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Multivariate Multiscale Entropy Analysis
Mosabber Uddin Ahmed and Danilo P. Mandic

Abstract—Multivariate physical and biological recordings are
common and their simultaneous analysis is a prerequisite for the
understanding of the complexity of underlying signal generating
mechanisms. Traditional entropy measures are maximized for
random processes and fail to quantify inherent long-range de-
pendencies in real world data, a key feature of complex systems.
The recently introduced multiscale entropy (MSE) is a univariate
method capable of detecting intrinsic correlations and has been
used to measure complexity of single channel physiological sig-
nals. To generalize this method for multichannel data, we first
introduce multivariate sample entropy (MSampEn) and evaluate
it over multiple time scales to perform the multivariate multiscale
entropy (MMSE) analysis. This makes it possible to assess struc-
tural complexity of multivariate physical or physiological systems,
together with more degrees of freedom and enhanced rigor in the
analysis. Simulations on both multivariate synthetic data and real
world postural sway analysis support the approach.

Index Terms—Multivariate embedding, long term correlation,
multivariate multiscale entropy (MMSE), multivariate sample en-
tropy (MSampEn), multivariate system complexity.

I. INTRODUCTION

R EAL world phenomena are characterized by long term
dependencies in their dynamical behaviors, and a number

of criteria have been developed to assess structural complexity
of the underlying signal generating mechanisms. Such criteria
are typically based on local predictability, irregularity, self-sim-
ilarity, and synchrony [1]. Time delay embedded reconstruction
is particularly popular, as it allows for the estimation of invariant
quantities (in terms of smooth transformations in state space) of
the original system, such as attractor dimensions, Lyapunov ex-
ponents and various entropy measures [1].
Traditional entropy measures, such as Shannon entropy,

Kolmogorov–Sinai (KS) entropy, approximate entropy (ApEn)
[2], and sample entropy (SampEn) [3], are maximized for
completely random processes, and are used to quantify the
regularity of univariate time series on a single scale, by e.g.,
evaluating repetitive patterns [4]. As a result, using entropy to
measure complexity of physiological data, which exhibit high
degree of structural richness, yields lower entropy than for
their randomized surrogates, formed by shuffling the original
data samples and thus destroying any structure present. This is
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counterintuitive for a measure of complexity, and the greater en-
tropy of the uncorrelated surrogate series also highlights a lack
of a straightforward correspondence between regularity and
complexity. Neither completely predictable (e.g., periodic) nor
completely unpredictable (e.g., uncorrelated random) signals
are truly complex, since at a global level none is structurally
rich. Instead, time series observed from dynamical physical and
physiological systems generally exhibit long-range correlations
at multiple spatial and temporal scales.
The multiscale entropy (MSE) method proposed by Costa et

al. [4] explicitly quantifies the amount of structure (correlation)
in real world time series, that is, the underlying system com-
plexity. The method evaluates sample entropy of coarse grained
(averaged over increasing segment lengths) univariate time se-
ries; the underlying idea is that coarse graining defines temporal
scales, hence a system without structure would exhibit a rapid
decrease in entropy with an increase in time scale. The existing
MSE algorithm has been proven to be able to distinguish be-
tween physiological time series with different degrees of com-
plexity and its extensions have included more rigorous defini-
tions of time scales [5]. Applications include the analysis of
pathologic heartbeat conditions like erratic cardiac arrhythmia
and congestive heart failure [4], electroencephalogram (EEG)
changes in patients with Alzheimer’s disease [6], postural sway
dynamics analysis [7], and complex dynamics of human red
blood cells [8]. All the above results strongly support the general
“loss of complexity” behavior when a living system undergoes
change from its normal “unconstrained” state (healthy) to that
under stress, e.g., due to ageing and disease [9].
Recent developments in sensor technology have enabled rou-

tine recording of multivariate time series from both physical
and biological systems, yet when assessing their complexity the
standard MSE analysis can only consider every data channel
separately. This is only appropriate if the components of a mul-
tivariate signal are statistically independent or at the very least
uncorrelated (which is usually not the case). For instance, the
embedding theorem [10] establishes that the dynamics of a mul-
tivariate system can be reconstructed from sufficiently long time
delay embedded vectors of a single time series (seen as a one-
dimensional projection of the multivariate system trajectory),
however, in practice this is not reliable for systems exhibiting
more than two degrees of freedom. Indeed, based on measure-
ments of the -coordinate of the Lorenz system we cannot re-
construct its dynamics, as embedding based on the -coordinate
does not resolve the - symmetry [11].
In this work, we illustrate substantial advantages in simul-

taneously analyzing dynamical complexity of several variables
observed from the same system, especially if there is a large de-
gree of uncertainty or coupling underlying the measured system
dynamics. To this end, we first introduce multivariate sample
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Fig. 1. Multivariate sample entropy as a function of data length N, for
and in each data channel. Shown are the mean values for 30 simulated
trivariate time series containing white and noise.

entropy, and evaluate its evolution at different temporal scales.
The so introduced multivariate multiscale entropy (MMSE) is
shown to operate on any number of data channels, and to pro-
vide a robust relative complexity measure for multivariate data.
The approach is supported by simulations on both synthetic and
real world multivariate processes.

II. MULTIVARIATE MULTISCALE ENTROPY

To introduce the multivariate multiscale entropy (MMSE)
analysis, we propose the following steps.
1) Define temporal scales by averaging a -variate time se-
ries , over non-overlapping time
segments of increasing length (coarse graining), where
is the number of samples in every channel. This way, for
scale , a coarse grainedmultivariate time series is obtained
as , where and the
channel index .

2) Evaluate multivariate sample entropy, , for
each coarse-grained multivariate , and plot
as a function of the scale factor .

However, methods to calculate multivariate entropy are still
lacking. To this end, we next propose a multivariate sample en-
tropy measure, and use it to introduce the MMSE method.

A. The MSampEn Method

To calculate , recall from multivariate embedding
theory [11], that for a -variate time series ,

, observed through measurement functions ,
the multivariate embedded reconstruction is based on a com-
posite delay vector

(1)

where is the embedding vector,
the time lag vector, and the composite delay

vector , where .
For a -variate time series , , the

MSampEn method is introduced in Algorithm 1, and represents
a natural extension of standard univariate sample entropy [3].

Algorithm 1 The Multivariate Sample Entropy

1: Form composite delay vectors , where
and .

2: Define the distance between any two vectors and
as the maximum norm, that is,

.

3: For a given composite delay vector and a threshold ,
count the number of instances for which
, , then calculate the frequency of occurrence,

, and define .

4: Extend the dimensionality of the multivariate delay
vector in (1) from to . This can be performed
in different ways, as from a space with the embedding
vector the system can
evolve to any space for which the embedding vector is

. Thus, a total
of vectors in are obtained, where

denotes any embedded vector upon increasing the
embedding dimension from to for a specific
variable .

5: For a given , calculate the number of
vectors , such that ,
where , then calculate the frequency of
occurrence, , and define

.

6: Finally, for a tolerance level , estimate as

B. Effect of Data Length on MSampEn

It has been suggested in [2] that data samples
are sufficient to robustly estimate univariate approximate en-
tropy or sample entropy. To assess the sensitivity of the pro-
posed multivariate sample entropy to the data length parameter,
we evaluated multivariate sample entropy of a trivariate white
as well as noise as a function of sample size , where for
each channel the embedding dimension was and the
threshold . Fig. 1 shows that for both the white and
trivariate noise, MSampEn estimates were consistent for data
length , illustrating suitability of MSampEn for the
analysis of real world data. This way, the standard deviation of
multivariate sample entropy estimates (error bars) related to the
length of the simulated series is likely to be smaller than the
deviations related to experimental errors as well as inter- and
intra-subject variability for most practical applications.
Physically, for the standard univariate sample entropy, the

increase in sample entropy values with an increase in the em-
bedding dimension is due to progressively fewer delay vec-
tors to compare as increases. On the contrary, for MSampEn
the increase in does not reduce the number of the available
delay vectors, as the composite multivariate embedded vectors
are constructed in parallel. For instance, for the case in Fig. 1
and , we are not taking all the six points from the same
univariate series, instead we are taking two points (as )
from each of the three channels of the trivariate series in hand.
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Besides, in MSampEn calculation we do not give preference to
any particular over when increasing the embedding di-
mension from to . Instead, we create embedded vec-
tors in all the subspaces and compare them within and across
these subspaces to find the -neighbors. This also effectively in-
creases the total number of available delay vectors times, and
makes the proposed MSampEn robust to the variation in both
the parameter and data length .

C. Selection of Parameter Values

There are several parameters that need to be chosen in
calculation, each introducing their own constraints.

For instance, for multimodal data coming from heterogeneous
data channels, the individual channels are likely to exhibit
different embedding parameters and . There are several
methods [12] for determining the optimal embedding param-
eters and simultaneously, for a single channel. Future
developments should test for all the and parameters from
the different data channels simultaneously, but these are not yet
available. Also, standard sample entropy introduces a practical
constraint that , which is inherited in MSampEn. This
did not influence the results in this work and is sufficient for the
majority of real world applications. In MSampEn calculation,
the threshold parameter is set to some percentage of the
standard deviation; for MSampEn, we used its multivariate
generalization—the total variation, , where is the
covariance matrix. To maintain the same total variation for
all the multivariate series, the individual data channels were
normalized to unit variance so that the total variation equals
the number of channels/variables. This way, we take as a
percentage (say 15%) of , which is similar to taking

in each channel.

D. Multivariate Complexity Analysis

The multivariate MSE (MMSE) method assesses relative
complexity of normalized multichannel temporal data by
plotting multivariate sample entropy as a function of the
scale factor. A multivariate time series is considered more
structurally complex than another if for the majority of time
scales its multivariate entropy values are higher than those of
the other time series. A monotonic decrease in multivariate
entropy values with the scale factor reveals that the signal in
hand only contains information at the smallest scale, and is thus
not structurally complex. For instance, the standard univariate
MSE analysis in [4] showed that for random white noise (un-
correlated) the sample entropy values monotonically decrease
with scale, whereas for noise (long-range correlated) the
sample entropy remains constant over multiple scales. This has
a physical justification, as by design noise is structurally
more complex than uncorrelated random noise.
To illustrate the corresponding behavior for the proposed

multivariate approach, we considered a 4-variate time series,
where originally all the data channels were fed with mutually
independent white noise. The number of noise channels was
then gradually decreased (from 4 to 0) with a simultaneous
increase in the number of data channels that represent indepen-
dent noise (from 0 to 4). Fig. 2 shows the MMSE curves for
all the possible cases: notice that, as desired, when the number

Fig. 2. MMSE analysis for 4-channel data containing independent white and
noise. Each data channel had 10, 000 data points, and the plots represent

an average of 20 independent realizations and error bars the standard deviation
(SD).

Fig. 3. Multivariate multiscale entropy (MMSE) analysis for bivariate white
and noise. Each data channel had 10 000 data points, and the plots represent
an average of 20 independent realizations and error bars the standard deviation
(SD).

of channels representing noise increased, the
at higher scales also increased, and when all the four data
channels contained noise, the complexity at larger scales
was the highest (cf. smallest at scale 1).
Cross-channel correlations are a key aspect in multivariate

analysis and in the next set of simulations, we analyzed the
ability of MMSE to capture cross-channel properties. Fig. 3
shows that, as desired, the proposed multivariate extension of
MSE caters for both within- and cross-channel correlations: the
complexity of the correlated bivariate noise at large scales
was the highest, followed by the uncorrelated noise, and
correlated and uncorrelated white noise.

III. EXPERIMENTAL RESULTS

Multivariate complexity analysis of real world postural
sway dynamics (time series of the center of pressure (COP)
displacement) is next performed for young and elderly subjects
during quiet standing, and has been compared with the existing
univariate complexity analysis [7]. COP displacement was
recorded simultaneously for the mediolateral (side-to-side) and
anteroposterior (front-to-back) direction [13] for 15 healthy
young and 12 healthy elderly volunteers at 60 Hz.
Since the postural sway time series exhibits high frequency

fluctuations superimposed on low frequency trends, the data
was first detrended using the multivariate empirical mode
decomposition technique [14]. The values of the parameters
used to calculate MSampEn were , , and
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Fig. 4. Multiscale entropy analysis of COP time series for young (red—solid
line) and elderly (green—dotted line) subjects. Top: Univariate MSE for the
mediolateral component. Middle: Univariate MSE for the anteroposterior com-
ponent. Bottom: Bivariate MMSE analysis. The plots represent mean values of
SampEn/MSampEn for all subjects across all the trials and error bars represent
standard error.

(standard deviation of the normalized time series)
for each data channel; these parameters were chosen on the
basis of previous studies indicating good statistical repro-
ducibility for the univariate SampEn [3], [7]. Since the original
time series had data points, the highest achievable
scale factor had 300 data points; this was sufficient for
accurate analysis, as shown in Fig. 1.
The top and middle panel in Fig. 4 show the results obtained

by the univariate MSE performed for the mediolateral (ML) and
anteroposterior (AP) component of the COP time series, respec-
tively. The bottom panel shows that when both the ML and AP
component were considered within the multivariate approach,
the proposed MMSE was able to discriminate between young
and elderly subjects more efficiently, as indicated by the better
separation of the MMSE curves and the complexity index (area
under the MSE curve) being higher for healthy young subjects
than for their elderly counterparts1. Table I shows the statistical
significance of the results obtained by the one-tailed t-test with
unequal variances. It is evident that the difference in complexity
between the young and elderly subjects was statistically signif-
icant in the AP direction for a 5% significance level and not
significant in the ML direction. If, for rigor, we take a 1% sig-
nificance level, then none of the univariate analyses gave statis-
tically significant results. On the contrary, in the bivariate case
we observed significant differences, even for the significance
level of . This illustrates significant advan-
tages of using MMSE when assessing relative complexity of
real world multivariate data, and supports the more general con-
cept of multiscale complexity loss with ageing and disease or
when a system is under constraints, as those factors reduce the
adaptive capacity of biological organization at all levels [9]. The
Matlab code for the MMSE analysis can be downloaded from
[15].

IV. CONCLUSION

This work has generalized the recently introduced univariate
multiscale entropy (MSE) method to the multivariate case, to

1Due to ageing and the associated constraints, the complexity of postural
sway for the elderly is lower than for the young.

TABLE I
COMPLEXITY INDICES AND P VALUES OBTAINED USING ONE-TAILED

STUDENT’S T-TEST WITH UNEQUAL VARIANCE

provide complexity analysis of real world biological and phys-
ical systems which are typically of multivariate, correlated and
noisy natures. The proposed multivariate multiscale entropy
(MMSE) method has been shown to be naturally suited to re-
veal long range within- and cross-channel correlations present
in multichannel data. The MMSE method has been validated
on both illustrative benchmark signals and on a simultaneous
analysis of ML and AP component of postural sway dynamics
from the young and elderly subjects.
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