
Efficient Private Techniques for Verifying Social Proximity

Michael J. Freedman†∗ and Antonio Nicolosi†∗
†New York University,∗Stanford University

Abstract
A variety of peer-to-peer systems use social networks
to establish trust between participants. Yet the shar-
ing of social information introduces privacy con-
cerns. This paper proposes new privacy-preserving
cryptographic protocols that enable participants to
verify social proximity while exposing minimal infor-
mation about the parties’ social contacts. Compared
to previous results, our protocols are either signifi-
cantly more efficient (orders of magnitude faster than
PM [3]) or achieve stronger security properties at
similar cost.

1 Introduction
In peer-to-peer systems where resources are scarce or
users are subject to abuse, participants can leverage
social relationships to guide their interactions with
other users. Further considering transitive trust re-
lationships can extend a user’s vantage, while still
incurring a low risk of coming across abusive users.
In the email or instant messaging contexts, for exam-
ple, social networks can facilitate cooperative spam
blacklisting [8] or sender whitelisting [4].

A naı̈ve approach to discover transitivity is for one
party to send his list of friends to the other party,
who computes the set intersection of their two in-
put sets. Yet this simple form of information sharing
introduces privacy concerns.

While the problem of privacy-preserving two-
party computation has been widely studied in the
cryptographic literature [6, 9], general-purpose cryp-
tographic solutions are too computationally expen-
sive for practical use. Furthermore, their privacy
guarantees are often misaligned with applications’
specific threat models (discussed in§3).

This paper describes efficient cryptographic pro-
tocols with which parties can determine shared
friends while exposing minimal information about
their social contacts. Using RE: [4] as a motivat-
ing example—an email system we are building that

reliably accepts mail from senders based on prox-
imity in a social network—we describe two alter-
native methods to verify social proximity. The first
method, based only on cryptographic hash func-
tions and symmetric encryption, meets all of RE:’s
current privacy and security goals at a fraction of
the cost of its current Private Matching [3] pro-
tocol. The second method, while of comparable
cost, achieves stronger privacy guarantees (namely,
non-transferability) through its novel use of crypto-
graphic properties of bilinear groups [2].

Our contributions are two-fold. First, we describe
and define a security model for verifying social con-
nectedness in a privacy-preserving fashion (§3). In
fact, the mismatch between RE:’s goals and the pri-
vacy properties offered by Private Matching were a
source of both computational inefficiency and pri-
vacy limitations. Second, we propose cryptographic
protocols that protect such social proximity queries,
for both scenarios that require high efficiency (§4.1)
and those that demand strong security properties
(§4.2). While this paper employs RE: to help demon-
strate our protocols’ use within a concrete system,
they are similarly applicable to other applications
that leverage social networks.

2 Motivating application: R E:
Reliable Email (RE:) [4] is an automated email ac-
ceptance system that whitelists email according to
its sender. It seeks to undue the email unreliability
introduced by content-based filters and other spam-
fighting technologies which, while seeking to mini-
mize the amount of spam that reaches a user’s inbox,
occasionally misclassify legitimate mail as spam.

The concept of sender-based whitelisting for email
is hardly new. Yet, traditional whitelists suffer
from two chief usability issues. First, a recipient’s
whitelist cannot accept mail from a sender previ-
ously unknown to the recipient. Second, populating
whitelists requires manual effort distributed diffusely
in time, as users acquire new contacts.

1

To overcome these limitations, RE: automatically
broadens the set of senders whose mail is accepted
by recipients’ whitelists by explicitly examining the
social network among email users. Specifically, RE:
allows a userR to attestto another userS, which in-
dicates thatR is willing to have email fromS directly
forwarded to his mailbox. In other words, “UserR
trusts hisfriendS not to send him spam.” Such an at-
testation is a digitally-signed statement of the form:1

σR→S = {H(R),H(S), start , end}SKR

whereH is a collision-resistant cryptographic hash
function likeSHA-256 operating on the users’ email
addresses,start andend define the attestation’s va-
lidity period, andSKR denotes userR’s signing key.

RE: leverages these attestations for accepting mail
in cases where the senderS and recipientR arenot
already friends, but instead share abridging friend
T , resulting in afriend-of-friend (FoF) relationship
betweenS andR.

By performing an FoF query, a recipient can de-
termine which of his friends, if any, have attested to
the sender. RE: achieves this while still providing
the following privacy properties:

• The senderS does not learn anything aboutR’s
friends. Both learn an upper bound on the num-
ber of friends presented by the other, however.

• The recipientR learns only the intersection of
the two sets of friends,i.e., thoseT for whomR
signedσR→T and from whomS receivedσT→S .

• A third party observing all messages between
S andR learns an upper bound on the size of
each input, but nothing about their content nor
the intersection size.

• Only R can execute the FoF query.

RE: provides the final property through its use of
a one-time authorization token, while the first three
properties are achieved through the use of a Private
Matching (PM) protocol [3].

At a high level, PM is a two-party interactive pro-
tocol, where the input of each party is a set, and the
output (learned only by one party) is the input sets’

1The original notation used in RE: [4] for attestations had
the formR → S; we chose to adopt a subscripted notation to
reserve “plain arrows” to denote social links (see§3).

intersection. PM uses the homomorphic properties
of certain public-key encryption schemes.

In RE:’s case,R’s inputs are the email addresses
of thoseX such thatσR→X , while S’s inputs are
thoseY such thatσY→S , along with theσY→S them-
selves as payloads for each input. After running PM,
R learns the email addresses for the set of bridging
friendsT and the corresponding attestations{σT→S :
T ∈ T }. R finally verifies the digital signatures on
these attestations before whitelistingS’s email.

RE:’s initial concern with sharing friendship lists
(“address books”) for whitelisting purposes was the
potential for spammers to use such a mechanism to
harvest valid email addresses. RE:’s use of the PM
protocol certainly prevents such an attack. It does
not, however, prevent parties from “lying” about
their inputs,2 e.g., by including in their input sets
email addresses of people for whom they do not have
the appropriate attestations.

While in this context the senderS cannot benefit
from lying—asR will check the recovered attesta-
tions’ signatures, match them to the supplied email
addresses, and verify that the proper attestation path
exists—a deceitful recipient may lie to mount a tar-
geted attack against those parties that considerS a
friend, for example. Namely, to verify whether some
partyZ considersS a friend,R simply claims to con-
sider Z a friend himself when performing an FoF
query withS: if S has an attestationσZ→S, R will
receive such attestation as part of PM’s output.

Within RE:’s ill-defined security model, it is not
even clear if and how such behavior could be con-
strued as a protocol abuse, asR can generate an at-
testationσR→Z at any time anyway (say, with a very
short duration). In the next section, we propose a
more formal privacy model for verifying proximity
in social networks that directly addresses these short-
comings.

3 Model
A social network can be modeled as a directed graph
G = (V,E), whose vertices represent the users of
the system and where the presence of an arc(R,T) ∈

2Indeed, private function evaluation protocols, of which PM
is an instance, are proven secure in a model that only concerns
itself with preventing information leakage from the function’s
execution; the model does not embed a notion of “proper” in-
puts, so one cannot directly reason about lying parties.

2

S

Z W V

U

T

R

Figure 1: A fragment of a social network. Solid arrows rep-
resent trust relationships; the dotted arrow highlights a pair of
users for which to verify social proximity.

E (also denotedR → T) indicates the existence of
a social relationship between userR and userT . We
will discuss the implications attached to such rela-
tionships shortly; for now, we will just takeR → T
to mean that “T is R’s friend.”

This graph is represented within the system in a
distributed fashion: each participant has only a lo-
cal view of the network, consisting of its incoming
and outgoing arcs. Additionally, the system provides
a proximity checkmechanism by which a userS can
helpR determine whether he is “close enough” to her
in the social network. In particular,R can find out all
bridging friendsX such thatR → X andX → S.
Such mechanism is exposed to a higher-level appli-
cation, in which users sendrequeststo each other,
and requests may be treated differently by the recip-
ient according to the social proximity of the sender
(e.g., whitelisting FoF’s in RE:).

Figure 1 illustrates this for a fragment of a so-
cial network, whereR learns that there is exactly
one bridging friend between him andS, namelyT .
Notice that bothT andW are directly connected to
S, but R should not learn aboutW since the arc
R → W does not appear in the graph.

To properly address privacy concerns of this kind,
we first elaborate on the nature of the relationships
represented by the social network. In the context
of RE:, such relationships were viewed as predom-
inantly unidirectional:R → T roughly corresponds
to the notion that “userR trustsT not to send him
spam.” Under this interpretation, whether the arc
R → T appears in the social network or not is es-
sentially up toR. As we alluded in§2, however, this
approach is arguably too lax: Building on the exam-
ple of Figure 1, an overly curiousR could unilater-
ally augment the social network with arcsR → U ,
R → W , R → Z. This would “entitle”R to learn
about the social linkW → S when receiving email
from S, breaching the privacy of bothW andS.

To this effect, we posit that the presence of social
link R → T ought to express consent ofbothparties:

(Forward Trust) UserR places some form of trust
on userT thatT can use to demonstrate to some
U the presence of a chainU → R, R → T .

(Backward Authorization) UserT authorizes user
R to discover links of the formT → X when
trying to establish the existence of a social chain
such asR → T , T → S.

Within a specific system, each such requirement
would be associated with some concrete piece of
data. For example,R’s trust inT could be expressed
via a digitally-signed attestatioǹa la RE:, whereas
backward authorization could be implemented as a
shared secret key thatT gives toR (as in§4).

Under such a setup, one can formalize a system’s
privacy properties by explicitly pointing out what in-
formation is exposed to the users, in terms of guar-
antees of the form: “During a proximity check with
userS, userR learns at mostI.” Following the
approach of secure Multi-Party Computation [6, 9],
a statement of this sort is proved by showing that,
givenI and the knowledge held byR (which can be
deduced fromR’s social relationships), it is possible
to simulate (or “fake”) the content of all messages
seen byR during the proximity check. This implies
that any other information exposed toR can be de-
rived using onlyI andR’s knowledge. Thus,I itself
provides an upper bound on the extra knowledge that
R gains. We apply this proof technique in§4 to as-
sess the privacy of our constructions.

4 Constructions
4.1 An Efficient Hash-Based Construction

Our first construction assumes, as in RE:, that
each userR has a signing/verification key pair
SKR/V KR. Additionally,R maintains a secret seed
sR for a cryptographic pseudo-random functionF
(e.g., 256-bit long forHMAC-SHA-256).

Each arc in the social network is associated with a
(pseudo-)random key, termed the arc’sa-value. All
a-values corresponding to arcs of the formR → X
are derived fromR’s secret seedsR as: aR→X =
FsR

(“arc”, R,X).

3

cZ→S = EkZ→S
(σZ→S)

tab tab

UserS UserR

tU→S

tT→S

tV→StT→S
cT→S = EkT→S

(σT→S)

tZ→S

tW→S
cW→S =EkW→S

(σW→S)

Figure 2: Data structures used for a hash-based proximity
check between a senderS and recipientR.

For each social link of the formR → X, userR
creates an attestationσR→X for userX, and sends it
to X along withaR→X (forward trust). In return,R
receivessX from X (backward authorization).

This asymmetry in exchanging secrets stems from
the way we implement proximity checks: Roughly
speaking, forY such thatY → S, the senderS
encrypts the attestationσY→S under (a key derived
from) aY→S . In turn, for X such thatR → X, the
receiverR tries to read these encrypted attestations
using (a key derived from) thea-value aX→S (cor-
responding to the possibly non-extant arcX → S),
whichR can compute givensX .

To helpR in his decryption process (which, as de-
scribed, requires a quadratic amount of symmetric-
key operations),S includes atab tY→S along with
each encrypted attestationcY→S (cf. Figure 2).
More in detail, for each arcY → S, S com-
bines the attestationσY→S and thea-value aY→S

into a tabbed encrypted attestation(cY→S , tY→S) as
follows. The tab tY→S is a pseudo-random hash
computed underF keyed withaY→S i.e., tY→S =
FaY→S

(“tab”,ReqID), where ReqID is a unique
identifier supplied by the higher-level application.
The ciphertextcY = EkY→S

(σY→S) is computed un-
der a secure symmetric cipherE (e.g., AES-CBC),
with a keykY→S also derived fromaY→S: kY→S =
FaY→S

(“key” ,ReqID).
At this point, S creates a list of these tabbed en-

crypted attestations, one for each of her incoming so-
cial relationships, permutes this list in random order,
and sends it toR along with her request.

User R processes such a list by first looking at
the tab component of each entry. In particular, for
each relationship of the formR → X, R holds
the seedsX . So R can form thea-value aX→S =
FsX

(“arc”,X, S), and then theF-hash ofReqID

(which was included as part ofS’s request) under
aX→S . In this way, R computes his own set of

tabs, and compares them with those received from
S (which can be done efficiently,e.g.,by first stor-
ing one set of tabs in a hash-table, and then try-
ing to retrieve from it the tabs of the other set).
Thanks to the cryptographic properties ofF, it is
extremely unlikely that two such tabs will coincide,
except when they are created from the same seed.
In other words, a match between the tabs guaran-
tees that the same seed was used by bothR andS,
which in turn reveals the bridging friend(s), sayT .
At this point,R can compute the proper keykT→S =
FaT→S

(“key” ,ReqID) and decrypt the correspond-
ing encrypted attestation, thus recoveringσT→S . Fi-
nally, R verifiesT ’s signature onσT→S before con-
cluding thatR → T andT → S.

Security proof. Clearly, malicious senders do not
pose any privacy threat, because the protocol consists
just of a single sender-receiver flow. As for a mali-
cious receiverR, we now prove that he only learns
how many friends have attested toS and those attes-
tations for which the attester is a common friendi.e.,
I = (|Y|, {σX→S : X ∈ T }), whereY = {Y : Y →
S} andT = {X : R → X,X → S} ⊆ Y. To this
end, we need to show how to simulate the message
thatR receives fromS, given|Y|, {σX→S : X ∈ T }
and the shared secrets known toR.

We start by observing that for anyW ∈ Y\T , W ’s
random seedsW is unknown toR, so thataW→S is
(pseudo-)random inR’s view. Hence, by the prop-
erties of pseudo-random functions [5], it is infea-
sible to tell kW→S = FaW→S

(“key” ,ReqID) (resp.
tW→S = FaW→S

(“tab”,ReqID)) apart from a ran-
dom stringk̃W→S (resp. t̃W→S) of the same length.
It follows that no efficient algorithm can distin-
guishcW→S = EkW→S

(σW→S) from Ek̃W→S
(σW→S),

which in turn, sinceE is a secure symmetric
encryption scheme, cannot be distinguished from
c̃W→S = E

k̃W→S
(0|σW→S |). Thus, we can replace

(cW→S, tW→S) in S’s message with a “randomized”
pair (c̃W→S , t̃W→S), withoutR noticing the change.

Simulating the tabbed encrypted attestation
(cT→S , tT→S) for T ∈ T is easier, since in this case
we haveσT→S (from I) and aT→S (as R → T ,
and so, by backward authorization,R knows sT ,
from whichaT→S is derived). Thus, we can directly
computekT→S = FaT→S

(“key” ,ReqID), cT→S =
EkT→S

(σT→S) andtT→S = FaT→S
(“tab”,ReqID).

4

4.2 Privacy in the Face of Collusions

Compared to the privacy properties of the PM-based
protocol of RE:, our hash-based construction addi-
tionally guarantees that receivers cannot learn about
attestations created by a userT without T ’s permis-
sion. This is in keeping with the notion of back-
ward authorization, an aspect of our modeling miss-
ing from RE:’s original framework.

However, the kind of backward authorization im-
plemented by the hash-based scheme istransferable:
if userT authorizes userR to learn about attestations
of the formσT→X , R can further transfer such autho-
rization to another userU . Then, during a proximity
check withS, U would be able to discover the attes-
tation σT→S, even though the social linkU → T is
absent and soU was never back-authorized byT .

Notice that this scenario does not contradict the
privacy guarantees proved in§4.1; rather, it points
out the privacy implications that collusions of two or
more users can have. In fact, it is unclear whether
this ought to be considered a privacy problem: After
all, if R and U pool their resources together, then
they appear as “one and the same” to the rest of the
system. Since a proximity check betweenS andR
would have disclosedσT→S anyway, we may deem
thatU learningσT→S is a reasonable outcome.

In settings where user collusions are of concern,
however, we may want to attainnon-transferability:
namely, only enable those users thatT hasindivid-
ually authorized to actually learn about his attesta-
tions. We now describe a construction that leverages
the cryptographic properties of bilinear groups to sat-
isfy this stronger requirement.

Bilinear groups are pairs of cryptographic groups
G1 andG2 of the same orderq (for some large prime
q), equipped with an efficiently computable mape :
G1 × G1 → G2 such thate(ga, hb) = e(g, h)ab for
all g, h ∈ G1 and alla, b ∈ Zq (bilinearity).3 Typical
examples of bilinear groups are based on elliptic and
hyperelliptic curves (e.g., [2, 7]).

Our bilinear construction exploits the bilinearity
of thee map to enable users to “personalize” the se-
cret values that they give out for backward autho-
rization when establishing a social link (whereas in
the hash-based scheme of§4.1, userR gives out the

3Technically, the map should also benon-degenerate: not all
pairs inG1 × G1 should map to the unit inG2.

same secretsR to all X such thatX → R). In partic-
ular, each userR maintains a secret exponentsR ∈
Zq and a public valueyown

R = H1(“own” , R)sR ∈
G1, whereH1 : {0, 1}∗ → G1 is a random or-
acle [1] with range inG1.4 Then, R hands out
yfwd

R→X = H1(“fwd” , R,X)sR to eachX for which
R → X, andybwd

X→R = H1(“bwd” ,X,R)sR to those
X for which X → R. Notice that the bilinear
property enablesX to verify the correctness of the
value received fromR, since for properly computed

yfwd
R→X , it must hold thate(H1(“own” , R), yfwd

R→X)
?
=

e(yown
R ,H1(“fwd” , R,X)), and a similar check can

be performed to test the correctness ofybwd
X→R.

The proximity check protocol betweenS and
R uses the same overall structure as that of the
hash-based scheme, except that thea∗ seeds for
the pseudo-random functionF are now computed
as follows: For eachY → S, S setsaR,Y,S =
e(yfwd

Y→S,H1(“bwd” , R, Y)). Then,S can compute a
tabbed encrypted attestation as before, usingaR,Y,S

in place ofaY→S. R computes his tabs in a simi-
lar fashion for eachR → X, by settingaR,X,S =
e(H1(“fwd” ,X, S), ybwd

R→X). The only detail to check
is that, for thoseT such thatR → T andT → S,
both S andR obtain the same valueaR,T,S , which
readily follows by bilinearity.

Security proof. One can show that this bilinear
scheme preserves the privacy ofS’s email contacts
even in the face of collusions. The proof follows the
same approach as the one used for the hash-based
scheme of§4.1; we omit the details, and only point
out that the hardness assumption needed for the bilin-
ear groups is the standardDecisional Bilinear Diffie-
Hellman Assumption[2]: Given (g, ga, gb, gc) for
randomg ∈ G1, a, b, c ∈ Zq, it is infeasible to dis-
tinguishe(g, g)abc from a random value inG2.

5 Discussion

Multi-Hop Proximity via Memoization. Although
this paper has focused on friend-of-friend relation-
ships, our hash-based protocol also supports a weak
form of detection for longer social paths. Namely,
we can build a multi-hop pathR T andT S,
wherebyY X corresponds to a path of lengthℓ ≥

4Reliance on the random oracle model is not necessary, but
we decided not to pursue alternative approaches for simplicity.

5

1 in which Y andX have directly authorized each
other (i.e., X knows sY and Y knows aY→X), yet
signed attestations only exists for pairs of adjacent
users on the pathY X, i.e., σY→I1, . . . , σIℓ−1→X .

To use a social path fromT of length ℓ > 1, S
encrypts the entire multi-hop attestation chain within
the ciphertextcT→S associated totT→S. Note that this
protocol does not prevent observers from learning an
upper bound on the length of each encrypted chain.

Privacy vs. Auditability. In modeling the de-
sired privacy guarantees, one could consider a more
privacy-preserving definition: users only find out
whether bridging friend(s) exist, not their actual
identity. However, we argue that this stronger guar-
antee would limit the confidence that an application
can place on social proximity: although social trust
is transitive to an extent, it seems imprudent to assert
that transitivity will always correctly predict trust re-
lationships between bridged parties.

In RE:’s case, for example, a user might incor-
rectly attest to a spammer, or he might get compro-
mised and begin acting as a spammer. By uncovering
the identity of the linking friend, our protocols pro-
videauditability, which helps coping with these sce-
nario by enabling the decision-maker to review and
correct the elements that led to the wrong decision.

Non-Interactive Implementation. Unlike the PM-
based approach, both methods described in§4 are
non-interactive, requiring just a single message from
S to R. This can significantly reduce system com-
plexity (especially with respect to handling failures),
and (for the specific case of RE:) facilitate integra-
tion with the existing e-mail infrastructure.

Symmetric Trust and Forward Security. For so-
cial networks with symmetric trust relationships (i.e.,
where the linksY → X andX → Y are either both
present in the social network, or both absent from the
social network), our hash-based construction from
§4.1 can be simplified by suppressing thea-values,
and having the seedsY playing the role ofaY→X , for
all of Y ’s social contactsX. Besides being conceptu-
ally simpler and computationally more efficient, this
variant lends itself easily to extensions providing ad-
ditional security properties, such asforward security,
which we discuss next.

Input sizes (number of friends)
Party Algorithm 10 100 1000

S PM 589.7 27867.4 2490831.4
R PM 14.7 110.9 1457.8
S Hash 0.15 1.53 15.39
R Hash 0.08 0.52 5.01

Table 1: Time (milliseconds) to perform privacy-preserving
computations (with sender and recipient having inputs of the
same sizes) for PM and hash-based protocols.

If a user S sends a request toU and no friend
bridgesU to S in the social network, all our con-
structions guarantee thatU will not learn the identity
of any of S’s friends. Yet, as time passes and the
social network evolves, a new social link may be es-
tablished betweenU and one ofS’s friend (say,T).
Now knowingsT , if U has recordedS’s request, he
can recoverT ’s earlier attestation toS.

Temporal correlations of this kind can be pre-
vented in symmetric social networks by introducing
time intervals in the model, and letting thes∗ values
evolve over time using hash chains. Namely, if the
social linkT → S is set up at timej0, S gets from
T the secret seeds(j0)

T . Then, at timej1, S computes

the tabbed encrypted attestation using the seeds
(j1)
T

defined by the recurrences(i+1)
T = Hs(s

(i)
T), where

Hs is a one-way permutation over the appropriate do-
main. Now, ifU obtainss(j2)

T from T at a later time
j2, he will not be able to use it to match the tabbed
encrypted attestation thatS included in her old mes-
sage, because doing so would require invertingHs.

Performance Comparison. We now compare the
performance of our hash-based construction (from
§4.1) to the PM protocol used in RE:[4].

We instantiated the PM protocol using its faster
ElGamal variant with 1024-bit keys. The hash-based
construction usesHMAC-SHA-1 and AES-CBC
with 128-bit keys. In both the PM and the hash-
based schemes, attestations use 1024-bit Rabin sig-
natures. Both microbenchmarks were performed on
a 2.4-GHz AMD Athlon processor (in 32-bit mode)
and do not include network overhead (which are
nearly identical for both). Recipients in both pro-
tocols stopped analyzing results once three bridging
friends were uncovered (a configurable parameter).

Table 1 reports the performance of the two proto-
cols. As we see, the hash-based construction is or-

6

ders of magnitude faster than the public-key-based
PM protocol. This table does not include the time to
verify any uncovered attestations, as it is identical in
both (e.g., 15µs per 1024-bit Rabin signature).

6 Summary
Peer-to-peer systems may use social networks in or-
der to establish trust between participants, yet they
introduce privacy concerns when sharing such infor-
mation. In this paper, we define a privacy model for
verifying social proximity. We use insights from this
model to propose two cryptographic protocols that
protect social proximity queries: a hash-based pro-
tocol that provides similar privacy to RE:’s proposed
use of PM, yet is orders of magnitude faster; and
a bilinear-groups-based protocol that introduces pro-
tection against collusion.

Acknowledgments. We thank Nelly Fazio, Dahlia
Malkhi, David Mazières, and Benny Pinkas for help-
ful discussions and comments on earlier drafts.

References
[1] M. Bellare and P. Rogaway. Random oracles are practical:

A paradigm for designing efficient protocols. InProc. CCS,
Nov. 1993.

[2] D. Boneh and M. Franklin. Identity-based encryption from
the Weil pairing. InCRYPTO, Aug. 2001.

[3] M. J. Freedman, K. Nissim, and B. Pinkas. Efficient private
matching and set intersection. InEUROCRYPT, May 2004.

[4] S. Garriss, M. Kaminsky, M. J. Freedman, B. Karp,
D. Mazières, and H. Yu. RE: Reliable email. InProc. NSDI,
May 2006.

[5] O. Goldreich, S. Goldwasser, and S. Micali. How to con-
struct random functions.J. ACM, 33(4), Oct. 1986.

[6] O. Goldreich, S. Micali, and A. Wigderson. How to play
any mental game. InProc. STOC, May 1987.

[7] A. Joux. A one round protocol for tripartite Diffie-Hellman.
In Proc. ANTS, July 2000.

[8] J. Kong, P. O. Boykin, B. Rezaei, N. Sarshar,
and V. Roychowdhury. Let your cyberalter ego
share information and manage spam, May 2005.
http://arxiv.org/abs/physics/0504026.

[9] A. Yao. Protocols for secure computations. InProc. FOCS,
Nov. 1982.

7

