
Primes with an Average Sum of Digits

Michael Drmota, Christian Mauduit and Joël Rivat

Abstract

The main goal of this paper is to provide asymptotic expansions for the numbers
#{p 6 x : p prime, sq(p) = k} for k close to ((q − 1)/2) logq x, where sq(n) denotes
the q-ary sum-of-digits function. The proof is based on a thorough analysis of exponential
sums of the form

∑
p6x e(αsq(p)) (the sum is restricted to p prime), where we have to

extend a recent result by the second two authors.

1. Introduction

In this paper the letter p will denote a prime number and e(x) the exponential function e2πix.

For an integer q > 2 let sq(n) denote the q-ary sum-of-digits function of a non-negative integer n,
that is, if n is given by its q-ary digital expansion n =

∑
j>0 εj(n)qj with digits εj(n) ∈ {0, 1, . . . , q−

1} then

sq(n) =
∑
j>0

εj(n).

The statistical behaviour of the sum of digits function and, more generally, for q-additive function
has been very well studied by several authors. It is, for example, well known (see, for example
Delange [Del75]) that the average sum-of-digits function is given by

1
x

∑
n<x

sq(n) =
q − 1

2
logq x + γ(logq x),

where γ is a continuous, nowhere di�erentiable and periodic function with period 1. Similar relations
are knows for higher moments ([GKPT], see also [Sto77] and [Coq86] for the case q = 2). Furthermore,
the distribution of the sum-of-digits function can be approximated by a normal distribution

1
x

#
{

n < x : sq(n) 6 µq logq x + y
√

σ2
q logq x

}
= Φ(y) + o(1), (1)

where

µq :=
q − 1

2
, σ2

q :=
q2 − 1

12
,

and Φ(y) denotes the normal distribution function (see [KM68]).

A local version of these results can be found in [MS97] where an uniform estimate of #{n < qν :
sq(n) = k} is provided for any k 6 µqν and in [FM05] where it is proved that for any �xed k > 1
we have

#{n < x : sq(n) = µqblogq nc+ b(blogq nc)} =

√
6

π(q2 − 1)
x√
log x

+ OK

(
x

logq x

)
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uniformly for any x > 2 and any b : N → R such that |b(ν)| 6 Kv1/4 and νqν + b(ν) ∈ N for any
n > 1.

The �rst result concerning the asymptotic behaviour of the sum of digits function restricted to
prime numbers is a consequence of the famous theorem by Copeland and Erd®s in [CE46] concerning
the normality of the real number whose q-adic representation is 0, followed by the concatenation of
the increasing sequence of prime numbers written in base q. Indeed, it follows from their theorem
that

1
π(x)

∑
p<x

sq(p) =
q − 1

2
logq x + o(logq x), (2)

and it has been show in [Shi74] by Shiokawa that

1
π(x)

∑
p<x

sq(p) =
q − 1

2
logq x + O(

√
log x log log x)

(see also [Kat67] for a related result).

Interestingly, these results suggest that the overall behaviour of the sum-of-digits function is in
principal the same if the average is taken over primes p 6 x. For example, Katai [Kat77] has shown
that ∑

p6x

|sq(p)− µq logq x|k � x(log x)k/2−1, k = 1, 2, · · · ,

and [Kat86] that there is a central limit theorem similarly to the above (see also [KM68] for a related
result):

1
π(x)

#
{

p < x : sq(p) 6 µq logq x + y
√

σ2
q logq xN

}
= Φ(y) + o(1). (3)

The �rst aim of this paper is to prove Theorem 1.1, i.e. a local version of these results.

Theorem 1.1. We have uniformly for all integers k > 0 with (k, q − 1) = 1

#{p 6 x : sq(p) = k} =
q − 1

ϕ(q − 1)
π(x)√

2πσ2
q logq x

(
e
− (k−µq logq x)2

2σ2
q logq x + O((log x)−

1
2
+ε)

)
, (4)

where ε > 0 is arbitrary but �xed.

Remark 1. The condition (k, q − 1) = 1 is necessary: since sq(p) ≡ p mod q − 1 it follows that

{p 6 x, sq(p) = k} ⊂ {p 6 x, p ≡ k mod (q − 1)},

which is �nite in the case where (k, q − 1) > 1.

Such a local version of (2) or (3) was considered by Erd®s as �hopelessly di�cult� and the �rst
breackthrough in this direction was made by Mauduit and Rivat who proved in [MR05] the Gelfond
conjecture concerning the sum of digits of prime numbers: for (m, q − 1) = 1 there exist σq,m > 0
such that for every a ∈ Z we have

#{p 6 x, sq(p) ≡ a mod m} =
1
m

π(x) + Oq,m(x1−σq,m).

But the method involved in the proof of this theorem is not enough to provide a proof of Theo-
rem 1.1.

If we consider primes p where the sum-of-digits function sq(p) equals precisely the �expected
value� bµq logq pc, we get the following result that can be deduced from Theorem 1.1.
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Theorem 1.2. We have, as x →∞,

#{p 6 x : sq(p) = bµq logq pc} = Q

(
µq

q − 1
logq x

)
x

(logq x)
3
2

·
(
1 + Oε

(
(log x)−

1
2
+ε
))

(5)

where Q(t) denotes a positive periodic function with period 1 and ε > 0 is arbitrary but �xed.

The proof of Theorem 1.1 relies on a precise analysis of the generating function

T (z) =
∑
p6x

zsq(p)

for complex numbers z of modulus |z| = 1, (Propositions 2.1 and 2.2). It is, however, an interesting
and probably very di�cult problem to obtain also some asymptotic information on T (z) for z with
|z| 6= 1. For example, we are not able to provide any non-trivial bounds for the sum

T (2) =
∑
p6x

2sq(p).

Such bounds could be used to obtain estimates for tail distributions, that is bounds on the numbers

#{p 6 x : sq(p) 6 c1 logq(x)} resp. #{p 6 x : sq(p) > c2 logq(x)}

for 0 < c1 < µq and µq < c2 < 2µq. By curiousity we mention that Fermat primes and Mersenne
primes correspond to the extremal cases in base q = 2 de�ned respectively by s2(p) = 2 and
s2(p) = blog2 pc.

2. Plan of the Proof

The proof of Theorem 1.1 uses two main ingrediences (Propositions 2.1 and 2.2) that we prove in
Sections 3 and 4.

The aim of Proposition 2.1, which proof is based on method from [MR05], is to provide a bound
for

∑
p6x e(αsq(p)) uniform in terms of α and x. This will enable us to apply a saddle point like

method in section 5.1 in order to obtain asymptotics for the numbers #{p 6 x : sq(p) = k}.

Proposition 2.1. For every �xed integer q > 2 there exists a constants c1 > 0 such that∑
p6x

e(αsq(p)) � (log x)3x1−c1‖(q−1)α‖2 (6)

uniformly for real α.

The main idea of Proposition 2.2 is to approximate the sum-of-digits function by a sum of
independent random variables. In fact, we adapt the moment method due to Bassily and Kátai
[BK95] (see also [KM68] and [Kat77]). The di�erence to [BK95] is that we provide bounds for the d-
th moments (of a certain random variable) that are uniform for all d > 1. Note that the generalization
of [BK95] that is provided in [BK96] is not su�cient for our purposes. Therefore we have to adapt
all main steps. As usual, π(x; k, q − 1) denotes the number of primes p 6 x with p ≡ k mod q − 1.

Proposition 2.2. Suppose that 0 < ν < 1
2 and 0 < η < ν

2 . Then for every k with (k, q − 1) = 1 we

have ∑
p6x, p≡k mod q−1

e(αsq(p)) = π(x; k, q − 1) e(αµq logq x) (7)

×
(
e−2π2α2σ2

q logq x
(
1 + O

(
α4 log x

))
+ O (|α| (log x)ν)

)
uniformly for real α with |α| 6 (log x)η− 1

2 .
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Finally the proof of Theorem 1.1 is obtained in section 5 by evaluating asymptotically the integral

#{p 6 x : sq(p) = k} =
∫ 1

2

− 1
2

∑
p6x

e(αsq(p))

 e(−αk) dα (8)

using both the analytic estimates coming from Proposition 2.1 and the probabilistic ideas contained
in Proposition 2.2.

Theorem 1.2 is then a corollary of Theorem 1.1.

3. Proof of Proposition 2.1

We denote by Λ(n) the von Mangoldt function de�ned by Λ(n) = log p if n = pk with p prime and
k an integer > 1, and Λ(n) = 0 otherwise.

The proof of Proposition 2.1 is based on methods from [MR05]. More precisely we need to obtain
a bound for

∑
p6x e(αsq(p)) uniform in terms of α and x.

First note that by partial summation (see for example Lemma 11 of [MR05]) it su�ces to prove
that for every �xed integer q > 2 there exists a constant c1 > 0 such that∣∣∣∣∣∣

∑
n6x

Λ(n)e(αsq(n))

∣∣∣∣∣∣� (log x)4x1−c1‖(q−1)α‖2 (9)

uniformly for real α.

Actually we will prove (9) only for α with ‖(q − 1)α‖ > c2(log x)−
1
2 , where c2 > 0 is a suitably

chosen constant. If ‖(q − 1)α‖ < c2(log x)−
1
2 then (9) is trivially satis�ed.

3.1 A combinatorial identity

A classical method (Hoheisel [Hoh30], Vinogradov [Vin54]) to deal with sums of the form
∑

n Λ(n)g(n)
is to transform them into sums like∑

n1,...,nk

a1(n1) · · · ak(nk)g(n1 · · ·nk)

where n1, . . . , nk satisfy multiplicative conditions. Vaughan has given an elegant formulation of this
method [Vau80], later generalized by Heath-Brown [Hea82].

A drawback of these methods in their original setting is the outcome of several arithmetic func-
tions involving divisors, which cannot be individually majorized by a logarithmic factor. We will use
a slight variant of Vaughan's method [IK04] which permits to suppress this di�culty:

Lemma 3.1. Let q > 2, x > q2, 0 < β1 < 1/3 , 1/2 < β2 < 1. Let g be an arithmetic function.

Suppose that uniformly for all complex numbers am, bn with |am| 6 1, |bn| 6 1, we have

∑
M
q

<m6M

max
x

qm
6t6 x

m

∣∣∣∣∣∣
∑

t<n6 x
m

g(mn)

∣∣∣∣∣∣ 6 U for M 6 xβ1 (type I), (10)

∣∣∣∣∣∣∣
∑

M
q

<m6M

∑
x

qm
<n6 x

m

ambng(mn)

∣∣∣∣∣∣∣ 6 U for xβ1 6 M 6 xβ2 (type II). (11)
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Then ∣∣∣∣∣∣
∑

x/q<n6x

Λ(n)g(n)

∣∣∣∣∣∣� U (log x)2.

Proof. This is Lemma 1 of [MR05].

Thus, in order to obtain upper bounds for (9) it is su�cient to get bounds for sums of type I and
II (see (10) and (11)) for g(n) = e(αsq(n)). The next lemma reduces to problem of type-II sums to
a slightly simpler problem.

Lemma 3.2. Let g be an arithmetic function, q > 2, 0 < δ < β1 < 1/3, 1/2 < β2 < 1. Suppose that

uniformly for all complex numbers bn such that |bn| 6 1, we have

∑
qµ−1<m6qµ

∣∣∣∣∣∣
∑

qν−1<n6qν

bn g(mn)

∣∣∣∣∣∣ 6 V, (12)

whenever

β1 − δ 6
µ

µ + ν
6 β2 + δ. (13)

Then for x > x0 := max(q1/(1−β2), q3/δ) we have uniformly for M such that

xβ1 6 M 6 xβ2 (14)

the estimate (11) with U = 12
π (1 + log 2x) V .

Proof. This is Lemma 3 of [MR05].

3.2 Type I sums

Fortunately type-I-sums are easy to deal with because the corresponding upper bounds obtained in
[MR05] are already uniform in α and x.

Proposition 3.1. For q > 2, x > 2, and for every α such that (q − 1)α ∈ R \ Z we have

∑
M
q

<m6M

max
x

qm
6t6 x

m

∣∣∣∣∣∣
∑

t<n6 x
m

e(α sq(mn))

∣∣∣∣∣∣�q x1−κq(α) log x (15)

for 1 6 M 6 x1/3 and

0 < κq(α) := min
(

1
6 , 1

3(1− γq(α))
)

(16)

where 1
2 6 γq(α) < 1 is de�ned by

qγq(α) = max
t∈R

√
ϕq(α + t) ϕq(α + qt)

with

ϕq(t) =
{
|sinπqt| / |sinπt| if t ∈ R \ Z,

q if t ∈ Z.

Proof. This is Proposition 2 of [MR05].

3.3 Type II sums

In order to verify (11) we use Lemma 3.2, that is, we will prove the following proposition (which a
variant of [MR05, Propositon 1]):

5
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Proposition 3.2. For q > 2 and for all α with (q − 1)α ∈ R \ Z there exist β1, β2 and δ verifying

0 < δ < β1 < 1/3 and 1/2 < β2 < 1 and there exist ξq(α) > 0 such that, uniformly for all complex

numbers bn with |bn| 6 1, we have

∑
qµ−1<m6qµ

∣∣∣∣∣∣
∑

qν−1<n6qν

bn e(αsq(mn))

∣∣∣∣∣∣�q (µ + ν)q(1− 1
2
ξq(α))(µ+ν), (17)

whenever

β1 − δ 6
µ

µ + ν
6 β2 + δ.

We note that the constants β1, β2, δ, and ξq(α) can be stated explicitly in terms of α, compare
with (24)�(28), so that (17) is actually an explicit estimate that is uniform in α.

The proof of Proposition 3.2 is divided into several steps. We �rst apply Cauchy-Schwarz's
inequality and a Van der Corput type inequality in order to smooth the sums.

For q > 2 and real α let

f(n) = αsq(n).

Further, let µ, ν, and ρ be integers such that µ > 1, ν > 1, 0 6 ρ 6 ν/2, and bn be complex numbers
with |bn| 6 1. We consider the sum

S =
∑

qµ−1<m6qµ

∣∣∣∣∣∣
∑

qν−1<n6qν

bn e(f(mn))

∣∣∣∣∣∣ .
By Cauchy-Schwarz's inequality,

|S|2 6 qµ
∑

qµ−1<m6qµ

∣∣∣∣∣∣
∑

qν−1<n6qν

bn e(f(mn))

∣∣∣∣∣∣
2

. (18)

This sum will be further estimated by the use of the following version of Van der Corput's
inequality:

Lemma 3.3. Let z1, . . . , zN be complex numbers. For any integer R > 1 we have∣∣∣∣∣∣
∑

16n6N

zn

∣∣∣∣∣∣
2

6
N + R− 1

R

∑
|r|<R

(
1− |r|

R

) ∑
16n6N

16n+r6N

zn+rzn

Proof. See for example [MR05, Lemme 4].

Taking R = qρ, N = qν − qν−1 and zn = bqν−1+n e(f(m(qν−1 + n))) in Lemma 3.3 and observing
that ρ 6 bν/2c 6 ν − 1, we obtain∣∣∣∣∣∣

∑
qν−1<n6qν

bn e(f(mn))

∣∣∣∣∣∣
2

6 qν−ρ
∑
|r|<qρ

(
1− |r|

qρ

)( ∑
qν−1<n6qν

bn+r bn e(f(m(n + r))− f(mn)) + O(qρ)
)
,

where the term O(qρ) comes from the removal of the condition of summation qν−1 < n + r 6 qν

which was introduced by Lemma 3.3. Indeed this removal may potentially imply O(qρ) values of n,

6
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and each term in the sum is of modulus less or equal to 1, which lead to an error at most O(qρ). We
separate the cases r = 0 and r 6= 0, and obtain:

|S|2 � q2(µ+ν)−ρ + qµ+ν max
16|r|<qρ

∑
qν−1<n6qν

∣∣∣∣∣∣
∑

qµ−1<m6qµ

e(f(m(n + r))− f(mn))

∣∣∣∣∣∣ ,
where we have taken into account the fact that the contribution of O(qρ) is O(q2µ+ν+ρ), which is
negligible in comparison with O(q2(µ+ν)−ρ), since ρ 6 ν/2.

In order to continue the proof, we will show that only the digits of low weight in the di�erence
f(m(n+ r))−f(mn) have a signi�cant contribution. We will thus introduce the notion of truncated
sum of digits and show that in the sums of type II we can replace the function f by this truncated
function.

For any integer λ > 0, we de�ne fλ by the formula

fλ(n) =
∑
k<λ

f(εk(n) qk) = α
∑
k<λ

εk(n), (19)

where the integers εk(n) denote the digits of n in basis q. The function fλ is clearly periodic of period
qλ. This truncated function appears in a di�erent context in [DR05] where Drmota and Rivat study
some properties of fλ(n2) where λ is of order log n. The following lemma is a variant of [MR05,
Lemme 5].

Lemma 3.4. For all integers µ, ν, ρ with µ > 0, ν > 0, 0 6 ρ 6 ν/2 and for all r ∈ Z with |r| < qρ,

we denote by E(r, µ, ν, ρ) the number of pairs (m,n) ∈ Z2 such that qµ−1 < m 6 qµ, qν−1 < n 6 qν

and

f(m(n + r))− f(mn) 6= fµ+2ρ(m(n + r))− fµ+2ρ(mn).

Then, if µ and ν satisfy the condition

27
82

<
µ

µ + ν
, (20)

we have

E(r, µ, ν, ρ) � (µ + ν)(log q) qµ+ν−ρ. (21)

Proof. Suppose 0 6 r < qρ. In this case 0 6 mr < qµ+ρ. When we compute the sum mn + mr, the
digits of the product mn of index > µ + ρ cannot be modi�ed unless there is a carry propagation.
Hence we must count the number of pairs (m,n) such that the digits aj in basis q of the product
a = mn satisfy aj = q − 1 for µ + ρ 6 j < µ + 2ρ. Therefore grouping the products mn according
to their value a, we obtain

E(r, µ, ν, ρ) 6
∑

qµ+ν−2<a6qµ+ν

τ(a) χ(a)

where τ(a) denotes the number of divisors of a and χ(a) = 1 if the digits aj in basis q of a satisfy
aj = q − 1 for µ + ρ 6 j < µ + 2ρ, and χ(a) = 0 in the opposite case, that is if there exist an index
j, with µ + ρ 6 j < µ + 2ρ, for which aj 6= q − 1. We deduce that

E(r, µ, ν, ρ) 6
∑

b<qµ+ρ

∑
c<qν−2ρ

τ(b + (q − 1)qµ+ρ + · · ·+ (q − 1)qµ+2ρ−1 + qµ+2ρc).

For each c �xed we apply Lemma 3.5 below with

x = qµ+ρ − 1 + (q − 1)qµ+ρ + · · ·+ (q − 1)qµ+2ρ−1 + qµ+2ρc 6 qµ+ν

y = qµ+ρ

7
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(by (20) we have x27/82 6 q
27
82

(µ+ν) 6 y 6 x), so that we obtain

E(r, µ, ν, ρ) � qν−2ρqµ+ρ log qµ+ν = (µ + ν)(log q)qµ+ν−ρ.

The same argument can be applied whenever −qρ < r < 0 counting the pairs (m,n) such that
the digits aj of the product a = mn satisfy aj = 0 for µ + ρ 6 j < µ + 2ρ, and we obtain the same
upper bound (21).

Lemma 3.5. For x27/82 6 y 6 x we have∑
x−y<n6x

τ(n) = O(y log x).

Proof. It follows from Van der Corput's method of exponential sums (see for example [GK91, The-
orem 4.6]) that∑

n6x

τ(n) = x log x + (2γ − 1)x + O(x27/82) =
∫ x

0
log t dt + 2γ x + O(x27/82),

where γ is Euler's constant. As a consequence we have∑
x−y<n6x

τ(n) =
∫ x

x−y
log t dt + 2γ y + O(x27/82) + O((x− y)27/82) = O(y log x).

Using Lemma 3.4, we may now replace f by the truncated function fµ+2ρ de�ned by (19) in the
upper bound (18), at the price of a total error O((µ + ν)(log q) q2(µ+ν)−ρ). Thus, if (20) holds then

|S|2 � (µ + ν)(log q) q2(µ+ν)−ρ + qµ+ν max
16|r|<qρ

S2(r, µ, ν, ρ), (22)

where

S2(r, µ, ν, ρ) :=
∑

qν−1<n6qν

∣∣∣∣∣∣
∑

qµ−1<m6qµ

e(fµ+2ρ(m(n + r))− fµ+2ρ(mn))

∣∣∣∣∣∣ . (23)

The sum S2(r, µ, ν, ρ) has been studied in [MR05]. For q > 2 and (q−1)α ∈ R\Z, let us introduce
some notations from this paper:

ω2 = 1− log(2 +
√

2)
2 log 2

,

ωq =
(

3
2
− log 5

log 3

)
log 2
log q

for q > 3,

τq(α) = min
(

ωq,−
2 log(ϕq(α)/q)

log q

)
for q > 2,

where ϕq(t) is de�ned in Proposition 3.1,

εq(α) := min(τq(α), 1− γq(α)) for q > 2,

where γq(t) is de�ned in Proposition 3.1,

ξq(α) :=
εq(α)
14

, δ :=
εq(α)
28

, (24)

β1 :=
(3− 2εq(α))ξq(α)

εq(α)
+ δ for q = 2, (25)

β1 :=
(4− 2εq(α))ξq(α)

εq(α)
+ δ for q > 3, (26)

8
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β2 :=
1− (5− 2εq(α))ξq(α)

2− εq(α)
− δ for q = 2, (27)

β2 :=
1− (6− 2εq(α))ξq(α)

2− εq(α)
− δ for q > 3. (28)

It is shown in paragraph 7.3 of [MR05] that 0 < δ < β1 < 1/3, 1/2 < β2 < 1 and that for any
integers µ > 0 and ν > 0 verifying

β1 − δ <
µ

µ + ν
6 β2 + δ

we have, for every ρ 6 ξq(α)(µ + ν),

S2(r, µ, ν, ρ) �q (µ + ν)2qµ+ν−ρ. (29)

Let us remark that for any α ∈ R we have ϕq(α) 6 qγq(α), so that

τq(α) = min
(

ωq,−
2 log(ϕq(α)/q)

log q

)
> min

(
ωq,−

2 log(qγq(α)−1)
log q

)
= min (ωq, 2(1− γq(α))) ,

and

ξq(α) =
1
14

min(ωq, 1− γq(α)). (30)

Furthermore by Lemma 7 of [MR07] we have

γq(α) 6 1− π2

12
q − 1

(q + 1) log q
‖(q − 1)α‖2 ,

so that

ξq(α) >
1
14

min
(

ωq,
π2

12
q − 1

(q + 1) log q
‖(q − 1)α‖2

)
> 2c1 ‖(q − 1)α‖2 (31)

for

c1 :=
1
28

min
(

4ωq,
π2

12
q − 1

(q + 1) log q

)
.

It follows from (22) that

|S|2 �q (µ + ν)2q2µ+2ν−ρ

for ρ 6 2c1 ‖(q − 1)α‖2 (µ + ν) so that

|S| �q (µ + ν) q(1−c1‖(q−1)α‖2)(µ+ν),

which ends the proof of Proposition 3.2.

We are now able to complete the estimate for type-II-sums. It follows from Proposition 3.2 that
we can apply Lemma 3.2 with g(n) = e(αsq(n)) and some V such that

V �q (µ + ν) q(1−c1‖(q−1)α‖2)(µ+ν) �q (log x) x1−c1‖(q−1)α‖2 .

This shows that for x > x0 = max(q1/(1−β2), q3/δ) we have uniformly for M such that

xβ1 6 M 6 xβ2

the estimate∣∣∣∣∣∣∣
∑

M
q

<m6M

∑
x

qm
<n6 x

m

ambng(mn)

∣∣∣∣∣∣∣ 6 12
π (1 + log 2x) V �q (log x)2 x1−c1‖(q−1)α‖2 . (32)

9
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It now follows from paragraph 7.3 of [MR05] that the values of β1, β2 and δ in Proposition 3.2 lead
to take x0 > q6/ξq(α). By (31) we have 6

ξq(α) 6 3
c1‖(q−1)α‖2 , so that we can take

x0 := q
3

c1‖(q−1)α‖2 . (33)

3.4 Proof of Proposition 2.1

In order to prove Proposition 2.1 we apply Lemma 3.1. Indeed Proposition 3.1 shows that (10) is
true for any x > 2 with some U such that

U �q x1−κq(α) log x �q x1−c1‖(q−1)α‖2 log x

(the second upper bound follows from (31), (30) and (16)) and (32) shows that (11) is true for any
x > x0 with some U such that

U �q x1−c1‖(q−1)α‖2(log x)2.

It follows from Lemma 3.1 that for x > x0∣∣∣∣∣∣
∑

x/q<n6x

Λ(n)g(n)

∣∣∣∣∣∣�q x1−c1‖(q−1)α‖2(log x)4.

By (33), the condition x > x0 is equivalent to ‖(q − 1)α‖ > c2(log x)−1/2 with c2 =
√

3 log q
c1

, so that

we have proved (9) which ends the proof of Proposition 2.1.

4. Proof of Proposition 2.2

To prove Proposition 2.2 we will approximate the sum-of-digits function by a sum of independent
random variables.

4.1 Approximation of sq(p) by sums of independent random variables

We �x some residue class k mod q − 1 with (k, q − 1) = 1, and for (su�ciently large) x > 2 we
consider the set of primes

{p ∈ P : p 6 x, p ≡ k mod q − 1}.
Its cardinality is denoted by π(x; k, q − 1) and it is well known that we have asymptotically

π(x; k, q − 1) =
π(x)

ϕ(q − 1)
(
1 + O

(
(log x)−1

))
=

1
ϕ(q − 1)

x

log x

(
1 + O

(
(log x)−1

))
.

If we assume that every prime in this set is equally likely, then the sum-of-digits function sq(p) can
be interpreted as a random variable

Sx = Sx(p) = sq(p) =
∑

j6logq x

εj(p).

Of coures, Dj = Dj,x = εj , the j-digit, is also a random variable.

We can now reformulate Proposition 2.2. Set L = logq x. Then the asymptotic formula (7) is
equivalent to the relation

ϕ1(t) := E eit(Sx−Lµq)/(Lσ2
q )1/2

= e−t2/2

(
1 + O

(
t4

log x

))
+ O

(
|t|

(log x)
1
2
−ν

)
(34)

that is uniform for |t| 6 (log x)η. We just have to set α = t/(2πσq(logq x)1/2).

10
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For technical reasons we have to truncate this sum-of-digits appropriately. Set L′ = #{j ∈ Z :
Lν 6 j 6 L− Lν} = L− 2Lν + O(1), where 0 < ν < 1

2 is �xed, and

Tx = Tx(p) =
∑

Lν6j6L−Lν

εj(p) =
∑

Lν6j6L−Lν

Dj

First we observe that ϕ1(t) and

ϕ2(t) := E eit(Tx−L′µq)/(L′σ2
q )1/2

do not di�er essentially.

Lemma 4.1. We have, uniformly for all real t

|ϕ1(t)− ϕ2(t)| = O

(
|t|

(log x)
1
2
−ν

)
.

Proof. We only have to observe that |L − L′| � Lν , ‖Sx − Tx‖∞ � Lν , ‖Sx‖∞ � L and that
|eit − eis| 6 |t− s|. Consequently

|ϕ1(t)− ϕ2(t)| 6 |t|E

∣∣∣∣∣Sx − Lµq

(Lσ2
q )1/2

− Tx − L′µq

(L′σ2
q )1/2

∣∣∣∣∣
� |t|

(
‖Sx − Tx‖∞

L1/2
+
|L− L′|

L1/2
+ ‖Sx‖∞

(
1

L′1/2
− 1

L1/2

))
� |t|

(log x)
1
2
−ν

.

This proves the lemma.

Now we approximate Tx by a sum T x of independent random variables. Let Zj (j > 0) be a
sequences of independent random variables with range {0, 1, . . . , q − 1} and uniform probability
distribution

P{Zj = `} =
1
q
.

We then set

T x :=
∑

Lν6j6L−Lν

Zj .

Note that expected value and variance of T x are exactly given by

E T x = L′µq and V T x = L′σ2
q .

Since T x is the sum of independent identically distributed random variables it is clear that T x

satis�es a central limit theorem. For the reader's convenience we state the following well known
property.

Lemma 4.2. The characteristic function of the normalized random variable T x is given by

ϕ3(t) := E eit(T x−L′µq)/(L′σ2
q )1/2

= e−t2/2

(
1 + O

(
t4

log x

))
(35)

that is also uniform for |t| 6 (log x)
1
4 .

Proof. First note that

E vT x =
∏

Lν6j6L−Lν

EvZj

= q−L′
(1 + v + v2 + · · ·+ vq−1)L′

.

11
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Now (35) follows by setting

v = eit/(L′σ2
q )1/2

and by using the Taylor expansion

log

(
1 + eis + · · ·+ eis(q−1)

q

)
= iµqs−

1
2
σ2

qs
2 + O(s4).

Note that there are no odd powers of s (despite the linear one) since the random variables Zj are
symmetric with respect to their mean.

Thus, it remains to compare ϕ2(t) and ϕ3(t). In what follows we will prove the following bound.

Proposition 4.1. Suppose that η and κ satisfy 0 < 2η < κ < ν. Then we have uniformly for real t
with |t| 6 Lη

|ϕ2(t)− ϕ3(t)| = O
(
|t|e−c1Lκ)

,

where c1 is a certain positive constant depending on η and κ.

Note that e−c1Lκ � L−1. Hence, Proposition 4.1 (together with Lemma 4.1 and Lemma 4.2)
immediately imply (34) and, thus, Proposition 2.2.

4.2 Comparision of moments

In what follows we will use the following well known bound on exponential sums over primes.

Lemma 4.3. For x > 0, 0 6 K 6 2
5 logq x, Q integer with qK 6 Q 6 x q−K and A integer coprime

with Q, we have ∑
p6x

e

(
A

Q
p

)
� (log x)2 x q−K/2,

where the implied constant is absolute.

Proof. We just have to apply a partial summation and the estimate in [IK04, Theorem 13.6].

Lemma 4.4. Let 0 < ∆ < 1 and

U∆ := [0,∆] ∪
q−1⋃
`=1

[
`

q
−∆,

`

q
+ ∆

]
∪ [1−∆, 1].

Then for Lν 6 j 6 L− Lν and 0 < ∆ < 1/(2q) we uniformly have, as x →∞,

1
π(x; k, q − 1)

#
{

p < x : p ≡ k mod q − 1,

{
p

qj+1

}
∈ U∆

}
� ∆ + e−c3Lν

, (36)

where c3 is a certain positive constant.

Proof. We just have to show that the discrepancy D of the sequence (pq−j−1) where p ranges over
all primes p 6 x with p ≡ k mod q − 1 is bounded above D � e−c3Lν

. Of course, (36) follows then
immediately.

We use the Erd®s-Turán inequality saying that

D � 1
H

+
H∑

h=1

1
h

∣∣∣∣∣∣ 1
π(x; k, q − 1)

∑
p6x, p≡k mod q−1

e

(
h

qj+1
p

)∣∣∣∣∣∣ ,
where H > 0 can be arbitrarily chosen. For our purpose we will use H = becLνc (for a suitable
constant c > 0).

12
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First of all recall that∑
p6x, p≡k mod q−1

e(αp) =
1

q − 1

q−2∑
`=0

e

(
− k`

q − 1

) ∑
p6x

e

((
α +

`

q − 1

)
p

)
Thus, we actually have to estimate exponential sums of the form∑

p6x

e

((
h

qj+1
+

`

q − 1

)
p

)
.

We represent the rational number in the exponent by

h

qj+1
+

`

q − 1
=

A

Q
,

where (A,Q) = 1. Then Q > qj+1/H. Hence, we can apply Lemma 4.3 with K = 2
3Lν and we �nally

obtain with H = bq
1
3
Lνc

D � 1
H

+
L

x

H∑
h=1

1
h

L2 x q−
1
3
Lν

� 1
H

+ L4q−
1
3
Lν

� e−c3Lν
,

where c3 < 1
3 log q. This completes the proof of the lemma.

The key lemma for comparing moments of Tx and T x is the following property. Note that the
essential di�erence to [BK95] is that the estimate in Lemma 4.5 is uniform for all 1 6 d 6 L′.

Lemma 4.5. Let 1 6 d 6 L′ and j1, j2, . . . , jd and `1, `2, . . . , `d integers with

Lν 6 j1 < j2 < · · · < jd 6 L− Lν

and

`1, `2, . . . , `d ∈ {0, 1, . . . , q − 1}.
Then we have uniformly

1
π(x; k, q − 1)

#{p 6 x : p ≡ k mod q − 1, εj1(p) = `1, . . . , εjd
(p) = `d}

= q−d + O
(
(4Lν)de−c4Lν

)
,

where c4 is a certain positive constant.

Remark 2. Note that Lemma 4.5 can be also interpreted as

Pr{Dj1,x = `1, . . . , Djd,x = `d}

= Pr{Zj1 = `1, . . . , Zjd
= `d}+ O

(
(4Lν)de−c4Lν

)
(37)

This means that the joint probability distribution of the summands of Tx and that of the summands
of T x is very close. Note further that (37) is also valid if j1, j2, . . . , jd are not ordered and even when
they are not distinct.

Proof. Let f`,∆(x) be de�ned by

f`,∆(x) :=
1
∆

∫ ∆/2

−∆/2
1[ `

q
, `+1

q
]({x + z}) dz,

13



M. Drmota et al.

where 1A denotes the characteristic function of the set A. The Fourier coe�cients of the Fourier
series f`,∆(x) =

∑
m∈Z dm,`,∆e(mx) are given by

d0,`,∆ =
1
q

and for m 6= 0 by

dm,`,∆ =
e
(
−m`

q

)
− e

(
−m(`+1)

q

)
2πim

·
e
(

m∆
2

)
− e

(
−m∆

2

)
2πim∆

.

Note that dm,`,∆ = 0 if m 6= 0 and m ≡ 0 mod q and that

|dm,`,∆| 6 min
(

1
π|m|

,
1

∆πm2

)
.

By de�nition we have 0 6 f`,∆(x) 6 1 and

f`,∆(x) =

 1 if x ∈
[

`
q + ∆, `+1

q −∆
]
,

0 if x ∈ [0, 1] \
[

`
q −∆, `+1

q + ∆
]
.

So if we set

tl,j(y1, . . . , yd) :=
d∏

i=1

f`i,∆

(
yi

qji+1

)
(where l = (`1, . . . , `d) and j = (j1, . . . , jd)) then we get for ∆ < 1/(2q)∣∣∣∣∣∣#{p 6 x : p ≡ k mod q − 1, εj1(p) = `1, . . . , εjd

(p) = `d} −
∑

p<x, p≡k mod q−1

tl,j(p, . . . , p)

∣∣∣∣∣∣
6 d · max

Lν6j6L−Lν
#{p 6 x : p ≡ k mod q − 1,

{
p

qj+1

}
∈ U∆}

� d π(x)
(
∆ + e−c3Lν)

.

The third line follows from Lemma 4.4.

For convenience, let m = (m1, . . . ,md),

vj =
(
q−j1−1, . . . , q−jd−1

)
and

dm,l,∆ :=
d∏

i=1

dmi,`i,∆.

Then tl,j(y1, . . . , yd) has Fourier series expansion

tl,j(y1, . . . , yd) =
∑
m

dm,l,∆ e
(
m1q

−j1−1y1 + · · ·+ mdq
−jd−1yd

)
.

Thus, we are led to consider the exponential sum

S =
∑

p<x, p≡k mod q−1

tl,j(p, . . . , p)

=
∑
m

dm,l,∆

∑
p<x, p≡k mod q−1

e
(
(m1q

−j1−1 + · · ·+ mdq
−jd−1)p

)
=

1
q − 1

q−1∑
r=0

e

(
− rk

q − 1

)∑
m

dm,l,∆

∑
p6x

e

((
m · vj +

r

q − 1

)
p

)
.
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If m = (0, . . . , 0) then

d0,l,∆

∑
p<x, p≡k mod q−1

e (0) =
π(x; k, q − 1)

qd

which provides the leading term. Furthermore, if there exists i with mi 6= 0 and mi ≡ 0 mod q then
dm,l = 0. So it remains to consider the case where m 6= 0 and we have mi = 0 or mi 6≡ 0 mod q for
all i. We write the exponent in the form

m · vj +
r

q − 1
=

A

Q

with (A,Q) = 1. In order to apply Lemma 4.3 we need a proper lower bound for Q. Note �rst
that m · vj can be written as mq−j−1, where j > j1 and m 6≡ 0 mod q. Suppose that the prime
decompositions of q and m are given by

q = pe1
1 · · · pek

k and m = pf1
1 · · · pfk

k m′,

where p1, . . . , pk are primes with p1 < p2 < · · · < pk, m′ has no prime factors p1, . . . , pk, and we
have ei > 0 and fi > 0 for i = 1, . . . , k. Since m 6≡ 0 mod q there is some i with fi < ei. Thus, if we
write

m · vj =
m

qj+1
=

pf1
1 · · · pfk

k m′

p
f1(j+1)
1 · · · pfk(j+1)

k (m′)j+1
=

A′

Q′ ,

where (A′, Q′) = 1 then we certainly have Q′ > pjei
i > pj

1. Hence, with c′ = (log p1)/(log q) we obtain
Q′ > qc′j . Finally, since A/Q = A′/Q′ + r/(q − 1) and (Q′, q − 1) = 1 it follows that Q > Q′ and
consequently

Q > qc′j > qc′j1 > qc′Lν
.

If we now apply Lemma 4.3 (with K = c′Lν) and obtain

S =
π(x; k, q − 1)

qd
+ O

xL2e−
1
2
c′Lν

∑
m6=0

|dm,l,∆|

 .

Since ∑
m6=0

|dm,l,∆| 6 (2 + 2 log(1/∆))d

it is possible to choose ∆ = e−Lν
and one �nally gets

1
π(x; k, q − 1)

#{p 6 x : p ≡ k mod q − 1, εj1(p) = `1, . . . , εjd
(p) = `d}

= q−d + O
(
d(e−Lν

+ e−c3Lν)
+ O

(
L2(4Lν)de−

1
2
c′Lν
)

= O
(
(4Lν)de−c4Lν

)
for some constant c4 > 0.

Now we compare centralized moments of Tx and T x.

Lemma 4.6. We have uniformly for 1 6 d 6 L′

E

Tx − L′µq√
L′σ2

q

d

= E

T x − L′µq√
L′σ2

q

d

+ O

((
4q

σq

)d

L( 1
2
+ν)de−c4Lν

)
,

where c4 > 0 is the same constant as in Lemma 4.5.
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Proof. We expand the following di�erence

δd = E

 ∑
Lν6j6L−Lν

(Dj,x − µq)

d

− E

 ∑
Lν6j6L−Lν

(Zj − µq)

d

and compare them with help of (37). In fact, we have to take into accout (qL′)d terms and, thus, we
get

|δd| � (qL)d(4Lν)de−c4Lν
.

Of course, this proves the lemma.

4.3 Proof of Proposition 4.1

Finally, we can complete the proof of Proposition 4.1 By Taylor's theorem we have for every integer
D > 0 and real u

eiu =
∑

06d<D

(iu)d

d!
+ O

(
|u|D

D!

)
.

Consequently we have for any random variables X and Y

EeitX − EeitY =
∑
d<D

(it)d

d!

(
E Xd − E Y d

)
+ O

(
|t|D

D!

∣∣E |X|D − E |Y |D
∣∣+ 2

|t|D

D!
E |Y |D

)
.

In particular we will apply that for X = (Tx − L′µq)/(L′σ2
q )

1/2 and Y = (T x − L′µq)/(L′σ2
q )

1/2.
Further we set D = bLκc for some real κ with 0 < κ < ν (and assume without loss of generality
that D is even) and suppose that |t| 6 Lη with 0 < η < 1

2κ. Hence, by applying Lemma 4.6 we get∑
16d6D

|t|d

d!

∣∣∣E |X|d − E |Y |d
∣∣∣� |t|

∑
d6D

Lη(d−1)

d!

(
4q

σq

)d

L( 1
2
+ν)de−c4Lν

� |t| eLκ+Lκ log(4q/σq)+( 1
2
+ν+η)Lκ log L−κLκ log L−c4Lν

� |t|e−(c4/2) Lν

for su�ciently large x.

Finally we have to get some bound for the moments E |Y |D. Following the proof of Lemma 4.2
it follows that the moment generating function of Y is given by∑

d>0

E Y d wd

d!
= E ewY

= ϕ3(−iw)

= ew2/2

(
1 + O

(
w4

log x

))
uniformly for |w| 6 (log x)

1
4 . Hence, the moments are given by Cauchy's formula

E Y d =
d!
2πi

∫
|w|=w0

ew2/2

(
1 + O

(
w4

log x

))
dw

wd+1
.

Asymptotically these kinds of integrals can be evaluated with help of a saddle point method, where
the saddle point w0 (of the dominating part of the integrand ew2/2−d log w) is given by w0 =

√
d. Of
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course this only works if d = o
(
(log x)

1
2

)
, where we directly get (for even d)

E Y d =
d!

dd/2e−d/2
√

πd

(
1 + O

(
d2

log x

))

Thus, for (even) D = bLκc (where κ < ν < 1
2) and |t| 6 Lη (where η < κ/2) we have

|t|D

D!
E |Y |D � |t| Lη(D−1)

DD/2e−D/2
√

πD

� |t|eηLκ log L− 1
2
κLκ log L− 1

2
Lκ

� |t|e−( 1
2
κ−η)Lκ log L.

This completes the proof of Proposition 4.1.

5. Proof of Theorems 1.1 and 1.2

5.1 Proof of Theorem 1.1

In a �rst step we show that the integral (8) can be reduced to an integral on the interval [−1/(2(q−
1)), 1/(2(q − 1))] for which we can then apply Propositions 2.1 and 2.2. For this purpose set

S(α) =
∑
p6x

e(αsq(p)) and Sk(α) =
∑

p6x, p≡k mod q−1

e(αsq(p)).

Since sq(n) ≡ n mod q − 1 we have

S

(
α +

`

q − 1

)
=
∑
p6x

e(αsq(p)) · e
(

`p

q − 1

)

and consequently

Sk(α) =
∑
p6x

e(αsq(p)) · 1
q − 1

q−2∑
`=0

e

(
`(p− k)
q − 1

)

=
1

q − 1

q−2∑
`=0

e

(
− `k

q − 1

)
S

(
α +

`

q − 1

)
.

Thus, Proposition 2.1 also implies the upper bound

Sk(α) � (log x)3 x1−c1‖(q−1)α‖2 . (38)
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Further, we have

#{p 6 x : sq(p) = k} =
∫ 1− 1

2(q−1)

− 1
2(q−1)

S(α)e(−αk) dα

=
q−2∑
`=0

∫ 1
2(q−1)

− 1
2(q−1)

S

(
α +

`

q − 1

)
e

(
−
(

α +
`

q − 1

)
k

)
dα

=
∫ 1

2(q−1)

− 1
2(q−1)

∑
p6x

e(α(sq(p)− k)) ·
q−2∑
`=0

e

(
`
p− k

q − 1

)
dα

= (q − 1)
∫ 1

2(q−1)

− 1
2(q−1)

 ∑
p6x, p≡k mod q−1

e(αsq(p))

 e(−αk) dα

= (q − 1)
∫ 1

2(q−1)

− 1
2(q−1)

Sk(α) e(−αk) dα.

Next we split the integral into two parts:

∫ 1
2(q−1)

− 1
2(q−1)

=
∫
|α|6(log x)η−1/2

+
∫

(log x)η−1/2<|α|61/(2(q−1))

The �rst integral can be easily evaluated with help of Proposition 2.2. We use the substitution
α = t/(2πσq

√
logq x) and obtain

∫
|α|6(log x)η−1/2

Sk(α)e(−αk) dα

= π(x; k, q − 1)
∫
|α|6(log x)η−1/2

e(α(µq logq x− k)) e−2π2α2σ2
q logq x ·

(
1 + O

(
α4 log x

))
dα

+O

(
π(x)

∫
|α|6(log x)η−1/2

|α| (log x)ν dα

)

=
π(x; k, q − 1)
2πσq

√
logq x

∫ ∞

−∞
eit∆k−t2/2 dt + O

(
π(x)e−2π2σ2

q (log x)2η
)

+O

(
π(x)

(log x)
3
2

)
+ O

(
π(x)

(log x)1−ν−2η

)
=

π(x; k, q − 1)√
2πσ2

q logq x

(
e−∆2

k/2 + O((log x)−
1
2
+ν+2η))

)
=

1
ϕ(q − 1)

π(x)√
2πσ2

q logq x

(
e−∆2

k/2 + O((log x)−
1
2
+ν+2η))

)
,

where

∆k =
k − µq logq x√

σ2
q logq x

.
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The remaining integral can be directly estimated with Proposition 2.1 (resp. with (38)):∫
(log x)η−1/2<|α|61/(2(q−1))

Sk(α) e(−αk) dα � (log x)2 x e−c1(q−1)2(log x)2η

� π(x)
log x

.

Finally, if ε with 0 < ε < 1
2 is given then we can set ν = 2

3ε and η = 1
6ε. Hence 0 < η < 1

2ν and
ν + 2η = ε. Thus, Theorem 1.1 follows immediately.

5.2 Proof of Theorem 1.2

Set Am(x) = #{p < x : sq(p) = m}. Next note that bµq logq pc = m if and only if qm/µq 6 p <

q(m+1)/µq . Hence

#{p < x : sq(p) = bµq logq pc} =
∑

m<bµq logq xc

(
Am(q(m+1)/µq)−Am(qm/µq)

)
+Abµq logq xc(x)−Abµq logq xc(q

bµq logq xc/µq)

Now Theorem 1.1 implies that

Am(qm/µq) = c
qm/µq

(m/µq)
3
2

(
1 + O(m− 1

2
+ε)
)

where

c =
q − 1

ϕ(q − 1) log q
√

2πσ2
q

.

Similarly we have

Am(q(m+1)/µq) = c
q(m+1)/µq

(m/µq)
3
2

(
1 + O(m− 1

2
+ε)
)

.

Set

C :=
∑

06j<q−1, (j,q−1)=1

qj/µq

(
q1/µq − 1

)
and `max :=

⌊
µq logq x

q − 1

⌋
.

Then we have∑
m<`max(q−1)

(
Am(q(m+1)/µq)−Am(qm/µq)

)
=

∑
`<`max

c
q(`(q−1))/µq

(`(q − 1)/µq)
3
2

C
(
1 + O(l−

1
2
+ε)
)

=
c

(logq x)
3
2

C
q`max(q−1)/µq

q(q−1)/µq − 1

(
1 + O((log x)−

1
2
+ε)
)

.

Further,

bµq logq xc−1∑
m=`max(q−1)

(
Am(q(m+1)/µq)−Am(qm/µq)

)
=

c

(logq x)
3
2

∑
06j<

n
µq logq x

q−1

o
(q−1)

(j,q−1)=1

qj/µq

(
q1/µq − 1

) (
1 + O((log x)−

1
2
+ε)
)
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and �nally

Abµq logq xc(q
bµq logq xc/µq) =

c

(logq x)
3
2

(
qlogq x − qbµq logq xc/µq

) (
1 + O((log x)−

1
2
+ε)
)

.

Putting these three estimates together we directly obtain (5) with

Q(t) = c

C
q−{t}(q−1)/µq

q(q−1)/µq − 1
+ q−{t}(q−1)/µq

∑
06j<(q−1){t}

(j,q−1)=1

qj/µq

(
q1/µq − 1

)
+ 1− q−{(q−1)t}/µq


which ends the proof of Theorem 1.2.

Acknowledgement. The authors are grateful to the referee for checking carefully the proofs and
suggesting several improvements.
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