferable because of the po-
tential saving in CPU times and the stability of the system is
preserved.

Complete rescheduling regenerates a new schedule from
scratch. Complete rescheduling might, in principle, be bet-
ter in maintaining optimal solutions, but these solutions are
rarely achievable in practice and require prohibitive compu-
tation time. Moreover, complete rescheduling can result in
instability and lack of continuity in detailed plant schedules,
leading to additional production costs attributable to what
has been termed shop floor nervousness.

Sun and Xue (2001), and Dorn et al. (1995) reported that
most of reactive scheduling systems attempt to revise only
part of the originally created schedule for responding to the
production environment changes without rescheduling from
scratch. Abumaizar and Svestka (1997) stated that in prac-
tice rescheduling has been done by schedule repair, while
complete rescheduling has been used also to a limited de-
gree. Sabuncuoglu and Bayiz (2000) demonstrated the po-
tential effectiveness of schedule repair in terms of stability
and CPU time compared with complete rescheduling.

Another problem of practical importance is the decision
whether to reschedule from scratch (complete rescheduling)
or schedule repair, and which schedule repair strategy to
choose to react to real-time events. To deal with this prob-
lem, simulation and robustness measures were used to eval-
uate the performance of the rescheduling strategies and to
select the best strategy. Wu et al. (1991, 1993), Daniels and
Kouvelis (1995), Abumaizar and Svestka (1997), and Jensen
(2001) used robustness measures (efficiency and stability) to
decide on the best rescheduling strategy to apply. Cowling
and Johansson (2002), and Ouelhadj et al. (2003b) used util-
ity and stability measures to assess the performance of var-
ious schedule repair and complete rescheduling strategies,
and to select the best rescheduling strategy.

3.2 When to reschedule

Regarding the second issue, when to reschedule, three poli-
cies have been proposed in the literature (Sabuncuoglu and
Bayiz 2000; Vieira et al. 2003): periodic, event driven, and
hybrid. The periodic and hybrid policies have received spe-
cial attention under the name rolling time horizon (Church
and Uzsoy 1992; Ovacik and Uzsoy 1994; Sabuncuoglu and
Karabuk 1999; Vieira et al. 2000a; Aytug et al. 2005).

In the periodic policy, schedules are generated at reg-
ular intervals, which gather all available information from
the shop floor. The dynamic scheduling problem is decom-
posed into a series of static problems that can be solved
by using classical scheduling algorithms. The schedule is
then executed and not revised until the next period begins,
where the planning horizon is renewed by taking into ac-
count new information gathered from the current shop floor

@ Springer

420

J Sched (2009) 12: 417-431

status. The periodic policy yields more schedule stability
and less schedule nervousness. Unfortunately, following an
established schedule in the face of significant changes in the
shop floor status may compromise performance since un-
wanted products or intermediates may be produced. Deter-
mining the rescheduling period is also a difficult task.

The primary application of the rolling horizon approach
to dynamic scheduling is due to Muhlemann et al. (1982).
They investigated how the frequency of scheduling in a dy-
namic job shop environment affected the performance where
the processing time variations and machine breakdowns oc-
cur randomly. At each rescheduling period, a static sched-
ule is generated for current jobs using a dispatching rule.
As anticipated, performance generally deteriorates when the
rescheduling period increases. Ovacik and Uzsoy (1994)
used the rolling horizon policy for a single machine prob-
lem with sequence-dependent set-up time to minimise max-
imum lateness. They found that rolling horizon schedul-
ing outperforms myopic dispatching rules. Sabuncuoglu and
Karabuk (1999) studied the rescheduling frequency in a
multi-process flexible manufacturing system environment
for machine breakdowns and processing time variations.
The performance of the system is measured for mean tar-
diness and makespan criteria. The results on scheduling fre-
quency indicated that a periodic response with an appropri-
ate period length would be sufficient to cope with real-time
events. It was observed that machine breakdowns have more
significant impact on the system performance than process-
ing time variations.

In Event driven policy rescheduling is triggered in re-
sponse to an unexpected event that alters the current system
status. Most of the approaches to dynamic scheduling use
this policy.

Yamamoto and Nof (1985) studied the event driven
rescheduling policy for job shop scheduling environment
with random machine breakdowns. Rescheduling is trig-
gered whenever a machine breakdown occurs. The results
indicated that event driven rescheduling with lower compu-
tational burden and higher predictability outperforms the se-
quencing periodic policy and dispatching rules. Vieira et al.
(2000a) described analytical models to estimate the perfor-
mance of a single machine system under periodic and event-
driven rescheduling strategies in an environment where jobs
arrive dynamically. They proposed to evaluate the perfor-
mance of periodic rescheduling and event driven reschedul-
ing using analytical models that can easily and quickly es-
timate important performance measures, such as average
flow time and machine utilisation. Vieira et al. (2000b) ex-
tended that study by investigating parallel machine systems.
It was shown that rescheduling frequency can significantly
affect the system performance (average flow time). A lower
rescheduling frequency lowers the number of set ups. A
higher rescheduling frequency allows the system to react

@ Springer

more quickly to disruptions but may increase the number
of set-ups. All these studies agreed that the event driven
rescheduling is much better than periodic rescheduling.

A hybrid policy reschedules the system periodically and
also when an exception occurs. Events usually considered
are machine breakdowns, arrival of urgent jobs, cancellation
of jobs, or job priority changes.

Church and Uzsoy (1992) developed a hybrid event-
driven rescheduling policy for rescheduling in a single-
machine and parallel machine environment with dynamic
job arrivals. Their system does rescheduling periodically.
Events classified as regular occurring between periodic
rescheduling are ignored until the next rescheduling mo-
ment. However, when an event is classified as urgent, com-
plete rescheduling is immediately performed. The results
indicated that the performance of periodic scheduling de-
teriorates as the length of rescheduling period increases,
while event driven method achieves a reasonably good per-
formance.

4 Dynamic scheduling techniques

Dynamic scheduling has been solved using the following
techniques (Suresh and Chaudhuri 1993; Shukla and Chen
1996; Stoop and Weirs 1996; Brandimarte and Villa 1999):
heuristics, meta-heuristics, knowledge-based systems, fuzzy
logic, neural networks, hybrid techniques, and multi-agent
systems.

4.1 Heuristics

Heuristics in this context are problem specific schedule re-
pair methods, which do not guarantee to find an optimal
schedule, but have the ability to find reasonably good so-
lutions in a short time. The most common schedule repair
heuristics are: right-shift schedule repair, match-up sched-
ule repair, and partial schedule repair. The right-shift heuris-
tic shifts the remaining operations of the schedule forwards
in time by the amount of downtime in the event of ma-
chine failure. Match-up schedule repair strategy reschedules
to match-up with the pre-schedule at some point in the fu-
ture. Partial schedule repair reschedules only the operations
in failure. Dispatching rules are also heuristics that have
played a significant role in completely reactive scheduling.
However, in completely reactive scheduling no firm sched-
ule is generated in advance and dispatching rules are used
in real-time to select the next job waiting for processing at a
resource.

Yamamoto and Nof (1985) investigated the performance
of the right-shift heuristic compared with dispatching rules
and complete rescheduling using branch and bound. The ex-
perimental results showed that right shifting outperforms

J Sched (2009) 12: 417-431

421

priority rules and complete rescheduling. Mehta and Uz-
soy (1999), and O’Donovan et al. (1999) used the right-shift
heuristic for inserting idle time to define predictable sched-
ules. Abumaizar and Svestka (1997) compared the perfor-
mance of partial schedule repair (affected operations sched-
ule repair), complete rescheduling, and right shift schedule
repair with respect to measures of efficiency (makespan)
and stability (deviation from the initial schedule). The par-
tial schedule repair heuristic reschedules only the operations
directly and indirectly affected by the disruption so as to
minimise both the increase in makespan and the deviation
from the initial schedule. The results demonstrated that the
heuristic reduces much of the deviation and computational
complexity associated with complete rescheduling and right
shifting. Right shift gives the worst performance with re-
spect to makespan due to the fact that the method is a sim-
ple shifting of the schedule by the amount of the disruption.
Thus, the longer the disruption, the larger the expected shift,
and the greater the increase in makespan.

Bean et al. (1991) proposed a match-up schedule repair
heuristic for the shop floor rescheduling with multiple re-
sources in the presence of machine breakdowns. The strat-
egy reschedules to match up with the pre-schedule at some
point in the future whenever a machine breakdown occurs.
The experimental results showed that the method provides
near-optimal solutions while achieving higher predictabil-
ity than complete rescheduling. Later, Akturk and Gorgulu
(1999) applied this approach for flow shop rescheduling.
The results indicated that the match-up heuristic is very ef-
fective in terms of schedule quality, computation time, and
schedule stability.

More specific schedule repair heuristics have been also
proposed in the literature. Nof and Grant (1991) proposed
several rescheduling strategies for process time variations,
machine breakdown, and new job arrival in a manufacturing
cell. The rescheduling strategies are: rerouting the jobs to al-
ternative machines, job-splitting (for batch production), and
complete rescheduling. Kutanoglu and Sabuncuoglu (2001)
proposed several schedule repair heuristics in the presence
of machine failures. The schedule repair heuristics are based
on rerouting the jobs to their alternative machines. Lee
and Uzsoy (1999) considered the problem of minimising
makespan on a single batch-processing machine for oven
scheduling in a semiconductor-manufacturing environment
with dynamic job arrivals. They proposed and evaluated the
performance of two schedule repair heuristics, namely delay
schedule repair heuristic (delays the processing of a batch to
integrate jobs arriving very soon in the future), and update
schedule repair heuristic (updates the release time of the job
to delay in the batch). The results indicated that the heuris-
tics showed an excellent average performance with a modest
computational burden.

A variety of dispatching rules have been used to react
to real-time events in completely reactive scheduling. It was
found that no rule performs well for all criteria. Hence, many
investigations were carried out towards recognising a com-
bination of several dispatching rules to find a range of sys-
tem states in which the relative performance of each rule is
highest. In order to assess the performance of various dis-
patching rules under different dynamic and stochastic con-
ditions of the shop floor, simulation was used. Ramasesh
(1990), and Rajendran and Holthaus (1999) presented ex-
cellent state-of-the-art surveys of dispatching rules in dy-
namic job shops and flow shops. They evaluated the per-
formance of a variety of dispatching rules with respect to
some common performance criteria discussed in the litera-
ture, such as variance of flow time, minimum and maximum
flow time, mean tardiness, maximum tardiness and variance
of tardiness, etc. They classified these rules into fives cat-
egories: rules involving process times, rules involving due
dates, simple rules involving neither process times nor due
dates, rules involving shop floor conditions, and rules in-
volving two or more of the first four categories. It has been
observed that no single rule performs well for all important
criteria related to flow time and tardiness of jobs. In general,
it has been noted that process time based rules perform better
under tight load conditions, while due date based rules per-
form better under light load conditions. Sabuncuoglu (1998)
presented a comprehensive simulation study on scheduling
rules for flexible manufacturing systems in the presence of
various levels of breakdown rates and changes in processing
times. He reported that no single rule is the best under all
possible conditions. A comprehensive bibliography is also
presented in the paper. Shafaei and Brunn (1999) in their
simulation study investigated the performance of a num-
ber of scheduling rules for a dynamic job shop. The perfor-
mance measure considered is an economic objective, which
includes the main costs involved in a scheduling decision.
Jain and Elmaraghy (1997) proposed various schedule repair
heuristics for production rescheduling in flexible manufac-
turing systems for machine breakdown, arrival of rush jobs,
increased job priority, and job cancellation. When a machine
breakdown occurs, the remaining operations are performed
on alternative machines. For arrival of new jobs, if the new
job is not a rush job, then priority is assigned based on EDD
(Earliest Due Date) or FCFS (First Come First Served) dis-
patching rules, otherwise highest priority is assigned to it
and all the disturbed tasks are moved forward in time. When
a job priority is increased or a job is cancelled, the remain-
ing tasks are shifted forward in time on their respective ma-
chines.

@ Springer

422

J Sched (2009) 12: 417-431

4.2 Meta-heuristics: tabu search, simulated annealing, and
genetic algorithms

In recent years, meta-heuristics (tabu search, simulated
annealing, and genetic algorithms) have been success-
fully used to solve production scheduling problems. Meta-
heuristics are high level heuristics which guide local search
heuristics to escape from local optima (Glover and Laguna
1997; Pham and Karaboga 2000). Local search heuristics
are neighbourhood search methods based on the idea of
searching neighbourhoods. In local neighbourhood search,
the search starts from some given solution, and tries itera-
tively to move to a better solution in an appropriately defined
neighbourhood of the current solution using move operators.
The search process stops when no better solution can be
found in the neighbourhood of the current solution, which
is the local optimum. Meta-heuristics such as tabu search,
simulated annealing, and genetic algorithms improve local
search to escape local optima by either accepting worse so-
lutions, or by generating good starting solutions for the local
search in a more intelligent way than just providing random
initial solutions.

Tabu search, simulated annealing, and genetic algorithms
have been widely used to solve static deterministic pro-
duction scheduling problems in several domains includ-
ing job shops, open shops, flow-hops, flexible manufactur-
ing systems, batch processing, etc. However, little research
work has addressed the use of meta-heuristics in dynamic
scheduling. Dorn et al. (1995) and Zweben et al. (1994) dis-
cussed the importance of using meta-heuristics to schedule
repair instead of using local search or simple heuristics as
they can be trapped in a poor local optimum. Mehta and Uz-
soy (1999) used tabu search to search for predictable sched-
ules. Dorn et al. (1995) used tabu search to repair a sched-
ule caused by uncertain time processes in steel continuous
caster scheduling. Zweben et al. (1994) used simulated an-
nealing to repair schedules for space shuttle ground oper-
ations. To repair a schedule, the system chooses between
five repair heuristics using a choice-function, and uses sim-
ulated annealing to perform multiple repair iterations. It was
found that tabu search and simulated annealing generate
good quality schedules in a short time of period.

Chryssolouris and Subramaniam (2001) used genetic
algorithms for dynamic scheduling of manufacturing job
shops in the presence of machine breakdown and alternate
job routine. Two performance measures were used, namely
mean job tardiness and mean job cost. Whenever a dynamic
event occurs, genetic algorithms are used to propose an al-
ternative schedule. In addition, the solution of genetic algo-
rithms was compared to several common dispatching rules.
The results indicated that the performance of genetic algo-
rithms is significantly superior to that of the common dis-
patching rules. Rossi and Dini (2000) used genetic algo-

@ Springer

rithms for dynamic batch scheduling of flexible manufactur-
ing systems. They considered the following real-time events:
arrival of a new batch, unavailability of parts to be machined
(due to the failure of feeding systems, the presence of de-
fects on work pieces, etc.), and machine breakdowns (due to
unavailability of tools, unplanned maintenance, etc.). Sched-
ules produced using dispatching rules were improved using
genetic algorithms. The results showed that genetic algo-
rithms greatly reduce the makespan. Leon et al. (1994) and
Jensen (2001) used genetic algorithms to generate robust
schedules and to evaluate the performance of various ro-
bustness measures. Wu et al. (1991, 1993) compared the
performance of genetic algorithms and local search heuris-
tics to generate robust schedules. The results showed the
performance of genetic algorithms in generating schedules
with much better makespan and stability than local search
heuristics. However, Bierwirth and Mattfeld (1999) reported
in their experimental results that the capabilities of genetic
algorithms vanish with an increasing problem size, and they
are not efficient to find a near-optimal solution in a reason-
able time.

4.3 Multi-agent based dynamic scheduling

Most of the scheduling systems developed in industrial en-
vironments have traditionally been viewed as a top-down
process of command and response that relies heavily on cen-
tralised and hierarchical models (Parunak 1996; Gou et al.
1998; Shen and Norrie 1999; Bongaerts et al. 2000; Shen
et al. 2001). To ensure consistency of data across the entire
enterprise, centralised and hierarchical scheduling systems
(Figs. 1 and 2) rely heavily on central databases. To optimise
performance, scheduling decisions are made centrally at the
level of the supervisor, and then distributed to the manufac-
turing resource level for execution. A common architecture
gives a central computer responsibility for scheduling, dis-
patching resources, monitoring any deviation, and dispatch-
ing corrective actions.

Supervisor
level

5y

I*

Fig. 1 Centralised architecture

J Sched (2009) 12: 417-431

423

Fig. 2 Centralised hierarchical architecture

Centralised and hierarchical scheduling systems present
a number of drawbacks (Parunak 1996; Tharumarajah and
Bemelman 1997; Shen and Norrie 1999; Bongaerts et al.
2000; Brennan and Norrie 2001). The primary drawback is
the existence of a central computer, which constitutes a bot-
tleneck that can limit the capacity of the shop, and it is a sin-
gle point of failure that can bring down the entire shop. Fur-
thermore, modifying the configuration of hierarchically con-
trolled manufacturing systems is expensive and time con-
suming as it involves expensive software rewriting. Hierar-
chical scheduling systems are becoming increasingly com-
plex with the integration of manufacturing system compo-
nents. Another disadvantage is that the up and down flow of
information increases the latency time of decision-making.
Moreover, practical experience has indicated that hierarchi-
cal centralised scheduling systems tend to have problems re-
acting to disturbances and may fail to respond effectively
to the presence of real-time events. When a disturbance oc-
curs, it is fed back to the high level in the hierarchy, and
only after the scheduler has been adapted, the new sched-
ule triggers a new flow of commands that forms the reaction
to the disturbance. This up and down movement of infor-
mation results in a slow response time leading to a low ro-
bustness. Despite the fact that centralised and hierarchical
scheduling systems may provide globally better schedules
in environments where real-time disturbances are rare, in-
creasingly they are being found to be inefficient to respond
to highly dynamic environments. Therefore, centralised and
hierarchical scheduling is complex, difficult to maintain and
reconfigure, inflexible, costly, and slow to satisfy the needs
of today’s complex manufacturing environments.

Global competitive pressure in manufacturing has re-
sulted in fundamental changes in the operation of manu-
facturing systems. Today’s systems must rapidly adapt to
disturbances while maintaining shorter product cycles, im-
proving productivity, and increasing operational flexibility.
To face this challenge, the current trend has been towards

highly automated systems that are intended to offer robust-
ness, stability, adaptability, and efficient use of available re-
sources through a modular and distributed design (Parunak
1996; Brennan and Norrie 2001; Shen et al. 2001). There is
a growing trend towards distributed shop floor organisations
as a result of the need for enhanced levels of responsiveness
from the shop floor to changes in markets and technologies.
The primary motivation in designing these systems is to de-
centralise the control of the manufacturing system, thereby
reducing the complexity and cost, increasing flexibility, and
enhancing fault tolerance.

There is substantial evidence that multi-agent systems
are one of the most promising approaches to building com-
plex, robust, and cost-effective next-generation manufactur-
ing scheduling systems because of their autonomous, dis-
tributed and dynamic nature, and robustness against failures
(Parunak 1996, 2000; Shen et al. 2001; Brennan and Nor-
rie 2001). A Multi-Agent System is a network of problem
solvers that work together to solve problems that are beyond
their individual capabilities (O’Hare and Jennings 1996).

The use of multi-agent systems to solve the problem of
dynamic scheduling is motivated by the following key points
(Parunak 1996, 2000; Shen and Norrie 1999; Cowling et al.
2000; Brennan and Norrie 2001; Shen et al. 2001). Firstly,
multi-agent based scheduling systems recognise that data
and control are distributed through the factory. These sys-
tems are composed of autonomous agents attached to each
physical or functional manufacturing entity in the facility
(resources, operators, parts, jobs, etc.). Local autonomy al-
lows the agents to take the responsibility to carry out local
scheduling for one or more entities in the production process
and to respond locally and efficiently to local variations, in-
creasing the robustness and flexibility of the system. Sec-
ondly, these individual agents have considerable latitude in
responding to local conditions and interacting and cooperat-
ing with each other in order to achieve global optimal and ro-
bust schedules. The overall system performance is not glob-
ally planned, but emerges through the dynamic interaction
of the agents in real-time. Thus, the system emerges from
the concurrent independent local decisions of the agents.
Thirdly, the software for each agent is much shorter and
simpler than it would be for a centralised approach, and
as a result is easier to write, install and maintain. Further-
more, it is possible to integrate new resources or remove
existing ones with their attached agents to from the factory
without making any changes to the existing software net-
work.

4.3.1 Multi-agent scheduling architectures
An increasing number of enterprises are turning to agent

technology to address the complex and dynamic environ-
ments common to most enterprises and successful results

@ Springer

424

J Sched (2009) 12: 417-431

Manufacturing
entities

Physical or
functional agents
(resources and/or

jobs, etc.)

Fig. 3 Autonomous architecture

have been achieved. Two main multi-agent architectures for
dynamic scheduling have been implemented: autonomous
architectures and mediator architectures. They are described
in more detail in the following sub-sections.

4.3.1.1 Autonomous architectures In autonomous archi-
tectures (Fig. 3), agents representing manufacturing entities
such as resources and jobs have the ability to generate their
local schedules, react locally to local changes, and cooper-
ate directly with each other to generate global optimal and
robust schedules.

Yams (Yet Another Manufacturing System) (Parunak
1987) is one of the earliest agent-based manufacturing sys-
tem which assigns an agent to each node in a control hier-
archy (factory, cell, workstation, machine, jobs). The main
idea of Yams is that the job agents negotiate with resource
agents to assign tasks to the machine agents using the
contract net protocol. Shaw (1988) developed a dynamic
scheduling system in a cellular manufacturing system. In
their work a manufacturing cell agent could sub-contract
work to other cells through the contract net protocol (Smith
1980). Request for bid messages are broadcast to cells which
evaluate operations specification and submit bids. Bids de-
scribe the estimation on the earliest finishing time or short-
est processing time of the operations. The cell that opti-
mises a predefined criterion is selected to perform the op-
eration. Goldsmith and Interrante (1998), and Ouelhadj et
al. (1998, 1999, 2000) proposed a simple multi-agent ar-
chitecture for dynamic scheduling in flexible manufactur-
ing systems which involves only resource agents. The re-
source agents are responsible for dynamic scheduling of the
resources and they have no control over each other. They
negotiate using the contract net protocol to produce a global
schedule. Each resource agent performs the following func-
tions: scheduling, detection, diagnosis, and error handling.
Resource agents react locally to real-time events occurring
on the corresponding resource using the corrective actions
described in a knowledge base. When real-time events oc-
cur, such as machine breakdown, the resource agent rene-
gotiates the operations in failure to find alternative resource
agents.

@ Springer

For an increased flexibility and robustness, Sousa and
Ramos (1999) proposed a multi-agent architecture for dy-
namic scheduling in manufacturing systems which involves
job and resource agents. The job agents negotiate the op-
erations of the job with the resource agents using the con-
tract net protocol. When a resource agent detects a malfunc-
tion, it sends a machine fault message to every job agent
that has contracted its operations. On receiving the machine
fault message, the job agent renegotiates the operations in
failure with other resource agents capable of performing the
operations. Cowling et al. (2001, 2003, 2004) and Ouelhadj
et al. (2003a, 2003b) proposed a novel multi-agent archi-
tecture for integrated and dynamic scheduling in steel pro-
duction. Each steel production process is represented by an
agent, including the continuous caster agents, the hot strip
mill agent, the slabyard agent, and the user agent. The hot
strip mill and continuous caster agents perform the robust
predictive—reactive scheduling of the hot strip mill and the
continuous caster, respectively. Robust predictive-reactive
scheduling generates robust predictive—reactive schedules in
the presence of real-time events using utility, stability, and
robustness measures and a variety of rescheduling heuris-
tics.

Recently levelled commitment contracts were proposed
as an extension of the contract net protocol for increasing the
economic efficiency of contracts between agents in the pres-
ence of incomplete information about future events. Sand-
holm (2000) described a levelled commitment contracting
protocol for automated contracting in distributed manufac-
turing. The extended protocol allows self-interested agents
to efficiently accommodate future events by giving the pos-
sibility for each agent to decommit from the contract by sim-
ply paying a de-commitment penalty to the other contract
party. A de-commitment penalty is assigned to both agents
in a contract to be freed from the contract.

Some multi-agent-based scheduling systems used auc-
tion and currency mechanisms for inter-agent negotiation.
Agents exchange resources for money at prices determined
through communication of bids. Lin and Solberg (1992,
1994) proposed an autonomous multi-agent architecture for
shop floor dynamic scheduling based on a currency model
that combined the scheduling objectives and price mecha-
nism. Their model represents jobs, resources, and parts by
agents. Job agents negotiate with resource agents via a con-
tract net bidding mechanism to optimise a weighted objec-
tive that is a function of due date, price, quality, and other
user defined factors. The part agent enters the system with a
certain currency, and solicits and evaluates bids from several
resource agents capable of fulfilling the processing require-
ments, and selects the one that optimises its objective. Each
resource agent sets its charging price based on its status, then
it decides on the basis of the currency offered which of the
announced jobs to consider more interesting for a possible

J Sched (2009) 12: 417-431

425

bid. The job agent tries to minimise the price paid, but the
resource agent’s goal is to maximise the price charged. Each
deal is completed once the job and resource agents are mu-
tually committed. When a resource agent is in failure, it in-
forms the corresponding job agent, and the latter proceeds to
a renegotiation process on the operations in failure with the
resource agents. AARIA (Autonomous Agents for Rock Is-
land Arsenal) (Parunak et al. 1997) is an autonomous multi-
agent architecture developed for scheduling in an army man-
ufacturing facility. Manufacturing resources, parts, and peo-
ple are encapsulated as autonomous agents. The system in-
corporates features of schedule optimisation and fault recov-
ery. Agents cooperate using the currency negotiation proto-
col.

Other multi-agent based dynamic scheduling systems
used learning approaches for dynamic scheduling. Aydin
and Oztemel (2000) proposed a dynamic job shop schedul-
ing using reinforcement learning agents. The agent is trained
by an improved reinforcement-learning algorithm through
the learning stage and then successfully makes the decisions
to schedule the operations. The scheduling system consists
of two parts: the simulator and the intelligent agent. The
agent selects the most appropriate priority rule to select a
job to assign to a machine according to the shop conditions,
while the simulator performs scheduling activities using the
rule selected by the agent. Pendharkar (1999) proposed a
multi-agent learning approach for dynamic scheduling. In
the multi-agent architecture, the work areas are controlled
by agents with a knowledge base containing the dispatching
rules. The agents use genetic algorithms-based learning to
update the rules in the knowledge-base at periodic intervals
of time. The higher frequency of learning may help an agent
to quickly adapt to variations on the shop floor.

4.3.1.2 Mediator architectures Despite the good perfor-
mance of autonomous architectures, they usually face prob-
lems in providing globally optimised schedules and pre-
dictability in the presence of a large number of agents,
such as virtual enterprises (Brennan and Norrie 2001; Shen
and Norrie 1999; Bongaerts et al. 2000; Shen et al. 2001;
Tharumarajah 2001). Several researchers have proposed me-
diator architectures for dynamic scheduling in such com-
plex environments to combine robustness, optimality, and
predictability. The mediator architecture provides computa-
tional simplicity, while being quite suitable for developing
distributed industrial systems that are complex, dynamic,
and composed of a large number of resource agents. Bren-
nan and Norrie (2001), Bongaerts et al. (2000), and Cava-
lieri et al. (2000) showed in their comparative studies that
mediator architectures have improved performance relative
to autonomous architectures, because of their ability to plan
further in the future in combination with their ability to re-
act to disturbances, which can result in globally satisfactory
performance.

Mediator Agent

&

Physical or
functional agents
(resources and/or

jobs, etc.)

Manufacturing . . .

entities

Fig. 4 Mediator architecture

A mediator architecture has a basic structure consisting
of autonomous cooperating local agents that are capable to
negotiate with each other in order to achieve production tar-
gets (Gou et al. 1998; Shen and Norrie 1999; Bongaerts et
al. 2000; Shen et al. 2001). This basic structure is extended
with mediator agents to coordinate the behaviour of the lo-
cal agents to perform global dynamic scheduling, see Fig. 4.
The mediator agents operate concurrently with local agents
and contribute to the same decision making processes as the
local agents. The local agents maintain their decision mak-
ing autonomously, but may request advice from the media-
tor agents. They have the ability to advice, impose or update
decisions taken by the resource agents in order to satisfy the
global objectives and resolve the conflict situations. The me-
diator agent has an overview of the entire system, while the
local agents can have a more detailed and up-to-date view
of the local situations. As such, local agents can react more
quickly to disturbances, while mediator agents can coordi-
nate the agents’ behaviour and often improve the global per-
formance.

A very basic mediator architecture was proposed by
Ramos (1994) for dynamic scheduling in flexible manufac-
turing systems. The architecture is composed of task agents,
task manager agent, resource agents, and resource media-
tor agent. Task manager agent creates the task agents. The
resource mediator agent negotiates with the resource agents
the execution the tasks using the contract net protocol. When
failures occur on the resources, messages on the operations
in failure are sent to the mediator resource agent, which pro-
ceeds to a renegotiation process with other resource agents.
This mode of handling the failures is quite simple.

For an increased robustness in complex manufacturing
systems, some authors proposed the integration of mediator
agents to each level of the manufacturing facility. Maturana
et al. (1999) proposed the mediator architecture MetaMorph
for dynamic scheduling of large heterogeneous manufactur-
ing systems to address virtual enterprise issues combining

@ Springer

426

J Sched (2009) 12: 417-431

sub-tasking and virtual clustering of agents. Virtual enter-
prise partnership issues are associated with the unification of
heterogeneous manufacturing subsystems into a large, and
dynamic virtual coalition of co-operative subsystems. There
are two main types of agents in the architecture: resource
agents and mediator agents. Resource agents are used to
represent manufacturing devices and operations, while me-
diator agents are used to coordinate the resource agents us-
ing the contract net protocol. Malfunctioning of a resource
agent is kept at a local level. A resource breakdown is sim-
ulated by introducing a breakdown period into the resource.
Each job allocated within the halt-period is rescheduled to
other available time slots found in the same resource (the
malfunctioning resource) or in a different resource. Shen et
al. (2000) developed MetaMorph II for integrating the man-
ufacturing enterprise’s activities such as design, planning,
scheduling, simulation, execution, material supply, and mar-
keting services. In this architecture, the manufacturing sys-
tem is organised through a hierarchy of sub-system medi-
ators. Four types of mediators were introduced: enterprise,
resource, marketing, and design mediators. Each sub-system
is an agent-based system integrated into the system through
a special mediator. The manufacturing resource agents are
coordinated by appropriate mediators at all levels of the sys-
tem. A high-level resource mediator coordinates low-level
mediators such as machine, tool, worker, and transportation
mediators. Cooperation among resource agents is realised
by combining the mediation mechanism and the contract net
protocol. Several schedule repair mechanisms have been de-
veloped for responding to the presence of real-time events,
such as: arrival of new jobs, cancellation of jobs, machine
breakdown, and delays in processing time of jobs. Sun and
Xue (2001) developed a mediator reactive scheduling archi-
tecture for responding to changes in jobs and manufacturing
resources. Manufacturing resources including facilities and
resources are represented by agents that are coordinated by
two mediators, namely a facility mediator and a personnel
mediator, using the contract net protocol. Reactive schedul-
ing is conducted to modify the created schedule to respond
to changes of jobs such as cancellation of jobs or insertion of
urgent jobs, and manufacturing conditions such as machine
breakdowns, or a person’s sudden sickness during the pro-
duction process. Match up rescheduling strategy and agent-
based collaboration are used to repair only part of the origi-
nally created schedule for improving the reactive scheduling
efficiency, while maintaining the scheduling quality.

4.4 Other artificial intelligence techniques
A number of dynamic scheduling problems have adopted
artificial intelligence techniques such as knowledge-based-

systems, neural networks, case-based reasoning, fuzzy logic,
Petri nets, etc. which are discussed below.

@ Springer

The basic motivation of knowledge-based approaches is
that there is a wide variety of technical expertise on the
corrective actions to undertake in the presence of real-time
events. Knowledge-based systems focus on capturing the
expertise or the experience of the expert in a specific do-
main and an inference mechanism is used to derive con-
clusions or recommendations regarding the corrective ac-
tion to undertake. ISIS (Fox 1994; Smith 1995) developed
at Carnegie Mellon in 1982, was the first attempt to use
knowledge-based systems in job shop scheduling. ISIS per-
forms a constrained-direct search to derive a schedule. The
dynamic situations are handled by rescheduling the affected
jobs by selectively relaxing some of the constraints. OPIS
(Smith 1994) is a successor of ISIS. OPIS is a knowledge-
based system developed originally for manufacturing pro-
duction scheduling which uses an opportunistic problem
solving process to incrementally generate and revise sched-
ules in response to changes. OPIS implemented a black-
board architecture wherein a set of distinct heuristics, re-
ferred to as knowledge sources, are selectively employed to
generate and revise the overall schedule. The schedule re-
pair heuristics defined in OPIS are: job scheduler, resource
scheduler, right-shifter, left-shifter, and demand swapper.
I0SS (Park et al. 1996) is another interactive scheduling
knowledge-based scheduling system based on opportunistic
and interactive repair-based problem solving within black-
board architecture. SONIA (Le Pape 1994) is a knowledge-
based job-shop predictive-reactive scheduling system. Vari-
ous schedule repair heuristics were defined such as relaxing
due dates, extending work shifts, operation postponed until
the next shift, and reduction of idle times of resources by
permuting operations. Some researchers (Belz and Mertens
1996) combined knowledge-based systems and simulation
to pursue a richer modelling capacity of scheduling to decide
on the best corrective actions to handle the real-time events.
Some knowledge-based systems were developed to assist
the user to react interactively to real-time events (Dutta
1990; Sarin and Salgame 1990; Henning and Cerda 2000;
O’Kane 2000).

Miyashita and Sycara (1995) developed the framework
CABINS for schedule repair in a job shop using case-
based reasoning. Cases represent suitable repair actions.
Case based reasoning allows capturing and re-use of this
knowledge to repair similar situations. The schedule is re-
paired incrementally, when necessary, using the cases stored
in the system.

Neural networks, Petri nets, and fuzzy logic have also
been used to solve the problem of dynamic scheduling.
Extensive discussions of these techniques can be found
in Suresh and Chaudhuri (1993), Szelke and Kerr (1994),
Zweben and Fox (1994), Kerr and Szelke (1995), Meziane
et al. (2000).

To derive better dynamic scheduling systems, some re-
searchers developed hybrid systems which combine various

J Sched (2009) 12: 417-431

427

artificial intelligence techniques. Jahangirian and Conroy
(2000), and Li et al. (2000) developed a hybrid framework
for dynamic scheduling consisting of a knowledge-base de-
scribing the dispatching rules, a simulation module to eval-
uate the performance of the dispatching rules, an artificial
neural network, and genetic algorithms for machine learn-
ing to tailor the approaches to specific problem instances.
Dorn (1995) used case-based reasoning and fuzzy logic for
reactive scheduling of the continuous caster in the steel in-
dustry. Schmidt (1994) used fuzzy logic to diagnose critical
jobs in order to reschedule them. As a result, the decision-
maker on the shop floor gets the information concerning
which jobs must be rescheduled now, soon, later or prob-
ably not at all. Dorn et al. (1994) used fuzzy logic for dy-
namic scheduling of steel continuous casting. A fuzzy logic
based decision support system for parallel machine schedul-
ing and rescheduling in the presence of uncertain disruptions
in a pottery company was presented in Petrovic and Duenas
(2006). The uncertain disruption considered was material
shortage described by the number of disruption occurrences
and disruption repair period. These parameters were speci-
fied imprecisely and modelled using fuzzy sets and level 2
fuzzy sets, respectively. Fuzzy rules were proposed to de-
termine when to reschedule and which rescheduling method
to use. Garetti and Taisch (1995), and Garner and Ridley
(1994) used knowledge-based systems and neural networks
in reactive scheduling. The neural networks were used to
decide on the best set of dispatching rules when a real-time
event occurs. Ruiz et al. (2001) proposed a fault diagnosis
system for reactive scheduling in multipurpose batch chem-
ical plants. The system combines the adaptive learning diag-
nostic procedure of neural networks and a knowledge-based
expert system.

5 Comparison of solution techniques

In order to ascertain the value of the various solution tech-
niques, there has been some published work comparing
some of these techniques. These comparisons help us rea-
son about what techniques are most suitable for dynamic
scheduling. Advantages and disadvantages of these tech-
niques have been provided by Suresh and Chaudhuri (1993),
Shukla and Chen (1996), Stoop and Weirs (1996), and
Brandimarte and Villa (1999).

Heuristics have been widely used to react to the pres-
ence of real-time events because of their simplicity, but they
may become stuck in poor local optima. To overcome this,
meta-heuristics such as tabu search, simulated annealing,
and genetic algorithms have been proposed. Several com-
parative studies have been provided in the literature to com-
pare the performance of tabu search, genetic algorithms,
and simulated annealing. Unlike simulated annealing and

tabu search based on manipulating one feasible solution, ge-
netic algorithms manipulate a population of feasible solu-
tions. Genetic algorithms were found not efficient to find a
near-optimal solution in a reasonable time compared to tabu
search and simulated annealing which operate on a single
configuration and not on an entire population (Glover et al.
1995; Jozefowska et al. 1998; Youssef et al. 2001; Zhou et
al. 2001). Knowledge-based systems possess the potential
for automating human expert reasoning and heuristic knowl-
edge to run production scheduling systems. They model the
shop floor by means of many hard and soft constraints. How-
ever, they usually lack the ability to optimise the system and
require considerable effort to build and maintain. They are
aimed at generating feasible schedules conforming to the
domain knowledge. In terms of effectiveness of the decision-
making capability, knowledge-based systems are limited by
the quality and integrity of the specific domain knowledge.
Fuzzy logic has not yet been explored to its fullest poten-
tial. Neural networks cannot guarantee to provide optimal
decisions, but their learning capability makes them ideally
suited for rapidly changing systems. Integrating neural net-
works, simulation, and expert systems seems to have a lot of
promise.

Most scheduling systems developed in manufacturing
environments are centralised and hierarchical. Centralised
scheduling systems provide a consistent global view of
the state of the enterprise and globally better schedules.
However, practical experience has indicated that these sys-
tems tend to have problems with reactivity to disturbances.
A large research field, currently subject of many in depth
studies, regards the use of multi-agent systems in dynamic
scheduling. The primary motivation in designing these sys-
tems is to decentralise the control of manufacturing systems,
thereby reducing the complexity, increasing flexibility, and
enhancing fault tolerance. Refusing the traditional idea of a
central scheduling system, which establishes a manufactur-
ing plan for all the machines and jobs, multi-agent systems
assume the presence of several agents with a good deal of
decision making autonomy, distributed inside the manufac-
turing system. The agents interact and cooperate with each
other in order to achieve effective global performances. Lo-
cal autonomy allows the agents to take the responsibility for
carrying out local scheduling for one or more functional or
physical components in the production process (such as ma-
chines and jobs). Agents have the ability to observe their
environment and to communicate and cooperate with each
other in order to ensure that local schedules lead to globally
desirable schedules. Local autonomy allows the agents to
respond locally to local variations, increasing the robustness
and the flexibility of the system.

Several comparative studies have discussed the features
of multi-agent systems that make them attractive candidates
for implementing dynamic scheduling in contrast to cen-
tralised and hierarchical scheduling systems. Parunak (1996,

@ Springer

428

J Sched (2009) 12: 417-431

2000) demonstrated that multi-agent systems are well suited
for applications that are modular, decentralised, likely to
change frequently, ill-structured, and complex. Duffie and
Piper (1986), Tharumarajah and Bemelman (1997), and
Brennan and Norrie (2001) presented in their comparative
studies various advantages of multi-agent systems, such as
heterogeneity, high modularity, high flexibility, high robust-
ness against failures, reduced complexity, and reduced soft-
ware development cost. According to Sandholm (2000), the
most important point that supports multi-agent systems is re-
activity: agents can locally react to local changes faster than
a centralised system could. Multi-agent systems provide the
foundation for the design of an architecture that is reliable,
maintainable, flexible, robust, and stable. Shen and Norrie
(1999) discussed the advantages of using multi-agent sys-
tems in production scheduling which provide capabilities of
integration, robustness and reactivity, flexibility, heterogene-
ity, and autonomy.

Two main multi-agent architectures for dynamic schedul-
ing have been investigated: autonomous and mediator archi-
tectures. Autonomous architectures are a highly distributed
form of control, where agents cooperate directly towards a
common goal. In mediator architectures, the agents cooper-
ate via a mediator agent. The comparative studies of Bren-
nan and Norrie (2001), Shen and Norrie (1999), Bongaerts
et al. (2000), Shen et al. (2001), and Tharumarajah (2001)
reported that autonomous architectures have prospects of in-
tegrity, cost-efficiency, high flexibility, and a high robustness
against disturbances. They are well suitable for applications
with a small number of agents. However, they have prob-
lems in providing globally optimised performance, and the
behaviour of the system can be unpredictable in complex en-
vironments with large number of agents. In contrast, media-
tor architectures show improved performance relative to au-
tonomous architectures for developing distributed manufac-
turing systems, which are complex and composed of a large
number of agents such as virtual enterprises. They combine
robustness against disturbances with global performance op-
timisation and predictability.

6 Conclusion

A vast majority of the literature dealing with production
scheduling has primarily been focused on finding optimal
or near-optimal predictive schedules for simple scheduling
models with respect to various criteria assuming that all
problem characteristics are known. Such predictive sched-
ules are often produced in advance in order to direct pro-
duction operations and to support other planning activi-
ties. Unfortunately, most manufacturing systems operate in
dynamic environments subject to various real-time events,
which may render the predictive optimal schedule neither

@ Springer

feasible nor optimal. Therefore, dynamic scheduling is of
great importance for the successful implementation of real-
world scheduling systems.

We have identified two categories of real-time informa-
tion commonly considered in the literature: real-time events
related to resources, and real-time events related to jobs.

Dynamic scheduling has been defined under three cate-
gories: completely reactive scheduling, predictive-reactive
(robust) scheduling, and robust pro-active scheduling. In
completely reactive scheduling, schedules are easily gener-
ated using dispatching rules. However, the solution quality is
poor due to the myopic nature of the rules which fail to pro-
vide any plan for other activities, and it is hard to predict sys-
tem performance as decisions are made locally in real-time
and they typically do not use global information. Predictive—
reactive scheduling is the most common approach in dy-
namic scheduling. Predictive-reactive approaches search in
a larger solution space, generate high quality schedules, and
can generate better system performance to increase produc-
tivity and minimise operating costs compared with com-
pletely reactive scheduling. Simple schedule adjustments re-
quire little effort and are easy to implement. However, they
may lead to poor system performance. Generating robust
schedules lead to better system performance, even though
robustness measures are not easy to define. Robustness is
one of the key factors to preserve the stability of manufactur-
ing systems in the presence of uncertainties. Little research
work has been done on the generation of robust schedules;
more research is needed towards the development of more
general efficient robustness measures.

We have discussed two main alternatives to deal with the
problem of updating schedules in the most effective way in
the presence of real-time events: schedule repair, and com-
plete rescheduling. Schedule repair refers to some local ad-
justment of the current schedule. Complete rescheduling re-
generates a schedule from scratch. Complete rescheduling
might in principle be better capable of maintaining optimal
solutions. However, such solutions are rarely achievable in
practice and computation times are likely to be prohibitive.
Furthermore, frequent schedule regeneration can increase
system nervousness and result in instability and lack of con-
tinuity in detailed plant schedules. Schedule repair is very
practical because of the potential saving in CPU times and
the stability of the system is maintained.

Several dynamic scheduling methods have been pre-
sented including: heuristics, meta-heuristics, knowledge-
based systems, fuzzy logic, neural networks, Petri nets, hy-
brid techniques, and multi-agent systems. The compara-
tive study provided evidence that multi-agent systems are
a very promising area of current and future research in
dynamic scheduling. Although there have been some re-
search on agent-based scheduling systems, more work is
still needed. In addition, in developing practical integrated

J Sched (2009) 12: 417-431

429

dynamic scheduling systems, it is necessary to combine to-
gether different techniques such as operational research and
artificial intelligence to endow the scheduling system with
the required flexibility and robustness.

References

Abumaizar, R. J., & Svestka, J. A. (1997). Rescheduling job shops un-
der random disruptions. International Journal of Production Re-
search, 35(7), 2065-2082.

Akturk, M. S., & Gorgulu, E. (1999). Match-up scheduling under a
machine breakdown. European Journal of Operational Research,
112(1), 81-97.

Aydin, M. E., & Oztemel, E. (2000). Job-shop scheduling using re-
inforcement learning agents. Robotics and Autonomous Systems,
33(2-3), 169-178.

Aytug, H., Lawley, M. A., McKay, K., Mohan, S., & Uzsoy, R. (2005).
Executing production schedules in the face of uncertainties: A re-
view and some future directions. European Journal of Opera-
tional Research, 161(1), 86-110.

Bean, J. C., Birge, J. R., Mittenthal, J., & Noon, C. E. (1991). Match up
scheduling with multiple resources release dates and disruptions.
Journal of Operations Research, 39(3), 471-483.

Belz, R., & Mertens, P. (1996). Combining knowledge-based systems
and simulation to solve rescheduling problems. Decision Support
Systems, 17(2), 141-157.

Bierwirth, C., & Mattfeld, D. C. (1999). Production scheduling and
rescheduling with genetic algorithms. Evolutionary Computation,
7(1), 1-17.

Bongaerts, L., Monostori, L., McFarlane, D., & Kadar, B. (2000). Hi-
erarchy in distributed shop floor control. Computers in Industry,
43(2), 123-137.

Brandimarte, P., & Villa, A. (1999). Modelling manufacturing systems:
from aggregate planning to real-time control. Berlin: Springer.

Brennan, R. W., & Norrie, D. H. (2001). Evaluating the performance of
reactive control architectures for manufacturing production con-
trol. Computers in Industry, 46(3), 235-245.

Cavalieri, S., Garetti, M., Macchi, M., & Taisch, M. (2000). An experi-
mental benchmarking of two multi-agent architectures for produc-
tion scheduling and control. Computers in Industry, 43(2), 139—
152.

Chryssolouris, G., & Subramaniam, V. (2001). Dynamic scheduling
of manufacturing job shops using genetic algorithms. Journal of
Intelligent Manufacturing, 12(3), 281-293.

Church, L. K., & Uzsoy, R. (1992). Analysis of periodic and event-
driven rescheduling policies in dynamic shops. International
Journal of Computer Integrated Manufacturing, 5(3), 153-163.

Cowling, P. I., & Johansson, M. (2002). Using real-time information
for effective dynamic scheduling. European Journal of Opera-
tional Research, 139(2), 230-244.

Cowling, P. L., Ouelhadj, D., & Petrovic, S. (2000). Multi-agent sys-
tems for dynamic scheduling. In M. Garagnani, (Ed.), Proceed-
ings of the nineteenth workshop of planning and scheduling of the
UK (pp. 45-54). The Open University, UK.

Cowling, P. 1., Ouelhadj, D., & Petrovic, S. (2001). A multi-agent ar-
chitecture for dynamic scheduling of steel hot rolling. In Pro-
ceedings of the third international ICSC world manufacturing
congress (pp. 104—111). Rochester, NY, USA.

Cowling, P. 1., Ouelhadj, D., & Petrovic, S. (2003). A multi-agent ar-
chitecture for dynamic scheduling of steel hot rolling. Journal of
Intelligent Manufacturing, 14, 457-470.

Cowling, P. I., Ouelhadj, D., & Petrovic, S. (2004). Dynamic schedul-
ing of steel casting and milling using multi-agents. Journal of Pro-
duction Planning and Control, 15, 1-11.

Daniels, R. L., & Kouvelis, P. (1995). Robust scheduling to hedge
against processing time uncertainty in single-stage production.
Management Science, 41(2), 363-737.

Dorn, J. (1995). Case-based reactive scheduling. In R. M. Kerr & E.
Szelke (Eds.), Artificial intelligence in reactive scheduling (pp.
32-50). Dordrecht: Kluwer Academic.

Dorn, J., Kerr, R. M., & Thalhammer, G. (1994). Reactive scheduling
in a fuzzy temporal framework. In E. Szelke & R. M. Kerr (Eds.),
Knowledge-based reactive scheduling (pp. 39-55). Amsterdam:
North-Holland.

Dorn, J., Kerr, R. M., & Thalhammer, G. (1995). Reactive scheduling:
improving the robustness of schedules and restricting the effects
of shop floor disturbances by fuzzy reasoning. International Jour-
nal of Human Computer Studies, 42, 687-704.

Duffie, N. A., & Piper, R. S. (1986). Non-hierarchical control of manu-
facturing systems. Journal of Manufacturing Systems, 5(2), 137-
139.

Dutta, A. (1990). Reacting to scheduling exceptions in FMS environ-
ments. /IE Transactions, 22(4), 33-314.

Fox, M. S. (1994). ISIS: A retrospective. Intelligent scheduling. In M.
Zweben & M. S. Fox (Eds.), Intelligent scheduling (pp. 1-28).
San Mateo: Morgan Kaufmann.

Garetti, M., & Taisch, M. (1995). Using neuronal networks for reac-
tive scheduling. In R. M. Kerr & E. Szelke (Eds.), Artificial intel-
ligence in reactive scheduling (pp. 146—147). Dordrecht: Kluwer
Academic.

Garner, B. J., & Ridley, G. J. (1994). Application of neuronal network
process in reactive scheduling. In E. Szelke & R. M. Kerr (Eds.),
Knowledge-based reactive scheduling (pp. 19-28). Amsterdam:
North-Holland.

Glover, F., & Laguna, M. (1997). Tabu search. Boston: Kluwer Acad-
emic.

Glover, F., Kelly, J. P., & Laguna, M. (1995). Genetic algorithms and
tabu search: hybrids for optimisation. Computers of Operation Re-
search, 22(1), 111-134.

Goldsmith, S. Y., & Interrante, L. D. (1998). An autonomous manu-
facturing collective for job shop scheduling. In The proceedings
of Al & manufacturing research planning workshop (pp. 69-74).
Albuquere. Menlo Park: AAAI Press.

Gou, L., Luh, P. B, & Kyoya, Y. (1998). Holonic manufacturing
scheduling: architecture, cooperation mechanism, and implemen-
tation. Computers in Industry, 37(3), 213-231.

Henning, G. P., & Cerda, J. (2000). Knowledge-based predictive and
reactive scheduling in industrial environments. Computers and
Chemical Engineering, 24(9), 2315-2338.

Herroelen, W., & Leus, R. (2005). Project scheduling under uncer-
tainty: Survey and research potentials. European Journal of Op-
erational Research, 165(2), 289-306.

Jahangirian, M., & Conroy, G. V. (2000). Intelligent dynamic schedul-
ing system: the application of genetic algorithms. Integrated Man-
ufacturing Systems, 11(4), 247-257.

Jain, A. K., & Elmaraghy, H. A. (1997). Production scheduling/resche-
duling in flexible manufacturing. International Journal of Produc-
tion Research, 35(1), 81-309.

Jensen, M. T. (2001). Improving robustness and flexibility of tardiness
and total flow-time job shops using robustness measures. Applied
Soft Computing, 1(1), 35-52.

Jozefowska, J., Mika, M., Roycki, R., Waligora, G., & Wglarz, J.
W. (1998). Local search meta-heuristics for discrete-continuous
scheduling problems. European Journal of Operational Research,
107(2), 354-370.

Kerr, R. M., & Szelke, E. (1995). Artificial intelligence in reactive
scheduling. Dordrecht: Kluwer Academic.

Kutanoglu, E., & Sabuncuoglu, I. (2001). Routing-based reactive
scheduling policies for machine failures in dynamic job shops. In-
ternational Journal of Production Research, 39(14), 3141-3158.

@ Springer

430

J Sched (2009) 12: 417-431

Le Pape, C. (1994). Scheduling as intelligent control of decision-
making and constraint propagation. In M. Zweben & M. S. Fox
(Eds.), Intelligent scheduling (pp. 67-98). San Mateo: Morgan
Kaufmann.

Lee, C. Y., & Uzsoy, R. (1999). Minimizing makespan on a single batch
processing machine with dynamic job arrivals. International Jour-
nal of Production Research, 37(1), 219-236.

Leon, V. J., Wu, S. D., & Storer, R. H. (1994). Robustness measures
and robust scheduling for job shops. IIE Transactions, 26(5), 32—
41.

Leus, R., & Herroelen, W. (2005). The complexity of machine schedul-
ing for stability with a single disrupted job. Operations Research
Letters, 33(2), 151-156.

Li, H,, Li, Z., Li, L. X., & Hu, B. (2000). A production rescheduling
expert simulation system. European Journal of Operational Re-
search, 124(2), 283-293.

Lin, G. Y., & Solberg, J. J. (1992). Integrated shop floor control using
autonomous agents. /IE Transactions, 24(3), 57-71.

Lin, G. Y., & Solberg, J. J. (1994). An agent based flexible routing
manufacturing control simulation system. In Proceedings of the
1994 Winter simulation conference (pp. 970-977).

MacCarthy, B. L., & Liu, J. (1993). Addressing the gap in schedul-
ing research: a review of optimization and heuristic methods in
production scheduling. International Journal of Production Re-
search, 31(1), 59-79.

Maturana, F., Shen, W., & Norrie, D. H. (1999). MetaMorph: an adap-
tive agent-based architecture for intelligent manufacturing. Inter-
national Journal of Production Research, 37(10), 2159-2173.

Mehta, S. V., & Uzsoy, R. (1999). Predictable scheduling of a single
machine subject to breakdowns. International Journal of Com-
puter Integrated Manufacturing, 12(1), 15-38.

Meziane, F., Vadera, S., Kobbacy, K., & Proudlove, N. (2000). Intelli-
gent systems in manufacturing: current developments and future
prospects. Integrated Manufacturing Systems, 11(4), 218-238.

Miyashita, K., & Sycara, K. (1995). CABINS: a framework of knowl-
edge acquisition and iterative revision for schedule improvement
and reactive repair. Artificial Intelligence, 76(1), 377-426.

Muhlemann, A. P., Lockett, G., & Farn, C. K. (1982). Job shop schedul-
ing heuristics and frequency of scheduling. International Journal
of Production Research, 20(2), 227-241.

Nof, S. Y., & Grant, F. H. (1991). Adaptive/predictive scheduling: re-
view and a general framework. Production Planning & Control,
2(4),298-312.

O’Donovan, R., Uzsoy, R., & McKay, K. N. (1999). Predictable
scheduling of a single machine with breakdowns and sensi-
tive jobs. International Journal of Production Research, 37(18),
4217-4233.

O’Hare, G., & Jennings, N. (1996). Foundations of distributed artificial
intelligence. New York: Wiley.

O’Kane, J. F. (2000). A knowledge-based system for reactive schedul-
ing decision-making in FMS. Journal of Intelligent Manufactur-
ing, 11(5), 461-474.

Ouelhadj, D., Hanachi, C., & Bouzouia, B. (1998). Multi-agent sys-
tem for dynamic scheduling and control in manufacturing cells.
In Proceedings of the IEEE international conference on robotics
and automation (pp. 1256-1262). Belgium.

Ouelhadj, D., Hanachi, C., Bouzouia, B., Farhi, A., & Moualek, A.
(1999). A multi-contract net protocol for dynamic scheduling in
flexible manufacturing systems. In Proceedings of the IEEE inter-
national conference on robotics and automation (pp. 1114-1120).
USA.

Ouelhadj, D., Hanachi, C., & Bouzouia, B. (2000). Multi-agent archi-
tecture for distributed monitoring in flexible manufacturing sys-
tems (FMS). In Proceedings of the IEEE international confer-
ence on robotics and automation (pp. 1120-1126). San Francisco,
USA.

@ Springer

Ouelhadj, D., Cowling, P. I., & Petrovic, S. (2003a). Contract net proto-
col for cooperative optimisation and dynamic scheduling of steel
production. In A. Ibraham, K. Franke, & M. Koppen (Eds.), In-
telligent systems design and applications (pp. 457-470). Berlin:
Springer.

Ouelhadj, D., Cowling, P. I., & Petrovic, S. (2003b). Utility and sta-
bility measures for agent-based dynamic scheduling of steel con-
tinuous casting. In Proceedings of the IEEE international confer-
ence on robotics and automation (pp. 175-180). Taipei, Taiwan.
Selected in the finalist best student award.

Ovacik, I. M., & Uzsoy, R. (1994). Rolling horizon algorithms for
a single-machine dynamic scheduling problem with sequence-
dependent set-up times. International Journal of Production Re-
search, 32(6), 1243-1263.

Park, J., Kang, M., & Lee, K. (1996). Intelligent operations scheduling
system in a job shop. International Journal of Advanced Manu-
facturing Technology, 11, 111-119.

Parunak, H. V. (1987). Manufacturing experience with the contract net.
In M. Huhns (Ed.), Distributed artificial intelligence (pp. 285—
310). London: Pitman.

Parunak, H. V. (1996). Applications of distributed artificial Intelligence
in industry. In G. M. P. O’Hare & N. R. Jennings (Eds.), Foun-
dation of distributed artificial intelligence. New York: Wiley-
Interscience. Chap. 4.

Parunak, H. V. (2000). Agents in overalls: experiences and issues in the
development and deployment of industrial agent-based systems.
International Journal of Cooperative Information Systems, 9(3),
209-227.

Parunak, H. V., Baker, A. D., & Clark, S. J. (1997). The AARIA agent
architecture: an example of requirements-driven agent based sys-
tem design. In Proceedings of the 1st international conference on
autonomous agents (pp. 482—483). California, USA.

Pendharkar, P. C. (1999). A computational study on design and
performance issues of multi-agent intelligent systems for dy-
namic scheduling environments. Expert Systems with Applica-
tions, 16(2), 121-133.

Petrovic, D., & Duenas, A. (2006). A fuzzy logic based production
scheduling/rescheduling in the presence of uncertain disruptions.
Fuzzy Sets and Systems, 157(16), 2273-2285.

Pham, D. T., & Karaboga, D. (2000). Intelligent optimisation tech-
niques: genetic algorithms, tabu search, simulated annealing and
neural networks. London: Springer.

Rajendran, C., & Holthaus, O. (1999). A comparative study of dis-
patching rules in dynamic flow shops and job shops. European
Journal of Operational Research, 116(1), 156-170.

Ramasesh, R. (1990). Dynamic job shop scheduling: a survey of sim-
ulation research. OMEGA International Journal of Management
Science, 18(1), 43-57.

Ramos, C. (1994). An architecture and a negotiation protocol for the
dynamic scheduling of manufacturing systems. In Proceedings of
IEEE international conference on robotics and automation (pp.
8-13).

Rossi, A., & Dini, G. (2000). Dynamic scheduling of FMS using a
real-time genetic algorithm. International Journal of Production
Research, 38(1), 1-20.

Ruiz, D., Canton, J., Mara, N. J., Espuna, A., & Puigjaner, L. (2001).
On-line fault diagnosis system support for reactive scheduling
in multipurpose batch chemical plants. Computers and Chemical
Engineering, 25(4), 829-837.

Sabuncuoglu, I. (1998). A study of scheduling rules of flexible man-
ufacturing systems: a simulation approach. International Journal
of Operational Research, 36(2), 527-546.

Sabuncuoglu, 1., & Bayiz, M. (2000). Analysis of reactive scheduling
problems in a job shop environment. European Journal of Opera-
tional Research, 126(3), 567-586.

J Sched (2009) 12: 417-431

431

Sabuncuoglu, I., & Karabuk, S. (1999). Rescheduling frequency in an
FMS with uncertain processing times and unreliable machines.
Journal of Manufacturing Systems, 18(4), 268-283.

Sandholm, T. W. (2000). Automated contracting in distributed man-
ufacturing among independent companies. Journal of Intelligent
Manufacturing, 11(3), 271-283.

Sarin, S. C., & Salgame, R. R. (1990). Development of a knowledge-
based system for dynamic scheduling. International Journal of
Production Research, 28(8), 1499—-1513.

Schmidt, G. (1994). How to apply fuzzy logic to reactive schedul-
ing. In E. Szelke & R. M. Kerr (Eds.), Knowledge-based reactive
scheduling (pp. 57-67). Amsterdam: North-Holland.

Shafaei, R., & Brunn, P. (1999). Workshop scheduling using practical
(inaccurate) data, Part 1: The performance of heuristic schedul-
ing rules in a dynamic job shop environment using a rolling time
horizon approach. International Journal of Production Research,
37(17), 3913-3925.

Shaw, J. M. (1988). Dynamic scheduling in cellular manufacturing sys-
tems: a framework for Network decision making. Journal of Man-
ufacturing Systems, 7(2), 83-94.

Shen, W., & Norrie, D. H. (1999). Agent based systems for intelligent
manufacturing: a state of the art survey. International Journal of
Knowledge and Information Systems, 1(2), 129-156.

Shen, W., Maturana, F., & Norrie, D. H. (2000). MetaMorph II: an
agent-based architecture for distributed intelligent design and
manufacturing. Journal of Intelligent Manufacturing, 11(3), 237—
251.

Shen, W., Norrie, D. H., & Barthes, J. P. A. (2001). Multi-agent sys-
tems for concurrent intelligent design and manufacturing. Lon-
don: Taylor & Francis.

Shukla, C. S., & Chen, F. F. (1996). The state of the art in intelligent
real-time FMS control: a comprehensive survey. Journal of Intel-
ligent Manufacturing, 7, 441-455.

Smith, R. (1980). The contract net protocol: high level communication
and control in distributed problem solver. IEEE Transactions on
Computers, 29(12), 1104-1113.

Smith, F. S. (1994). OPIS: A methodology and architecture for reac-
tive scheduling. In M. Zweben & M. S. Fox (Eds.), Intelligent
scheduling (pp. 29-66). San Mateo: Morgan Kaufmann.

Smith, E. S. (1995). Reactive scheduling systems. In D. Brown & W.
T. Scherer (Eds.), Intelligent scheduling systems (pp. 155-192).
Dordrecht: Kluwer Academic.

Sousa, P., & Ramos, C. (1999). A distributed architecture and negotia-
tion protocol for scheduling in manufacturing systems. Computers
in Industry, 38(2), 103-113.

Stoop, P. P. M., & Weirs, V. C. S. (1996). The complexity of scheduling
in practice. International Journal of Operations and Production
management, 16(10), 37-53.

Sun, J., & Xue, D. (2001). A dynamic reactive scheduling mechanism
for responding to changes of production orders and manufacturing
resources. Computers in Industry, 46(2), 189-207.

Suresh, V., & Chaudhuri, D. (1993). Dynamic scheduling a survey of
research. International Journal of Production Economics, 32(1),
53-63.

Szelke, E., & Kerr, R. M. (1994). Knowledge-based reactive schedul-
ing. Amsterdam: North-Holland.

Tharumarajah, A., & Bemelman, R. (1997). Approaches and issues in
scheduling a distributed shop-floor environment. Computers in In-
dustry, 34(1), 95-109.

Tharumarajah, A. (2001). Survey of resource allocation methods for
distributed manufacturing systems. Production Planning & Con-
trol, 12(1), 58-68.

Vieira, G. E., Herrmann, J. W., & Lin, E. (2000a). Analytical models
to predict the performance of a single machine system under peri-
odic and event-driven rescheduling strategies. International Jour-
nal of Production Research, 38(8), 1899—-1915.

Vieira, G. E., Hermann, J. W., & Lin, E. (2000b). Predicting the per-
formance of rescheduling strategies for parallel machine systems.
Journal of Manufacturing Systems, 19(4), 256-266.

Vieira, G. E., Hermann, J. W., & Lin, E. (2003). Rescheduling manu-
facturing systems: a framework of strategies, policies and meth-
ods. Journal of Scheduling, 6(1), 36-92.

Wu, S. D., Storer, R. H., & Chang, P. C. (1991). A rescheduling pro-
cedure for manufacturing systems under random disruptions. In
Proceedings joint USA/German conference on new directions for
operations research in manufacturing (pp. 292-306).

Wu, S. D., Storer, R. H.,, & Chang, P. C. (1993). One machine
rescheduling heuristics with efficiency and stability as criteria.
Computers Operations Research, 20(1), 1-14.

Yamamoto, M., & Nof, S. Y. (1985). Scheduling/rescheduling in the
manufacturing operating system environment. International Jour-
nal of Production Research, 23(4), 7105-722.

Youssef, H., Sait, S. M., & Adiche, H. (2001). Evolutionary algorithms,
simulated annealing and tabu search: a comparative study. Engi-
neering Applications of Artificial Intelligence, 14(2), 167-181.

Zhou, H., Feng, Y., & Han, L. (2001). The hybrid heuristic genetic
algorithm for job shop scheduling. Computers and Industrial En-
gineering, 40(3), 191-200.

Zweben, M., & Fox, M. S. (1994). Intelligent scheduling. San Mateo:
Morgan Kaufmann.

Zweben, M., Daun, B., & Deale, M. (1994). Scheduling and reschedul-
ing with iterative repair. In M. Zweben & M. S. Fox (Eds.), Intel-
ligent scheduling (pp. 241-254). San Mateo: Morgan Kaufmann.

@ Springer

	A survey of dynamic scheduling in manufacturing systems
	Abstract
	Introduction
	The dynamic scheduling problem
	Completely reactive scheduling
	Predictive-reactive scheduling
	Robust pro-active scheduling

	Rescheduling in the presence of real-time events
	Rescheduling strategies
	When to reschedule

	Dynamic scheduling techniques
	Heuristics
	Meta-heuristics: tabu search, simulated annealing, and genetic algorithms
	Multi-agent based dynamic scheduling
	Multi-agent scheduling architectures
	Autonomous architectures
	Mediator architectures

	Other artificial intelligence techniques

	Comparison of solution techniques
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

