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Abstract

A fundamental problem in neural network research, as well as in many other disciplines, is finding a suitable representation of multivariate
data, i.e. random vectors. For reasons of computational and conceptual simplicity, the representation is often sought as a linear transformation
of the original data. In other words, each component of the representation is a linear combination of the original variables. Well-known linear
transformation methods include principal component analysis, factor analysis, and projection pursuit. Independent component analysis (ICA)
is a recently developed method in which the goal is to find a linear representation of non-Gaussian data so that the components are statistically
independent, or as independent as possible. Such a representation seems to capture the essential structure of the data in many applications,
including feature extraction and signal separation. In this paper, we present the basic theory and applications of ICA, and our recent work on
the subject.q 2000 Published by Elsevier Science Ltd.
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1. Motivation

Imagine that you are in a room where two people are
speaking simultaneously. You have two microphones,
which you hold in different locations. The microphones
give you two recorded time signals, which we could denote
by x1(t) andx2(t), with x1 andx2 the amplitudes, andt the
time index. Each of these recorded signals is a weighted sum
of the speech signals emitted by the two speakers, which we
denote bys1(t) ands2(t). We could express this as a linear
equation:

x1�t� � a11s1 1 a12s2 �1�

x2�t� � a21s1 1 a22s2 �2�
wherea11, a12, a21, anda22 are some parameters that depend
on the distances of the microphones from the speakers. It
would be very useful if you could now estimate the two
original speech signalss1(t) and s2(t), using only the
recorded signalsx1(t) andx2(t). This is called thecocktail-
party problem. For the time being, we omit any time delays
or other extra factors from our simplified mixing model.

As an illustration, consider the waveforms in Figs. 1 and
2. These are, of course, not realistic speech signals, but
suffice for this illustration. The original speech signals

could look something like those in Fig. 1 and the mixed
signals could look like those in Fig. 2. The problem is to
recover the data in Fig. 1 using only the data in Fig. 2.

Actually, if we knew the parametersaij, we could solve
the linear equation in (1) by classical methods. The point is,
however, that if you do not know theaij, the problem is
considerably more difficult.

One approach to solving this problem would be to use
some information on the statistical properties of the signals
si(t) to estimate theaii. Actually, and perhaps surprisingly, it
turns out that it is enough to assume thats1(t) ands2(t), at
each time instantt, arestatistically independent. This is not
an unrealistic assumption in many cases, and it need not be
exactly true in practice. The recently developed technique of
Independent Component Analysis, or ICA, can be used to
estimate theaij based on the information of their indepen-
dence, which allows us to separate the two original source
signalss1(t) ands2(t) from their mixturesx1(t) andx2(t). Fig.
3 gives the two signals estimated by the ICA method. As can
be seen, these are very close to the original source signals
(their signs are reversed, but this has no significance).

Independent component analysis was originally devel-
oped to deal with problems that are closely related to the
cocktail-party problem. Since the recent increase of interest
in ICA, it has become clear that this principle has a lot of
other interesting applications as well.

Consider, for example, electrical recordings of brain
activity as given by an electroencephalogram (EEG). The
EEG data consists of recordings of electrical potentials in
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many different locations on the scalp. These potentials are
presumably generated by mixing some underlying compo-
nents of brain activity. This situation is quite similar to the
cocktail-party problem: we would like to find the original
components of brain activity, but we can only observe
mixtures of the components. ICA can reveal interesting
information on brain activity by giving access to its
independent components.

Another, very different application of ICA is on feature
extraction. A fundamental problem in digital signal proces-
sing is to find suitable representations for image, audio or
other kind of data for tasks like compression and denoising.
Data representations are often based on (discrete) linear
transformations. Standard linear transformations widely
used in image processing are the Fourier, Haar, cosine trans-
forms etc. Each of them has its own favorable properties
(Gonzalez & Wintz, 1987).

It would be most useful to estimate the linear transforma-
tion from the data itself, in which case the transform could
be ideally adapted to the kind of data that is being processed.
Fig. 4 shows the basis functions obtained by ICA from
patches of natural images. Each image window in the set
of training images would be a superposition of these
windows so that the coefficient in the superposition is
independent. Feature extraction by ICA will be explained
in more detail later on.

All of the applications described above can actually be
formulated in a unified mathematical framework, that of

ICA. This is a very general-purpose method of signal
processing and data analysis.

In this review, we cover the definition and underlying
principles of ICA in Sections 2 and 3. Then, starting from
Section 4, the ICA problem is solved on the basis of mini-
mizing or maximizing certain contrast functions; this trans-
forms the ICA problem to a numerical optimization
problem. Many contrast functions are given and the rela-
tions between them are clarified. Section 5 covers a useful
preprocessing that greatly helps solving the ICA problem,
and Section 6 reviews one of the most efficient practical
learning rules for solving the problem, the FastICA algo-
rithm. Then, in Section 7, typical applications of ICA are
covered: removing artifacts from brain signal recordings,
finding hidden factors in financial time series, and reducing
noise in natural images. Section 8 concludes the text.

2. Independent component analysis

2.1. Definition of ICA

To rigorously define ICA (Comon, 1994; Jutten &
Herault, 1991), we can use a statistical “latent variables”
model. Assume that we observen linear mixturesx1,…,xn

of n independent components

xj � aj1s1 1 aj2s2 1 …1 ajnsn; for all j: �3�
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Fig. 1. The original signals.

Fig. 2. The observed mixtures of the source signals in Fig. 1.



We have now dropped the time indext; in the ICA model,
we assume that each mixturexj as well as each independent
componentsk is a random variable, instead of a proper time
signal. The observed valuesxj(t), e.g. the microphone
signals in the cocktail party problem, are then a sample of
this random variable. Without loss of generality, we can
assume that both the mixture variables and the independent
components have zero mean: If this is not true, then the

observable variablesxi can always be centered by subtract-
ing the sample mean, which makes the model zero-mean.

It is convenient to use vector–matrix notation instead of
the sums like in the previous equation. Let us denote byx
the random vector whose elements are the mixturesx1,…,xn,
and likewise bys the random vector with elementss1,…,sn.
Let us denote byA the matrix with elementsaij. Generally,
bold lower case letters indicate vectors and bold upper-case
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Fig. 3. The estimates of the original source signals, estimated using only the observed signals in Fig. 2. The original signals were very accurately estimated, up
to multiplicative signs.

Fig. 4. Basis functions in ICA of natural images. The input window size was 16× 16 pixels: These basis functions can be considered as the independent
features of images.



letters denote matrices. All vectors are understood as
column vectors; thusxT, or the transpose ofx, is a row
vector. Using this vector–matrix notation, the above mixing
model is written as

x � As: �4�
Sometimes we need the columns of matrixA; denoting

them byaj the model can also be written as

x �
Xn
i�1

aisi : �5�

The statistical model in Eq. (4) is called independent
component analysis, or ICA model. The ICA model is a
generative model, which means that it describes how the
observed data are generated by a process of mixing the
componentssi. The independent components are latent vari-
ables, meaning that they cannot be directly observed. Also
the mixing matrix is assumed to be unknown. All we
observe is the random vectorx, and we must estimate
both A ands using it. This must be done under as general
assumptions as possible.

The starting point for ICA is the very simple assumption
that the componentssi are statisticallyindependent. Statis-
tical independence will be rigorously defined in Section 3. It
will be seen below that we must also assume that the inde-
pendent component must havenon-Gaussiandistributions.
However, in the basic model we donot assume these distri-
butions known (if they are known, the problem is consider-
ably simplified). For simplicity, we are also assuming that
the unknown mixing matrix is square, but this assumption
can be sometimes relaxed, as explained in Section 4.5.
Then, after estimating the matrixA, we can compute its
inverse, sayW, and obtain the independent component
simply by:

s�Wx: �6�
ICA is very closely related to the method calledblind

source separation(BSS) or blind signal separation. A
“source” means here an original signal, i.e. independent
component, like the speaker in a cocktail party problem.
“Blind” means that we know very little, if anything, on
the mixing matrix, and make little assumptions on the
source signals. ICA is one method, perhaps the most widely
used, for performing blind source separation.

In many applications, it would be more realistic to assume
that there is some noise in the measurements (Hyva¨rinen,
1998a; Hyva¨rinen, 1999c), which would mean adding a
noise term in the model. For simplicity, we omit any noise
terms, since the estimation of the noise-free model is diffi-
cult enough in itself, and seems to be sufficient for many
applications.

2.2. Ambiguities of ICA

In the ICA model in Eq. (4), it is easy to see that the

following ambiguities will hold:

1. We cannot determine the variances (energies) of the
independent components.
The reason is that, boths and A being unknown, any
scalar multiplier in one of the sourcessi could always
be cancelled by dividing the corresponding columnai

of A by the same scalar; see Eq. (5). As a consequence,
we may quite as well fix the magnitudes of the indepen-
dent components; as they are random variables, the most
natural way to do this is to assume that each has unit
variance:E{ s2

i } � 1: Then the matrixA will be adapted
in the ICA solution methods to take into account this
restriction. Note that this still leaves the ambiguity of
the sign: we could multiply the independent component
by 21 without affecting the model. This ambiguity is,
fortunately, insignificant in most applications.

2. We cannot determine the order of the independent
components.
The reason is that, again bothsandA being unknown, we
can freely change the order of the terms in the sum in Eq.
(5), and call any of the independent components the first
one. Formally, a permutation matrixP and its inverse can
be substituted in the model to givex � AP21Ps: The
elements ofPs are the original independent variablessj,
but in another order. The matrixAP21 is just a new
unknown mixing matrix, to be solved by the ICA
algorithms.

2.3. Illustration of ICA

To illustrate the ICA model in statistical terms, consider
two independent components that have the following
uniform distributions:

p�si� �
1

2
��
3
p if usi u #

��
3
p

0 otherwise

8><>: �7�

The range of values for this uniform distribution were
chosen so as to make the mean zero and the variance
equal to one, as was agreed in the previous section. The
joint density ofs1 ands2 is then uniform on a square. This
follows from the basic definition that the joint density of two
independent variables is just the product of their marginal
densities (see Eq. (10)): we need to simply compute the
product. The joint density is illustrated in Fig. 5 by showing
data points randomly drawn from this distribution.

Now let as mix these two independent components. Let us
take the following mixing matrix:

A0 �
2 3

2 1

 !
�8�

This gives us two mixed variables,x1 and x2. It is easily
computed that the mixed data has a uniform distribution
on a parallelogram, as shown in Fig. 6. Note that the random
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variablesx1 andx2 are not independent any more; an easy
way to see this is to consider, whether it is possible to
predict the value of one of them, sayx2, from the value of
the other. Clearly ifx1 attains one of its maximum or mini-
mum values, then this completely determines the value of
x2. They are therefore not independent. (For variabless1 and
s2 the situation is different: from Fig. 5 it can be seen that
knowing the value ofs1 does not in any way help in guessing
the value ofs2.)

The problem of estimating the data model of ICA is now
to estimate the mixing matrixA0 using only information
contained in the mixturesx1 andx2. Actually, you can see
from Fig. 6 an intuitive way of estimatingA: the edges of
the parallelogram are in the directions of the columns ofA.
This means that we could, in principle, estimate the ICA
model by first estimating the joint density ofx1 andx2, and
then locating the edges. So, the problem seems to have a
solution.

In reality, however, this would be a very poor method
because it only works with variables that have exactly
uniform distributions. Moreover, it would be computation-
ally quite complicated. What we need is a method that
works for any distributions of the independent components,
and works fast and reliably.

Next we shall consider the exact definition of indepen-
dence before starting to develop methods for estimation of
the ICA model.

3. What is independence?

3.1. Definition and fundamental properties

To define the concept of independence, consider two
scalar-valued random variablesy1 and y2. Basically, the
variablesy1 andy2 are said to be independent if information
on the value ofy1 does not give any information on the value

of y2, and vice versa. Above, we noted that this is the case
with the variabless1, s2 but not with the mixture variablesx1,
x2.

Technically, independence can be defined by the
probability densities. Let us denote byp(y1,y2) the joint
probability density function (pdf) ofy1 andy2. Let us further
denote byp1(y1) the marginal pdf ofy1, i.e. the pdf ofy1

when it is considered alone:

p1�y1� �
Z

p�y1; y2�dy2; �9�

and similarly fory2. Then we define thaty1 andy2 are inde-
pendent if and only if the joint pdf isfactorizable in the
following way:

p�y1; y2� � p1�y1�p2�y2�: �10�

This definition extends naturally for any numbern of
random variables, in which case the joint density must be
a product ofn terms.

The definition can be used to derive a most important
property of independent random variables. Given two
functions,h1 andh2, we always have

E{ h1�y1�h2�y2�} � E{ h1�y1�} E{ h2�y2�} : �11�

This can be proven as follows:

E{ h1�y1�h2�y2�} �
ZZ

h1�y1�h2�y2�p�y1; y2�dy1 dy2

�
ZZ

h1�y1�p1�y1�h2�y2�p2�y2�dy1 dy2

�
Z

h1�y1�p1�y1�dy1

Z
h2�y2�p2�y2�dy2

� E{ h1�y1�} E{ h2�y2�} : �12�
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Fig. 6. The joint distribution of the observed mixturesx1 andx2. Horizontal
axis:x1, vertical axis:x2.

Fig. 5. The joint distribution of the independent componentss1 ands2 with
uniform distributions. Horizontal axis:s1, vertical axis:s2.



3.2. Uncorrelated variables are only partly independent

A weaker form of independence is uncorrelatedness. Two
random variablesy1 and y2 are said to be uncorrelated, if
their covariance is zero:

E{ y1y2} 2 E{ y1} E{ y2} � 0 �13�
If the variables are independent, they are uncorrelated,
which follows directly from Eq. (11), takingh1�y1� � y1

andh2�y2� � y2:

On the other hand, uncorrelatedness doesnot imply inde-
pendence. For example, assume that (y1,y2) are discrete
valued and follow such a distribution that the pair are with
probability 1/4 equal to any of the following values:
(0,1),(0,21),(1,0),(21,0). Theny1 andy2 are uncorrelated,
as can be simply calculated. On the other hand,

E{ y2
1y2

2} � 0 ± 1
4 � E{ y2

1} E{ y2
2} : �14�

so the condition in Eq. (11) is violated, and the variables
cannot be independent.

Since independence implies uncorrelatedness, many ICA
methods constrain the estimation procedure so that it always
gives uncorrelated estimates of the independent compo-
nents. This reduces the number of free parameters, and
simplifies the problem.

3.3. Why Gaussian variables are forbidden

The fundamental restriction in ICA is that the indepen-
dent components must be non-Gaussian for ICA to be
possible.

To see why Gaussian variables make ICA impossible,
assume that the mixing matrix is orthogonal and thesi are
Gaussian. Thenx1 andx2 are Gaussian, uncorrelated, and of
unit variance. Their joint density is given by

p�x1; x2� � 1
2p

exp 2
x2

1 1 x2
2

2

 !
�15�

This distribution is illustrated in Fig. 7. The figure shows
that the density is completely symmetric. Therefore, it does
not contain any information on the directions of the columns
of the mixing matrixA. This is whyA cannot be estimated.

More rigorously, one can prove that the distribution of
any orthogonal transformation of the Gaussian (x1,x2) has
exactly the same distribution as (x1,x2), and thatx1 andx2 are
independent. Thus, in the case of Gaussian variables, we can
only estimate the ICA model up to an orthogonal transfor-
mation. In other words, the matrixA is not identifiable for
Gaussian independent components. (Actually, if just one of
the independent components is Gaussian, the ICA model
can still be estimated.)

4. Principles of ICA estimation

4.1. “Non-Gaussian is independent”

Intuitively speaking, the key to estimating the ICA model
is non-Gaussianity. Actually, without non-Gaussianity the
estimation is not possible at all, as mentioned in Section 3.3.
This is at the same time probably the main reason for the
rather late resurgence of ICA research: In most of classical
statistical theory, random variables are assumed to have
Gaussian distributions, thus precluding any methods related
to ICA.

The Central Limit Theorem, a classical result in probabil-
ity theory, tells that the distribution of a sum of independent
random variables tends toward a Gaussian distribution,
under certain conditions. Thus, a sum of two independent
random variables usually has a distribution that is closer to
Gaussian than any of the two original random variables.

Let us now assume that the data vectorx is distributed
according to the ICA data model in Eq. (4), i.e. it is a
mixture of independent components. For simplicity, let us
assume in this section that all the independent components
have identical distributions. To estimate one of the indepen-
dent components, we consider a linear combination of thexi

(see Eq. (6)); let us denote this byy� wTx � P
i wixi ;

where w is a vector to be determined. Ifw were one of
the rows of the inverse ofA, this linear combination
would actually equal one of the independent components.
The question is now: How could we use the Central Limit
Theorem to determinew so that it would equal one of
the rows of the inverse ofA? In practice, we cannot deter-
mine such aw exactly, because we have no knowledge of
matrix A, but we can find an estimator that gives a good
approximation.

To see how this leads to the basic principle of ICA
estimation, let us make a change of variables, definingz�
ATw: Then we havey� wTx � wTAs� zTs: y is thus a
linear combination ofsi, with weights given byzi. Since a
sum of even two independent random variables is more
Gaussian than the original variables,zTs is more Gaussian
than any of thesi and becomes least Gaussian when it in fact
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Fig. 7. The multivariate distribution of two independent Gaussian variables.



equals one of thesi. In this case, obviously only one of the
elementszi of z is non-zero. (Note that thesi were here
assumed to have identical distributions.)

Therefore, we could take asw a vector thatmaximizes the
non-Gaussianityof wTx. Such a vector would necessarily
correspond (in the transformed coordinate system) to az
which has only one non-zero component. This means that
wTx � zTs equals one of the independent components!

Maximizing the non-Gaussianity ofwTx thus gives us one
of the independent components. In fact, the optimization
landscape for non-Gaussianity in then-dimensional space
of vectorsw has 2n local maxima, two for each independent
component, corresponding tosi and2si (recall that the inde-
pendent components can be estimated only up to a multi-
plicative sign). To find several independent components, we
need to find all these local maxima. This is not difficult,
because the different independent components are uncorre-
lated: We can always constrain the search to the space that
gives estimates uncorrelated with the previous ones. This
corresponds to orthogonalization in a suitably transformed
(i.e. whitened) space.

Our approach here is rather heuristic, but it will be seen
in Sections 4.2 and 4.3 that it has a perfectly rigorous
justification.

4.2. Measures of non-Gaussianity

To use non-Gaussianity in ICA estimation, we must have
a quantitative measure of non-Gaussianity of a random
variable, sayy. To simplify things, let us assume thaty is
centered (zero-mean) and has variance equal to one.
Actually, one of the functions of preprocessing in ICA
algorithms, to be covered in Section 5, is to make this
simplification possible.

4.2.1. Kurtosis
The classical measure of non-Gaussianity is kurtosis or

the fourth-order cumulant. The kurtosis ofy is classically
defined by

kurt�y� � E{ y4} 2 3�E{ y2} �2 �16�
Actually, since we assumed thaty is of unit variance, the
right-hand side simplifies toE{ y4} 2 3: This shows that
kurtosis is simply a normalized version of the fourth
momentE{ y4}. For a Gaussiany, the fourth moment equals
3(E{ y2}) 2. Thus, kurtosis is zero for a Gaussian random
variable. For most (but not quite all) non-Gaussian random
variables, kurtosis is non-zero.

Kurtosis can be either positive or negative. Random vari-
ables that have a negative kurtosis are called sub-Gaussian,
and those with positive kurtosis are called super-Gaussian.
In statistical literature, the corresponding expressions,
platykurtic and leptokurtic, are also used. Super-Gaussian
random variables have typically a “spiky” pdf with heavy
tails, i.e. the pdf is relatively large at zero and at large values
of the variable, while being small for intermediate values. A
typical example is the Laplace distribution, whose pdf
(normalized to unit variance) is given by

p�y� � 1��
2
p exp� ��

2
p

uyu� �17�

This pdf is illustrated in Fig. 8. Sub-Gaussian random
variables, on the other hand, have typically a “flat” pdf,
which is rather constant near zero, and very small for larger
values of the variable. A typical example is the uniform
distribution in Eq. (7).

Typically non-Gaussianity is measured by the absolute
value of kurtosis. The square of kurtosis can also be used.
These are zero for a Gaussian variable, and greater than zero
for most non-Gaussian random variables. There are non-
Gaussian random variables that have zero kurtosis, but
they can be considered as very rare.

Kurtosis, or rather its absolute value, has been widely
used as a measure of non-Gaussianity in ICA and related
fields. The main reason is its simplicity, both computational
and theoretical. Computationally, kurtosis can be estimated
simply by using the fourth moment of the sample data.
Theoretical analysis is simplified because of the following
linearity property: Ifx1 andx2 are two independent random
variables, it holds

kurt�x1 1 x2� � kurt�x1�1 kurt�x2� �18�
and

kurt�ax1� � a4kurt�x1� �19�
wherea is a scalar. These properties can be easily proven
using the definition.

To illustrate in a simple example what the optimization
landscape for kurtosis looks like, and how independent
components could be found by kurtosis minimization or
maximization, let us look at a 2-dimensional modelx � As:
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Fig. 8. The density function of the Laplace distribution, which is a typical
super-Gaussian distribution. For comparison, the Gaussian density is given
by a dashed line. Both densities are normalized to unit variance.



Assume that the independent componentss1, s2 have kurto-
sis values kurt(s1), kurt(s2), respectively, both different from
zero. Remember that we assumed that they have unit
variances. We seek for one of the independent components
asy� wTx:

Let us again make the transformationz� ATw: Then we
havey� wTx � wTAs� zTs� z1s1 1 z2s2: Now, based on
the additive property of kurtosis, we have kurt�y� �
kurt�z1s1�1 kurt�z2s2� � z4

1kurt�s1�1 z4
2kurt�s2�: On the

other hand, we made the constraint that the variance ofy
is equal to 1, based on the same assumption concernings1,
s2. This implies a constraint onz: E{ y2} � z2

1 1 z2
2 � 1:

Geometrically, this means that vectorz is constrained to
the unit circle on the 2-dimensional plane. The optimization
problem is now: what are the maxima of the function
ukurt�y�u � uz4

1kurt�s1�1 z4
2kurt�s2�u on the unit circle? For

simplicity, you may consider that the kurtosis is of the
same sign, in which case it absolute value operators can
be omitted. The graph of this function is the “optimization
landscape” for the problem.

It is not hard to show (Delfosse & Loubaton, 1995) that
the maxima are at the points when exactly one of the
elements of vectorz is zero and the other non-zero; because
of the unit circle constraint, the non-zero element must be
equal to 1 or21. But these points are exactly the ones when
y equals one of the independent components^si, and the
problem has been solved.

In practice we would start from some weight vectorw,
compute the direction in which the kurtosis ofy� wTx is
growing most strongly (if kurtosis is positive) or decreasing
most strongly (if kurtosis is negative) based on the available
samplex�1�;…; x�T� of mixture vectorx, and use a gradient
method or one of their extensions for finding a new vector
w. The example can be generalized to arbitrary dimensions,
showing that kurtosis can theoretically be used as an
optimization criterion for the ICA problem.

However, kurtosis has also some drawbacks in practice,
when its value has to be estimated from a measured sample.
The main problem is that kurtosis can be very sensitive to
outliers (Huber, 1985). Its value may depend on only a few
observations in the tails of the distribution, which may be
erroneous or irrelevant observations. In other words,
kurtosis is not a robust measure of non-Gaussianity.

Thus, other measures of non-Gaussianity might be better
than kurtosis in some situations. Below we shall consider
negentropy whose properties are rather opposite to those of
kurtosis, and finally introduce approximations of negen-
tropy that more or less combine the good properties of
both measures.

4.2.2. Negentropy
A second very important measure of non-Gaussianity is

given by negentropy. Negentropy is based on the informa-
tion-theoretic quantity of (differential) entropy.

Entropy is the basic concept of information theory. The
entropy of a random variable can be interpreted as the

degree of information that the observation of the variable
gives. The more “random”, i.e. unpredictable and unstruc-
tured the variable is, the larger its entropy. More rigorously,
entropy is closely related to the coding length of the random
variable, in fact, under some simplifying assumptions,
entropy is the coding length of the random variable. For
introductions on information theory, see Cover and Thomas
(1991) and Papoulis (1991).

EntropyH is defined for a discrete random variableY as

H�Y� � 2
X

i

P�Y � ai�log P�Y � ai� �20�

where theai are the possible values ofY. This very well-
known definition can be generalized for continuous-valued
random variables and vectors, in which case it is often called
differential entropy. The differential entropyH of a random
vectory with densityf(y) is defined as (Cover & Thomas,
1991; Papoulis, 1991):

H�y� � 2
Z

f �y�log f �y�dy: �21�

A fundamental result of information theory is that a
Gaussian variable has the largest entropy among all
random variables of equal variance. For a proof, see e.g.
Cover and Thomas (1991) and Papoulis (1991). This means
that entropy could be used as a measure of non-Gaussianity.
In fact, this shows that the Gaussian distribution is the “most
random” or the least structured of all distributions. Entropy
is small for distributions that are clearly concentrated on
certain values, i.e. when the variable is clearly clustered,
or has a pdf that is very “spiky”.

To obtain a measure of non-Gaussianity that is zero for a
Gaussian variable and always non-negative, one often uses a
slightly modified version of the definition of differential
entropy, called negentropy. NegentropyJ is defined as
follows:

J�y� � H�ygauss�2 H�y� �22�
where ygauss is a Gaussian random variable of the same
covariance matrix asy. Due to the above-mentioned proper-
ties, negentropy is always non-negative, and it is zero if and
only if y has a Gaussian distribution. Negentropy has the
additional interesting property that it is invariant for inver-
tible linear transformations (Comon, 1994; Hyva¨rinen,
1999e).

The advantage of using negentropy, or, equivalently,
differential entropy, as a measure of non-Gaussianity is
that it is well justified by statistical theory. In fact,
negentropy is in some sense the optimal estimator of non-
Gaussianity, as far as statistical properties are concerned.
The problem in using negentropy is, however, that it is
computationally very difficult. Estimating negentropy
using the definition would require an estimate (possibly
non-parametric) of the pdf. Therefore, simpler approxima-
tions of negentropy are very useful, as will be discussed
next.
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4.2.3. Approximations of negentropy
The estimation of negentropy is difficult, as mentioned

above, and therefore this contrast function remains mainly a
theoretical one. In practice, some approximations have to be
used. Here we introduce approximations that have very
promising properties, and which will be used in the follow-
ing to derive an efficient method for ICA.

The classical method of approximating negentropy is
using higher-order moments, for example as follows
(Jones & Sibson, 1987):

J�y� < 1
12 E{ y3} 2 1 1

48 kurt�y�2 �23�
The random variabley is assumed to be of zero mean and
unit variance. However, the validity of such approximations
may be rather limited. In particular, these approximations
suffer from the non-robustness encountered with kurtosis.

To avoid the problems encountered with the preceding
approximations of negentropy, new approximations were
developed in Hyva¨rinen (1998b). These approximations
were based on the maximum-entropy principle. In general
we obtain the following approximation:

J�y� <
Xp
i�1

ki�E{ Gi�y�} 2 E{ Gi�n�} �2; �24�

whereki are some positive constants, andn is a Gaussian
variable of zero mean and unit variance (i.e. standardized).
The variabley is assumed to be of zero mean and unit
variance, and the functionsGi are some non-quadratic func-
tions (Hyvärinen, 1998b). Note that even in cases where this
approximation is not very accurate, Eq. (24) can be used to
construct a measure of non-Gaussianity that is consistent in
the sense that it is always non-negative, and equal to zero if
y has a Gaussian distribution.

In the case where we use only one non-quadratic function
G, the approximation becomes

J�y� / �E{ G�y�} 2 E{ G�n�} �2 �25�
for practically any non-quadratic functionG. This is clearly
a generalization of the moment-based approximation in
Eq. (23), if y is symmetric. Indeed, takingG�y� � y4

; one
then obtains exactly Eq. (23), i.e. a kurtosis-based
approximation.

But the point here is that by choosingG wisely, one
obtains approximations of negentropy that are much better
than the one given by Eq. (23). In particular, choosingG that
does not grow too fast, one obtains more robust estimators.
The following choices ofG have proved very useful:

G1�u� � 1
a1

log cosha1u; G2�u� � 2exp�2u2
=2� �26�

where 1# a1 # 2 is some suitable constant.
Thus we obtain approximations of negentropy that give a

very good compromise between the properties of the two
classical non-Gaussianity measures given by kurtosis and
negentropy. They are conceptually simple, fast to compute,

yet have appealing statistical properties, especially robust-
ness. Therefore, we shall use these contrast functions in our
ICA methods. Since kurtosis can be expressed in this same
framework, it can still be used by our ICA methods. A
practical algorithm based on these contrast functions will
be presented in Section 6.

4.3. Minimization of mutual information

Another approach for ICA estimation, inspired by infor-
mation theory, is minimization of mutual information. We
will explain this approach here, and show that it leads to the
same principle of finding most non-Gaussian directions as
was described above. In particular, this approach gives a
rigorous justification for the heuristic principles used above.

4.3.1. Mutual information
Using the concept of differential entropy, we define the

mutual informationI betweenm (scalar) random variables,
yi, i � 1…mas follows:

I �y1; y2;…; ym� �
Xm
i�1

H�yi�2 H�y�: �27�

Mutual information is a natural measure of the dependence
between random variables. In fact, it is equivalent to the
well-known Kullback–Leibler divergence between the
joint densityf(y) and the product of its marginal densities;
a very natural measure for independence. It is always non-
negative, and zero if and only if the variables are statisti-
cally independent. Thus, mutual information takes into
account the whole dependence structure of the variables,
and not only the covariance, like PCA and related methods.

Mutual information can be interpreted by using the inter-
pretation of entropy as code length. The termsH(yi) give the
lengths of codes for theyi when these are coded separately,
andH(y) gives the code length wheny is coded as a random
vector, i.e. all the components are coded in the same code.
Mutual information thus shows what code length reduction
is obtained by coding the whole vector instead of the sepa-
rate components. In general, better codes can be obtained by
coding the whole vector. However, if theyi are independent,
they give no information on each other, and one could just
as well code the variables separately without increasing
code length.

An important property of mutual information (Cover &
Thomas, 1991; Papoulis, 1991) is that we have for an
invertible linear transformationy �Wx

I �y1; y2;…; yn� �
X

i

H�yi�2 H�x�2 logudetWu: �28�

Now, let us consider what happens if we constrain the
yi to be uncorrelatedand of unit variance. This means
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E�yyT} �WE{ xxT} WT � I ; which implies

det I � 1� �detWE{ xxT} WT�

� �detW��detE{ xxT} ��detWT�; �29�
and this implies that detW must be constant. Moreover, for
yi of unit variance, entropy and negentropy differ only by a
constant, and the sign. Thus we obtain,

I �y1; y2;…; yn� � C 2
X

i

J�yi�: �30�

where C is a constant that does not depend onW. This
shows the fundamental relation between negentropy and
mutual information.

4.3.2. Defining ICA by mutual information
Since mutual information is the natural information-

theoretic measure of the independence of random variables,
we could use it as the criterion for finding the ICA trans-
form. In this approach that is an alternative to the model
estimation approach, we define the ICA of a random vector
x as an invertible transformation as in Eq. (6), where the
matrix W is determined so that the mutual information of
the transformed componentssi is minimized.

It is now obvious from Eq. (30) that finding an invertible
transformationW that minimizes the mutual information is
roughly equivalent tofinding directions in which the negen-
tropy is maximized. More precisely, it is roughly equivalent
to finding 1-D subspaces such that the projections in those
subspaces have maximum negentropy. Rigorously,
speaking, Eq. (30) shows that ICA estimation by minimiza-
tion of mutual information is equivalent to maximizing the
sum of non-Gaussianities of the estimates, when theesti-
mates are constrained to be uncorrelated. The constraint of
uncorrelatedness is in fact not necessary, but simplifies the
computations considerably, as one can then use the simpler
form in Eq. (30) instead of the more complicated form in
Eq. (28).

Thus, we see that the formulation of ICA as minimization
of mutual information gives another rigorous justification of
our more heuristically introduced idea of finding maximally
non-Gaussian directions.

4.4. Maximum likelihood estimation

4.4.1. The likelihood
A very popular approach for estimating the ICA model is

maximum likelihood estimation, which is closely connected
to the infomax principle. Here we discuss this approach, and
show that it is essentially equivalent to minimization of
mutual information.

It is possible to formulate directly the likelihood in the
noise-free ICA model, which was done in Pham, Garrat and
Jutten (1992), and then estimate the model by a maximum
likelihood method. Denoting byW � �w1;…;wn�T the
matrix A21, the log-likelihood takes the form (Pham et al.,

1992):

L �
XT
t�1

Xn
i�1

log fi�wT
i x�t��1 TlogudetWu �31�

where thefi are the density functions of thesi (here assumed
to be known), and thex�t�; t � 1;…;T are the realizations of
x. The term logudetWu in the likelihood comes from the
classic rule for (linearly) transforming random variables
and their densities (Papoulis, 1991). In general, for any
random vectorx with density px and for any matrixW,
the density ofy �Wx is given bypx�W21y�udetW21u:

4.4.2. The infomax principle
Another related contrast function was derived from a

neural network viewpoint in Bell and Sejnowski (1995)
and Nadal and Parga (1994). This was based on maximizing
the output entropy (or information flow) of a neural network
with non-linear outputs. Assume thatx is the input to the
neural network whose outputs are of the formfi�wT

i x�;
where thef i are some non-linear scalar functions, and the
wi are the weight vectors of the neurons. One then wants to
maximize the entropy of the outputs:

L2 � H�f1�wT
1x�;…;fn�wT

nx��: �32�
If the f i are well chosen, this framework also enables the
estimation of the ICA model. Indeed, several authors, e.g.
Cardoso (1997) and Pearlmutter and Parra (1997), proved
the surprising result that the principle of network entropy
maximization, or “infomax”, is equivalent to maximum
likelihood estimation. This equivalence requires that the
non-linearitiesf i used in the neural network are chosen as
the cumulative distribution functions corresponding to the
densitiesfi, i.e.f 0i�·� � fi�·�:

4.4.3. Connection to mutual information
To see the connection between likelihood and mutual

information, consider the expectation of the log-likelihood:

1
T

E{ L} �
Xn
i�1

E{log fi�wT
i x�} 1 logudetWu: �33�

Actually, if the fi were equal to the actual distributions of
wT

i x; the first term would be equal to2
P

i H�wT
i x�: Thus the

likelihood would be equal, up to an additive constant, to the
negative of mutual information as given in Eq. (28).

Actually, in practice the connection is even stronger. This
is because in practice we do not know the distributions of
the independent components. A reasonable approach would
be to estimate the density ofwT

i x as part of the ML estima-
tion method, and use this as an approximation of the density
of si. In this case, likelihood and mutual information are, for
all practical purposes, equivalent.

Nevertheless, there is a small difference that may be very
important in practice. The problem with maximum likeli-
hood estimation is that the densitiesfi must be estimated
correctly. They need not be estimated with any great
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precision: in fact it is enough to estimate whether they are
sub- or super- Gaussian (Cardoso & Laheld, 1996; Hyva¨r-
inen & Oja, 1998; Lee, Girolami & Sejnowski, 1999). In
many cases, in fact, we have enough prior knowledge on the
independent components, and we do not need to estimate
their nature from the data. In any case, if the information on
the nature of the independent components is not correct, ML
estimation will give completely wrong results. Some care
must be taken with ML estimation, therefore. In contrast,
using reasonable measures of non-Gaussianity, this problem
does not usually arise.

4.5. ICA and projection pursuit

It is interesting to note how our approach to ICA makes
explicit the connection between ICA and projection pursuit.
Projection pursuit (Friedman, 1987; Friedman & Tukey,
1974; Huber, 1985; Jones & Sibson, 1987) is a technique
developed in statistics for finding “interesting” projections
of multidimensional data. Such projections can then be used
for optimal visualization of the data, and for such purposes
as density estimation and regression. In basic (1-D)
projection pursuit, we try to find directions such that the
projections of the data in those directions have interesting
distributions, i.e. display some structure. It has been argued
by Huber (1985) and Jones and Sibson (1987) that the Gaus-
sian distribution is the least interesting one, and that the
most interesting directions are those that show the least
Gaussian distribution. This is exactly what we do to estimate
the ICA model.

The usefulness of finding such projections can be seen in
Fig. 9, where the projection on the projection pursuit direc-
tion, which is horizontal, clearly shows the clustered struc-
ture of the data. The projection on the first principal
component (vertical), on the other hand, fails to show this
structure.

Thus, in the general formulation, ICA can be considered a
variant of projection pursuit. All the non-Gaussianity
measures and the corresponding ICA algorithms presented

here could also be called projection pursuit “indices” and
algorithms. In particular, the projection pursuit allows us to
tackle the situation where there are less independent compo-
nents si than original variablesxi. Assuming that those
dimensions of the space that are not spanned by the inde-
pendent components are filled by Gaussian noise, we see
that computing the non-Gaussian projection pursuit direc-
tions, we effectively estimate the independent components.
When all the non-Gaussian directions have been found, all
the independent components have been estimated. Such a
procedure can be interpreted as a hybrid of projection
pursuit and ICA.

However, it should be noted that in the formulation of
projection pursuit, no data model or assumption about
independent components is made. If the ICA model holds,
optimizing the ICA non-Gaussianity measures produce
independent components; if the model does not hold, then
what we get are the projection pursuit directions.

5. Preprocessing for ICA

In the preceding section, we discussed the statistical
principles underlying ICA methods. Practical algorithms
based on these principles will be discussed in the next
section. However, before applying an ICA algorithm on
the data, it is usually very useful to do some preprocessing.
In this section, we discuss some preprocessing techniques
that make the problem of ICA estimation simpler and better
conditioned.

5.1. Centering

The most basic and necessary preprocessing is to centerx,
i.e. subtract its mean vectorm � E{ x} so as to makex a
zero-mean variable. This implies thats is zero-mean as well,
as can be seen by taking expectations on both sides of
Eq. (4).

This preprocessing is made solely to simplify the ICA
algorithms: It does not mean that the mean could not be
estimated. After estimating the mixing matrixA with
centered data, we can complete the estimation by adding
the mean vector ofs back to the centered estimates ofs.
The mean vector is given byA21m; wherem is the mean
that was subtracted in the preprocessing.

5.2. Whitening

Another useful preprocessing strategy in ICA is to first
whiten the observed variables. This means that before the
application of the ICA algorithm (and after centering), we
transform the observed vectorx linearly so that we obtain a
new vector~x which is white, i.e. its components are uncor-
related and their variances equal unity. In other words, the
covariance matrix of~x equals the identity matrix:

E{ ~x~xT} � I : �34�
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Gaussian projections. The date in this figure is clearly divided into two
clusters. However, the principal component, i.e. the direction of maximum
variance, would be vertical, providing no separation between the clusters.
In contrast, the strongly non-Gaussian projection pursuit direction is
horizontal, providing optimal separation of the clusters.



The whitening transformation is always possible. One
popular method for whitening is to use the eigenvalue
decomposition (EVD) of the covariance matrixE{ xxT} �
EDET

; whereE is the orthogonal matrix of eigenvectors of
E{ xxT} and D is the diagonal matrix of its eigenvalues,D �
diag�d1;…; dn�: Note that E{ xxT} can be estimated in a
standard way from the available samplex�1�;…; x�T�:
Whitening can now be done by

~x � ED21=2ETx �35�
where the matrixD21/2 is computed by a simple component-
wise operation asD21=2 � diag�d21=2

1 ;…;d21=2
n �: It is easy to

check that nowE�~x~xT} � I :
Whitening transforms the mixing matrix into a new one,

~A: We have from Eqs. (4) and (35):

~x � ED21=2ETAs� ~As �36�
The utility of whitening resides in the fact that the new
mixing matrix ~A is orthogonal. This can be seen from

E{ ~x~xT} � ~AE{ ssT} ~AT � ~A ~AT � I : �37�
Here we see that whitening reduces the number of para-
meters to be estimated. Instead of having to estimate the
n2 parameters that are the elements of the original matrix
A, we only need to estimate the new, orthogonal mixing
matrix ~A: An orthogonal matrix containsn�n 2 1�=2 degrees
of freedom. For example, in two dimensions, an orthogonal
transformation is determined by a single angle parameter. In
larger dimensions, an orthogonal matrix contains only about
half of the number of parameters of an arbitrary matrix.
Thus one can say that whitening solves half of the problem
of ICA. Because whitening is a very simple and standard
procedure, much simpler than any ICA algorithms, it is a
good idea to reduce the complexity of the problem this way.

It may also be quite useful to reduce the dimension of the
data at the same time as we do the whitening. Then we look
at the eigenvaluesdj of E{ xxT} and discard those that are too

small, as is often done in the statistical technique of princi-
pal component analysis. This has often the effect of reducing
noise. Moreover, dimension reduction prevents overlearn-
ing, which can sometimes be observed in ICA (Hyva¨rinen,
Särelä & Vigáro, 1999).

A graphical illustration of the effect of whitening can be
seen in Fig. 10, in which the data in Fig. 6 has been
whitened. The square defining the distribution is now
clearly a rotated version of the original square in Fig. 5.
All that is left is the estimation of a single angle that
gives the rotation.

In the rest of this paper, we assume that the data has been
preprocessed by centering and whitening. For simplicity of
notation, we denote the preprocessed data just byx, and the
transformed mixing matrix byA, omitting the tildes.

5.3. Further preprocessing

The success of ICA for a given data set may depend
crucially on performing some application-dependent
preprocessing steps. For example, if the data consists of
time-signals, some band-pass filtering may be very useful.
Note that if we filter linearly the observed signalsxi(t) to
obtain new signals, sayxp

i �t�; the ICA model still holds for
xp

i �t�; with the same mixing matrix.
This can be seen as follows. Denote byX the matrix that

contains the observationsx�1�;…; x�T� as its columns, and
similarly for S. Then the ICA model can be expressed as:

X � AS �38�
Now, time filtering ofX corresponds to multiplyingX from
the right by a matrix, let us call itM . This gives

Xp � XM � ASM � ASp
; �39�

which shows that the ICA model remains still valid.

6. The FastICA algorithm

In the preceding sections, we introduced different
measures of non-Gaussianity, i.e. objective functions for
ICA estimation. In practice, one also needs an algorithm
for maximizing the contrast function, for example the one
in Eq. (25). In this section, we introduce a very efficient
method of maximization suited for this task. It is here
assumed that the data is preprocessed by centering and
whitening as discussed in the preceding section.

6.1. FastICA for one unit

To begin with, we shall show the one-unit version of
FastICA. By a “unit” we refer to a computational unit,
eventually an artificial neuron, having a weight vectorw
that the neuron is able to update by a learning rule. The
FastICA learning rule finds a direction, i.e. a unit vectorw
such that the projectionwTx maximizes non-Gaussianity.
Non-Gaussianity is here measured by the approximation
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of negentropyJ(wTx) given in Eq. (25). Recall that the
variance ofwTx must here be constrained to unity; for
whitened data this is equivalent to constraining the norm
of w to be unity.

The FastICA is based on a fixed-point iteration scheme
for finding a maximum of the non-Gaussianity ofwTx, as
measured in Eq. (25) (Hyva¨rinen, 1999a; Hyva¨rinen & Oja,
1997). It can be also derived as an approximative Newton
iteration (Hyvärinen, 1999a). Denote byg the derivative of
the non-quadratic functionG used in Eq. (25); for example
the derivatives of the functions in Eq. (26) are:

g1�u� � tanh�a1u�; g2�u� � u exp�2u2
=2� �40�

where 1# a1 # 2 is some suitable constant, often taken as
a1 � 1: The basic form of the FastICA algorithm is as
follows:

1. Choose an initial (e.g. random) weight vectorw.
2. Let w1 � E{ xg�wTx�} 2 E�g0�wTx�} w
3. Let w � w1

=iw1i
4. If not converged, go back to 2.

Note that convergence means that the old and new values of
w point in the same direction, i.e. their dot-product is
(almost) equal to 1. It is not necessary that the vector
converges to a single point, sincew and 2w define the
same direction. This is again because the independent
components can be defined only up to a multiplicative
sign. Note also that it is here assumed that the data is
prewhitened.

The derivation of FastICA is as follows. First note that the
maxima of the approximation of the negentropy ofwTx are
obtained at certain optima ofE�G�wTx�} : According to the
Kuhn–Tucker conditions (Luenberger, 1969), the optima of
E{ G�wTx�} under the constraintE{ �wTx�2} � iwi2 � 1 are
obtained at points where

E{ xg�wTx�} 2 bw � 0 �41�
Let us try to solve this equation by Newton’s method.

Denoting the function on the left-hand side of Eq. (41) by
F, we obtain its Jacobian matrixJF(w) as

JF�w� � E{ xxTg0�wTx�} 2 bI �42�
To simplify the inversion of this matrix, we decide to
approximate the first term in Eq. (42). Since the data is
sphered, a reasonable approximation seems to be
E{ xxTg0�wTx�} < E{ xxT} E{ g0�wTx�} � E{ g0�wTx�} I :

Thus the Jacobian matrix becomes diagonal, and can
easily be inverted. Thus we obtain the following approxi-
mative Newton iteration:

w1 � w 2 �E{ xg�wTx�} 2 bw�=�E{ g0�wTx�} 2 b� �43�
This algorithm can be further simplified by multiplying both
sides of Eq. (43) byb 2 E{ g0�wTx�} : This gives, after
algebraic simplification, the FastICA iteration.

In practice, the expectations in FastICA must be replaced

by their estimates. The natural estimates are of course the
corresponding sample means. Ideally, all the data available
should be used, but this is often not a good idea because the
computations may become too demanding. Then the
averages can be estimated using a smaller sample, whose
size may have a considerable effect on the accuracy of the
final estimates. The sample points should be chosen
separately at every iteration. If the convergence is not
satisfactory, one may then increase the sample size.

6.2. FastICA for several units

The one-unit algorithm of Section 6.1 estimates just one
of the independent components, or one projection pursuit
direction. To estimate several independent components, we
need to run the one-unit FastICA algorithm using several
units (e.g. neurons) with weight vectorsw1;…;wn:

To prevent different vectors from converging to the same
maxima we mustdecorrelatethe outputswT

1x;…;wT
nx after

every iteration. We present here three methods for achieving
this. Note that for whitenedx such a decorrelation is equiva-
lent to orthogonalization.

A simple way of achieving decorrelation is a deflation
scheme based on a Gram–Schmidt-like decorrelation.
This means that we estimate the independent components
one by one. When we have estimatedp independent compo-
nents, orp vectorsw1;…;wp; we run the one-unit fixed-
point algorithm for wp11; and after every iteration step
subtract from wp11 the “projections” wT

p11wjwj ; j �
1;…; p of the previously estimatedp vectors, and then
renormalizewp11 :

1: Let wp11 � wp11 2
Xp
j�1

wT
p11wjwj �44�

2: Let wp11 � wp11=
�������������
wT

p11wp11

q
In certain applications, however, it may be desired to use

a symmetric decorrelation, in which no vectors are “privi-
leged” over others (Karhunen, Oja, Wang, Viga´rio & Jout-
sensalo, 1997). This can be accomplished, e.g. by the
classical method involving matrix square roots,

Let W � �WWT�21=2W: �45�
whereW is the matrix�w1;…;wn�T of the vectors, and the
inverse square root�WWT�21=2 is obtained from the eigen-
value decomposition ofWWT � FLFT as �WWT�21=2 �
FL21=2FT

: A simpler alternative is the following iterative
algorithm (Hyvärinen, 1999a),

1: Let W �W=

����������
iWWTi

q
�46�

Repeat 2: until convergence:

2: Let W � 3
2 W 2 1

2 WWTW

A. Hyvärinen, E. Oja / Neural Networks 13 (2000) 411–430 423



The norm in step 1 can be almost any ordinary matrix norm,
e.g. the 2-norm or the largest absolute row (or column) sum
(but not the Frobenius norm).

6.3. FastICA and maximum likelihood

Finally, we give a version of FastICA that shows expli-
citly the connection to the well-known infomax or maxi-
mum likelihood algorithm introduced in Amari, Cichocki
and Yang (1996), Bell and Sejnowski (1995), Cardoso and
Laheld (1996) and Cichocki and Unbehauen (1996). If we
express FastICA using the intermediate formula in Eq. (43),
and write it in matrix form (see Hyva¨rinen (1999b) for
details), we see that FastICA takes the following form:

W1 �W 1 diag�ai��diag�bi�1 E{ g�y�yT} �W: �47�
where y �Wx; bi � 2E{ yig�yi�} ; and ai � 21=�bi 1
E{ g0�yi�} �: The matrixW needs to be orthogonalized after
every step. In this matrix version, it is natural to orthogona-
lize W symmetrically.

The above version of FastICA could be compared with
the stochastic gradient method for maximizing likelihood
(Amari et al., 1996; Bell & Sejnowski, 1995; Cardoso &
Laheld, 1996; Cichocki & Unbehauen, 1996):

W1 �W 1 m�I 1 g�y�yT�W: �48�
wherem is the learning rate, not necessarily constant in time.
Here,g is a function of the pdf of the independent compo-
nents:g� f 0i =fi where thefi is the pdf of an independent
component.

Comparing Eqs. (47) and (48), we see that FastICA can
be considered as a fixed-point algorithm for maximum like-
lihood estimation of the ICA data model. For details, see
Hyvärinen (1999b). In FastICA, convergence speed is opti-
mized by the choice of the matrices diag(a i) and diag(b i).
Another advantage of FastICA is that it can estimate both
sub and superGaussian independent components, which is
in contrast to ordinary ML algorithms, which only work for
a given class of distributions (see Section 4.4).

6.4. Properties of the FastICA algorithm

The FastICA algorithm and the underlying contrast func-
tions have a number of desirable properties when compared
with existing methods for ICA.

1. The convergence is cubic (or at least quadratic), under
the assumption of the ICA data model (for a proof, see
Hyvärinen (1999a)). This is in contrast to ordinary ICA
algorithms based on (stochastic) gradient descent meth-
ods, where the convergence is only linear. This means a
very fast convergence, as has been confirmed by simula-
tions and experiments on real data (see Giannakopoulos,
Karhunen and Oja (1998)).

2. Contrary to gradient-based algorithms, there are no step
size parameters to choose. This means that the algorithm
is easy to use.

3. The algorithm finds directly independent components of
(practically) any non-Gaussian distribution using any
non-linearityg. This is in contrast to many algorithms,
where some estimate of the probability distribution func-
tion has to be first available, and the non-linearity must
be chosen accordingly.

4. The performance of the method can be optimized by
choosing a suitable non-linearityg. In particular, one can
obtain algorithms that are robust and/or of minimum
variance. In fact, the two non-linearities in Eq. (40) have
some optimal properties; for details see Hyva¨rinen (1999a).

5. The independent components can be estimated one by one,
which is roughly equivalent to doing projection pursuit.
This is useful in exploratory data analysis, and decreases
the computational load of the method in cases where only
some of the independent components need to be estimated.

6. The FastICA has most of the advantages of neural
algorithms: it is parallel, distributed, computationally
simple, and requires little memory space. Stochastic gradi-
ent methods seem to be preferable only if fast adaptivity in a
changing environment is required.

A Matlabe implementation of the FastICA algorithm is
available on the World Wide Web free of charge.1

7. Applications of ICA

In this section we review some applications of ICA. The
most classical application of ICA, the cocktail-party
problem, was already explained in Section 1 of this paper.

7.1. Separation of artifacts in MEG data

Magnetoencephalography (MEG) is a non-invasive tech-
nique by which the activity or the cortical neurons can be
measured with very good temporal resolution and moderate
spatial resolution. When using a MEG record, as a research
or clinical tool, the investigator may face a problem of
extracting the essential features of the neuromagnetic
signals in the presence of artifacts. The amplitude of the
disturbances may be higher than that of the brain signals
and the artifacts may resemble pathological signals in shape.

In Vigário, Jousma¨ki, Hamäläinen, Hari and Oja (1998a),
the authors introduced a new method to separate brain
activity from artifacts using ICA. The approach is based
on the assumption that the brain activity and the artifacts,
e.g. eye movements or blinks, or sensor malfunctions, are
anatomically and physiologically separate processes, and
this separation is reflected in the statistical independence
between the magnetic signals generated by those processes.
The approach follows the earlier experiments with EEG
signals, reported in Viga´rio (1997). A related approach is
that of Makeig, Bell, Jung and Sejnowski (1996).

The MEG signals were recorded in a magnetically
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shielded room with a 122-channel whole-scalp Neuromag-
122 neuromagnetometer. This device collects data at 61
locations over the scalp, using orthogonal double-loop
pick-up coils that couple strongly to a local source just
underneath. The test person was asked to blink and make
horizontal saccades, in order to produce typical ocular (eye)
artifacts. Moreover, to produce myographic (muscle) arti-
facts, the subject was asked to bite his teeth for as long as
20 s. Yet another artifact was created by placing a digital
watch 1 m away from the helmet into the shielded room.

Fig. 11 presents a subset of 12 spontaneous MEG signals
xi(t) from the frontal, temporal, and occipital areas (Viga´rio
et al., 1998a,b). The figure also shows the positions of the
corresponding sensors on the helmet. Due to the dimension
of the data (122 magnetic signals were recorded), it is imprac-
tical to plot all the MEG signalsxi(t), i � 1;…;122: Also
two electro-oculogram channels and the electrocardiogram
are presented, but they were not used in computing the ICA.

The signal vectorx in the ICA model (4) consists now of
the amplitudesxi(t) of the 122 signals at a certain time point,
so the dimensionality isn� 122: In the theoretical model,x
is regarded as a random vector, and the measurementsx(t)
give a set of realizations ofx as time proceeds. Note that in
the basic ICA model that we are using, the temporal
correlations in the signals are not utilized at all.

The x(t) vectors were whitened using PCA and the
dimensionality was decreased at the same time. Then,
using the FastICA algorithm, a subset of the rows of the
separating matrixW of Eq. (6) were computed. Once a

vectorwi has become available, an ICA signalsi(t) can be
computed fromsi�t� � wT

i x�t� with x(t) now denoting the
whitened and lower dimensional signal vector.

Fig. 12 shows sections of 9 independent components
(IC’s) si(t), i � 1;…;9 found from the recorded data
together with the corresponding field patterns (Viga´rio et
al., 1998a). The first two IC’s are clearly due to the muscular
activity originated from the biting. Their separation into
two components seems to correspond, on the basis of the
field patterns, to two different sets of muscles that were
activated during the process. IC3 and IC5 are showing the
horizontal eye movements and the eye blinks, respectively.
IC4 represents the cardiac artifact that is very clearly
extracted.

To find the remaining artifacts, the data were high-pass
filtered, with cutoff frequency at 1 Hz. Next, the indepen-
dent component IC8 was found. It shows the artifact origi-
nated at the digital watch clearly, located to the right side of
the magnetometer. The last independent component IC9 is
related to a sensor presenting higher RMS (root mean
squared) noise than the others.

The results of Fig. 12 clearly show that using the ICA
technique and the FastICA algorithm, it is possible to isolate
both eye movement and eye blinking artifacts, as well as
cardiac, myographic, and other artifacts from MEG signals.
The FastICA algorithm is an especially suitable tool,
because artifact removal is an interactive technique and
the investigator may freely choose how many of the IC’s
he or she wants.

A. Hyvärinen, E. Oja / Neural Networks 13 (2000) 411–430 425

Fig. 11. (From Viga´rio et al., 1998a.) Samples of MEG signals, showing artifacts produced by blinking, saccades, biting and cardiac cycle. For each of the six
positions shown, the two orthogonal directions of the sensors are plotted. Reprinted with permission from the MIT Press.



In addition to reducing artifacts, ICA can be used to
decompose evoked fields (Viga´rio et al., 1998b), which
enables direct access to the underlying brain functioning,
which is likely to be of great significance in neuroscientific
research.

7.2. Finding hidden factors in financial data

It is a tempting alternative to try ICA on financial data.
There are many situations in that application domain in
which parallel time series are available, such as currency
exchange rates or daily returns of stocks, that may have
some common underlying factors. ICA might reveal some
driving mechanisms that otherwise remain hidden. In a
recent study of a stock portfolio (Back & Weigend, 1998),
it was found that ICA is a complementary tool to PCA,
allowing the underlying structure of the data to be more
readily observed.

In Kiviluoto and Oja (1998) we applied ICA on a different
problem: the cashflow of several stores belonging to the
same retail chain, trying to find the fundamental factors

common to all stores that affect the cashflow data. Thus,
the cashflow effect of the factors specific to any particular
store, i.e. the effect of the actions taken at the individual
stores and in its local environment could be analyzed.

The assumption of having some underlying independent
components in this specific application may not be unrea-
listic. For example, factors like seasonal variations due to
holidays and annual variations, and factors having a sudden
effect on the purchasing power of the customers like prize
changes of various commodities, can be expected to have an
effect on all the retail stores, and such factors can be
assumed to be roughly independent of each other. Yet,
depending on the policy and skills of the individual manager
like e.g. advertising efforts, the effect of the factors on the
cash flow of specific retail outlets are slightly different. By
ICA, it is possible to isolate both the underlying factors and
the effect weights, thus also making it possible to group the
stores on the basis of their managerial policies using only
the cash flow time series data.

The data consisted of the weekly cash flow in 40 stores
that belong to the same retail chain; the cash flow measure-
ments cover 140 weeks. Some examples of the original data
xi(t) are shown in Fig. 13.

The prewhitening was performed so that the original
signal vectors were projected to the subspace spanned by
their first five principal components and the variances were
normalized to 1. Thus the dimension of the signal space was
decreased from 40 to 5. Using the FastICA algorithm, five
IC’s si(t), i � 1;…; 5 were estimated. As depicted in Fig. 14,
the FastICA algorithm has found several clearly different
fundamental factors hidden in the original data.

The factors have clearly different interpretations. The
upmost two factors follow the sudden changes that are
caused by holidays, etc.; the most prominent example is
the Christmas time. The factor on the bottom row, on the
other hand, reflects the slower seasonal variation, with the
effect of the summer holidays clearly visible. The factor on
the third row could represent a still slower variation, some-
thing resembling a trend. The last factor, on the fourth row,
is different from the others; it might be that this factor
follows mostly the relative competitive position of the retail
chain with respect to its competitors, but other interpreta-
tions are also possible.

More details on the experiments and their interpretation
can be found in Kiviluoto and Oja (1998).

7.3. Reducing noise in natural images

The third example deals with finding ICA filters for
natural images and, based on the ICA decomposition,
removing noise from images corrupted with additive
Gaussian noise.

A set of digitized natural images was used. Denote the
vector of pixel gray levels in an image window byx. Note
that, contrary to the other two applications in the previous
sections, we are not this time considering multivalued time
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Fig. 12. (From Viga´rio et al., 1998a.) Nine independent components found
from the MEG data. For each component the left, back and right views of
the field patterns generated by these components are shown—full line
stands for magnetic flux coming out from the head, and dotted line the
flux inwards. Reprinted by permission from the MIT Press.



series or images changing with time; instead the elements of
x are indexed by the location in the image window or patch.
The sample windows were taken at random locations. The
2-D structure of the windows is of no significance here: row
by row scanning was used to turn a square image window
into a vector of pixel values. The independent components
of such image windows are represented in Fig. 4. Each
window in this figure corresponds to one of the columns

ai of the mixing matrixA. Thus an observed image window
is a superposition of these windows as in Eq. (5), with
independent coefficients (Bell & Sejnowski, 1997;
Olshausen & Field, 1996).

Now, suppose a noisy image model holds:

z� x 1 n �49�
wheren is uncorrelated noise, with elements indexed in the
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Fig. 13. (Adapted from Kiviluoto and Oja, 1998.) Five samples of the original cashflow time series (mean removed, normalized to unit standard deviation).
Horizontal axis: time in weeks.

Fig. 14. (Adapted from Kiviluoto and Oja, 1998.) Five independent components or fundamental factors found from the cashflow data.



image window in the same way asx, andz is the measured
image window corrupted with noise. Let us further assume
that n is Gaussian andx is non-Gaussian. There are many
ways to clean the noise; one example is to make a transfor-
mation to spatial frequency space by DFT, do low-pass
filtering, and return to the image space by IDFT (Gonzalez
& Wintz, 1987). This is not very efficient, however. A better
method is the recently introduced Wavelet Shrinkage
method (Donoho, Johnstone & Picard, 1995) in which a
transform based on wavelets is used, or methods based on
median filtering (Gonzalez & Wintz, 1987). None of these
methods is explicitly taking advantage of the image
statistics, however.

We have recently introduced another, statistically prin-
cipled method called Sparse Code Shrinkage (Hyva¨rinen,
1999d). It is very closely related to independent component
analysis. Briefly, if we model the density ofx by ICA, and
assumen Gaussian, then the Maximum Likelihood (ML)
solution for x given the measurementz can be developed
in the signal model (49).

The ML solution can be simply computed, albeit approxi-
mately, by using a decomposition that is an orthogonalized
version of ICA. The transform is given by

Wz �Wx 1 Wn � s1 Wn; �50�
whereW is here an orthogonal matrix that is the best ortho-
gonal approximation of the inverse of the ICA mixing
matrix. The noise termWn is still Gaussian and white.
With a suitably chosen orthogonal transformW, however,
the density ofWx � s becomes highly non-Gaussian, e.g.

super-Gaussian with a high positive kurtosis. This depends
of course on the originalx signals, as we are assuming in
fact that there exists a modelx �WTs for the signal, such
that the “source signals” or elements ofs have a positive
kurtotic density, in which case the ICA transform gives
highly superGaussian components. This seems to hold at
least for image windows of natural scenes (Mallat, 1989).

It was shown in Hyva¨rinen (1999d) that, assuming a
Laplacian density forsi, the ML solution forsi is given by
a “shrinkage function”̂si � g��Wz�i�; or in vector form,̂s�
g�Wz�: Functiong(·) has a characteristic shape: it is zero
close to the origin and then linear after a cutting value
depending on the parameters of the Laplacian density and
the Gaussian noise density. Assuming other forms for the
densities, other optimal shrinkage functions can be derived
(Hyvärinen, 1999d).

In the Sparse Code Shrinkage method, the shrinkage
operation is performed in the rotated space, after which
the estimate for the signal in the original space is given by
rotating back:

x̂ �WTŝ�WTg�Wz�: �51�
Thus we get the Maximum Likelihood estimate for the
image window in which much of the noise has been
removed.

The rotation operatorW is such that the sparsity of the
componentss�Wx is maximized. This operator can be
learned with a modification of the FastICA algorithm; see
Hyvärinen (1999d) for details.

A noise cleaning result is shown in Fig. 15. A noiseless
image and a noisy version, in which the noise level is 50%
of the signal level, are shown. The results of the Sparse
Code Shrinkage method and classic wiener filtering are
given, indicating that Sparse Code Shrinkage may be a
promising approach. The noise is reduced without blurring
edges or other sharp features as much as in wiener filtering.
This is largely due to the strongly non-linear nature of the
shrinkage operator that is optimally adapted to the inherent
statistics of natural images.

7.4. Telecommunications

Finally, we mention another emerging application area of
great potential: telecommunications. An example of a real-
world communications application where blind separation
techniques are useful is the separation of the user’s own
signal from the interfering other users’ signals in CDMA
(Code-Division Multiple Access) mobile communications
(Ristaniemi & Joutsensalo, 1999). This problem is semi-
blind in the sense that certain additional prior information
is available on the CDMA data model. But the number of
parameters to be estimated is often so high that suitable
blind source separation techniques taking into account the
available prior knowledge provide a clear performance
improvement over more traditional estimation techniques
(Ristaniemi & Joutsensalo, 1999; Cristescu et al., 2000).
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Fig. 15. (From Hyva¨rinen et al., 2000.) An experiment in denoising. Upper
left: original image. Upper right: original image corrupted with noise; the
noise level is 50%. Lower left: the recovered image after applying sparse
code shrinkage. Lower right: for comparison, a wiener filtered image.
Reprinted by permission from the IEEE Press.



8. Conclusion

ICA is a very general-purpose statistical technique in
which observed random data are linearly transformed into
components that are maximally independent from each
other, and simultaneously have “interesting” distributions.
ICA can be formulated as the estimation of a latent variable
model. The intuitive notion of maximum non-Gaussianity
can be used to derive different objective functions whose
optimization enables the estimation of the ICA model.
Alternatively, one may use more classical notions like
maximum likelihood estimation or minimization of mutual
information to estimate ICA; somewhat surprisingly, these
approaches are (approximatively) equivalent. A computa-
tionally very efficient method performing the actual estima-
tion is given by the FastICA algorithm. Applications of ICA
can be found in many different areas such as audio proces-
sing, biomedical signal processing, image processing,
telecommunications, and econometrics.
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