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Abstract. Transfer-matrix techniques are used to extend the self-avoiding polygon
generating function on the square lattice to terms in xa6, corresponding to 46 step polygons'
These techniques are then extended to apply to directed square lattices, such as the L and
Manhattan lattice, and the self-avoiding polygon generating function to xa8 is found for
these lattices.

Series analysis confirms that the'specific heat'exponent a=i for the self-avoiding
walk problem, and gives the following estimates for the connective constants: rr(sa) =

2.638155+0.000025, p(L)=t.5657+0.00ts and p(Man.):1.7328+0'0005. Some
evidence for a correction to scaling exponent A=0.84 is found from square lattice series.

1.. Introduction

In an earlier paper (Enting 1980) it was shown how generating function techniques
could be used to extend the known polygon generating function series for the square
lattice, and the series was obtained to x38. In this paper we extend that calculation to
ra6, and show how the method can be applied to directed lattices, such as the L lattice
(a square lattice on which each step must be perpendicular to its predecessor) and the
Manhattan lattice, in which adjacent rows (columns) have antiparallel directions,
corresponding to the traffic pattern in Manhattan. These lattices afe shown in figure
l. The method and its extension are discussed in $ 2.

Figure 1. (a) L lattice orientations. (D) Manhattan lattice showing orientations and the

two distinct tyPes of site.
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These extended series are analysed in $ 3. For the square lattice in particular it
has been possible to obtain a very accurate estimate of the connective constant, with
an uncertainty of I part in 105. For the L and Manhattan lattices less accurate estimates
of the connective constant are obtained.

2. Enumerating polygons

The enumeration techniques that we used are based on those used by Enting (1980)
in counting square lattice polygons of up to 38 steps. There are two separate com-
binatorial aspects involved in this approach. The first problem is to enumerate all
polygons of a particular class that can be contained within a rectangle of a given size.
The second problem is to construct a linear combination of these finite-rectangle
enumerations that gives the correct enumeration for the infinite lattice.

The enumerations for the finite rectangles are performed using transfer matrix
techniques, based on the concept of building up a rectangular array one site at a time.
In order to perform the enumeration as efficiently as possible, the enumerations are
performed for rectangles whose width is not greater than their length and the construc-
tion is based on taking each particular width and adding columns of sites so as to
extend the length. This approach minimises the size of the vectors on which the transfer
matrices operate. The enumerations for rectangles whose width exceeds their tength
is obtained using the symmetry of the lattice. For each rectangle, what is counted is
the number of polygons that span the full length of the rectangle and which obey any
special constraints for the particular lattice. The polygons are not required to span
the full width of the rectangles. This simplifies the transfer matrix method of enumer-
ation but it does introduce an asymmetry that must be considered when reconstructing
the final infinite lattice enumeration.

In enumerating the polygons, the 'self-avoiding' constraint and the special con-
straints on the directed lattice are 'local' constraints that are readily embodied in a
transfer matrix that builds on one lattice site and up to two steps of the polygon at
each iteration. There is also a 'global' requirement that the resulting graphs consist
of a single component. This can be ensured by

(i) requiring that all graphs span the rectangle so that it is impossible to generate
a sequence of disjoint polygons along the length of the rectangle;

(ii) specifying the connectivities ofthe free ends ofthe graphs as they are generated
so that it is forbidden to complete any single polygon component if the partially
constructed graph has free ends from which another disconnected component can be
constructed.
In order to specify the connectivities of the loops of the partially constructed polygons,
it is sufficient to label the ends with I or 2 according to whether the end is the first or
second end of the loop encountered when traversing the width of the rectangle. The
various possible combinations are shown in figure 6 of Enting (1980) and these
combinations lead to the rules shown in figure 3 of this paper. These rules embody
transformations of the original problems. For the L lattice, we count square lattice
polygons that change direction at every site. On the Manhattan lattice we count square
lattice polygons restricted so that, on half the sites, the vertices are one of the four
forms shown in figure 2(a) while on the other half, the vertices are one of the four
types shown in figure 2(b).
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Figure 2. (a) The four types of junction allowed at type 0 sites on Manhattan lattice
polygons. (b) The junctions allowed at type I sites of Manhattan lattice polygons.

To show the equivalence in the L lattice case, every L lattice polygon corresponds
to one possible square lattice polygon with a turn at each vertex, and every square
lattice polygon that does have a turn at each vertex can be oriented consistently with

the L lattice by following the orientation from any one of its steps.
In the Manhattan lattice case, the argument is similar in that every Manhattan

lattice polygon is a square lattice polygon and will have its sites alternatin! between
the types shown in figures 2(a) and (b). Any square lattice graph that obeys these
constraints can be oriented in a manner consistent with the Manhattan lattice by taking
the orientations of the pair of edges that meet at any right angle turn, so long as the
two types of site shown in figure 2 are assigned in a manner consistent with the arrows
as in figure l. Formally at least, it is necessary to construct two sets of rectangles in

the Manhattan lattice enumeration, those starting with type 0 sites and those starting
with type I sites. As the rectangles are built up it is necessary to keep track of the

type of the site that is currently being added so that the rules shown in figure 3 can
be applied.
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Figure 3. The configuration of edges that can be built onto a site, given the v4rious possible
existing edges at that site. x denotes an input which is either not possible in that case or
for which there is no allowed continuation. 'Accumulate' means that this configuration
cannot contribute to larger rectangles but will contribute for the current length if the partial
graph has no free ends. 'related". this junction will have changed the loop connectivity
and other edges must be relabelled. The labels l, 2 define the connectivity (see Enting
1980). * denotes configurations that are forbidden in the bottom row of a rectangle.
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The transfer matrix formalism enumerates the polygons by building up vectors of
generating functions. A line is drawn across the width of the rectangle as shown in
figure 7 of Enting (1980). Each possible way in which the loop edges can cross this
line, and each possible labelling of these intersections with I and2, is assigned to a
distinct vector component. The combinations in figure 3 show which new sets of
intersections become possible when a single site (shown as O) is added. These new
configurations make a contribution to the new vector component that is equal to the'old' component multiplied by x to the power of the number of new edges (i.e. xo, xr
or xt). Detailed examples of the use of generating functions are givin by Enting
(1980). The last column of table 2 of Enting (1980) gives the number of vecror
components needed for various widths of rectangles. (Note that the widths specified
in that table are numbers of sites, not numbers of steps as used below.)

For the second part of the procedure, the basic combinatorics for combining
generating functions for finite rectangles was given by Enting (1980). If g-,(x) is the
generating function for all polygons that fit into an mxn rectangle but not into any
smaller rectangle, then the generating function for the number of square lattice polygons
per lattice site is

U(x) = I g^,(x). (2 .1 )

This can be approximated by

U(x) - tJp(x )=  I  g^ , (x )

^l)".*

which will correctly enumerate all polygons of up to 2/r
can be rewritten as

where

[Jro*r(x): I d^ng^n
m < p

n : m + n < 2 p + l

(2.2)

steps. This approximation

(2.3\

Q.aa)

(2.4b)

Q.ac)

calculates G^"(x) which is the
rectangle but not into any mxp

(2.s)

(2.6)

(2.7)

Q ^ - :  l ,

C l ^ n : 2 ,

a ^ n : 0 ,

m 4 P ,

m < n , r n * n < 2 p * 1 ,

otherwise.

The transfer matrix formalism defined above actually
generating function for polygons that fit into an m xn
rectangle for p < n. Thus

O - :  
A , ( p - m * l ) g ^ .

This can be inverted to give

g^n : G^n - 2G^-t,n I  G^-2,n.

Substituting into (2.3) gives

IJzr*lx): I C^nG^n
m < p

n i m + n < 2 p + l
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where

C^^ :  l ,

C^-2,^= -1,

C ^ , n : 2 ,

C^ ,n :  -2 ,

C ^ l : 0 ,

(Note that the condition m<n in (2,8d) was incorrectly given as m<n
( 1e8o).)

Expression (2.7) will correctly enumerate square lattice polygons of up to 4p+2
steps. For the L lattice all polygons have 4n steps and so the largest polygons correctly
enumerated by (2.7) are those of 4p steps. However, on the L lattice, expression (2.7)
also enumerates all but (p - 1) of the polygons of (4p + 4) steps and so the series can
be extended by applying the simple correction of p-1. The p-l graphs that have to
be added explicitly are most easily described in terms of square lattice graphs derived
from them by linking every second site to give a polygon of2p*2 steps. These square
lattice graphs are simple rectangles. Each L lattice graph corresponds to two square
lattice graphs and each square lattice rectangle corresponds to two L lattice graphs,
except for the I xp and p x I rectangles which each give only one L lattice polygon.
Thus p possible rectangles give p-l distinct L lattice graphs that fit into a (p+l)x
(p+l) square on the L lattice but not into any smaller rectangle. We have explicitly
checked this argument by applying our procedure for evaluatinC Q.7) using various
values of p and comparing the results with our final series. In each case the @p + a)th
term was (p - t) less than the term obtained using larger values of p'

A different combinatorial scheme was used on the Manhattan lattice, firstly because
of the need to distinguish type 0 and I sites and secondly to make use of the fact that
the g9) and g$) (generalisations of g-n, labelled according to the type of the top left
site) are zero unless both la and n are odd. If G^n is also generalised to Gl}I and
CLll taUeUea according to the type of the top left site then

Uu(x): I a^"(sl:I+ c::"1).
m + n <  k

Because both types of rectangle are included, Uu(x) thus generates the number pf L
lattice polygons per two lattice sites.

Equation (7.5) generalises to

f f i4p,

m { P ,

f f i 1 f , ,  m *  n = 2 p *  l ,

f l 1 f l , m * n = 2 p ,

otherwise.

(2.8a)

(2.8b)

(2.8c)

(2.8d)

(2.8e)

by Enting

cf,), + Gl)I :,\,"(*- p + t Xs!| + g!'J).

Inverting (2.10) gives

cf)+ct'): I e,-{c*)"+c*0, p,nodd,
odd m<P

(2.e)

(2.10)

(2 . r  l )

(2.12a, b)

(2.r2c)

with

Cro:  I ' Cp,r-z= -3,

ep,p-zi=el)i4, 2< j <Lp.

Because only odd m, n have non-zero g^,, if the G^, can be evaluated up to some



l 0 r2 I G Enting and A J Guttmann

maximum width p, expression (2.9) is most efficiently used in the lbrm

(Jzp*z(x)= I q^",6$I+s*I),
odd m<p

ntm+n<2p+2
a odd

which correctly enumerates polygons of up to (p+a) steps. Substituting (2.11) into
(2.13) gives

p odd, (2.r3)

(2.r4)

(2.r5a)

(2.rsb)

(2.tsc)

with

odd m < p, j  > l ,2p 12- m -2j  > l ,
(2. |sd)

(2.15e)

The calculations were performed using the residue arithmetic of integers modulo
various primes. To reconstruct the counts required 4, 2 and 2 primes for square, L
and Manhattan lattices respectively. (The primes used were the largest successive
primes less than 2ts.) In each case the maximum width (i.e. the quantityp in expressions
(2.7) and (2.13)) was l l steps, which meant that 41835 vector components were
required (Enting 1980) and that the series were obtained correctly to 46,48 and 48
step polygons for the square, L and Manhattan lattices. As discussed above, to
enumerate the 48 step polygons on the L lattice it was necessary to add 10 to the
enumeration obtained by evaluating expression (2.13) with p= l l.

The calculations were performed using a Perkin-Elmer 3220 minicomputer at the
University of Newcastle running Unix level 7. Approximately 5 days was required for
each prime for the square lattice and I day for the L lattice calculations. The Manhattan
lattice run took 2 days because both G9) and GII were calculated. These times are
a reflection of the limited hardware at our disposal, more than 60% of the time being
taken by disc access. With a virtual memory operating system we would expect the
times to be at least halved.

The times taken for the directed lattice appear relatively long, considering the small
numbers of graphs that are actually enumerated. These could have been reduced if
the programs had been modified to take account of the fact that all the directed lattice
polygons have 4n steps. In addition it must be remembered that the amount of
computation required to enumerate polygons by direct construction tends to grow as
the number of self-avoiding walks rather than as the number of polygons. This type
of behaviour would suggest that the transfer matrix approach may not be the most
efficient way of enumerating directed lattice polygons-we chose this method because
it involved only minor modifications to existing programs. We have not been able to
find a way of exploiting the relation between L lattice polygons of 4n steps and square
lattice polygons of 2n steps. In order to apply this relation, additional information is
required in the square lattice enumeration. This increases the size of the vectors of
pa:rtial generating functions so that they are essentially as large as the vectors required
when enumerating L lattice polygons by the techniques described above.

The resulting polygon counts are shown in table l.

uzo *z(x) = L d^^(Gl:) + cll)),

d ^ ^ :  l ,

d^-2,^ = -1,

d^,zp+z-m =2,

dm2p+2-m-zj: el)t4,

d^ ,n :0 ,

p odd,

odd m<p,

odd m<p,

odd m<p,

otherwise.
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Table 1. Coefncients of polygon generating function oFthe square, Manhattan and L lattices.

Square Manhattan

4
6
8

l 0
l 2
t 4
l 6
l 8
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48

I
2
I

28
124
588

2938
15 268
81 826

449 572
2 521 270

14385 376
83 290 424

488 384 528
2 89s 432 6(0

17 332874364
r04 653 427 0r2
636737 003 384

3 900 770 002 646
24 045 500 I 14 388

149 059 814 328 236
928 782 423 033 008

I
0
2
0

0
32
0

168
0

970
0

5 984
0

38 786
0

261 160
0

l  812 630
0

1 2 895 360
0

93 638 634

I
0
0
0
I
0
L

0
9
0

36
0

t54
0

684
0

3 128
0

t4 666
0

70 258
0

342766

3. Analysis of series

It follows from Nienhuis's (1982, 1984) results and scaling laws that the polygon
generating function (ncn) should have a cusp-like singularity with an exponent of ].
That is, we expect

p(x) : 
Drprnx'," 

- A(x)+ B(x)(t - *z*z1z-e + c(x)(1 - p2x2)2-d+^ (3 .1 )

where a : r1, and A, B and C are even functions of x regular in the physical disc
lr'l=p-'. Al I is a confluent correction exponent and P is an even function of x
due to the loose-packed lattice structure. Initially, we will confine our analysis to the
square lattice pcr.

Pad6 approximants cannot be used on (3.1) directly, due to their inability to handle
cusp-like singularities (see e.g. Gaunt and Guttmann 1974). Difierentiating the series
three times sharpens the physical singularity, so it now diverges at x2:g,-2 with an
exponent of (-l-a). Unfortunately, dlog Pad6s are only slowly convergent, and
enable us to estimate only p-2 =0.1437 i0.0001 with I * a : l.5l r0.02.

The recurrence relation method (Guttmann and Joyce 1972) can be used for
cusp-like singularities such as (3.1). The second-order recurrence relations can
accommodate the first two terms in (3.1), while third-order recurrence relations can
additionally accommodate any confluent term. The estimates of p2 and 2 - a as found
by this method are shown in table 2. Rapid convergence is obtained, and we make
the est imates p.-2 -0.143 68 40.0001, 2- a:  1.500+0.005.
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Table 2. Analysis of square lattice polygon generating function by recurrence relation
method. n is the degree of the polynomial multiplying each coefficient in the recurrence
method.

2nd order
p - 2  2 -  a

3rd order
l L - 2 - a

2
J

4
)
6

0.143 03 I
0.143 895
0.143 672
0.143 681

1.640t
1.4250
1.5048
1.5003

0.143 006
0.143 658
0.143 683

1.6616
L5070
L4986

Both unbiased methods therefore support the result d=+. If we plot estimates of
p'-2 against estimates of 2- a from the recurrence relation method results, we obtain
a seemingly linear relationship, just as found for pole-residue plots in the Pad6 method.
In this way, we est imate that i f  d: t ,  p-2:0.1436810 or p:2.638155. Our earl ier
estimate (Guttmann 1984), based on an analysis of the chain generating function, was
p:2.6381+0.0002, in excellent agreement with the above, while Berretti and Sokal
(1985) have found 2.6382010.00034 from Monte Carlo analysis.

An alternative unbiased extrapolation method that appears to be very effective is
the Levin u-transform. This appears to have been first used in a siinilar context by
Barber et al (1984), and is discussed at some length by Smith and Ford (1979), who
have reviewed I I difterent 'standard' numerical methods for sequence extrapolation,
and found the Lpvin transform the most successful general purpose method. In that
mgltrod, if we wish to extrapolate a sequence {olo)iI:o, we do so by forming sequences
{olo)}} ;u,  k= 1,2,3,.  .  .  ,  def ined by

af) = Au (qf;) cf;)) 1 Lkcf), cf) :nk-r1,6o<;t , (3.2)

where

L ln= ln* r -  ln

In our case we take cl'):pzn/ pzn-2, the ratio of successive coefficients in (3.1). The
results are shown in table 3.

The sequence {a?} is decreasing, while ia!3)} is increasing. The last entries in each
case appear to provide 'bounds' so that 6.9593 < p'<6.9602 or p.:2.6381+ 0.0001 in
precise agreement with our biased analysis of the snw series.

The Levin transform method can also be used to provide biased estimates as
follows. Since we exfect the ratios p2n/p2n_2- p,2Sl+@-3)/nf, we take alo)=
(pr"/pr"-r)/[l+(a -3)/n]. Subsequent sequences are also shown in table 3. The
elements of {a?l are increasing, but the rate of increase is rapidly slowing. The last
entries of {a!3)} are stable at p' - 6.959 86, and we estimate pz :6.959 86 r 0.000 13 or
p:2.638155t0.000025, in precise agreement with the recurrence relation method
results previously quoted, and right in the middle of the current series and Mbnte
Carlo estimates. The phenomenological renormalisation scheme of Derrida (1981)
gives p:2.638 17*0.0002, which is now seen to be an extremely accurate estimate.

Other biased methods tried include forming Pad6 approximants to the thrice
differentiated series then raised to the power (l). Many approximants were defective,
butthosethatwerenotgavesteadilyincreasingestimatesofpc-2,soyielding p'<6.9607.
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Table 3. Estimates of p2 for the square lattice polygon generating function from the Levin
transformed sequence of ratios. Biased estimates assume a critical exponent of -t.

af)or,l,of)o9)o'!)
Unbiased

a? a*'
Biased

o?)

5 4.741935
6 4.996 599
7 5.196',132
8 5 .359 314
9 5.4942M

l0 5.608 ls6
l l 5.705 607
12 5.789 937
13 5.863 634
t4 5.928 592
l5 5.986 281
r6 6.036 858
17 6.084244
18 6.126 187
19 6.164296
20 6.199073
2t 6.230938
22 6.260 241

6.520 660
7.005 481
6;123806
7.031 530
6.935756
6.972l15
6.947 78r
6.958 678
6.957 365
6.958725
6.958 706
6.959 l3l
6.959269
6.959 39t

9.213 790 7 .239 213
8.827 329 7.123 822
8.352 835 7.083 897
8.045 016 6.957 396
7.797 591 6.976776
7.634 006 6.966 314
7.513 284 6.96't 643
'1 .423 546 6.963 33'l
7 .353 761 6.962 404
7.298798 6.96r',456
't .254 649 6.960 973
7 .218 662 6.960 595
7.188 924 6.960 363
't.164065 6.960 199
7.143067 6.960084
7.r25 167

9.483 8't | 't .004 695 6.909 4l I 6.948 877
8.565 598 6.967 804 6.927 282 6.969 233
8.083 806 6.954 013 6.944636 6.945 490
7395 365 6.951 138 6.944949 6.963 566
7.607 415 6.949 43t 6.951 332 6.958 400
7.417 542 6.949 912 6.953 547 6.960 986
7 .383 727 6.950 760 6.955 722 6.959 212
'1.313605 6.951 835 6.956669 6.959913
7.259'13't 6.952812 6.957 495 6.959778
7.2t7 416 6.953 698 6.958042 6.959 861
7.183 538 6.954472 6.958 453 6.959 841
7 .155 979 6.955 l4l 6.958 750 6.959 864
7.t!3252 6.955 715 6.958 976 6.959 866
7 .n4 282 6.956 208 6.959 148 6.959 869
7.098 280 6.956 631 6.959 281
7.084 655 6.9s6995
7.072956
7.062836

Biased Neville table extrapolation for p.2 (which implicitly assumes the absence of
any confluent term) gave p' :6.959'l *.0.0009, or p':2.63812* 0.000 17.

In order to estimate the value of any possible confluent exponent A, we tried all
the standard biased methods, with p,z = 6.959 86. The recurrence relation method gave
no useful results, due to overflows in solving associated polynomial equations. The
Baker-Hunter (1973) transformation was a little more successful, and gave weak
evidence of a second exponent A:0.75+0.16. The Adler-Moshe-Privman method
(1982) was instructive, and with A:0.84, estimates of 4 were very stable at d:
0.4997+0.0011, where the quoted error is +l standard deviation, based on a sample
of the last nine table entries, and taking ,L = 2.638 155. With p:2.638 14, and A:0.835,
estimates of d were even better, at d, :0.5000 * 0.0008. Repeating this analysis for the
sAw series, for which we expect y:43/32=1.343 75, we found 7:1.3434+0.0003
with p =2.638155 and 4:0.84, and y:1.3441t0.0003 with p:2.63814 and A:
0.835.

This accords well with an earlier analysis of the triangular lattice sAw series
(Guttmann 1984), in which we pointed out there was some evidence of a confluent
exponent with a value of A:0.84.

Thus we conclude that the Adler-Moshe-Privman method does consistently indicate
a correction to scaling exponent of A:0.84. It is unfortunate that no other method
enables a similar conclusion to be drawn. Indeed, both Privman (198a) and Majid et
at (1953) find evidence for A-0.65.

Turning now to the pcr for the Manhattan and L lattices, we observe that the small
number of coefficients makes conventional methods of analysis difficult, in the sense
that convergence is rather slow. We have therefore adopted an alternative technique,
which relies on the assumption that the asymptotic form of the pcrs for the Manhattan
and L lattices is the same as that for the square lattice. Thus if pl, p! and p: denotes
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the coefficients of .r" in the pcr for the square, Manhattan and L lattice respectively,
we have

p"o"- K"p!",

and hence

pY"- K*pf,X, ptor- Ktp!,

rY:O2, lpy^1r /+n -  (p . / r r r ) (Kr  lK-) ' /o" ,  n :1,2,3,4,  - '  .  ,

rr: (pl,/ pf;^7t'/+n - 0""1 pt)(K"l Kt)'/o".

To estimate ps/ t-t;y and p,sl p,y we form the sequences

sY: exp{4[n loe(rY) - (n - l) log(r]_,)l],

s l :  exp{4[n log(rf)  -  ( , r  -  l )  log(r l - , ) ] ] .

(3.4)

(3.s)

The sequences {sf;}, {sl} so obtained can be expected to converge in a manner
determined by the confluent and analytic correction terms. We have found that the
Levin u-transform gives a reasonably well converged sequence of estimates, and these
results are shown in table 4, where we have taken {s}} and {s}} as {a!0)} in (3.2).
From them we estimate

trs/ tt1q : 1.5225 t 0.0004, tts/ trr: 1.685 + 0.002. (3.6)

Table 4. Estimates of g. for the Manhattan and L lattice polygon generating function as
a multiple of trt. for the square lattice.

n af) a\ ] )

Manhattan
o9) of)oP^ ( 0 )af)

L lattice
o?)

3 1.499 906 t.471304
4 1.508 845 1.521 806
5 l.st't 645 1.524996
6 I .519 905 1.522 692
7 1.521 209 1.522810
8 1.521 804 t.522549
9 1.522 t3t 1.522 491

10 t.522294 1.522438
il  1.522374
L2 1.522407

r.st ' t  692 1.513 331
r.'s',t 874 t.521 201
1.521926 1.527 200
r.522983 1.522266
1.522 396 1.522 478
r.522448 1522409
r.522 416

2.051 544 2.272 609
1.855 240 1.656 530
1.57',7 2'13 1.667 241
1.665 969 r.6657'.t0
1.66'1 0r4 1.701 048
1.672614 1.685 005
t.676708 1.683 671
1.679 t44 1.685 058
1.680 570
1.681 553

1.546 t7 | | .668 264
1.667 387 1.666 664
1.666 44t 1.666 885
r.66't 450 r.664857
1.679386 1.686 238
1.682 384 1.676820
1.697 737

Similar though less well converged estimates are obtained from Neville table extrapola-
tion (not shown). Using our estimate of /,rs:2.638 155 we find

Fv: 1.7328 +0.0005, pr:  l '5657 +0.0019. (3.7)

These are in excellent agreement with the estimates (Guttmann 1983) based on the
chain generating functions of the two series of pu:1.7340+0.0015 and p.t:
1 .5658 + 0.0010.

In the preceding analysis for p11 and trry, the discerning reader will have noticed
that we require the coefficient pir, and we have only obtained the square lattice pcr
up to the coefficient it pfu. To estimate pla we have used the recurrence re.lation
method, discussed above, to predict the next coefficient from the available coefficients.
In this way we estimate pir:5 814401613 000000 which we expect to be accurate to
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the l0 quoted significant digits. This estimate of accuracy which follows from the
prediction of known coefficients is rather conservative and is more than sufficient for
the analysis of ,rv and g,t.

4. Conclusion

We have substantially extended the pcr series for the square, L and Manhattan lattices,
by using the finite lattice method and its extensions that allow directed lattices to be
treated.

Analysis of the extended series allows accurate estimates of the connective constant
to be made, particularly for the square lattice. For the three lattices we find

ps = 2.638 I 55 + 0.000 025, pu: 1.5657 + 0'0019,

tru:1.1328+o'ooo5. 
(4 ' l )

Our analysis also provides strong support for Nienhuis's (1982,1984) results, which,
coupled with scaling, imply that a : I exactly, and gives some evidence, unfortunately
based on only one method, for a correction to scaling exponent of A - 0.84. It would
be very worthwhile if the square lattice snw series could be extended by three or four
terms in order to check this result.

In our earlier analysis (Guttmann 1984), a number of possible exact_lloMgfor p,
(sq) were given. The only one to survive our ref ined est imate is p:Vl l+V5-l :
2.638 140. . . , which we believe has the status of an interesting possibility, and useful
mnemonic.
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