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FAREY LINES DEFINING FAREY DIAGRAMS AND

APPLICATION TO SOME DISCRETE STRUCTURES

Daniel Khoshnoudirad

The aim of the paper is to study some of the analytical properties of Farey
diagrams of order (m,n), which are associated to the (m,n)-cubes, that is the
pieces of discrete planes, occuring in discrete mathematics. We give a closed
formula for the number of Farey lines defining Farey diagrams. This number
asymptotically behaves as mn(m + n)/ζ(3). Then we establish the relation
with some discrete structures in the field of discrete geometry in particular.

1. INTRODUCTION

In [3], one of the strategies for the enumeration of discrete pieces of planes,
was to estimate, in the most precise possible way, the number of vertices in a
diagram called a Farey diagram. The upper bound for the cardinality of the pieces
of discrete planes (or (m,n)− cubes) obtained in [3], is a homogeneous polynomial
of degree 8 : m3n3(m + n)2. The strategy used in this previous article to obtain
the upper bound was to study the cardinality of Farey lines. It was not clear
whether the degree 3 was optimal or not. We show that the degree 3 is optimal
for the cardinality of Farey lines. We obtain a new closed and exact formula for
computing this number of straight lines, and we derive from this an asymptotic
value, which definitely establishes that the degree 3 is optimal.

2. DEFINITIONS

Farey diagrams are involved in several fields of imagery, surgery, recognition,
and in Computer Science, but some problems related to Farey diagrams remain.
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Tomás proves in [15] and [14] that there is an important link between Accelerator
Physics and Farey diagrams. We notice that the Farey diagram of order (n, n) has
the same degree as the resonance diagram of order n. The asymptotic behaviour
of the two different structures only differs by a factor. There seem to be some
similarities between (m,n)-cubes, which we redefine in this article, and threshold
functions on a two-dimensional rectangular grid, for which asymptotic values have
been derived in [5]. They are also used when we study the preimage of a discrete
piece of the plane in discrete mathematics. The Farey diagram for discrete segments
was also studied by McIlroy in [10]. In [10], it was shown that the number
of straight lines with some particular conditions (which we call Farey lines) is
O(mn(m + n)) In this work, we derive an asymptotic value whose major term is
mn(m+ n)/ζ(3).

Let J−m,mK denote the set of integers between −m and m.

Definition 1 (Farey lines of order (m,n)). A Farey line of order (m,n) is a line

whose equation is uα + vβ + w = 0 with (u, v, w) ∈ J−m,mK × J−n, nK × Z, and
which has at least 2 intersection points with the frontier of [0, 1]2. We denote the

set of Farey lines of order (m,n) by DF (m,n).

The term Farey sets was used by Rémy and Thiel in [13] to talk about some
subsets of Q2 of irreductible points (y/x, z/x) between 0 and 1 whose numerators
and denominators do not exceed n. It is interesting to notice that this definition
which was introduced in the Ph.D. thesis of Thiel makes us think of the x-intercept
and y-intercept of Farey lines, of coordinates (−w/u,−w/v). These lines play an
essential role in discrete geometry, when we consider discrete planes. It explains why
they are so important in theoretical computer sciences and discrete mathematics.

Definition 2 (Farey vertex). A Farey vertex of order (m,n) is the intersection of

two Farey lines.

We will denote the set of Farey vertices of order (m,n), obtained as intersec-
tion points of Farey lines of order (m,n), by SF (m,n).

Definition 3 (Farey diagrams for the discrete pieces of planes of order (m,n)
(or (m,n)-cubes)). The Farey diagram for the (m,n)-cubes of order (m,n) is the

diagram composed of Farey connected component of order (m,n).

We use ⌊ ⌋ and 〈 〉 to (respectively) denote the integer part and the fractional
part of a real number. If a and b are two integers, a∧b denotes the greatest common
divisor of a and b. We let ϕ denote Euler’s totient function.

Definition 4 (Farey sequences of order n [4]). The Farey sequence of order n is

Fn = {0} ∪ {p/q | 1 ≤ p ≤ q ≤ n, p ∧ q = 1}.

We mention [4] as a forthcoming modern reference work on Farey sequences.
Several standard variants of the notion of Farey diagram are mentioned there, so
we use in this paper a non-standard definition.
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Definition 5 (Generalized Farey sequences [1]). Let m and n be two integers such

that m ≤ n. The generalized Farey sequence is Fm,n = {i/j ∈ Fn | i ≤ m}.

Properties of generalized Farey sequences are also studied in [6]. A more
precise study is given in [9], and formulas for cardinality of generalized Farey se-
quences are derived. An application of generalized Farey sequences to X-rays and
Radon transform can be found in [12].

Definition 6 (Farey edge). A Farey edge of order (m,n) is an edge of the Farey

diagram of order (m,n). We denote the set of Farey edges by EF (m,n).

Definition 7 (Farey graph). The Farey graph GF (m,n) of order (m,n) is the

graph (SF (m,n), EF (m,n)).

For positive integers m,n, we let Fm,n denote the set J0,m− 1K× J0, n− 1K.

Definition 8 ((m,n)-pattern [3]). Let m and n be two positive integers. A (m,n)-
pattern is a map w : Fm,n −→ Z. The size of the (m,n)-pattern w is denoted as

m× n. The set of the (m,n)-patterns will be denoted by Mm,n.

Definition 9 ((m,n)-cube [3], see Figure 1). The (m,n)-pattern wi,j(α, β, γ) at

the position (i, j) of a discrete plane Pα,β,γ is the (m,n)-pattern w defined by :

w(i′, j′) = pα,β,γ(i+ i′, j + j′)− pα,β,γ(i, j)

= ⌊α(i + i′) + β(j + j′) + γ⌋ − ⌊αi + βj + γ⌋,

for (i′, j′) ∈ Fm,n.

Figure 1. Example of two (4, 3)-cubes (red and green)
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3. PROPERTIES

Now we give some important lemmas:

Proposition 1 ([8]). Let d ∈ N∗. If d | n, then the number of integers w such that

1 ≤ w ≤ n and w ∧ d = 1 is (n/d)ϕ(d).

Proof. Indeed, as d | n, we have n = dk. If 1 ≤ w ≤ d, then we have ϕ(d)
integers for w for which w ∧ d = 1. If d + 1 ≤ w ≤ 2d, then 1 ≤ w − d ≤ d, so
this gives again ϕ(d) integers for which w ∧ d = 1. In fact, for each j ∈ J1, kK, if
(j − 1)d+ 1 ≤ w ≤ jd = n, then we have ϕ(d) such integers w for which for which
w ∧ d = 1, because 1 ≤ w− (j − 1)d ≤ d, and because [w − (j − 1)d]∧ d = 1. Thus,
altogether, we have (n/d)ϕ(d) such w’s.

Proposition 2. Let u ≤ −1 and v ≥ 1 be two integers such that u ∧ v = d. The
number of integers w such that w ∧ d = 1 and such that u ≤ w ≤ v is :

v − u+ 1 if d = 1,

or

((v − u)/d)ϕ(d) if d > 1.

Proof.

1. If d = 1, then all the integers w such that u ≤ w ≤ v have w ∧ d = 1. There
are v − u+ 1 such integers.

2. If d > 1, then 0 ∧ d 6= 1. By Proposition 1, if we consider u ≤ w ≤ v with
w 6= 0, then since u∧ v | u and u∧ v | v, we have (−u/d)ϕ(d), and (v/d)ϕ(d)
suitable integers, so overall, we have ((v − u)/d)ϕ(d) such integers.

4. AN EXACT AND CLOSED FORMULA FOR THE
ENUMERATION OF FAREY LINES

Now, we seek to estimate the number of Farey lines. We consider that a
strictly increasing (respectively, decreasing) line has the form : β(α) = aα + b,
where a > 0 (respectively, a < 0). In the other cases, the line is such that β
(respectively, α) is constant, that is, a horizontal (respectively, vertical) line.

Theorem 1. The number of lines defining the Farey diagram for the (m,n)-cubes
of order (m,n) is

|DF (m,n)| = |Fm|+ |Fn|+ 2
∑

1≤u≤m
1≤v≤n

u∧v=d≥1

u+ v

d
ϕ(d) − 2Am,n,

where |Fm| denotes the cardinality of the Farey sequence of order m, and Am,n

denotes the number of coprime pairs (u, v) ∈ Z2 with 1 ≤ u ≤ m and 1 ≤ v ≤ n.
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Proof. A Farey line has an equation of the form uα+ vβ +w = 0 with (u, v, w) ∈
J−m,mK × J−n, nK × Z. We can suppose u ∧ v ∧ w = 1 (if it is not equal to 1, we
divide by u ∧ v ∧ w to avoid the redundancies).

Furthermore, we can suppose v ≥ 0 (even consider the equation (−u)α +
(−v)β + (−w) = 0). Then we have two cases: either v = 0 or v > 0. If v = 0, then

necessarily u 6= 0 and we have 1 +
∑

1≤q≤m

ϕ(q) = |Fm| possible lines, and we are

done in this case. Thus, we restrict attention to the case v > 0 throughout the rest
of the proof. Then we can write :

β = −
u

v
α−

w

v
.

Then we consider the slope of this real line : −u/v. Now we have two cases to

consider for u. If u = 0, then we have 1 +
∑

1≤q≤n

ϕ(q) = |Fn| possible straight lines.

Summarizing from the beginning, we have |Fm| + |Fn| possible lines, where the 4
lines of the frontier of the square are taken into account, and we are done in this
case. Therefore, we can now restrict attention to the case u 6= 0 throughout the
rest of the proof.

So we can consider the x-intercept αo = −w/u, together with the y-intercept
βo = −w/v. If the line is strictly increasing, then −u/v > 0 ⇒ u < 0 and the
necessary condition for the line going through the square [0, 1]2 is :

βo ≤ (n− 1)/n and α0 ≤ (m− 1)/m

⇔ −w/v ≤ (n− 1)/n and − w/u ≤ (m− 1)/m

⇔ −v(n− 1)/n ≤ w ≤ −u(m− 1)/m.

It is equivalent to search for the integers w such that −v+v/n ≤ w ≤ ⌊−u+u/m⌋,
so −v + v/n ≤ w ≤ −u− 1 or −v + 1 ≤ w ≤ −u− 1 for (u, v) ∈ J1,mK × J1, nK.

We see that if w = 0 (which corresponds to the origin), the condition of
primality becomes u ∧ v ∧ w = 1 ⇒ u ∧ v = 1. With the condition −m ≤ u ≤ −1
and 1 ≤ v ≤ n, this leads us to the following problem:

For a couple of integers (m,n) ∈ N∗2, we have to find the number Am,n of
integer couples (u, v) ∈ J1,mK× J1, nK such that u∧ v = 1. So, we have Am,n other
lines (increasing) i.e. if we summarize, the total number of lines is

|Fm|+ |Fn|+Am,n.

So, now, we search for the integers different from 0, w such that −v + 1 ≤
w ≤ −u− 1 for (u, v) ∈ J1,mK × J1, nK.

If u∧ v = 1, then all the nonzero w’s between −v+ 1 and u− 1 are suitable;
there are u + v − 2 of them. Otherwise, the number of suitable w is equal to
((u+ v)/d)ϕ(d).

The equation of a Farey line now has the form:

β(α) = −(u/v)α− w/v



78 Daniel Khoshnoudirad

By the same idea, using the fact that β(1/n) ≥ 0 and β(1) ≤ (n− 1)/n (which are
the last points before the border of the Farey sequence, i.e. −u− v+1 ≤ w ≤ −1),
we find that the number of decreasing Farey lines of order (m,n) is:

∑

1≤u≤m
1≤v≤n
u∧v=1

(u+ v − 1) +
∑

1≤u≤m
1≤v≤n

u∧v=d≥2

u+ v

d
ϕ(d)

Henceforth, we can enumerate the number of lines which are strictly decreasing or
strictly increasing:

Am,n+
∑

1≤u≤m
1≤v≤n

u∧v=d≥2

u+ v

d
ϕ(d)+

∑

1≤u≤m
1≤v≤n
u∧v=1

(u+v−2)+
∑

1≤u≤m
1≤v≤n
u∧v=1

(u+v−1)+
∑

1≤u≤m
1≤v≤n

u∧v=d≥2

u+ v

d
ϕ(d),

which becomes (by the fact that
∑

u∧v=1

1 = Am,n) exactly

2Am,n + 2
∑

1≤u≤m
1≤v≤n

u∧v=d≥2

u+ v

d
ϕ(d) + 2

∑

1≤u≤m
1≤v≤n
u∧v=1

(u+ v − 2).

Hence, in adding the vertical and horizontal lines, we finally obtain that the number
of Farey lines is:

|Fm|+ |Fn|+ 2Am,n + 2
∑

1≤u≤m
1≤v≤n

u∧v=d≥2

u+ v

d
ϕ(d) + 2

∑

1≤u≤m
1≤v≤n
u∧v=1

(u+ v − 2).

In a more reduced form, this is equivalent to

(1) |Fm|+ |Fn|+ 2
∑

1≤u≤m
1≤v≤n

u∧v=d≥1

u+ v

d
ϕ(d)− 2Am,n.

This completes the proof. �

Let DFD(m,n) denote the set of decreasing Farey lines.

Lemma 1. For all pairs (m,n) ∈ N∗2, we have

|DFD(m,n)| =
∑

1≤u≤m
1≤v≤n
u∧v=1

(u+ v − 1) +
∑

1≤u≤m
1≤v≤n

u∧v=d≥2

u+ v

d
ϕ(d).

Proof. If u∧ v = 1, there are u+ v− 1 integers w such that −u− v+1 ≤ w ≤ −1.
Otherwise, if u ∧ v ≥ 2, there are (u+ v)ϕ(d)/d integers w with d = u ∧ v.
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Remark 1. If we let DFC(m,n) denote the set of increasing Farey lines, then we notice
that |DFC(m,n)| = |DFD(m, n)|.

5. NUMERICAL RESULTS

For the case (m,n) = (4, 3), we numerically and theoretically find the number 88,
and in the case (m,n) = (3, 3), we find 60 lines.

Figure 2. Farey lines of order (3, 3)

6. ASYMPTOTIC VALUE FOR THE NUMBER OF FAREY LINES
OF ORDER (m,n)

In order to give a more precise estimation (like an asymptotic behaviour of
the number of Farey lines), we need to use the definition of the Möbius function
that we find, for example, in [2] and [16]:

Definition 10. The Möbius function µ(n) is defined as follows : µ(1) = 1; if n has

a square factor, then µ(n) = 0; if all the prime numbers p1, p2, . . . , pk are distinct,

then µ
( k∏

j=1

pi

)

= (−1)k.
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We recall the very important lemma due to Vinogradov:

Lemma 2 (Vinogradov). Let m and n be two integers greater or equal than 1 and

let f be a function defined on the integers. Then we have

n
∑

k=1
k∧m=1

f(k) =
∑

d|m

µ(d)
∑

k≤
n
d

f(kd)

With this lemma, we can make precise the major term in the closed formula
giving the number of Farey lines of order (m,n) :

∑

1≤u≤m
1≤v≤n

u∧v=d≥1

u+ v

d
ϕ(d) =

∑

1≤d≤min(m,n)

ϕ(d)
∑

1≤u′≤m

d

1≤v′≤n

d

u′∧v′=1

u′ + v′

Thanks to Vinogradov’s lemma, we have

∑

1≤u′≤m

d

1≤v′≤n

d

u′∧v′=1

u′ + v′ =
∑

1≤u′≤m

d

u′
∑

e|u′

µ(e)
∑

k≤ n

de

1 +
∑

1≤v′≤n

d

v′
∑

e|v′

µ(e)
∑

k≤ m

de

1

=
∑

1≤u′≤m

d

u′
∑

e|u′

µ(e)
⌊

n

de

⌋

+
∑

1≤v′≤n

d

v′
∑

e|v′

µ(e)
⌊

m

de

⌋

=
∑

1≤e≤m

d

eµ(e)
⌊

n

de

⌋

∑

f≤ m

ed

f +
∑

1≤e≤n

d

eµ(e)
⌊

m

de

⌋

∑

f≤ n

ed

f

The value of the last term is:

1

2

∑

1≤e≤
m
d

eµ(e)
⌊

n

de

⌋

(

⌊

m

de

⌋2

+
⌊

m

de

⌋

)

+
1

2

∑

1≤e≤n

d

eµ(e)
⌊

m

de

⌋

(

⌊

n

de

⌋2

+
⌊

n

de

⌋

)

(2)

Now, we can derive the asymptotic value of this expression. Let us do it for the
first term in equation (2).

Proposition 3. We have

∑

1≤e≤
m
d

eµ(e)
⌊

n

de

⌋

(

⌊

m

de

⌋2

+
⌊

m

de

⌋

)

=
nm2

d3

∑

1≤e≤
m
d

µ(e)

e2
+O

(

m log(m)(m+ n)

d2

)

.

Proof. By reversing the roles of m and n, we will deduce the asymptotic value of
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the other term. We compute

∑

1≤e≤
m
d

eµ(e)
⌊

n

de

⌋

(

⌊

m

de

⌋2

+
⌊

m

de

⌋

)

=
∑

1≤e≤
m
d

eµ(e)

(

n

de
−
〈

n

de

〉

)(

(

m

de
−
〈

m

de

〉)2

+
m

de
−
〈

m

de

〉

)

=
nm2

d3

∑

1≤e≤
m
d

µ(e)

e2
+

mn

d2

∑

1≤e≤
m
d

µ(e)

e
+O

(

nm

d2
log(m)

)

+O
(

m2

d2
log(m)

)

So we conclude

∑

1≤e≤
m
d

eµ(e)
⌊

n

de

⌋

(

⌊

m

de

⌋2

+
⌊

m

de

⌋

)

=
nm2

d3

∑

1≤e≤
m
d

µ(e)

e2
+O

(

m log(m)(m+ n)

d2

)

�

It remains to study the quantity:

∑

1≤d≤min(m,n)

ϕ(d)

(

nm2

d3

∑

1≤e≤m

d

µ(e)

e2
+O

(

m log(m)(m+ n)

d2

)

)

.

Towards this goal, we first have the following proposition:

Proposition 4 ([2]). For x ≥ 2, and α > 1 and α 6= 2, we have

∑

n≤x

ϕ(n)

nα
=

x2−α

2− α

1

ζ(2)
+

ζ(α− 1)

ζ(α)
+O(x1−α log x).

Now we apply this result in the case α = 3 for the computation of the sum,
which leads us to:

Proposition 5. For x ≥ 2, we have

∑

n≤x

ϕ(n)

n3
= −

1

x

1

ζ(2)
+

ζ(2)

ζ(3)
+O(x−2 log x).

Finally, by [2, page 71], we have:

Theorem 2. If x ≥ 2, then

∑

n≤x

ϕ(n)

n2
=

1

ζ(2)
log x+

C

ζ(2)
−A+O

(

log x

x

)

,

where C is the Euler’s constant and A =
∞∑

n=1

µ(n) log n

n2
.
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Proposition 6. We have

∑

1≤d≤min(m,n)

ϕ(d)

(

nm2

d3

∑

1≤e≤
m
d

µ(e)

e2
+O

(

m(m+ n) log(m)

d2

)

)

(3)

=
nm2

ζ(3)
+O (m(m+ n) log(m) log(min(m,n)))

Proof. We first observe

∑

1≤d≤min(m,n)

ϕ(d)

(

nm2

d3

∑

1≤e≤
m
d

µ(e)

e2
+O

(

m(m+ n) log(m)

d2

)

)

= nm2
∑

1≤d≤min(m,n)

ϕ(d)

d3

∑

1≤e≤
m
d

µ(e)

e2
+O

(

m(m+ n) log(m)
∑

1≤d≤min(m,n)

ϕ(d)

d2

)

.

For s ≥ 2, we have:
∑

n≤x

µ(n)

ns
=

1

ζ(s)
+O

(

1

xs−1

)

.

So we conclude

∑

1≤d≤min(m,n)

ϕ(d)

(

nm2

d3

∑

1≤e≤
m
d

µ(e)

e2
+O

(

m log(m)(m+ n)

d2

)

)

= nm2
∑

1≤d≤min(m,n)

ϕ(d)

d3

(

1

ζ(2)
+O

(

d

m

)

)

+O

(

m(m+ n) log(m)
∑

1≤d≤min(m,n)

ϕ(d)

d2

)

=
nm2

ζ(3)
+O(nm log(min(m,n))) +O(m(m+ n) log(m) log(min(m,n)))

=
nm2

ζ(3)
+O(m(m+ n) log(m) log(min(m,n))).

In a same way, we obtain an asymptotic value for the second part of equa-
tion (2), by exchanging the roles of m and n. Now we conclude with the following
theorem.

Theorem 3. The number of Farey lines, when m and n tend to infinity, has the

following behavior

|DF (m,n)| ∼ mn(m+ n)/ζ(3).

Proof. By using (1), and Proposition 3, the total number of Farey lines of order
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(m,n) has the asymptotic value :

|DF (m,n)| = (2)(1/2)(nm2/ζ(3) +mn2/ζ(3))

+O (m(m+ n) log(m) log(min(m,n)))

+O (n(m+ n) log(n) log(min(m,n)))

= (2)(1/2)(nm)(n+m)/ζ(3)

+O((m+ n)(m log(m) + n log(n)) log(min(m,n))). �

So, we obtained an equivalent of the cardinality of the set of Farey lines of order
(m,n), whereas until now we only had a O upper bound.

7. COMBINATORIAL ANALYSIS OF FAREY LINES FOR
DISCRETE GEOMETRY

Before this paper, we were not sure whether the order of Farey lines cardi-
nality of order (m,n) is 3 or less than 3. Now we know that this order is exactly
3. Moreover, we can compute exactly this number. And we know the behaviour
of this quantity when m and n tend to infinity. Since we know that, if we have
any set of n lines, then the number of vertices which are constructed from these
lines is at most n(n− 1)/2, then we can deduce (as in [3]) that the order of Farey
vertices is at most 6. So if we want to study more deeply the cardinality of the set
of Farey vertices, this argument is not sufficient. This work allows us to say that
the number of Farey vertices which is known, is impossible to improve, if we only
use the previous argument, which is a basic argument of combinatorial geometry,
as it is the case in [3]. In our proofs, we can see that terms of generalized Farey
sequences appear. This result should also be interesting for the scientists who work
on graph theory, because we worked on a special graph, that we call the Farey
graph, and we studied (for example) the degree of the vertices. In order to improve
the upper bound, another interesting work will be to focus on the diophantine as-
pects of Farey diagrams, combined with some other arguments of graph theory, to
better estimate the cardinality of Farey vertices. In such a way, we should progress
in the knowledge of the (m,n)-cubes combinatorics.
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