
GALTON, EDGEWORTH, FRISCH,

AND PROSPECTS FOR

QUANTILE REGRESSION IN ECONOMETRICS

ROGER KOENKER

Abstract. The work of three leading �gures in the early history of economet-
rics is used to motivate some recent developments in the theory and application
of quantile regression. We stress not only the robustness advantages of this form
of semiparametric statistical method, but also the opportunity to recover a more
complete description of the statistical relationship between variables. A recent pro-
posal for a moreX-robust form of quantile regression based on maximal depth ideas
is described along with an interesting historical antecedent. Finally, the notorious
computational burden of median regression, and quantile regression more generally,
is addressed. It is argued that recent developments in interior point methods for
linear programming together with some new preprocessing ideas make it possible
to compute quantile regressions as quickly as least squares regressions throughout
the entire range of problem sizes encountered in econometrics.

1. Galton's Regression to the Mean

Arguably, the most important statistical graphic ever produced is Galton's (1886)
�gure illustrating "regression to the mean", reproduced below as Figure 1.1. In it
Galton plots childrens' height versus parents' height for a sample of 928 children. He
begins by dividing the plane into one inch squares and entering the frequency counts
for each square. The resulting \histogram" appeared too rough so he smoothed by
averaging each count with those in the 4 adjacent squares. Not content to invent
\regression" in one plot, he manages to invent bivariate kernel density estimation,
too! After smoothing the counts appeared more regular and he enlisted the help of the
Cambridge mathematician, J.H. Dickson, to draw elliptical contours corresponding
to level curves of the underlying population density.
Now suppose we wished to predict children's height based on the height of the

parental height, say the average height of the parents which we will call, following
Galton, the height of the midparent. what would we do? One approach, given the
graphical apparatus at hand would be to �nd the \most likely" value of the child's
height given the parents height, that is for any given value of the mid-parent height
we could ask, what value of the child's height puts us on the highest possible contour
of the joint density. This obviously yields a locus of tangencies with the horizontal
lines in the �gure. These conditional modes, given the joint normality implicit in the
elliptical contours, are also the conditional medians and means. The slope of the line
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2 Galton, Edgeworth, Frisch

Figure 1.1. Galton's (1889) Regression to the Mean Plot

describing this locus of tangencies is roughly 2/3 so a child with midparent 3 inches
taller than average can expected to be (will most probably be) only 2 inches taller
than average.
Galton termed this regression towards the mean, and paraphrasing Lincoln we

might strengthen this to regression of the mean, to the mean, and for the mean.
Stigler (1997) provides a fascinating guide to Galton's own thinking about this idea,
and to the illusive nature of its reception in subsequent statistical research. It is a
remarkable feature of the conditional densities of jointly Gaussian random variables
that the conditioning induces what we may call a \pure location shift". In Galton's
original example the height of the midparent alters only the location of the center of
the conditional density of the child's height, dispersion and shape of the conditional
density is invariant to the height of the midparent. This is, of course, the essential
feature of the classical linear regression model { the entire e�ect of the covariates on
the response is captured by the location shift

E(Y jX = x) = x0�
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while the remaining randomness of Y given X may be modeled as an additive error
independent of X.
Of course, we are all aware that the attempt to compare random variables only in

terms of means is fraught with di�culties, and we have all su�ered the indignities
of \humor" about our professional complacency in the face of simultaneously frozen
and roasted extremities. Galton (1889) o�ered his own warning about this, chiding
his statistical colleagues who,

limited their inquiries to Averages, and do not seem to revel in more com-
prehensive views. Their souls seem as dull to the charm of variety as that of
a native of one of our at English counties, whose retrospect of Switzerland
was that, if the mountains could be thrown into its lakes, two nuisances
would be got rid of at once. [ Natural Inheritance, p. 62]

Ironically, it is the indispensable tool that Galton provided us which is probably
most responsible for narrowing the scope of statistical investigations to the comparison
of means. So, compounding the irony, it seems �tting that { as a resident of one of
the atter U.S. counties { I have spent a large fraction of my professional energy
arguing that we don't need to throw the mountains into the lakes with least squares
regression. We can take a more comprehensive view of the statistical relationship
between variables by expanding the scope of the linear model to include quantile
regression.
As an elementary introductory illustration, I would like to reconsider an AR(1)

model for daily temperature in Melbourne, Australia, considered recently by Hynd-
man, Bashtannyk and Grunwald (1996) using modal nonparametric regression ideas
introduced by Scott (1992). The approach adopted here will be somewhat di�erent,
but the conclusions are rather similar. In Figure 1.2, we see the data, 10 years of
daily maximumtemperature data depicted as an AR(1) scatter plot. Not surprisingly,
one's �rst \unit root" impression of the plot is that today's maximum temperature
bears a strong resemblance to yesterday's maximum. But closer examination of the
plot reveals that this impression is based primarily on the left half of the plot where
the central tendency of the scatter does follow the 45� line quite closely. However, in
the right half, when yesterday was warm the pattern is more complicated. It appears
that either there is another hot day, or there is a dramatic cooling o�, but a mild
cooling o� appears to be infrequent. In the language of conditional densities, if today
is hot, tomorrow's temperature appears bimodal with one mode centered (roughly)
at today's temperature and the other mode centered at about 20� centigrade.
This form of mean reversion has a natural meteorological explanation as high pres-

sure systems bringing hot weather from the interior of the continent eventually ter-
minate with a cold front creating a rapid drop in temperature. This sort of dynamic
does not seem entirely implausible in some econometric settings, and yet the linear
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Figure 1.2. Melbourne Maximum Daily Temperature: The plot il-
lustrates 10 years of daily maximum temperature data for Melbourne,
Australia as an AR(1) scatterplot. Note that conditional on hot weather
on the prior day, the distribution of maximum temperature on the fol-
lowing day appears to be bimodal.

time-series models we typically consider are not capable of accommodating this be-
havior. This is clearly a case in which the conditioning variables inuence not only
the location, but also the scale and shape of the conditional density.
In Figure 1.3 we illustrate a family of estimated conditional quantile functions

superimposed on the original scatter plot. Each curve is speci�ed as a series expansion
in B-splines

QYt
(� jYt�1) =

pX
i=1

�i(Yt�1)�i(� ) � x0t�(� )
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Figure 1.3. Melbourne Daily MaximumTemperature: Superimposed
on the AR(1) scatterplot of daily maximum temperatures are 12 esti-
mated conditional quantile functions. These functions support the view
that the conditional density of maximum temperature conditional on
prior warm weather is bimodal, a �nding that is explored further in the
following conditional density plots.

and the parameters are estimated by minimizing

R� (b) =

TX
t�1

��(yt � x0tb)

as in Koenker and Bassett (1978) where ��(u) = u��I(u < 0)): Selection of p and the
knot locations for the B-splines are described in He and Ng (1998). Given a family
of such conditional quantile functions it is straightforward to estimate conditional
densities at any desired value of the conditioning variables. Related smoothing spline
methods for quantile regression are discussed in Koenker, Ng, and Portnoy (1995).
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If there is one message which I would extract from this example, it would be this:
there is more to econometric life than can be captured by the philosophy of the Gauss-

ian location shift. In the next section, I would like to describe briey some early
contributions of F.Y. Edgeworth to the theory of median regression and mention
some related recent developments on alternative methods for quantile regression. In
the third section I will describe some recent developments in the theory and prac-
tice of computing quantile regression estimates, developments which may be traced
back to work in the 1950's by Ragnar Frisch, and which dramatically improve the
computational feasibility of these methods in large problems. Some mildly polemical
comments conclude the paper.

2. Edgeworth's Plural Median

In 1887, six years after publishing his pathbreaking Mathematical Psychics, Edge-
worth began a series of papers \On a new method of reducing observations related
to several quantities." These papers have been somewhat neglected in subsequent
accounts of Edgeworth's contributions to statistics, notably Stigler (1978, 1986) so
this constitutes an opportunity to remedy this neglect.
In fact, Edgeworth's method was not entirely new. In the 1760's Rudjer Boscovich

had proposed estimating the ellipticity of the earth using �ve observations on the
length of one degree of latitude, yi, at various latitudes, �i (at Rome, Paris, Cape
Hope, Quito, and a measurement in Lapland) by solving the problem

min
X

jyi � �� � sin2 �ij:
subject to the constraint that the mean residual, n�1

P
(yi � �̂ � �̂ sin2 �i), equalled

zero. Somewhat later Laplace showed that this problem could be solved by com-
puting a weighted median. He also provided an astonishingly complete theory of
the asymptotic behavior of the weighted median for the scalar case. This early his-
tory is described in considerable detail by Sheynin (1973), Stigler (1986) and Fare-
brother(1987).
Edgeworth's new method, which he called the \plural median" was intended to

revive the Boscovich method as a direct competitor to the least squares approach
which had reigned supreme since it was introduced by Gauss and Legendre at the end
of the 18th century. Edgeworth (1888) proposed dropping the zero mean constraint
on the residuals, arguing that it conicted with the median intent of the absolute
error approach. Appealing to the results of Laplace, he conjectured that the resulting
plural median would be more accurate than the corresponding least squares estimator
when the observations were more \discordant" than those from the Gaussian law of
errors. Unfortunately, Edgeworth was unable to provide any mathematical support
for his assertion that the superiority of the median over the mean in such \discordant"
circumstances could be extended from Laplace's scalar context to his plural median.
His argument rested entirely on the, admittedly rather compelling, analogy between
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the optimization problems for the univariate median and its plural counterpart in the
regression context.
Laplace(1818) had shown that in the simple, scalar regression-though-the-origin

model, in our (anachronistic) notation,

yi = xi� + ui

where the fuig are iid with variance, �2, and have strictly positive density at the

median, f(0); the least squares estimator, �̂ = x0y=x0x was asymptotically nor-

mal with mean, � and variance �2=x0x, while the `1 estimator, ~�, which minimizedP jyi � xibj was asymptotically Gaussian with mean � and variance !2=x0x where
!2 = 1=(4f2(0)). If the ui's were strictly Gaussian, of course, this implied that the
asymptotic relative e�ciency of the two estimators was

ARE = Avar( ~�)=Avar(�̂) = !2=�2 = �=2 � 1:57

which would imply, in turn, that con�dence intervals for � based on ~� would be
about 25 percent longer than those based on �̂. Edgeworth (1888) anticipating work
by Kolmogorov (1931) and Tukey(1960) showed that if, instead, the ui's came from
a scale mixture of Gaussians, i.e.

ui � F (u) = (1� �)�(u) + ��(u=�)

for some � 2 (0; 1) and � > 1, that ~� \may be ever so much better than" �̂.
Edgeworth's motivation for this line of inquiry goes back at least as far as his

paper on \The method of least-squares" (Edgeworth (1883)) in which he considers
the relative merits of `1, `2, and `1 loss as measures of statistical performance.

It is here submitted that these three criteria are equally right and equally
wrong. The probable error, the mean error, the mean square of error, are
forms divined to resemble in an essential feature the real object of which
they are the imperfect symbols { the quantity of evil, the diminution of
pleasure incurred by error. The proper symbol, it is submitted, for the
quantity of evil incurred by a simple error is not any power of the error,
nor any de�nite function at all, but an almost arbitrary function, restricted
only by the conditions that it should vanish when the independent variable,
the error, vanishes, and continually increase with the increase of the error.

Edgeworth asks whether the army shoemaker who makes a greater proportion of
\exact �ts" but occasionally makes a terribly painful mistake is better than the one
who is more consistently inaccurate. He quotes Horace to the e�ect that the slave
\who seldom tells a lie, but when he does, `lies like a man', may do more harm than
the habitual dealer in white lies." He concludes with a more \digni�ed example:"
Which is better, he inquires, an instrument of observation whose errors follow the
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standard normal distribution or one whose errors arise from the Cauchy density,

f(u) =
1

�c

1

1 + (u=c)2

\where c is small"? Clearly, the answer depends crucially on the form of the loss
function. It is then a small step to the question: how should we estimate the central
tendency of such measurements given a sample of observations from either instrument,
a question which leads him to an extremely enlightened consideration of weighted least
squares estimation. This discussion verges remarkably close to the enunciation of the
principle of maximum likelihood.
Writing near the end of his career, Edgeworth (1923), o�ers a reprise on his earlier

work, addressing primarily the computational problems posed by the plural median.
His 1888 paper had described a geometric approach to computing the plural median
which brought Edgeworth to the brink of the simplex algorithm:

The method may be illustrated thus:{Let C � R (where C is a constant,
[and R denotes the `1 objective function]) represent the height of a surface,
which will resemble the roof of an irregularly built slated house. Get on
this roof somewhere near the top, and moving continually upwards along
some one of the edges, or arr�etes, climb up to the top. The highest position
will in general consist of a solitary pinnacle. But occasionally there will be,
instead of a single point, a horizontal ridge, or even a at surface.

Supplemented by a more explicit rule for choosing the edges at each vertex, this de-
scription would �t nicely into modern textbooks of linear programming. Edgeworth's
geometric approach to the computation of the plural median employed a device which
has been recently rediscovered and termed the \dual plot" in the work of Rousseeuw
and Hubert (1998). In the bivariate regression version of the dual plot, each point,
(xi; yi) appears as a line in parameter space, that is,

a = yi � bxi

so all the points on this line in (a; b)-space have ith residual zero, and intersections of
such lines correspond to points which have two zero residuals { basic solutions in the
terminology of linear programming. Edgeworth's strategy was to choose a point of in-
tersection like this, and then to try to move to an adjacent intersection which reduced
the sum of the absolute residuals. He choose the following rather unfortunate exam-
ple to illustrate the technique: given the data f(6; y1); (6; y2); (1; y3); (1; y4); (1; y5)g
with the y's ordered so that y1 < ::: < y5 we obtain the dual plot illustrated in Figure
2.1. Starting at point A he computed the directional derivative of R along the paths
Ap, Aq, Ar, and AB and determined that only the AB direction was a direction
of descent. Moving to B, he again computed the directional derivatives of R in the
directions Bs and BC and determined that R was increasing toward the point s and
at in the direction of C. From this, he concluded, quite correctly, that the plural
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median solution for this example consists of the entire interval connecting BC. Im-
plicitly, there was a recognition in this approach that the problem was convex, and
therefore any such path of descent would eventually arrive at a global minimum.

s
p
q

D

C

B r

A

•

• •

• •

•

Figure 2.1. Edgeworth's (1888) Dual Plot Example: There are 5 lines
corresponding to �ve distinct points; parallel lines indicate replicated
design observations. Intersections of lines correspond to points in pa-
rameter space at which there are two zero residuals. As described in
the text the median regression solution to this problem is the entire
line segment BC.

Gill, Murray and Wright (1991) distinguish between direct and iterative algorithm
in the following way:

...we consider as direct a computation procedure that produces one and
only one estimate of the solution, without needing to perform a posteriori

tests to verify that the solution has been found... In contrast, an iterative
method generates a sequence of trial estimates of the solution, called iter-

ates. An iterative method includes several elements: an initial estimate of
the solution; computable tests to verify whether or not an alleged solution
is correct; and a procedure for generating the next iterate in the sequence
if the current estimate fails the test.

Edgeworth's description falls short of this de�nition of a complete iterative algo-
rithm, but it captures the essential ingredients of later algorithms based on simplex,
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or exterior point methods. Its chief failing, in my view, was not the omission of ex-
plicit rules to choose the next edge, or the lack of an explicit stopping rule, it was the
iterative nature of the method itself. Iteration is rather like a voyage of exploration
of the 15th century, sailing into the Atlantic perhaps even believing that the world
was at, not knowing when, or even if, the voyage would end. Direct algorithms
like Gaussian elimination, on the other hand, made least squares like a trip along a
familiar road; at each step one knew exactly how much more e�ort was necessary.
Only with the emergence of computers in the 1940's, were researchers able to transfer
the risk, or uncertainty, of the iterative approach to the machine, and the spirit of
adventure blossomed as investigators put down their pencils, poured their co�ee, and
watched the tapes whir and the lights icker.
Edgeworth's example highlights an aspect of median regression which continues to

perplex the unwary. The nonuniqueness of the solution, consisting of the entire line
segment BC, should not be surprising in view of the fact that we have replicated
design points at x = 1 and x = 6 with an even number of points (2) at the latter.
Medians of even numbers of observations are inherently nonunique, and the median
regression solution in this \two sample problem" consists simply in connecting any
median of sample 1, at x = 1, with any median at sample 2, at x = 6, a procedure
which translated back into parameter space yields the line segment BC. Edgeworth
argued that one could always select a central point from the set of solutions, but more
importantly, he argued that the nonuniqueness was \apt to be slight and neglectable
for it tends to be of an order which is insigni�cant in comparison to the probable
error to which the solution is liable." This point which has been made by a number of
other subsequent authors, including Bassett and Koenker (1978), is worth reiterating.
Dupa�cov�a(1992) provides a detailed discussion of this issue.
Having argued, by analogy, that median regression could be, under certain cir-

cumstances, more accurate than \the ordinary method" of least squares, Edgeworth
concludes his 1888 paper with the claim that,

On the other hand, the labour of extracting the former is rather less: I
should think, in the case of many unknown variables. At the same time
that labour is more \skilled". There may be needed the attention of a
mathematician; and, in the case of many unknowns, some power of hy-
pergeometrical conception. Perhaps the balance of advantage might be
a�ected by an �a priori knowledge of an approximate solution.

While a good starting value is always welcome, this seems to be symptomatic of
a rather virulent case of wishful thinking. Certainly, it did nothing to impede the
progress of least squares methods over the next century. I would like to return Edge-
worth's conjecture regarding the computability of the median regression estimator
in the next section, but before doing so I would like to consider the dual plot more
carefully in light of some interesting recent developments in quantile regression.



Roger Koenker 11

Edgeworth's adoption of the dual plot as a computational device for median regres-
sion was suggested by criticism of his prior computational proposal. The dual plot is
an extremely valuable instrument for focusing attention on the geometric essentials
of the problem { movement from one adjacent vertex to another in much the same
spirit as the modern simplex algorithm. However, the dual plot had two concomitent
disadvantages. The �rst was that it was inherently limited to the case of bivariate
regression and therefore failed to suggest a natural extension to the multivariate case.
This could have been remedied easily by carefully writing down the algebra corre-
sponding to the geometric interpretation of the algorithm. The second disadvantage
was that it introduced an irresistible temptation to invent variations on the original
principle of minimizing the sum of absolute residuals.
One of these variations was described by Bowley (1902) in some work on the dis-

tribution of English wages:

... we may with advantage apply Prof. Edgeworth's \double median"
method and �nd the point, line or small area, such that, whether we proceed
from it to the left, or right, or up, or down, we always intersect the same
number of lines before we are clear of the network.

This rather imprecise formulation has been independently recently rediscovered,
reformulated and greatly elaborated in work of Rousseeuw and Hubert (1998). Their
formulation in terms of the dual plot is:

The [regression depth] of a �t � is (in dual space) the smallest number of
lines Li that need to be removed to set � free, i.e. so that it lies in the
exterior of the remaining arrangement of lines.

In the space of the original observations, where we have data Zn = f(xi; yi) : i =
1; :::; ng 2 R2 and the model

yi = �1xi + �2 + ui(2.1)

Rousseeuw and Hubert formulate the following complementary de�nitions:

De�nition 1. A candidate �t � = (�1; �2) to Zn is called a non�t i� there exists a

real number, v� = v which does not coincide with any xi and such that

ri(�) < 0 for all xi < v and ri(�) > 0 for all xi > v

or

ri(�) > 0 for all xi < v and ri(�) < 0 for all xi > v

where ri(�) = yi � �1xi � �2.

De�nition 2. The regression depth of a �t � = (�1; �2) relative to a data set Zn 2 R2

is the smallest number of observations that need to be removed to make � a non�t.

A mechanical description of regression depth in the \primal" or data-space plot
is also provided by Rousseeuw and Hubert: the existence of v� for any non�t �,
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Figure 2.2. Median Regression vs. Maximal Regression Depth: The
plot illustrates an example taken from Bowley (1902) and also analysed
by Edgeworth (1923). There are six observations each represented by
a line in this dual plot. (Note the line barely interesecting the plotting
region in the lower right.) The median regression estimate minimizing
the sum of absolute errors is the point labeled D. The regression depth
of the points fA;B;Cg is 3, so any point in the triangle formed by
these points has maximal regression depth in this example. Bowley
(1902) identi�es the point A as the unique solution by his criterion, thus
illustrating the rather arti�cial nature of his restriction to canonical
directions in his notion of depth.

corresponds to a point on the line y = �1x+ �2 about which one could rotate the line
to the vertical without encountering any observations.
Bowley's description, if interpreted a bit generously to include all directions, not

just the canonical ones, characterizes what Rousseeuw and Hubert call the \deepest
line" or maximal regression depth estimator. Contrary to Bowley's claim, it is not
Edgeworth's double median, but it is a quite distinct and extremely intriguing al-
ternative. As Rousseeuw and Hubert elegantly demonstrate it may be viewed as a
natural extension to regression of the halfspace depth ideas of Tukey (1975), Donoho
and Gasko (1992).
In Figure 2.2 we illustrate an empirical example taken from Bowley (1902) in which

we have six observations, and therefore six lines in the dual plot. In this example the
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median regression solution is represented by the point D, which is \exposed" on the
outer edge of the dual plot. The maximum regression depth estimator is any point
in the triangle formed by the points fA;B;Cg all of which have depth three.
Unlike the conventional median regression (`1) estimator which has a breakdown

point of 1=n in the (x; y)-contamination model, and only marginally better break-
down properties in the �xed-x, y-contamination model, as discussed in He, Jure�ckov�a,
Koenker, and Portnoy (1993) and Mizera and Muller (1997), the deepest line estima-
tor has breakdown point 1=3. It shares the equivariance properties of the `1 estimator,
but exhibits a somewhat greater tendency toward non-uniqueness. It is worth remark-
ing in this connection that Theil's (1950) earliest papers also deal with a variant of
this type which is usually described as the \median of pairwise slopes" and may be
viewed geometrically in the dual plot by projecting all the the intersections onto the
axis of the \slope" parameter and then choosing the median of these projected values.
In the preceeding example Theil's estimator is the point B. We might also note that
the dual plot plays a prominent role in recent work by King (1997) about the so-called
ecological inference problem.
The contrast between the deepest line estimator and the usual median regression

estimator is, perhaps, most clearly seen in their asymptotic behavior, which has been
recently studied by He and Portnoy (1998). It is well known that

�̂ = arg min
�2R2

X
jyi � �1xi � �2j

satis�es, under mild conditions given in Bassett and Koenker (1978) and related work
by numerous subsequent authors,

p
n(�̂ � �0); N (0; !2D)

where !2 = 1=(4f2(0)) and

lim
n!1

n�1X 0X ! D

with X = (xi; 1)ni=1:
In contrast, the deepest line estimator may be formulated as

~�n = argmin max
x(1)�a�x(n)

jDn(b; a)j

where

Dn(b; a) =
X

sgn f(yi � �1xi � �2)(xi � a)g
To formulate an asymptotic theory for the maximum regression depth estimator He
and Portnoy (1997) assume that the sequence fxig satis�es the conditions:
A1.)

P
x2i = O(n)

A2.) n�1
P

xi sgn (xi � x[tn])! g1(t) uniformly from t 2 (0; 1); with g001(t) < 0 for
all t.
In addition, they assume,
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A3.) The fuig's are iid random variables with median zero, bounded density f ,
f(0) > 0, and that f is Lipschitz in a neighborhood of zero.
When the fxig's are iid from distribution function G with positive density on its

entire support, they note that

g1(t) =

Z 1

t

G�1(u)du�
Z t

0

G�1(u)du

so g01(t) = �2G�1(t) and therefore, (A2) follows immediately from the Kolmogorov
strong law and the monotonicity of G�1. Now let g0(t) = 1 � 2t denote the limit of
n�1

P
sgn (zi�z[nt]) and set g(t) = (g0(t); g1(t))0: He and Portnoy prove the following

theorem.

Theorem 2.1. Under conditions A1 - 3,
p
n(�̂ � �) converges in distribution to a

random variable whose distribution is that of the unique minimizer of the function

h(�) = max
t
j2B(t)�B(1) + 2f(0)g(t)0�j

where B(t) is standard Brownian motion.

Unfortunately, it is rather di�cult to compare the asymptotic performance of the
maximal depth estimator with the more familiar median regression estimator even in
this simple bivariate setting. Whether the e�ciency bound result of Newey and Powell
(1990) applies to the maximumdepth estimator is not entirely clear. Both approaches
are

p
n-consistent for the same parameter; this is already quite remarkable. We would

expect that the improved robustness of the maximal depth estimator would come at
the price of some e�ciency loss under the idealized conditions A1-3 where inuential
design observations are highly desirable. He and Portnoy provide a very limited
evaluation of the asymptotic relative e�ciency of the two estimates which is reported
in Table 2.1.
Given that the maximal depth estimator consistently estimates the linear condi-

tional median function under essentially similar conditions to those required by the
`1-estimator, it is natural to ask whether it is possible to estimate the parameters of
other linear conditional quantile models using similar methods. A simple reweighting
of the maximal depth objective function analogous to the asymmetric reweighting
of the absolute value loss in Koenker and Bassett (1978) allows us to answer this
question a�rmatively. To see this, again consider the simple bivariate linear model
(2.1).
Suppose that we have ordered the observations so that x1 < x2 < : : : < xn; and

de�ne

L+(t) =
X
i�nt

I(ri � 0); R+(t) =
X
i>nt

I(ri � 0)

with

L�(t) = nt� L+(t); R�(t) = n(1 � t)�R+(t):
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Design Intercept Slope
Uniform .90 .95
Normal .82 .87
t(3) .86 .62

Table 2.1. Asymptotic Relative E�ciencies of the Maximal Depth
and Median Regression Estimators: The Table reports He and Port-
noy's (1997) estimates of the relative asymptotic variances of the me-
dian (`1) estimator to Rousseeuw and Hubert's (1998) maximal depth
estimator for three di�erent design distributions: uniform, standard
normal, and Student's t on 3 degrees of freedom. In all cases the re-
sponse was standard normal. In all cases there is a non-trivial e�ciency
loss which is accentuated in the case of the slope estimator in the t
model.

We may view the current �t y = �1x + �2 as dividing the plane into an upper half
and lower half, and the vertical line at x = x([nt]) as dividing the plane into right
and left halves. Then L+; R+; L�; R� are simply the observation counts in each of
the corresponding four \quadrants". Regression depth as de�ned by Rousseeuw and
Hubert is then given by

d(�) = min
t
fminfL+(t) +R�(t); R+(t) + L�(t)gg

which can be easily seen by recalling the mechanical analogy of rotating the �t through
the point x = x([nt]) to the vertical. Rotation clockwise passes through L+(t)+R�(t)
points, while rotation counterclockwise passes through R+(t)+L�(t): The smaller of
these quantities, when minimized over t gives the depth of the point �.
Asymmetrically reweighting positive and negative residuals as in Koenker and Bas-

sett (1978) suggests the quantile regression depth function

d� (�) = min
t
fminf�L+(t) + (1 � � )R�(t); �R+(t) + (1� � )L�(t)gg

and essentially the same asymptotic analysis of He and Portnoy shows that the min-
imizer

�̂n(� ) = argmin d� (�)

is a
p
n consistent estimator of the parameters of the linear � th conditional quantile

function.
Thus, regression depth provides an alternative \inuence robust" approach to quan-

tile regression estimation which could be compared to the earlier GM-type weighting
proposals of Antoch and Jure�ckov�a(1985) and DeJongh, DeWet and Welsh (1988 ).
Extending the regression depth idea beyond the bivariate model poses some challenges
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particularly on the asymptotic and algorithmic fronts, but the basic conceptual appa-
ratus is already provided by Rousseeuw and Hubert (1998). It is a pleasant irony that
what can only be regarded as misguided attempt by Bowley (1902) to implement the
method of his intellectual inspiration, Francis Edgeworth, could be rescued from the
dustbin of Victorian history, nearly a century later, providing a valuable complement
to Edgeworth's original proposal.

3. Frisch's Radar

In this Section, I would like to briey describe some recent developments which hold
the promise of eventually vindicating Edgeworth's second conjecture that median
regression, and thus quantile regression in general, can be made \less labourious"
than the method of least squares. Since this claim is bound to appear farfetched to
many (hypothetical) readers, it is perhaps worth pausing to consider its validity in
the simplest possible setting: Which is easier to compute { the median or the mean?
It will be immediately clear that the median is \easier" from the viewpoint of hand

computation, especially if the observations are provided to high precision. This was
a part of the motivation for related \median polish" methods for robust ANOVA
introduced by Tukey. However, few of us do any computing by hand these days, so
this is hardly compelling evidence for Edgeworth's claim.
On the computer, it is clear that we can compute the mean in O(n) operations ( n

additions and 1 division), while naively it would appear that computing the median
requires n log n operations (comparisions) to sort the observations. Further reection
suggests, however, that we don't really need to fully sort all the observations, a
careful partial sort would su�ce. Several proposals along this line have been made,
culminating in the algorithm of Floyd and Rivest (1975), which showed that the
median can also be computed in O(n) operations. Even the casual reader of their
paper would quickly grant that Floyd and Rivest's algorithm is \more skilled" than
the one line program need to implement the sample mean computation, but once
implemented the skill is rei�ed. And since the comparisons of the median algorithm
are generally quicker than the additions of the mean algorithm, it is not implausible
that the handicraft superiority of the median can be rescued.
In the regression setting, the development of the simplex method of solving linear

programming problems by Dantzig and others in the late 1940's was rapidly rec-
ognized as an e�ective tool for minimizing sums of absolute errors. Re�nements of
simplex designed for the `1 regression problem including the widely implemented Bar-
rodale and Roberts (1974) algorithm have proven to be quite competitive with least
squares in computational speed for problems up to a few thousand observations. In
Figure 3.1 we illustrate this based on experience in Splus on a Sparc 20. Note that
up to about 3000 observations for p = 4 parameters, or up to about n=1000, for
p = 8, or n = 300 for p = 16, the Splus function l1fit implementing the algorithm
of Barrodale and Roberts is actually faster than the QR decomposition algorithm for
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Figure 3.1. Timing comparison of `1 and `2 algorithms: Times are in
seconds for the median of �ve replications for iid Gaussian data. The
parametric dimension of the models is p+1 with p indicated above each
plot, p columns are generated randomly and an intercept parameter
is appended to the resulting design. Timings were made at 8 design
points in n: 200, 400, 800, 1200, 2000, 4000, 8000, 12000. The solid
line represents the results for the simplex-based Barrodale and Roberts
algorithm, l1fit(x,y) in Splus, and the dotted line represents least
squares timings based on lm(y � x).

least squares embodied the the Splus function lm(). However in larger problems the
simplex approach founders badly, exhibiting quadratic growth in cpu-time with n.
By the time that we reach n = 100; 000, with p = 16 for example, l1fit requires
nearly an hour of Sparc 20 time while the equivalent least squares computation takes
about 10 seconds.
The parable which has evolved in Urbana to describe the experience reported in Fig-

ure 3.1 we call the \Gaussian Hare and the Laplacian Tortoise." At least from a purely
computational vantage point, the least-squares methods championed by Gauss seems
destined to triumph over the inevitably slower absolute error methods of Laplace.
The house that the tortoise carries around on his back to protect himself against in-
clement statistical weather must come at a price. Or does it? The hare may frolic in
the owers allowing the tortoise an advantage in the sprints, but the plodding tortoise
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can't win the longer races. Or can it? In Portnoy and Koenker (1997), we explore
two new approaches to absolute error computation which, taken together, provide
some reason for optimism about Edgeworth's conjecture. I will briey describe both
approaches, relegating many details to the original paper.
Consider the median regression problem,

min
b2Rp

nX
i=1

jyi � x0ibj(3.1)

which may be formulated as the linear program,

minf e0u+ e0v j y = Xb+ u� v; (u; v) 2 R2n
+ g:(3.2)

Note that we have simply decomposed the regression residual vector into its positive
and negative parts, calling them u and v, and written the original problem as one
of minimizing a linear function of the 2n-vector (u; v) subject to n linear equality
constraints and 2n linear inequality constraints. This \primal" linear program for-
mulation of the `1-regression problem has an associated \dual" formulation in which
we maximize with respect to a vector, d 2 Rn, which may be viewed as the vector of
Lagrange multipliers associated with the equality constraints of the primal problem.
This dual formulation is,

maxfy0d j X 0d = 0; d 2 [�1; 1]ng;(3.3)

or equivalently, setting a = d+ 1
2en,

maxfy0a j X 0a = 1
2X

0en; a 2 [0; 1]ng;(3.4)

where en denotes an n-vector of ones. The simplex approach to solving this problem
may be briey described as follows. A p-element subset of N = f1; 2; :::; ng will be
denoted by h, and X(h); y(h) will denote the submatrix and subvector of X; y with
the corresponding rows and elements identi�ed by h.
Recognizing that solutions to (3.1) may be characterized as planes which pass

through precisely p = dim(b) observations, or as convex combinations of such \basic"
solutions, we can begin with any such solution, which we may write in the primal
formulation as,

b(h) = X(h)�1y(h):(3.5)

We may regard any such \basic" primal solution as an extremepoint of the polyhedral,
convex constraint set. In the dual formulation since the index set h identi�es the active
constraints of the primal problem, i.e. those observations for which both ui and vi
are zero, a(h) lies in the interior of the p dimension unit cube, and the complement
of h corresponds to coordinates of a which lie on the boundary: if ui > 0 then ai = 1,
while if vi > 0 then ai = 0. A natural algorithmic strategy is then to move to
the adjacent vertex of the constraint set in the direction of steepest descent. This
transition involves two stages: the �rst chooses a descent direction by considering the
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removal of each of the current basic observations and computing the gradient in the
resulting direction, then having selected the direction of steepest descent and thus
an observation to be removed from the currently active \basic" set, we must �nd the
maximal step length in the chosen direction by searching over the remaining n � p
available observations for a new element to introduce into the \basic" set. Each of
these transitions involves an elementary \simplex pivot" matrix operation to update
the current basis. The iteration continues in this manner until no direction is found
at which point the current b(h) can be declared optimal. This is, in e�ect, just the
natural iteration proposed by Edgeworth for the simple bivariate regression problem
using the dual plot.
To illustrate the shortcomings of the simplex method, or indeed of any method

which travels around the exterior of the constraint set like this, one need only imagine
the number of vertices in a typical median regression problem, which is of order,�
n
p

�
= O(np). A poor starting point in a moderately large problem may entail an

enormous number of pivots. Even in the Barrodale and Roberts (1974) formulation
which is an enormous improvement over conventional simplex algorithms in `1-type
problems, we observe linear growth, in n, in the number of iterations (pivots), and in
the e�ort per iteration, yielding the quadratic growth in cpu-time observed in Figure
3.1.
Although prior work in the Soviet literature o�ered theoretical support for the idea

that linear programs could be solved in polynomial time, thus avoiding certain patho-
logical behavior of simplex, the paper of Karmarker (1984) constituted a watershed in
the numerical analysis of linear programming. It o�ered not only a cogent argument
for the polynomiality of interior point methods of solving LP 's, but also provided for
the �rst time direct evidence that interior point methods were demonstrably faster
than simplex in speci�c, large, practical problems.
But it is an interesting irony, illustrating the spasmodic progress of science, that

the most fruitful practical formulation of the interior point revolution of Karmarker
(1984) can be traced back to a series of Oslo working papers by Ragnar Frisch in
the early 1950's. The basic idea of Frisch (1956) was to replace the linear inequality
constraints of the LP , by what he called a log barrier, or potential, function. Thus,
in place of the canonical linear program,

min fc0x j Ax = b; x � 0g;(3.6)

we may associate the logarithmic barrier reformulation

min fB(x; �) j Ax = bg(3.7)

where

B(x; �) = c0x� �
X

log xk:(3.8)

In e�ect, (3.7) replaces the inequality constraints in (3.6) by the penalty term of
the log barrier. Solving (3.7) with a sequence of parameters � such that � ! 0
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we obtain in the limit a solution to the original problem (3.6). The salient virtue
of the log barrier formulation is that, unlike the original formulation, it yields a
di�erentiable objective function which is consequently attackable by Newton's method
and under easily veri�able conditions inherits the quadratic convergence of Newton's
method. This approach was elaborated in Fiacco and McCormick (1968) for general
constrained optimization problems, but was only revived as a linear programming
tool after its close connection to the approach of Karmarkar (1984) was pointed out
by Gill, et al. (1986). Frisch (1956) described it in the following vivid terms,

My method is altogether di�erent than simplex. In this method we work
systematically from the interior of the admissible region and employ a log-
arithmic potential as a guide { a sort of radar { in order to avoid crossing
the boundary.

See Wright(1992), Gonzaga (1992), and Wright(1996) for excellent introductions to
the interior point literature.
Quantile regression, as introduced in Koenker and Bassett (1978), places asym-

metric weight on positive and negative residuals, and solves the slightly modi�ed `1
problem,

min
b2<p

nX
i=1

�� (yi � x0ib)(3.9)

where ��(r) = r(� � I(r < 0)) for � 2 (0; 1): This yields the modi�ed linear program,

minf�e0u+ (1� � )e0v j y = Xb+ u� v; (u; v) 2 <2n
+ g;(3.10)

and has dual formulation,

maxfy0a j X 0a = (1� � )X 0e; a 2 [0; 1]ng:(3.11)

The dual formulation of the quantile regression problem �ts nicely into the standard
formulations of interior point methods for linear programs with bounded variables.
The function a(� ) that maps [0; 1] to [0; 1]n plays a crucial role in connecting the
statistical theory of quantile regression to the classical theory of rank tests as described
in Gutenbrunner and Jure�ckov�a(1992) and Gutenbrunner, Jure�ckov�a, Koenker and
Portnoy (1993).
Adding slack variables s, and the constraint a+s = e, we obtain the barrier function

B(a; s; �) = y0a+ �

nX
i=1

(log ai + log si);(3.12)

which should be maximized subject to the constraints, X 0a = (1�� )X 0e and a+s = e.
The Newton step, �a; solving

maxy0�a + ��0a(A
�1 � S�1)e� 1

2��
0
a(A

�2 + S�2)�a(3.13)
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subject to X 0�a = 0; satis�es

y + �(A�1 � S�1)e� �(A�2 + S�2)�a = X�b(3.14)

for some �b 2 Rp, and �a such that X
0�a = 0:Multiplying through byX 0(A�2+S�2)�1

and using the constraint, we can solve explicitly for the vector �b,

�b = (X 0WX)�1X 0W (y + �(A�1 � S�1)e)(3.15)

where W = (A�2 + S�2)�1: The vector �b is the vector of Lagrange multipliers on
the equality constraints of the dual formulation, and since the dual of the dual is the
primal, it provides a search direction in the primal space for the vector b. Setting
� = 0 in (3.15) yields a version of the a�ne scaling interior point algorithm for this
problem. Given the direction �b we can solve for �a, �s, etc. and compute a step
length which takes us a �xed proportion of the distance to the boundary of the con-
straint set. Then taking this step, updating, and continuing the iteration provides a
simple implementation of Frisch's radar. In Portnoy and Koenker (1997) we describe
a slightly more complicated version of the interior point approach due to Mehrotra
(1992) which has been widely implemented and seems to provide a somewhat more
e�cient and more robust approach. Particularly on large problems this interior point
approach performs vastly better than earlier simplex implementations. For example,
problems with n = 100; 000 and p = 16 which take about one hour using Barrodale
and Roberts algorithm, can be done in about one minute using the new interior point
approach. Problems of this size are not atypical of current practice in labor eco-
nomics for example, and particularly when researchers are considering bootstrapping
strategies the di�erence in performance can be crucial.
Still, the gentle reader, imbued with the Gaussian faith, may be thinking: \a

minute? it can't take more than 10 seconds to compute the least squares estimate for
a problem like that on a Sparc 20." This is quite correct, so interior point methods
are not su�cient to rescue Laplace's tortoise from yet another century of humil-
iation. Formal computational complexity results indicate that for large problems
primal-dual implementations of interior point methods for solving `1 problems re-
quire O(np3 log2 n) operations which is considerably better than the quadratic in n
behavior of simplex, but still inferior to the O(np2) behavior of least squares.
Fortunately, further gains are possible from careful preprocessing of `1 type prob-

lems. Preprocessing rests on an extremely simple idea which is closely connected
to the ideal of partial sorting underlying the O(n) median algorithm of Floyd and
Rivest. If, by preliminary estimation, or some other form of statistical necromancy,
we could determine the signs of a signi�cant group of observations, we could then
combine observations with positive residuals into a single \globbed" observation, and
similarly glob together the negative observations, so that the original problem,

min

nX
i=1

jyi � x0ibj(3.16)
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Figure 3.2. A Bivariate Example of Quantile Regression Preprocess-
ing: The �gure illustrates a bivariate scatter plot of 500 observations
with y conditionally student t on 10 degrees of freedom. The curved
dotted lines describe a con�dence band for the response variable based
on the median regression �t for a sub-sample of 126 observations. Af-
ter globbing there are only 107 observations, including the two globbed
observations. All the points outside the band are collapsed into this
pair of pseudo-observations. The �t to the globbed sample is indicated
by the solid line; since it falls inside the band we are assured that the
globs are correct and that this solution is identical to a �t of the entire
original sample.

would be equivalent to,

min
nX

i2NnJL[JH

jyi � x0ibj+ jyL � x0Lbj+ jyH � x0Hbj(3.17)

where N = f1; 2; :::; ng, xK =
P

i2JK
xi for K 2 fK;Lg and yL and yH can be chosen

arbitrarily small and large respectively, to ensure that the corresponding residuals
on the globbed observations remain negative and positive. In this process we have
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reduced the problem of n original observations to n � ]fJL; JHg + 2 observations so
if the cardinality of the J -sets is large we have gained substantially. Under plausible
sampling assumptions we can, based on a preliminary subsample of m observations,
make a prediction region for fxi� : i = 1; 2; :::; ng of width O(p=pm), so assigning
observations above this region to JH and observations below this region to JL, we
would haveM = Op(np=

p
m) observations falling inside the region. This is illustrated

in Figure 3.2.
Minimizing the computational e�ort required to compute the preliminary �t based

on m observations plus the e�ort required for the solution of the globbed problem
(3.2) with M observations, we obtain m� = O((np)2=3), which under our claimed
performance of the underlying interior point algorithm yields a complexity for the
full problem of

C = Op(n
2=3p3 log2 n) +O(np2);(3.18)

where the �rst term comes from the solution of the two median regression problems
of size O(n2=3) and the second term arises from the computation of the con�dence
band.
Further details are provided in Portnoy and Koenker(1997) and I will comment

only briey here on the important fact that any implementation of this preprocessing
approach must verify that the solution to the globbed problem actually agrees with the
predicted signs based on the con�dence region. The simultaneous con�dence region
can be chosen to assure this with arbitrarily high probability, and the eventuality
that we may need to repeat the cycle to remedy some inaccurately predicted signs
introduces another multiplicative factor which does not a�ect the orders in probability
in the complexity computation.
The crucial consequence of the formal complexity theory and the extensive con-

comitant empirical testing of our implementation of the algorithm is that the com-
putational e�ort required for quantile regression can be made comparable with the
e�ort required for least squares over the full range of currently plausible problem
dimensions. In the �nal empirical example of Portnoy and Koenker (1997), we com-
pare timings for a typical large econometric application of quantile regression with
n = 113; 547 and p = 6. With the new algorithm, quantile regression estimates take
about 10 seconds on a Sparc-Ultra, comparable to the least squares time of 8 sec-
onds. Interior point methods applied to the full problem before preprocessing requires
about a minute for these problems. Simplex solution of the same quantile regression
problems requires approximately an hour on the same machine.

4. Future Prospects

Galton's admonition that we should revel in the \charms of variety" of matters
statistical, and not throw the mountains into the lakes, certainly asks that we venture
beyond \regression to the mean." As Mosteller and Tukey (1977) put it in their
inuential text:
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What the regression curve does is give a grand summary for the averages
of the distributions corresponding to the set of of x's. We could go further
and compute several di�erent regression curves corresponding to the various
percentage points of the distributions and thus get a more complete picture
of the set. Ordinarily this is not done, and so regression often gives a rather
incomplete picture. Just as the mean gives an incomplete picture of a single
distribution, so the regression curve gives a correspondingly incomplete
picture for a set of distributions.

Quantile regression o�ers a means to accomplish this important task.
Edgeworth's improbable conjectures that the plural median has asymptotic behav-

ior like Laplace's scalar (weighted) median, and that it could be made \less labouri-
ous" than least-squares computation are both almost fully vindicated. There are still
many important problems which remain, of course. But I would like to think that
we have reached a critical stage in the research process, and `1 methods and quantile
regression methods more generally, will �nally enjoy a sustained development.
In concluding, I can not resist one �nal quotation from Frisch (1963) , who, late

in his career, was exploring solving systems of nonlinear equations in large general
equilibrium macro models by minimizing sums of absolute versus sums of squared
errors. He comments about this choice:

I have also an intuitive feeling that even in principle the sum of absolute
values is better than the sum of squares. I cannot substantiate this feeling
theoretically, but I can point to some empirical evidence... At this writing
my preference is therefore for the sum of absolute values even though this
will entail discontinuities in the derivatives. The discontinuities which will
occur when we work with absolute values [are] after all not very serious,
they can be handled by choosing between the forward and the backward
derivatives, an operation which the machine can do very quickly whether
it concerns a total or a partial derivative.

Now this is a principle of econometrics worth defending!

University of Illinois, Urbana-Champaign
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