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A Universal Noise Removal Algorithm
with an Impulse Detector

Roman Garnett, Timothy Huegerich, Charles Chui, Fellow, IEEE, and Wenjie He*, Member, IEEE

Abstract— We introduce a local image statistic for identifying noise
pixels in images corrupted with impulse noise of random values. The
statistical values quantify how different in intensity the particular pixels
are from their most similar neighbors. We continue to demonstrate
how this statistic may be incorporated into a filter designed to remove
additive Gaussian noise. The result is a new filter capable of reducing
both Gaussian and impulse noises from noisy images effectively, which
performs remarkably well, both in terms of quantitative measures of
signal restoration and qualitative judgements of image quality. Our
approach is extended to automatically remove any mix of Gaussian
and impulse noise.

Index Terms— impulse noise, Gaussian noise, mixed noise, image
restoration, nonlinear filters, bilateral filter, denoising

I. INTRODUCTION

NOISE can be systematically introduced into images during
acquisition and transmission. A fundamental problem of

image processing is to effectively remove noise from an image
while keeping its features intact. The nature of the problem depends
on the type of noise added to the image. Fortunately, two noise
models can adequately represent most noise added to images:
additive Gaussian noise and impulse noise.

Additive Gaussian noise is characterized by adding to each image
pixel a value from a zero-mean Gaussian distribution. Such noise
is usually introduced during image acquisition. The zero-mean
property of the distribution allows such noise to be removed by
locally averaging pixel values. Ideally, removing Gaussian noise
would involve smoothing inside the distinct regions of an image
without degrading the sharpness of their edges. Classical linear
filters, such as the Gaussian filter, smooth noise efficiently but blur
edges significantly. To solve this problem, nonlinear methods have
to be used, most notably the anisotropic diffusion technique of
Perona and Malik [1]. Another interesting method is the bilateral
filter studied by Tomasi and Manducci [2] based on the original
idea of Overton and Weymouth [3]. The essence of these methods
is to use local measures of an image to quantitatively detect edges
and to smooth them less than the rest of the image.

Impulse noise is characterized by replacing a portion of an
image’s pixel values with random values, leaving the remainder
unchanged. Such noise can be introduced due to transmission
errors. The most noticeable and least acceptable pixels in the noisy
image are then those whose intensities are much different from their
neighbors.

The Gaussian noise removal methods mentioned above cannot
adequately remove such noise because they interpret the noise
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pixels as edges to be preserved. For this reason, a separate class of
nonlinear filters have been developed specifically for the removal of
impulse noise; many are extensions of the median filter [4], [5], or
otherwise use rank statistics [6], [7], [8]. The common idea among
these filters is to detect the impulse pixels and replace them with
estimated values, while leaving the remaining pixels unchanged.
When applied to images corrupted with Gaussian noise, however,
such filters are not effective, and in practice leave grainy, visually
disappointing results.

Not much work has been carried out on building filters that can
effectively remove both Gaussian and impulse noise, or any mixture
thereof. Such “mixed noise” could occur, for instance, when send-
ing an already noisy image over faulty communication lines. Peng
and Lucke suggested a fuzzy filter designed specifically for mixed
noise [9]. Additionally, in 1996 Abreu, et al., proposed the median-
based SD-ROM filter to remove impulse noise, and their method
proved quite effective [10]. They also gave quantitative measures
demonstrating the SD-ROM filter’s ability to remove Gaussian
noise as well as mixed Gaussian and impulse noise. Although
their filter has impressive quantitative results, when applied to
images with Gaussian or mixed noise it often produces visually-
disappointing output similar to that of other median-based filters.

In this paper we introduce a framework for creating a universal
noise removal filter that is based on a simple statistic to detect im-
pulse noise pixels in an image. Instead of applying the “detect and
replace” methodology of most impulse noise removal techniques,
we show how to integrate such a statistic into a filter designed to
remove Gaussian noise. The behavior of the filter can be adaptively
changed to remove impulses while retaining the ability to smooth
Gaussian noise. Additionally, the filter can be easily adapted to
remove mixed noise.

This paper is arranged as follows: in the next section we
introduce a local image statistic for detecting impulses. In section
III we briefly explain the bilateral filter and describe how to
incorporate the statistic into the filter to create a universal filter.
Finally, in section IV we provide visual examples and numerical
results that demonstrate our method’s soundness.

II. A NEW STATISTIC FOR DETECTING IMPULSES

A. Noise models

Throughout this paper, we will use standard matrix notation for
images. For example, when u is an image, ui,j will represent the
intensity value of u at the pixel location (i, j) in the image domain.
For the case of additive Gaussian noise, the noisy image, u, is
related to the original image, u0, by

ui,j = u0i,j + ni,j

where each noise value n is drawn from a zero-mean Gaussian
distribution.

Impulse noise, again to be denoted by n, is characterized by
replacing a portion of the original pixel values of the image
with intensity values drawn from some distribution, usually either
a uniform or discrete distribution n over the intensity range.
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Throughout this paper we consider the uniform noise distribution
model, although the methods we discuss could be used without
modification for the discrete model.1 Therefore, for images cor-
rupted with impulse noise, the noisy image u is related to the
original image u0 by

ui,j =

{

ni,j with probability p
u0i,j with probability (1− p).

B. Motivation of the impulse detection scheme

The problem of deciding which pixels in an image are impulses
is clearly not well-defined. In particular, Roy Lichtenstein or
George Seurat might be dismayed if he saw one of his paintings
“denoised.” Therefore we must be content with detecting pixels that
are like impulses, that is, pixels that vary greatly in intensity from
most surrounding pixels. Thankfully, uncorrupted natural images
rarely contain details isolated to a single pixel and generally have
few impulse-like pixels.

Impulse noise removal methods use many different techniques
to determine whether a given pixel is an impulse in this sense.
These approaches vary in complexity from being relatively simple
to highly complex. The most basic impulse detectors are based
on two-state methods that attempt to definitively characterize each
image pixel as either an impulse or an unaffected pixel. The
underlying goal of these two-state methods is to find pixels that are
significant outliers when compared to their neighbors. One of the
simplest and most intuitive method is to compare a pixel’s intensity
with the median intensity in its neighborhood, as in [5]. Other
methods, such as the two-state SD-ROM filter of Abreu, et. al [10]
and the recent CSAM filter of Pok, et. al [8], use more complex
criteria to judge whether a pixel is an impulse. The advantage
of these two-state methods is their simplicity, which makes them
easily customizable.

More complex methods are naturally more successful for detect-
ing impulses in general, but there is a tradeoff for this improvement
in detection. The most complicated methods require training proce-
dures to make an optimal classification based on measures of pixels
and their neighbors. Methods that require training are bound to be
less easily controlled and more unpredictable than simpler methods.
If a method is trained on an image with many impulse-like pixels
(such as an image with many fine details), its ability to detect
and remove actual impulse noise from a different image will be
inhibited. On the other hand, if the method is trained on a smooth
image with few impulse-like pixels, it will overly smooth an image
with many fine details that could otherwise be preserved. Even if
care is taken to select an appropriate training image—assuming one
is available—the performance of an automatically trained filter is
essentially unpredictable.

An additional concern with existing methods arises from the fact
that when impulse noise is introduced to an image, a portion of
the pixels will be replaced with intensities only slightly different
from their original values. Two-state detectors, with or without
training, will most likely fail to detect such small impulses since
they look exclusively for large outliers. They remove the most
conspicuous noise, but the lesser impulses remain, creating a grainy
appearance. In response to this problem, we adopt a continuous
function to represent how impulse-like a particular pixel may be.

1In contrast, Conditional Signal-Adaptive Median (CSAM) filtering [8],
is designed for salt-and-pepper noise, a discrete impulse noise model in
which the noisy pixels take only the values 0 and 255. It can remove
salt-and-pepper type noise pixels very well, but it cannot perform similarly
for uniformly distributed impulse noise and is outperformed by even the
median filter.

Fig. 1. Closeups of an artificially added impulse (upper left), and a typical
edge pixel (lower right). ROAD of impulse: 525; ROAD of edge pixel: 88.
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Fig. 2. Demonstrating how to calculate ROAD.
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Fig. 3. The mean ROAD values of noise pixels and uncorrupted pixels in
the Lena image as a function of the impulse noise probability, with standard
deviation error bars demonstrating the significance of the difference.

By considering the magnitude of this function, we can adapt the
behavior of the filter in a straightforward way according to how
impulse-like each pixel is.

C. Definition of the ROAD statistic

Let x = (x1, x2) be the location of the pixel under consideration,
and let

Ωx(N) := {x+ (i, j) : −N ≤ i, j ≤ N} (1)
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be the set of points in a (2N+1)×(2N+1) neighborhood centered
at x for some positive integer N . In the following discussion, let us
only consider N = 1, though the same procedure can be extended
to any N > 1. Hence,

Ω0x = Ωx(1) \ {x},

represents the set of points in a 3× 3 deleted neighborhood of x.
For each point y ∈ Ω0x, define dx,y as the absolute difference in
intensity of the pixels between x and y, i.e.

dx,y = |ux − uy|.

Finally, sort the dx,y values in increasing order and define

ROADm(x) =

m
∑

i=1

ri(x), (2)

where 2 ≤ m ≤ 7 and

ri(x) = ith smallest dx,y for y ∈ Ω0x.

We call the statistic defined in (2) ROAD (“Rank-ordered Absolute
Differences”). In this paper, we will consider m = 4 only, and set
ROAD(x) = ROAD4(x).

The ROAD statistic provides a measure of how close a pixel
value is to its four most similar neighbors. The logic underlying
the statistic is that unwanted impulses will vary greatly in intensity
from most or all of their neighboring pixels, whereas most pixels
composing the actual image should have at least half of their
neighboring pixels of similar intensity, even pixels on an edge.
Fig. 1 shows examples from the Lena image comparing a typical
impulse noise pixel to an edge pixel. Notice that the edge pixel has
neighbors of similar intensity despite forming part of an edge, and
thus has a significantly lower ROAD value. Fig. 2 demonstrates
how the latter value was calculated.

We illustrate numerically that the ROAD statistic is a good
indicator of impulse noise. Ideally we want our statistic to be very
high for impulse noise pixels and much lower for uncorrupted
pixels. Fig. 3 displays quantitative results from the Lena image.
The upper dashed line represents the mean ROAD value for noise
pixels as a function of the amount of impulse noise added, and the
lower dashed line represents the mean ROAD value for uncorrupted
pixels. The noise pixels consistently have much higher mean ROAD
values than the uncorrupted pixels, whose mean ROAD values
remain nearly constant even with very large amounts of noise.

III. INTRODUCING THE ROAD AND TRILATERAL FILTERS

It would be relatively simple to introduce the ROAD statistic
into many existing filtering techniques, allowing them to detect and
properly handle impulse-like pixels in a noisy image. For example,
one could modify the popular anisotropic diffusion method to
utilize the ROAD statistic. Below we describe how one might
extend the bilateral filter to create a filter capable of removing
both impulse and additive Gaussian noise from images. We begin
with a brief introduction to the bilateral filter.

A. The bilateral filter

The bilateral filter, as described in [2], applies a nonlinear
filter to u to remove Gaussian noise while retaining the sharpness
of edges. Each pixel is replaced by a weighted average of the
intensities in a (2N+1)× (2N+1) neighborhood. The weighting
function is designed to smooth in regions of similar intensity while
keeping edges intact, by heavily weighting those pixels that are
both near the central pixel spatially and similar to the central pixel
radiometrically.

More precisely, let x be the location of the pixel under consid-
eration, and let

Ω = Ωx(N) (3)

be the pixels in a (2N + 1) × (2N + 1) neighborhood of x. The
weight of each y ∈ Ω with respect to x is the product of two
components, one spatial and one radiometric:

w(x,y) = wS(x,y)wR(x,y), (4)

where

wS(x,y) = e
− |x−y|2

2σ2

S (5)

and

wR(x,y) = e
−
|ux−uy|

2

2σ2

R (6)

The weights must be normalized, so the restored pixel ũx is
given by

ũx =

∑

y∈Ω
w(x,y)uy

∑

y∈Ω
w(x,y)

(7)

The wS weighting function decreases as the spatial distance
between x and y increases, and the wR weighting function
decreases as the radiometric “distance” between the intensities ux

and uy increases. The spatial component of the weight decreases
the influence of pixels far away from x to generally reduce blurring,
while the radiometric component diminishes the influence of pixels
with significantly different intensities to keep the edges of distinct
image regions sharp. Notice that the wS and wR weighting func-
tions need not be Gaussians—any suitable nonnegative functions
that decrease to zero may be used instead.

In our particular weighting functions, the parameters σS and σR
control the behavior of the weights. They are the values at which
the respective Gaussian weighting functions take their maximum
derivatives, so they serve as rough thresholds for identifying pixels
sufficiently close spatially or radiometrically. Note, in particular,
that as σR →∞ and radiometric differences are rendered irrelevant
by this high threshold, the bilateral filter approaches a Gaussian
filter of standard deviation σS . As both σR, σS → ∞ so that all
neighboring pixels easily meet both thresholds, the bilateral filter
approaches the mean filter.

The idea for bilateral filtering was originally introduced in 1979
by Overton and Weymouth [3] as a simple image preprocess-
ing tool to remove noise. In 1998, Tomasi and Manduchi [2]
provided the name “bilateral filtering” and improved the method
in several aspects. Specifically, they used Gaussian functions in
the weighting functions (instead of the rational functions used in
[3]) to improve the filter’s performance, analyzed the interaction
between the weighting functions, and proposed metrics to be used
for color images. Elad [11] established a connection between
bilateral filtering and several other methods in terms of minimizing
functionals.

B. A new weighting function

We incorporate the ROAD statistic into the bilateral filtering
framework by introducing a third weighting function influenced
by how impulse-like each pixel of the image is. The “impulsive”
weight, wI , at a point x is given by:

wI(x) = e
−ROAD(x)2

2σ2

I . (8)

The σI parameter determines the approximate threshold above
which to penalize high ROAD values.
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Fig. 4. The original Lena image, the image corrupted with impulse noise (p = 20%), and the result after trilateral filtering.

We would like to integrate this impulsive component into a
nonlinear filter designed to weight pixels based on their spatial,
radiometric, and impulsive properties. Unfortunately, the impul-
sive component is not directly compatible with the radiometric
component already present in the bilateral filter. To illustrate this
observation, let us consider black impulses on a white background.
If the point x under consideration were such an impulse, the
radiometric component would weight any other black impulses in
the neighborhood of x much more than the white background pixels
we desire. As a result, the black impulses remain black impulses.
The radiometric weight works contrary to our goal because it
was not designed to remove impulse noise. However, if used
selectively, the radiometric weight can still be helpful for removing
impulse noise. It can help smooth impulses that are only slightly
different from their surrounding pixels without blurring edges,
while the impulsive weight works to remove the larger outliers.
If we can use the radiometric component for only small impulses,
we can improve upon the common two-state methods for impulse
noise removal by not only removing the larger outliers, but also
smoothing away smaller impulses.

To add the impulsive weight while still retaining the radiometric
component of the bilateral filter, we introduce a switch to determine
how much to use the radiometric component in the presence of
impulse noise. If x is the central pixel under consideration, and
y ∈ Ωx(N) is a pixel in the neighborhood of x, we define the
“joint impulsivity” J of y with respect to x as

J(x,y) = 1− e
−

(

ROAD(x)+ROAD(y)
2

)2

/2σ2J
. (9)

The J(x,y) function assumes values in [0, 1]. The σJ parameter
controls the shape of the function. Again, any suitably nonnegative
function that decreases to zero may be used in place of the
Gaussian. If at least one of x or y is impulse-like and has a high
ROAD value with respect to σJ , then J(x,y) ≈ 1. If neither pixel
is impulse-like, and thus neither has a high ROAD value, then
J(x,y) ≈ 0.

We would like to use the radiometric weight more heavily when
J(x,y) ≈ 0 to smooth regions without large impulses and less
heavily when J(x,y) ≈ 1, because if either pixel is an impulse,
the radiometric weight fails to function correctly as illustrated
above. Conversely, we would like to use the impulsive weight less
heavily when J(x,y) ≈ 0 and more heavily when J(x,y) ≈ 1,
to suppress large impulses. With this in mind, we define the final,
“trilateral” weight of y with respect to the central point x as:

w(x,y) = wS(x,y)wR(x,y)
1−J(x,y)wI(y)

J(x,y). (10)

Referring to the Gaussian forms of wR and wI , we see that
raising these functions to the specified exponents has the effect of
modifying their effective standard deviations or “thresholds”. When
J(x,y) ≈ 1 so that 1 − J(x,y) ≈ 0, the radiometric threshold
becomes very large so that radiometric differences become irrele-
vant, while the impulsive weight is unaffected. When J(x,y) ≈ 0,
the opposite happens and only the radiometric weight is used to
distinguish pixels because the effective impulsive threshold is so
high. In this way, the appropriate weighting function is applied on
a pixel-by-pixel basis. We will call the nonlinear filter of form (7)
with the weighting function w(x,y) given in (10) the “trilateral
filter,” since it combines three different measures of neighboring
pixels in determining its weights.

In general, the trilateral weighting function works well to remove
impulse noise without compromising the bilateral filter’s ability
to remove Gaussian noise. For images with no impulse noise—
and thus few points with high ROAD values–the J(x,y) term in
(10) effectively “shuts off” the impulsive component of the weight
and only uses the radiometric and spatial weights. Essentially, the
trilateral filter reverts to the bilateral filter when processing images
without impulse noise.

The J(x,y) function also allows for future work to further
extend the filter. Specifically, we are exploring methods to auto-
matically choose the control parameters σS , σR, σI , and σJ locally.
This would allow us to remove different types of noise from the
same image, as well as mixed Gaussian and impulse noise in a
single pass.

We have found that even for very high levels of impulse noise,
one pass of the trilateral filter will remove almost all of the noise.
However for p > 25%, a few spots of unremoved impulses
often remain. This happens because impulses sometimes “clump”
together in the original noisy image to form regions of similar
intensity so large that they are mistaken for meaningful features.
To remove such residual spots, it is often helpful to process the
image with an iterative version of the filter. We simply run the
image through the trilateral filter several times, using the output of
the previous iteration as the input of the next. For low and moderate
levels of noise (p ≤ 25%), one iteration is sufficient and usually
provides the best results. For high levels of noise (p > 25%),
applying two to five iterations provides better results.

C. Removing Mixed Gaussian and Impulse Noise

The trilateral filter can be easily extended to remove any mixture
of Gaussian and impulse noise. The ideal solution would be to
locally vary parameters so that they are finely tuned to remove the
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Closeup of Lena image corrupted with Restored with SD-ROM filter Restored with trilateral filter
impulse noise (p = 50%) with training

Fig. 5. The Lena image corrupted with a high level of impulse noise and the results of applying several filters.

TABLE I
RESULTS AFTER APPLYING VARIOUS FILTERS TO IMAGES CORRUPTED WITH IMPULSE NOISE

Lena Image Bridge Image
Method p = 20% p = 30% p = 40% p = 50% p = 20% p = 30% p = 40% p = 50%

3× 3 Median Filter 31.23 dB 28.05 dB 24.61 dB 21.53 dB 24.76 dB 23.14 dB 21.20 dB 19.04 dB
5× 5 Median Filter 29.87 dB 28.97 dB 27.61 dB 25.45 dB 23.26 dB 22.73 dB 21.95 dB 20.72 dB
Median Filter with

Adaptive Length a [4] 31.51 dB 29.49 dB 27.75 dB 26.33 dB 25.14 dB 23.70 dB 22.08 dB 21.03 dB
Sun and Neuvo

Switching Scheme I a,b [5] 32.15 dB 29.69 dB 27.97 dB 25.54 dB 26.16 dB 24.34 dB 22.75 dB 21.02 dB
Rank Conditioned

Rank Selection Filter d [7] 31.81 dB 30.01 dB 27.72 dB 25.92 dB 24.76 dB 23.68 dB 22.52 dB 20.88 dB
SD-ROM

without training a,c [10] 33.98 dB 31.06 dB 28.30 dB 25.57 dB 26.57 dB 24.82 dB 23.17 dB 21.40 dB
SD-ROM

with training a,d [10] 34.23 dB 31.64 dB 29.19 dB 26.63 dB 26.24 dB 24.98 dB 23.66 dB 22.19 dB

Trilateral Filter e 35.03 dB 33.16 dB 31.36 dB 29.44 dB 27.55 dB 25.99 dB 24.55 dB 23.17 dB

aImplemented recursively.
bImplemented using a 5× 5 window for Lena with p ≥ 30%, and using a 3× 3 window otherwise
cUsing the thresholds suggested in [10].
dThe Lena image was trained on the “bridge” image with 35% noise, and the “bridge” image was trained on the Lena image with 35% noise.
eImplemented iteratively for p ≥ 30%.

precise amount and type of noise present in each section of the im-
age. This solution, however, would require a deep statistical study
of the ROAD statistic for the automatic selection of parameters,
and the best way to do this is not immediately clear.

A simpler, yet still quite effective solution to restore an image
corrupted by mixed noise is to apply the trilateral filter twice with
two different values of σS—once with a smaller value of σS , to
remove the impulse noise, and another time with a larger value of
σS , to smooth the remaining Gaussian noise. A myriad of other
options are available for altering the parameters between filtering,
but our simple approach produces visually appealing results and
only requires changing one parameter.

IV. RESULTS

We have extensively tested the noise removal capabilities of the
trilateral filter and compared the results with several existing meth-
ods. Our method produced results superior to the other methods
we tested in both visual image quality and quantitative measures
of signal restoration. Among the many images we tested are the
512×512 8-bit grayscale Lena image, available online from Mike
Wakin at Rice University [15], and the 512× 512 “bridge” image,
available online from the UEA Signal and Image Processing Group
[16].

A. Implementation and Testing Procedure

Our implementation of the trilateral filter used a 5 × 5 window
size and performed multiple iterations when it provided better
results (for p > 25%). Image boundaries were handled by assuming
symmetric boundary conditions.

In each of our experiments we strove to be impartial while
collecting data. For each method tested, we varied its parameters
exhaustively (as suggested by its author(s)) to obtain the best
possible result. Furthermore, to eliminate the bias created by
different manifestations of noise, we created a standard set of
noisy images. Five noisy images were created for each test image
and noise level, and formed the common input to each method.
The numerical results shown are the average results for these five
images.

B. Image Quality

Our first goal was to ensure that our approach provides visually
pleasing output. The trilateral filter can restore images corrupted
with low to moderate levels of impulse noise (p ≤ 25%)
with virtually unblemished results. Fig. 4 shows the Lena image
corrupted with 20% impulse noise and the result after trilateral
filtering. Comparing with the original, it is clear that the trilateral
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Image corrupted by Gaussian noise Restored with SD-ROM filter Restored with Trilateral filter
(σ = 10) with training [10]

Image corrupted by mixed noise Restored with SD-ROM filter Restored with Trilateral filter
(σ = 10, p = 20%) with training [10]

Fig. 6. Comparing the trilateral filter and SD-ROM filter on images with Gaussian noise and mixed Gaussian and impulse noise.

filter can eliminate a fair amount of noise while preserving edge
boundaries and fine details.

Although exceptional for lower impulse noise levels, our filter
truly excelled when treating highly corrupted (p > 25%) images.
Fig. 5 shows the Lena image with 50% impulse noise and compares
the outputs of the trilateral filter with the output of the SD-ROM
filter of Abreu, et al. The trilateral filter’s output has fewer spots
and other artifacts and is generally more pleasing.

We also verified that the trilateral filter retains the ability to
remove Gaussian noise and that it can effectively remove mixed
noise. Fig. 6 shows the Lena image corrupted with Gaussian
noise and mixed noise and the outputs of the SD-ROM and
trilateral filters. The trilateral filter continues to adequately suppress
Gaussian noise, even after the introduction of the impulsive weight
and the joint impulsivity function.

For both Gaussian and mixed noise, the trilateral filter leaves
less noise in the restored image than the SD-ROM filter, and its
output is generally more visually appealing. However, some fine
details are lost in the process. For example, the individual strands
of hair in the image are better kept in the SD-ROM filter’s output,
at the expense of a less smooth and less pleasing output.

C. Signal Restoration

Once the visual quality of images restored by the trilateral filter
had been confirmed, we concentrated on directly comparable, quan-
titative measures of signal restoration. In particular, we measured
the peak signal-to-noise ratio (PSNR). If u0 is the original m× n

image and ũ is a restored image of u0, the PSNR of ũ is given
by:

PSNR(ũ) = 10 log10

(

∑m,n

i,j=1
2552

∑m,n

i,j=1
(ũi,j − u0i,j)

2

)

. (11)

Larger PSNR values signify better signal restoration. We tested
each method on impulse noise levels from p = 0% (that is,
no noise) to p = 50% in steps of 5%. Table I compares
the mean PSNR values of the five restored test images for
p ∈ {20%, 30%, 40%, 50%}. Again, the trilateral filter provided
results with higher PSNR values than the results of the other meth-
ods tested, especially for very high levels of noise. In particular,
for the Lena image with 50% noise, the trilateral filter produces
PSNR values almost a full three decibels higher than the closest
competing method.

We also compared the performance of the trilateral filter with the
performance of the previously tested filters on images corrupted
with Gaussian noise (σ = 10) and mixed noise (σ = 10, p =
20%). The trilateral filter consistently yielded the highest PSNR
for each image and noise level. Table II shows the results for the
3 × 3 median filter, the trilateral filter, and the previously-tested
methods with training procedures: the RCRS and SD-ROM filters.
Notice that the other methods generally performed only slightly
better than the median filter for mixed noise.

V. CONCLUSIONS

Many noise removal algorithms, such as the bilateral filtering,
tend to treat impulse noise as edge pixels, and hence end with
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TABLE II
PSNR VALUES (IN DECIBELS) OF NOISY IMAGES RESTORED WITH

VARIOUS FILTERS

Gaussian Noise Mixed Noise
σ = 10 p = 20%, σ = 10

Filter Lena Bridge Lena Bridge
3× 3 Median 30.92 25.93 29.02 24.20
RCRS b [7] 31.00 27.38 29.55 24.46

SD-ROM a,b [10] 32.20 28.85 29.87 25.10

Trilateral c 33.23 29.33 31.64 26.29

aImplemented recursively.
bThe Lena image was trained on the “bridge” image, and the “bridge” image

was trained on the Lena image with the same level of noise.
cImplemented iteratively.

unsatisfactory results. In order to process impulse pixels and edge
pixels differently, we introduce a new statistic based on rank-
ordered absolute differences (ROAD) in some neighborhood of a
pixel. This statistic represents how impulse-like a particular pixel
is in the sense that the larger the impulse, the greater the ROAD
value.

We then incorporate the ROAD statistic into the bilateral filtering
by adding a third component to the weighting function. The
new nonlinear filter is called the trilateral filter, whose weighting
function contains spatial, radiometric, and impulsive components.
The radiometric component combined with the spatial component
smooths away Gaussian noise and smaller impulse noise; while the
impulsive component removes larger impulses. A switch based on
the ROAD statistic is adopted to adjust weight distribution between
the radiometric and impulsive components. The resulting trilateral
filter performs well in removing Gaussian and mixed noise as well
as in removing impulse noise.
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