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Signal Space Diversity: A Power- and
Bandwidth-Efficient Diversity Technique
for the Rayleigh Fading Channel
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Abstract—The increasing need for high data-rate transmissions
over time- or frequency-selective fading channels has drawn

attention to modulation schemes with high spectral efficiency
such as QAM. With the aim of increasing the “diversity order” (

of the signal set we consider multidimensional rotated QAM
constellations. Very high diversity orders can be achieved and
this results in an almost Gaussian performance over the fading
channel. This multidimensional modulation scheme is essentially

uncoded and enables one to trade diversity for system complexity,
at no power or bandwidth expense.

Index Terms—Diversity, fading, lattices, number fields, QAM

modulation, rotation. @ (b)

Fig. 1. How to increase diversity: (d) = 1 and (b)L = 2.

I. INTRODUCTION ) ) o )
Fig. 1 illustrates this idea on a 4-PSK. In fact, if we suppose

T HE rapidly growing need of high data-rate ransmissionfa 5 geep fade hits only one of the components of the
over fading channgls has stimulated interest in AM=P M4 nsmitted signal vector, then we can see that the “com-
modulation schemes V\{|th high spectral efﬂmenpy _(or througB—ressed,, constellation in Fig. 1(b) (empty circles) offers more
put) [1]-{3]. The effectiveness of these transmission schemes,io tion against the effects of noise, since no two points
basically relle_s on the good error-correcting capabilities chébllapse together as would happen in Fig. 1(a). A component
code. The price to pay for this gain is either a bandwidtiyq e aver/deinterleaver pair is required to assume that the in-
expansion or additional transmission power to accommodalg. <o and quadrature components of the received symbol are

the redyndant bits. ) _ affected by independent fading. This simple operation already
In this paper we present a different approach. We consiqek,ts in a gain of 8 dB 403 over the traditional 4-PSK (see

uncoded multidimensional modulation schemes with an intri'&lg' 11). We will show in this paper, that the increase in the

sicdiversity order which achieve substantial coding gains ovegimensionality of the signal set produces significant gains in a
fading channels. Theliversity orderof a multidimensional ¢, ing channel, over the corresponding nonrotated signal set.
signal set is the minimum _numbe_r of distinct components 5, interesting feature of the rotation operation is that the

between any two constellation points. In other words, th8ateq signal set has exactly the same performance of the
diversity order is the minimum Hamming distance betweef,,, ytated one when used over a pure additive white Gaussian
any two coordinate vectors of constellation points. noise (AWGN) channel. The rotated constellation when used

_To distinguish from other well-known types of diversity, e 4 Ricean fading channel will show a performance between
(time, frequency, space, code) we will talk abouddulation o 4y extreme cases of Gaussian and Rayleigh fading
diversity or signal space diversityThroughout the paper we channel.

will use, for simplicity, only the terndiversityand it will be We have used the term “uncoded” since we are not adding
denoted W!th the s_ymbaL. . _ ) any type of redundancy to the information bit stream. The
As we will show in the following, the key point to increasgsormation bits are grouped into blocks and directly mapped
the modula_tlon diversity IS to _apply a certain rotation 10 86 tgone onto the multidimensional constellation points.
cla_ssmal §|gnal conste!lauon in such a way that any tWe,is means that the coding gain is obtained without spending
points achieve the maximum number of distinct componentsiional power or bandwidth, but only increasing the com-
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- Z™, so thatw; = 0, £1, +£2, --.. By simple scaling and
Info | Gray | U |Retation | ¥ |Component translation it is possible to revert to the multidimensional QAM
Bits Mapping M Interleaver .
o constellation.
©— The pointz of the rotated constellation is obtained by
applying the rotation matrix\{/ to «. The set of all points
* @L {:1:.: uM, u < VA belongs.to then—Qimer]sional cubic
lattice Z,, 1, with generator matrix/ and diversityL. The two
f“_ ML I | Component lattices Z™ and Z,,, 1, are equivalent in the sense of Section
Detection Deinterleaver V-A, but exhibit a different modulation diversity. In the

following we will identify the lattice with the corresponding
finite constellation carved from the lattice.

The channel is modeled as an independent Rayleigh fading
) _ ) ) ~ channel, separately operating on each component. Perfect
cubic lattice Z*, so this can be used to obtain convenlerﬁhaSe recovery and CSI are assumed at the receiver. We
labelings. In the case of Rayleigh fading channel, no efficieRisg assume that the system is unaffected by intersymbol
labeling was found for the optimal lattices given in [4]interference.
thus limiting their practical use. The rotated multidimensional 1, satisfy the assumption of independence we need to intro-
QAM constellations presented in this paper can be easyice a component interleaver which destroys the correlation
labeled by Gray mapping. _ among the in-phase and quadrature channel fading coefficients.
~ The paper is structured as follows: Sections Il and Iit should be evident that the component interleaving is the
introduce the system model and review some elementa@y noint in obtaining any gain in the example of Fig. 1. An
concepts of algebraic number theory. In Section IV it is proveghgesirable effect of the component interleaver is the fact that

that for Iarge values of diversity the point error prc’babi”th'\Produces nonconstant envelope transmitted signals [8].
over a fading channel approaches the one over an AWGNpg 3 result of the above assumptions we will write the

channel. This pro_perty_ is v_erified through simu_lation and fQgceived vector ag — a®T+n, wheren = (ng, na, -+, ny)
values of mod_ulgnon diversity larger thaag, the b|t_—error rate is a noise vector, whose real componentare zero meany,
curves are within 1-2 dB from the corresponding Gaussigliance Gaussian distributed independent random variables,
curve. Section V pre;ents thre.e.dlffer(.ent techniques we uspd (a1, az, -+, a) are the random fading coefficients with
to increase the diversity of multidimensional QAM-type signalnit second moment, an@ represents the component-wise
constellations. Although the most important, diversity is NQroquct. Signal demodulation is assumed to be coherent, so
the only parameter which influences the system performangea; the fading coefficients can be modeled after phase elimina-
Itis also important to maximize thinimum product distance tjon a5 real random variables with a Rayleigh distribution and
between any two points of the S|gnallconstellat|o_n. Thinit second momentE[a2] = 1). The independence of the
problem is conS|ered in Secpon VI. Finally we gIVE€ OUfading samples represents the situation where the components
results and conclusions in Sections VIl and VIII, respectivelys ihe transmitted points are perfectly interleaved.
After de-interleaving the components of the received points,
Il. THE MULTIDIMENSIONAL QAM SYSTEM the maximum-likelihood (ML) detection criterium with perfect
We now describe the System model shown in F|g 2. A@S' imposes the minimization of the fO"OWing metric:
n-dimensional QAM constellation is obtained as the Cartesian
product ofrn/2 two-dimensional QAM signal sets. A block "
of m bits is mapped onto the constellation by applying the m(z|r, &) = Z Irs — cvii|2. (1)
Gray mapping in each dimension. We obtain an overall Gray =
mapping which results in a 1-bit change when moving from
one constellation point to any one of its nearest neighbors.
Each group ofm/n bits uniquely identifies one of the Using this criterion we obtain the decoded pointand the
components of the multidimensional QAM constellation vectdiorresponding integer component vectrfrom which the
w = (uy, -, u,), Wherew; = +1, £3, ---. We will call decoded bits can be extracted.
u the integer component vectolWe denote by, the system  The minimization of (1) can be a very complex operation
throughput measured as the number of bits per symbol (tf@ an arbitrary signal set with a large number of points. It is
dimensions), so we have: = 7n/2. In the case of odd shown in [7] how to apply theniversal lattice decodef6] to
dimension, one of the symbols should be split between tv@®tain a more efficient ML detection of lattice constellations
successive points. The total number of points in this cubit? fading channels.
shaped constellations & and the average energy per bit is In [4], using the Chernoff bounding technique, we have
simply E, = (27 — 1)/3n. shown that the point error probability of a multidimensional
We can view this constellation as carved from a transignal set is essentially dominated by four factors. To improve
lated and scaled (enlarged by a fact)y version of the Pperformance it is necessary to
n-dimensional cubic latticeZ™. In the following, for sim- 1) minimize the average energy per constellation point;
plicity, we will consider only the constellations carved form 2) maximize the diversity;

Fig. 2. System model.
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3) maximize theminimumL-product distance Finally, anideal of Z can be viewed as a sublattice &f
similarly, an ideal of the ring of integex8 is mapped by the
(L) (L) canonical embedding into a sublattice of the lattice produced
dp, min — H |‘TZ - y2| by Og.
TiEYi The interest in these lattices lies in the fact that they present

between any two points andy in the constellation: a diversity vyhich can bg easily controlled. by properly selegtir_1g
4) minimize the product kissing number, for the I;- the qlgebralc ngmber f|eld. A key “?S“'t n [4] §how's that 't. IS
product distance, i.e., the total numbefr) of points at eOSS|bIe to design lattice cqnstellatlons with diversity ranging
minimum L-pI‘Odl,JCt d'istance. etweenn/2 and n according to the number of redk)

) i and complex(2r2) roots of the minimal polynomial of the
In this paper we have fixed the average energy of thgmper field. In particular, it is proven that= r; + r». It is
constellations so we concentrate on the remaining items. ihan shown that only fol, = n, the d, .. is related to the

— ’ P, MIN

particular field properties of.
lll. ALGEBRAIC NUMBER THEORY

IV. CONVERTING THE RAYLEIGH FADING

The idea of rotating a two-dimensional QAM constellation
CHANNEL INTO A GAUSSIAN CHANNEL

was first presented in [10]. It was found that for a 16-QAM
a rotation angle ofr/8 gave a diversity of2. The effect In this section, we show that the multidimensional QAM
of this rotation is to spread the information contained inonstellation becomes insensitive to fading when the diversity
each component over both components of the constellatibnis large. This means that the point error probability is
points. Pursuing a similar approach, the optimization of a fouthe same with or without fading. We focus the proof on the
dimensional rotation is found in [8]. The approach to determiranalysis of the pairwise point error probabilif(z — ¥),
such rotations is direct and cannot be easily extended wich is the probability of the received pomnto be closer tgy
multidimensional constellations. than toz, assuming that is transmitted. The detector selegts

A more sophisticated mathematical tool is needed to caifi-m(z|r, a) < m(y|r, @), and the conditional pairwise error
struct lattice multidimensional constellations with high diverprobability is given by
sity: algebraic number theoryA simple introduction to this " "
thepry is given !n [4] toggther with a review pf the knowp P(z — yla) :P<Z e — cui|? < Z Ir; — aixi|2>
lattice constellations obtained from the canonical embedding Py Py
of real and complex algebraic number fields. =P(X > A)

Here we will briefly highlight some of the mathematical
concepts in algebraic number theory; nevertheless we recokfhere

mend some further readings on this topic [13]-[15]. n
An algebraic number fields = Q(6) is the set of all X = ai(yi — zi)ni
possible algebraic combinations-(—, *, /) of an algebraic i=1

numberé (real or complex, irrational, and nontranscendentald a Gaussian random variable and
with the rational numbers of). This set has all the field "
properties and is related to an irreducible polynomial aer A= EZ o2 (i — yi)?
called theminimal polynomial havingé as a root. 2~

From elementary calculus we know th@tis densein R, is a constant. The mean of is zero and its variance is
the set of real numbers. Then we could state that thégsist ' 5 : " IS z€ IS varlance |
3 little bit denser” inR if K is a real field, and “a little bit X = >NoA. The conditional painwise error probability can
denser” inC if K is a complex field. Using a particular be written asP(z — yla) = (A/ox) and we obtain
mapping, called thecanonical embeddingit is possible to
uniquely represent each element of an algebraic number field
with a point in ann-dimensional Euclidean spad®” just like
we represent the elements@fon the real lineR. This set of
points is now only “dense” il®" as@ was “dense” inR. In ] ] o i
fact we chose: so as to satisfy this conditiom. is called the We recall that the Gaussian tail function is defined as
degreeof the algebraic number field. _ —1/2 e 9

The parallel betwee® and K can be further extended. In Qz) = (2m) exp(—t°/2) dt.
fact, within @ we find the set of relative intege® which o . : :
can be represented as a one-dimensional laffite R. In K The pairwise error pro_babllltyP(:zz — ) is obtained by
there exists a subsély, called thering of integersor integer averaging over the fadings;
ring of K, which is mapped by the canonical embedding to _
an n-dimensional lattice, i.e., a discrete group®t. Pl@—y)= | Pl@— ylea)f(a)da

n
o - )
=

N (2)

Pla — yla) = Q

x

1we note that this intuitive idea is mathematically unprecise sifickas Wh?re ) 'S the probability d"}'nSity. function (pdf) of the
the same density af in R. fading coefficients. The Hamming distance betweerand
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Fig. 3. Probability density function of’.

y is at leastL, since L is the modulation diversity of the large numbergconvergence in the sense of probability laws),
constellation. For simplicity of notations and without losas done below.

of generality, we assume thét; — ;| = 1 for the first First, let us rewrite the conditional pairwise error probability
L components andz; — y;| = 0 for the othern — L as
components. The conditional pairwise error probability given L1tY)
+
by (2) becomes Pz — yla) = Q o (5)

where

(3) L
Y = lZ(ag ~1)

i=1

Ple —yla) = Q

I
/L = ZY
On a Gaussian channel, expression (3) simplifies to i=1

T di (2, ) The _rar]dor_n variable_':Yi = (a? — 1)/L have a central
Pz —y) = Q(”W) = Q<7’> (4) ? distribution [12] with two degrees of freedom, because
0 a? = a? +b? wherea; andb; are two statistically independent
— L is the squared Euclidean distance pefind identically distributed Gaussian variables with zero mean
and variancel/2. The mean and the variance af are,
respectively F[Y;] = 0 and E[Y;?] = 1/L?. As a consequence
of the statistical independence of thg their sumY” is a x>

where d%(z,y)
weenz andy ando? = N, is the noise variance.
At first sight, one can say th@f=1 o? acts as

L ) random variable witleL degrees of freedom. Its mean and
B ZO‘Z =L variance are, respectivel§;[Y] = 0 and E[Y?] = 1/L. The
=1 pdf of Y is given by
when L goes to infinity. This is theweak law of large I

numbers It states thatzf=1 a?/L converges tal since the fy(y) = ﬁ(y + D)t exp(= Ly + 1)), y>-=1
variance of the sum tends to zero. The probability that the (L -1)!
difference is larger than a threshold in absolute value is small. (6)

The convergence is very weak and can be proved using thq:ig_ 3 shows the pdf fof. = 2,4, 8, 12, 16, and32. Clearly,

Chebyshev inequality. It shows, roughly and intuitively, thage see thaffy (y) tends to a Dirac impulsé(y) when L goes
(3) approaches (4) and thus the fading has no effect wheny infinity. More precisely, it is easy to show that
is very large. oo
The above discussion does not constitute a rigorous proof. / fv (W)g(y) dy — g(0)
The exact proof is found when applying tlstrong law of —o0
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Fig. 4. Pairwise error probability.

when L — oo, for any functiong of the classC> (-0, o). V. ROTATING THE INTEGER LATTICE Z"
From the definition of the Dirac distribution we can say that Tis section collects the three techniques we have inves-
fy(y) — 8(y). Hence, the pairwise error probability tigated to obtain a rotated multidimensional cubic lattie
with high diversity. Following the notations of [4] we denote
with A, 5 ann-dimensional lattice with diversity..

We observe that the generator mati{ of the rotated
lattice Z™ is actually a rotation matrix which transforms all

- . .the integer component vectors into a set of vectors with the
approaches the pairwise error probability of the Gaussign 9 P

yET required diversity.
channelQ( L/4N°).' : The rotated cubic-lattice constellation can be either used
An exact expression of’(z — y) can also be obtained

by combining (5) and (6) and directly computing the abov%s an uncoded multidimensional modulation scheme or as a

ntegral. This yields”(z — y) as a functon of the signabo- €50 AT o0t B woding schems
noise ratio SNR= L/Ny pply y g

based on QAM modulations to obtain the benefits of diversity
_ ‘ together with the coding gain.
1—p\Y &S /L4k—1\[/1+ux\"
remn - (552 5 () (45)
k=0
where 1 is given by

L(1+Y)

N Ty (y) dy

P@ﬁwz/Q

A. Construction of Rotated™ Lattices from
Known Rotated Integral Lattices

In [4] the rotated versions of the latticés,, Eg, Ey, K12,
Ayg, Aoy are found forL equal to half the dimension. Since
D,, Eg, Eg, K12, A1g, Aoy are integral lattices (i.e., sublat-
tices of Z") we expected to find the underlaying rotat&d
lattice with the same diversity. In this section we will briefly
discuss this problem.
The pairwise error probability of (7) is plotted in Fig. 4 We say that two latticed\, and A, are equivalentf they
for diversities — 1,4,12, and 32 on the Rayleigh fading are equal up to a rotation and a scaling factor. The generator

channel. We also plotted in Fig. 4 the pairwise error probabiIifg)":ltr'(:(aSM1 and M of two equivalent lattices are related by
of (4) on the additive white Gaussian noise channel (AWGN). M, = aBM,R (8)
Practically, the fading effect is reduced when diversity is larger

or equal to12, as shown by Fig. 4 and confirmed by thevhere « is the scaling factor,R is the rotation matrix
simulation results in Section VII. (det (R) = £1) and B is a lattice basis transformation matrix,
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i.e., an integer matrix withlet (B) = +1. The matrixB is where (k, V) is the greatest common divisor &f and V.

also known as an integer unimodular matrix. The minimal polynomial ovelZ[j] is denoted bym(x) and
Let us denote any one of the nonrotated lattibgs Eg, Fs, defined later in this section.
Ko, Aig, Aos with A, 1 since it has diversityl = 1 and Let us denoted; = 6, 6o, ---, 6,,,» the complex roots of

with A, ,,/2 the corresponding rotated lattice with diversity.s () which define then/2 distinct field @-homomorphisms
L = n/2. The two latticesA,, ; and A,, ,,,», defined by the B B B

generator matriced/; andM>, are equivalent. If we determine 01(6) =61 02(8) =0y, - onp2(8) =brp2. (10)
the scaling factorr and the matrix then we are able to obtain 1o construct a complex lattick of dimension:/2 we apply

the desired rotation matrix from (8). _ _ the canonical embedding to the ring of integég = Z[5](6)
Taking the absolute value of the determinant of both sidgganerated by(1, 6, 62, - - -, 67/2-1). Its generator matrix is
of (8) we obtain given by
1 1 1
_<|detMg|>l/n 9 0 ! .,
a=| 17— . 1 2 n/2 V2
| det M | M= . : . = . (11)
) . en/.Q—l en/-Q—l . en/.Q—l v '
Without loss of generality we can repladé, by o~ A, and 1 2 n/2 n/2

concentrate on finding3. Let us consider the Gram matriceSyhere the complex lattice basis vectasi =1, 2, - -, n/2
Gy = MiM{" and Gy = M>Mj . Since M, = RM1B We  correspond to the rows .
haveG, = BG;B”. Instead of findingB we search directly  The corresponding real lattice of dimension can be
for a generator matrix\/, of the nonrotated lattice which gpiained by replacing each complex entry- jb of M by a
results inG, = Gy = M MY, implying thatB is the identity 5 2 matrix (2~"). As proven in [4] this lattice has diversity
matrix. L =n/2=rs

The Gram matrixG, is symmetric and its elements; We are interested in selecting the rodts ¢ = 1,2, ---,
are the scalar product&y, v;) of the lattice basis vectors n/2, or equivalently their minimal polynomiats(z), so that
corresponding to the rows d¥/,. The diagonal elements; A/ pecomes an orthogonal matrix, i.e., a generator matrix for
correspond to the square norms of the basis vectors. Tg complex integer lattice in dimensiory2. The orthogo-
problem is then to determine the generator mafdx such najity among the complex vectors implies the orthogonality

products imposed byr,. By computer search we were ableyroguct of any two rows

to find the generator matrice®/; and the desired rotation

matricesR = MQMI_I. vpr1 = (07, 65, -, 92/2)
and
B. Algebraic Construction o, ./, Lattices v,41 = (6, 6, ---92/2), p,q=0,1,---,n/2-1

In this section we construct a family of orthogonal matricess s must satisfy
with diversity L = n/2 for n = 2°13°2, ¢y, 0 =0, 1, 2, - -~

by applying the canonical embedding to some totally complex 2 . 1, p=gq
cyclotomic number fields. For the mathematical details about  (Yp+1> ¥g+1) = D (B1)7(67)* = {0’ ptq 12
algebraic number fields and the canonical embedding the k=1
reader can refer to [4]. For p > ¢, we have
The key points used in this section to fiuf, ,,,, are the /o
following. \ _
Vi1, ¥ = 6.67)7 (0P ¢
* The vectors of the lattice basis are orthogonal. Wprrs Vora) kz::l( 6" (6r)
* The minimal polynomial:s(x) has integer coefficients. n/2
. ;I;hoetsmlnlmal polynomialug(x) hasn distinct complex — Z 116x]12(6)P~% = 0 (13)
: k=1

* The lattice dimension i3s = ®(N), where®(-) is the _ L
Euler function giving the number of integers prime wittfind since the complex roots are placed on the unit circle

N [14]. 6] = 1
Let us consider the cyclotomic field = Q[j](#), where n/2
6 = ¢27/N is an Nth root of unity. K is an algebraic (¥p+1, vq4+1) = Z(9k)"’ =S, =0,
extension ofQ[j] = {a + jbla, b € Q} of degreed(N)/2. k=1
We recall that this is a totally complex field with signature m=1,2-.-,n/2-1 (14)

1 = 0, 72 = n/2) and minimal polynomial . . .
(= 0,7 =n/2) poly In other words, the first,/2 — 1 power symmetric functions

N Sm Of the roots ofue(x) are null. The polynomials (),
po(x) = H (x—6") (9  which we want to determine, can be factored intor)m* (z),
(k, N)=1 where we assume thét, i = 1, 2, ---, n/2 are the roots of
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the polynomiabn(z) of degreen/2 over the ring of Gaussian
integers Z[j], while m*(z) takes on the complex conjugate

roots.
Applying Newton’s identities one easily observes that

m(z) = (x = 61) -+ (x — b, ) = a2 + P
and
so that

po(z) = 2™ + (P + P*)a™? 4+ 1. (15)

1459

TABLE |
THE ADMISSIBLE VALUES FOR THE RooTs ARE
0; = el i =1,---,n/2
_oy+tr am(i—1
Y| =0t izl )y
- ir 4 dr(i-=1) 3n
3 3n n 2
4m(i—1
_z oy izl o
n n
_2n 2T 4r(i—1)
3 3n + n 3Tl

Now that we have the general form of the minimal polyno-

mial we still need to determine which of theroots of unity
must be chosen to apply the canonical embedding (11).

Let §; = ¢/% i = 1,2, ---n/2 be the unknown roots of

m(x) which we want to determinel is the product of the
n /2 roots laying on the unit circle

P=d", —n<Y <7 (16)
thus
m(8;) =72 4 0V =0 a7
and we obtain exactly./2 distinct values of; with
qr(e —1
I 1 Gl S e NT)
n n

Similarly, for the rootsf, ,,/» = ¢/#+/2 of m*(z) satisfy

P Aw(i—1)

T =
4 -9
¢z+n/2 n + n P

i=1,2 - n/2
(19)
In order to determine the value gfwe consider the following

conditions

* pe(x) has exactlyn distinct roots, so the roots ofi(z)
must be different from the roots of*(z)

w4
n

=%

2

£2 (20)

* ue(z) has only complex roots, so

Piy Pinse Fhm = 27ri+7riz/)7égk7r = P £0;
(21)

= #0;

n

* pe(z) has integer coefficients
P+P =c¢¥4+e ¥ =2costpcZ (22)
which impliesy = +r /3, £7/2, £2x/3.

The possible values for the roots+f x) are summarized in
Table |, where only the negative valuesfwere considered
since the positive ones correspond to the rootsidfx). The

must have the largest prime dividiny as a factor in the
denominator. Then for the abouE’s the largest prime in
N is at most3 and we can writeN = 2¢:3°2 for some
e, e2 =0,1,2,.--. We distinguish the three cases:

N =3n/2 Let N = 213% with ¢; = 0,1,2,---,
e = 1,2, ---, then®(3n/2) = n has no
solutions.

N =2n: In this case the largest prime dividing is at
most2, so thatv = 2¢t with ey =1, 2, - -,
then®(2n) = n has solutions fon = 2°.

N=3n: Let N = 23 with ¢ = 0,1,2, -,

es =1,2, -+, then®(3n) = n has solutions
for n = 213,

We can conclude that the admissible values/ore —/2
and —2x /3. They correspond to the polynomials of the type
" +ex™? +1 with ¢ = 0 or —1 and with N = 2n and
3n, respectively. Thus there exist, ,,, lattices for all
dimensions: =232, with ¢; =1,2,--- ande>=0,1,2,---.

C. Algebraic Construction of,, ,, Lattices

This construction is based on the totally real algebraic
number field Q(2 cos (2n/N)). By applying the canonical
embedding to a particular ideal in this field we found the
rotated cubic lattic&Z,, ,,. SinceQ(2 cos (27 /N)) is a totally
real field we know from [4] that the constellation has full
diversity L = n. The choice of this family of number fields
appears to be arbitrary but in the following section we will
show that some of these rotated cubic lattices also maximize
the product distance of the constellation.

We now describe the procedure we used to obtgin,.

We know that the degree d®(2 cos(2r/N)) is ®(N)/2.
This imposes some limitations on the lattice dimensions we
can obtain(n = ®(N)/2). All the even dimensions up to 32
do not lead to the desired integer lattice while the odd ones in
Table 1l do. The procedure is as follows.

third column (the value ofV) is derived from the second one 1) Consider the number fiel = Q(2 cos (27/N)) with

by noting thatg; = 27 /N since by definitiond = ¢~/ =
91 — ej¢1_

Finally, we must solveb(N) = n for N = 3n/2, 2n, 3n,
to obtain the admissible values of the dimensiorof the
real lattice. Equivalently we can solvé(N)/N = 1/K
where N = Kn for K = 2, 3, 3/2. We recall thatb(N)/N

minimal polynomialus(x) (see the Appendix) and ab-
solute discriminantdy .

2) Letdyx = p™ be the prime factorization of the absolute
discriminant.

3) Factor the principal idedp) into I, where[ is a prime
ideal.
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TABLE I In the following dp, wmin-0ptimizing construction we limited
FULL DIVERSITY Zyn, n LATTICES FROMIDEALS OF THEQ(2 cos (27/N))  the size of the constellations to the casejef 4 bits/symbol.
n|] N o) dr | k] Inall cases (except for the three-dimensional one, where it is
3| 7,14 42 -2z 1 7”12 proven to be true) we verified experimentally tat ,,,;, does
9,18 e 3z +1 3' 111 not depend on the size of the constellation. We conjecture that
5 111,22 °+ 2t — 4%~ 322+ 3z + 1 11* 13

s 7 5 s in all these cases we are dealing with some lower dimensional
9 119,38 7+ x2° — 82" — 72® + 212° ti f latti ted b ical beddi f
152 — 202% — 102 + 5z + 1 1g¢ | 5| Sections of a lattice generated by canonical embedding o

11 723,46 2 4 210 1029 — 928 + 3627 + 282° 9310776 totally real number fields of higher degree.
—56z° — 352" 4 3523 + 1522 — 62 — 1
15 | 31,62 | 2™ + o™ — 14213 — 13212 + 782" + 6621°— | 3111 | 8 A. Dimension2
2202° — 1652°% 4 33027 4 2102° — 2522° — i i , i
1262 + 842° + 2822 — 8z — | All two-dimensional orthogonal matrices have the following

structure:

4) Fork =0,---,n apply the canonical embedding to the M = <_ab 2)
ideal I* and check if the generator matrix is orthogonal,
i.e., the generator matrix o, .. with the constrainta? + b2 = 1.
We parameterize this orthogonal matrix as a function of the

The last column of Table Il gives the power of the idéal . . }
single variableX as follows:

which produces the full diversity,, ,, lattice. The lattice is

given by Z,, ,, = a(I*), wheres is the canonical embedding a=1/v14 X2 b= \a.
defined by the: real roots ofuy(x). The fundamental volume . )
of Z, . can be related tdj and the algebraic norav (/%) = Note that the rows of\/ are the normalized orthogonal lattice
P by [4] basis vectors. Fig. 5 shows the valuesigf,,i, as a function

X of A for a finite constellations = 4 bits/symbol), carved

Vol (Zn,n) = N(I%) * /|d|. from the lattice generated by/. Only positive values of\

If we introduce a scaling factor = (p* = M)l/n’ we Wwere considered due to the symmetry about the origin and the
obtain the unit volume cubic lattice. values of A resulting in L = 1 diversity constellations were

As an example, the full diversity cubic lattic®, 5 is found SKiPP€d.dp, min was computed by exhaustive search through
from the field @ (2 cos(27/11)). The absolute discriminant the points of the finite constellation using a small step Yor

is d = 11* and Zs,5 = o(I3). The prime ideall is (€.g.,0.005). In the same figure we also plot the following
computed by factoring the principal ideal generatedlgy UPPer bounds t@lp min (functions of A):
(11) = (11, 6 + 2)°> and{ = 110k + (8 + 2)Ok. |a b| (1, 0)
d < |a2 - b2| (17 1) (23)
VI. MAXIMIZING THE PRODUCT DISTANCE Pmin = (20 — b)(a 4 20)| (2, 1)
In the previous section we have shown how to obtain rotated l(a —2b)(2a + )| (1, 2)

Z" lattices which guarantee a certain degree of diversityorresponding to the product distances between the origin and
Although diversity appears to be the most relevant desigife points with the integer components reported in the second
parameter we are also interested in maximizing the minimglumn of (23). The curve oflp min could, in principle, be
product distance p, min between any two points of the constelpptained as the minimum of all the bounds of the type (23)
lation. In this section we show a construction&f ,, lattices for all the points of the constellation.

for some evem which aims at maximizinglp, min. In Fig. 5 we observe that the highest peaks are found at the

Stating the problem in the most general form, we negfitersection of the first and second bound in (23) that is for
to determine an arbitrary rotation matrix, with the highest

possible diversity ordefL = n), which maximizesdp in N, o = 1+ V5 d(;;Q = V5 < 0.5. (24)

of the corresponding signal constellation. This optimization ’ 2 S

problem becomes rapidly intractable due to the number ®he upper bound 00.5 to dp i, iS obtained by assuming
variables and the complexity of the constraints. For thtbat there exists a constellation containing a unit norm vector
reason we restrict our search to a smaller family of rotatiomith all equal components.

matrices which can be parameterized with a reduced numbeA few considerations about the optimal matrix are appro-
of variables and result in simpler constraints. priate here.), , is the root of the polynomiah? + A — 1,

We start with dimension2 and3 and then move up to otheri.e., it belongs to a totally real number field of degteeThe
dimensions of the typ&¢'3°2 applying a construction which entriesa andb of M then belong to a number field of degree
recalls the one used for Hadamard matrices. 4. In this case we are not using the canonical embedding

It is important to remind that whenever we are dealinattice but probably some two-dimensional section of it, which
with lattices generated by canonical embedding of totally regives us aZ? lattice constellation with diversity, = 2 and
number fields,dp win IS related to the field norm and ismaximal dp .. The two-dimensional case is the only one
independent of the size of the finite constellation carved frowhere we have obtained the absolute maximim,i, among
the lattice [4]. In all other cases this is not necessarily true.all possible rotation matrices.
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minimum product distance

Fig. 5. dp min for a family of Z> o lattices.

B. Dimension3 the polynomials
The family of three-dimensional orthogonal matrices we p1(A) =X +2X2 - A -1
consider here is p2(N) =X+ A2 —2) — 1.
a b ¢ Surprisingly, these two polynomials happen to be equivalent
M = b ¢ a minimal polynomials of the totally real algebraic number field
—c —a —b Q(2 cos (2r/7)). The values), 5 of the roots of the above

) . polynomials have the simple expressions:
with the constraints:> + b? + ¢ = 1 andab + bc + ac = 0.

We parameterize this orthogonal matrix as a function of the pi: [2 cos(dm/T)] 7 = ~2.24698
single variable) as follows: [2 cos (6m/7)] 7' = —0.55496
14 I\ [2 cos (27 /7)] 7' = 0.80194
e=1 e b=re e=gomae (29 p2: 2 cos(67/7) = —1.80194
_ _ 2 cos (47 /7) = —0.44504
As before, the rows ofi/ form the orthonormal lattice basis
vectors of a rotated version of?3. 2 cos (2n/7) = 1.24698.

Fig. 6 shows the values afp, in as a function of\, for ~ The values ofi(A. ), b(Ao,3), andc(A,, 3) to replace inM
a finite constellation withy = 4 bits/symbol, carved from the can be either computed directly by substitution in (25) or by
lattice generated by/. dp, ..i» Was computed by exhaustiveapplying the field properties @ (2 cos (27/7)). This second

search through the points of the finite constellation for eaghethod is preferable since it results in simple polynomial
value ofA. In this case, the values afwere taken in the range expressions

(—4, 4) since thaip i, rapidly vanishes outside this interval. -
The values of\ resulting in diversity less thahwere skipped. a(Ao 3) =
In Fig. 6 we also plot the following upper boundsdg, iin:

1+A

T o modry)

A=A, 5

1, )
jabe] (1.0,0) =70+ o= A0 5)
dp,min < 9 |(a = b)(b = c)(c— a) (1,0,1) A+ A2 T
(a+b—c)b+c—a)c+a—0)| (1,1,1) b(Xo,3) = TEar e mod pi()‘)_ -

a3y
corresponding to the product distances between the origin and !
the points with the integer components reported in the second  ¢(), 3) = _72 mod p;(A)
column of (26). 1+A+A A=A, 5

In Fig. 6, we identify the highest peaks at the intersection _ }(3 A s — 202 .) (i=1,2).
of the first and second bound in (26), that is at the roots of 7 ’ '
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0.6 ............................................................ —

minimum product distance

Fig. 6. dp min for a family of Z3 3 lattices.

;3

, min

Similarly, we can compute the optimal valdi Let U? = a? + 1? + ¢? + d* be the normalization factor.

0,3 llab | mod pi(\)] If the 2 x 2 submatrix; is fixed to be one of the optimal
Py min ™ PV Ix=x, 5 two-dimensional matrices, then the orthogonality constraints
[ XA+ N2 reduce toad — be = 0. The other2 x 2 submatrix M is
=|———=— mod p;(\) ; .
(I+A+22)3 N dependent on the parameter The basis vectors are finally
1 1 ’ normalized byU giving
773 B 1 Ao A
By direct inspection we find that all these lattices are” — U1 b= U ae ‘T UM, d==
equivalent to the lattice&’s s, and Zs_3, of Section III-C. V T A2 V T2 ’
where

C. Construction in Higher Dimensions

2 2 2 2
In the two previous subsections we have found the basic U= \/)‘o,2 TATAHAG 22
building blocks of the rotation matrices we will present here. Ao, 2 ’
This construction is based on the special structure of someFig. 7 shows the values afp, .. as a function ofs for a

orthogonal matrices similar to the one used to construct. . . .
g . o , NSt constellation« = 4 bits/symbol), carved from the lattice

Hadamard matrices. We will illustrate this construction in .

generated byM. dp ,in Was computed by exhaustive search

through the points of the finite constellation. The values of
\ are shown, with steps df.005, in the range(0, 3), since
the dp min rapidly vanishes outside this interval and the curve
is symmetric about the origin. The values dfresulting in
diversity less thanl were skipped. In Fig. 7 we also plot the

some detail for dimensiod. The other rotation matrices for
dimensions6, 8, and 12 are obtained by iterating the sam
construction.

1) Dimension 4: The family of four-dimensional orthogo-
nal matrices we consider here is

a b —c —d following upper bounds tdp i, (functions of}), as shown in
M= b a d —c _ <M1 —M2>_ (27) at the bottom of this page, corresponding to the product
cd a b My M distances between the origin and the points with the given
—-d ¢ —b a integer components.
|abcd| (17 07 07 0)
|(a® — ) (1% — d?)| (1,0,1,0)
dP, min S |(CL - d)Q(b + C)2| (17 07 07 1) (27)
[(a+d)*(b—c)?| (0,1,1,0)
[(=b+c—d)(a+d+c)(d+a—b)(—c+b+a) (0,1,1,1)
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: [taxdy~2 (h=c) 21 ===
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minimum product distance
o
o
[o))

0.00

Fig. 7. dp min for a family of Z, 4 lattices.

02107 | 01690 | 0.2751 | 04721 able'to obtajn the closed—for_m expression:s for _the optimal
0.0333 | -0.0869 | 0.2317 | 0.5860 | 1.528 10-10 rotation matrices. If we further increase the dimension a greater
number of constraints become nonlinear and the degree of the
polynomial equations giving the optimal valuesobecomes

In Fig. 7 we find and identify the two highest peaks at th@reater than four, which is the ultimate limit for closed-form

TABLE Il three-dimensional one. This is the highest dimension where
FIRST ROWS OF THE GENERATOR MATRICES OF Zg, 6, Zs, 5, AND Z12, 12 closed-form solutions can be computed and we find one
n | index dpmin | Optimal valuel/(7% 5+/5) for dp min.
6| 1-3|-0.3199 | 0.7189 | 0.5765 The first row of the rotation matrix is reported in Table III.
4-61-0.0590 | 0.1326 | 0.1654 1.82510° |  The entire matrix can be easily obtained by the construction
8| 14| 0.0583]-0.0943 | 0.1407 | -0.2277 .| given in the previous section.
58| 01926 | -0.3116 | 0.4649 | -0.7522 | 3.685 10 3) Other Dimensions:In all the previous cases we were
12| 1-4]-0.1517 | 0.3409 | -0.2734 | 0.0938
5-8
2

intersection of the first and third bound in (27) solutions. _ _
In these cases we adopt a purely numerical approach to find

L _ L( _ ) /. — (35995 the peek values of p 1in. Unfortunately, we are not able to
0,3 = 1o V2-1)y/50 +10v2 = 0.3523511 guarantee the absolute optimality of the rotations. We report in

and at the intersection of the first and fourth bound in (27) Tablt_a i the_nume_rlcal values of the f|rs_t row Of the rotation
matrix for Dimensions3 and 12. The entire matrices can be

@ _ 1 B easily reconstructed by iterating the construction given in the
Aot = 10 (\/5 + 1) V50 + 10V2 = 2.0536527. previous sections.

These values can be obtained in a closed form since they VII. SIMULATION RESULTS
are roots of a polynorr_ual of degre# The comesponding In this section we give a complete presentation of the
optimal value fordp, wy is 1/40. Other two lower peaks are erformance curves of the rotated constellations that we have

found at the intersection of the second and third bound in (24} \structed in the previous sections.

1 . .
()\2034 = 0.6641681) and at the intersection of the second and \ye first consider a throughput ef = 4 bit/symbol so that

fourth bound in (27X)\§24 = 1.0894935). The corresponding we will compare the performance with a traditional 16-QAM
suboptimal value foklp, i, is 1/85. Closed-form values of modulation scheme. In all the figures we plot the bit-error
Aso Can also be found. rate (BER) curves of the 16-QAM over the Gaussian channel
2) Dimension6: By a similar procedure we can build theand over the independent Rayleigh fading channel. These two
six-dimensional orthogonal matrices starting from the optimalirves bound the region of potential gain over the fading
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Fig. 8. Bit-error rates for the family of,, ,/, constellations(n = 4).

channel, when the rotated multidimensional uncoded schenties limiting factor in increasing dimension. Having optimized
are used. the minimum product distance we expected a performance

The first family of curves (Fig. 8) corresponds to constellamprovement. Unfortunately, the product kissing number is
tions in dimensions up to32 and diversityL = n/2 (Section again the limiting factor. For the four-dimensional case we
V-B). As the diversity increases the bit-error rate curvesave plotted the curves for two distinct rotations corresponding
approach the one for the Gaussian channel. For the largestdifferent values of the minimum product distance (see
value of diversity the gap to the Gaussian BER curve is onection VI-C1). In this case doubling, .,i, only improves
about 1.5 dB betweett0—2 and 10~—%. These constellations by a few tenths of a decibel.

can be easily constructed for any dimension= 2¢13¢, Finally, we show in Fig. 11 the case gf= 2 bits/symbol
e1, e = 0,1,2 ... The only limitation in going beyond which can be compared to the traditional 4-PSK modulation
dimension32 is the decoder complexity. scheme. We considered the caseAf,,,, rotations. In this

The second family of curves (Fig. 9) corresponds to const€@se, the gap to the Gaussian BER curve is less than 1 dB
lations in dimensions up to 15 and diversityL = n (Section between10—3 and 10—*.
V-C). As the diversity increased. = 3, 5, 9, 11, 15) the bit- This figure is also useful for comparison with the coded
error rate curves approach the one for the Gaussian chanfgstem proposed in [8] with 2 bits/symbol. There, a rate
For the largest value of diversity the gap to the Gaussian BER2 trellis-coded rotated 16-QAM is used and BER 1af~*
curve is about 3 dB betweetp—2 and 10~*. If we compare is achieved withE, /Ny = 19 dB. Our uncoded system
these curves with the previous ones we observe that for equovides the same performance using only a four-dimensional
alent dimensions (e.gl5 and 16) the performance is similar. constellation and greater gains can be obtained by increasing
This shows that the doubling of the diversity is not sufficierfhe dimension.
to increase the performance. We have verified experimentally
that for these constellations the product kissing numbeis
much larger and we believe that this is the limiting factor to VIIl. CONCLUSIONS
improving the performance by simply increasing the diversity. In this paper we have analyzed an alternative diversity
The third family of curves (Fig. 10) corresponds to constetechnique and we have constructed high diversity modulation
lations in dimensions: up to 12 and full diversity L = n  schemes which exhibit an almost Gaussian performance over
(Section VI). As the diversity increaséé = 3, 4, 6, 8, 12) the fading channel.
the bit-error rate curves approach the one for the GaussiarThe great advantage of this type of diversity is that it
channel. For the largest value of diversity the gap to the traded only for a higher demodulator complexity. No
Gaussian BER curve is about 4 dB betwa@Tt? and 10~*. additional power or bandwidth is required, since no type of
The computational complexity of finding these rotations isedundancy is added.
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Fig. 11. Bit-error rates for the family of, ,,, constellationsy = 2).
We have verified that the diversity orderand the minimum Proof 2: Let
product distanced, min are not the only important design n
parameters. The product kissing numbgris also a critical m(z) = Zawk
design parameter. The constellation design which takes into k=0

accountr,, is still an open problem. - . _ 2mi/N .
Using theuniversal lattice decodethe ML detection com- belthe m'|n||m?ldpolynomlal wN_ ¢ , 1e., the cyclotomic
plexity is independent of the system throughput only polynomial of degree: = $(N).

increasing the number of dimensions slows down the demo&i;?salggat?: OIaCtetré?:(wr)-t;St?;ggﬁﬁﬁ% © I; al_s% aa(imlts
ulation operation. » W wri ' m(f) =

Future developments of this work include the analysis n/2
of additional error control coding techniques, the effects of Za;/z,_k(ek +6%) =0
imperfect CSl estimation, performance analysis with correlated k=0

fading channels. wherea;, = a; exceptal, , = ay/»/2. Noting that

APPENDIX
THE MINIMAL POLYNOMIAL OF 2 cos(27/N)

This Appendix gives two different methods to compute th\é{hereTk(x) is thekth Chebyshev polynomial of the first kind,

(6% +07%) = 2 cos (2nk/N) = Tj(cos 27 /N)

minimal polynomialsy(x) of 2 cos(2x/N) for any N. we obtain

Proof 1: Let m(xz) be the minimal polynomial of = 2
e/ (i.e., the cyclotomic polynomial of degreg N)) and p(z) = Z a2 Ti(z) = 0.
let z = 2 cos(2rn/N) = 6 +1/8 then k=0

To show thatu(z) is the minimal polynomial ofz =
x+va?—4 2 cos (2 /N) itis enough to show that it is irreducible. Indeed,
9 if it were reducible, then going backwards from the relation

p(x) = 0 gives a nontrivial factorization o® () over @,
We now consider the polynomial with integer coefficients/hich is impossible.
g(z) = m(0;)m(63). This polynomial has degre&(/N) and We can conclude that the minimal polynomial ofver @
must contain a factor of degra& /V)/2 which is the minimal is given above and has degre¢2.
polynomial we are looking for. This implies thafz) = /J(.T)Q Using the above proof it is easy to show that\ifis odd,
so that the minimal polynomial can be obtained using Euclidsnce .5 (8) = ®x(—0), pon(z) = pun(—=): the minimal
algorithm to compute the greatest common divisor betweeolynomial forz = cos 27 /2N is obtained from the minimal
g(z) and its derivativey’(z) = 2u(z)p/(x). polynomial ofz = cos 27 /N by changing the sign aof.

92—$9+120 and 9172:
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