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Abstract

The problem of single-tone frequency estimation for a discrete-time real sinu-
soid in white Gaussian noise is addressed. We first show that the frequency
information is embedded in the principal singular vectors of a matrix which
stores the observed data with no repeated entry. The technique of weighted
least squares is then utilized for finding the frequency from the singular vec-
tors. It is proved that the variance of the frequency estimate approaches
Cramér-Rao lower bound when the data observation length tends to infinity.
The computational efficiency and estimation accuracy are demonstrated via
computer simulations.
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1. Introduction

Frequency estimation of a single real sinusoid in the presence of noise has
been an active research topic in the signal processing literature [1]–[13]. The
signal model is:

rk = sk + qk, k = 1, 2, · · · , K (1)

where sk = γ sin(ωk + φ) (2)

The γ > 0, ω ∈ (0, π) and φ ∈ [0, 2π) are the amplitude, frequency and phase
of the sinusoid, respectively, and they are unknown constants, while qk is the
additive measurement noise which is assumed a zero-mean white Gaussian
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process with unknown variance of σ2. The task of frequency estimation is to
find ω from the K samples of rk.

Pisarenko harmonic decomposition (PHD) [3] can be considered as the
simplest subspace method which utilizes the covariance of rk to compute the
frequency. So and Chan [4] have shown that the PHD estimation performance
can be improved if the data matrix is employed instead of the covariance ma-
trix. By incorporating the technique of weighted least squares (WLS) into
[4], the resultant algorithm [5] can provide optimum accuracy. Recently,
Elasmi-Ksibi et al. [6] have also extended [3] with the use of a normalized
second-order infinite impulse response notch filter, whose frequency variance
can attain Cramér-Rao lower bound (CRLB) [1] when ω is close to 0.5π. On
the other hand, a fast efficient technique based on iterative autoregressive
moving average (ARMA) model fitting has been devised in [7]. Maximum
likelihood (ML) frequency estimation of a real tone has been addressed in
[8] which involves maximizing a multimodal cost function, and this is sim-
ilar to the periodogram methodology [9]. Furthermore, approaches based
on discrete Fourier transform (DFT) and autocorrelation of rk are found in
[10]–[11] and [12]–[13], respectively. Although single-tone frequency estima-
tion has been well studied, efforts have continually been made to devise fast
and accurate estimators with small threshold signal-to-noise ratio (SNR) and
uniform estimation performance across the admissible frequency range. In
this work, we propose to exploit the principal-singular-vector utilization for
modal analysis (PUMA) [14] which is originally derived for two-dimensional
sinusoidal parameter estimation, and WLS [5], in the frequency estimator
development, in order to fulfil the above-mentioned challenges.

The rest of the paper is organized as follows. In Section 2, the proposed
frequency estimator is derived and analyzed, assuming that K can be fac-
torized as K = M × N . We first show that the frequency information is
contained in the principal singular vectors of the M ×N matrix which stores
rk with no repeated entry. To be precise, the left principal singular vectors
correspond to noisy sinusoidal sequences with frequency of ω while the fre-
quency of the right principal singular vectors is Mω. We then utilize the
WLS technique [5] to find the frequencies of the principal singular vectors.
It is also proved that when K tends to infinity, the variance of the frequency
estimate approaches CRLB. It is worthy to point out that we have recently
applied the PUMA methodology in developing an efficient estimator for a
single complex tone [15]. Nevertheless, the factorization of a real tone is
different from that of a complex tone and hence the algorithm and analy-
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sis are different from [15]. Simulation results are included in Section 3 to
corroborate the analytical development and to evaluate the performance of
the proposed algorithm by comparing with the WLS [5], ML [8], and ARMA
model fitting [7] methods as well as CRLB. Finally, conclusions are drawn in
Section 4.

2. Proposed Frequency Estimator

We first construct a M × N matrix, denoted by R, to store rk with no
repeated entry, and it has the form of:

R =











r1 rM+1 · · · rM(N−1)+1

r2 rM+2 · · · rM(N−1)+2
...

...
. . .

...
rM r2M · · · rMN











(3)

The (m,n) entry of R is represented as [R]m,n = rm+(n−1)M . Without loss of
generality, it is assumed that M ≥ N . Note that even if K is not factorizable,
one simple way is to discard a few samples and find M and N such that their
product is closest to K, and the performance loss will be negligible for a
sufficiently large data length. In matrix form, (1) becomes

R = S+Q (4)

where S and Q contain {sk} and {qk} accordingly. By making use of trigono-
metric identities, it is found that S can be factorized as:

S = γGHT = GΓHT (5)

where Γ = diag(γ, γ) (6)

G =

[

sin(ω + φ) sin(2ω + φ) · · · sin(Mω + φ)
cos(ω + φ) cos(2ω + φ) · · · cos(Mω + φ)

]T

(7)

and

H =

[

cos(0) cos(Mω) · · · cos(M(N − 1)ω)
sin(0) sin(Mω) · · · sin(M(N − 1)ω)

]T

(8)

with T denotes the transpose operator. We see that the frequency informa-
tion is contained in G and H but they cannot be straightforwardly obtained
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from {rk}. In this work, we make use of the PUMA approach [14] by employ-
ing the principal singular vectors of R for frequency estimation as follows.
Decomposing R using singular value decomposition yields:

R = UΛVT (9)

where Λ = diag(λ1, λ2, · · · , λN) is the diagonal matrix of singular values
with λ1 ≥ λ2 ≥ · · · = λN ≥ 0 while U =

[

u1 u2 · · · uM

]

and V =
[

v1 v2 · · · vN

]

are orthonormal matrices whose columns are the cor-
responding left and right singular vectors, respectively. By noting that
rank(S) = 2 as long as Mω is not an integral multiple of 2π, the optimum
estimate of S based on R, denoted by Ŝ, is

Ŝ = UsΛsV
T
s (10)

where Us =
[

u1 u2

]

, Λs = diag(λ1, λ2) and Vs =
[

v1 v2

]

are the signal
subspace components.

Comparing (5)–(8) and (10), it is clear that G, Γ and H correspond to
Us, Λs and Vs, respectively. To estimate ω from Us, we utilize the fact that
G and the noise-free version of Us, denoted by Ũs, span the same subspace,
that is:

Ũs = GΩG (11)

where ΩG ∈ R
2×2 is an unknown rotation matrix. As a result, ũ1 and ũ2

are still pure real tone sequences although their amplitudes and phases are
different from those of G. As an illustration, considering K → ∞ and noting
that the singular vectors are orthogonal and of unity norms, we can deduce:

Ũs =

√

2

M

[

sin(ω + φ− θ) sin(2ω + φ− θ) · · · sin(Mω + φ− θ)
cos(ω + φ− θ) cos(2ω + φ− θ) · · · cos(Mω + φ− θ)

]T

(12)

and

Ṽs =

√

2

N

[

cos(θ) cos(Mω + θ) · · · cos(M(N − 1)ω + θ)
sin(θ) sin(Mω + θ) · · · sin(M(N − 1)ω + θ)

]T

(13)

where θ ∈ [0, 2π) is an arbitrary parameter. The corresponding noise-free
singular values are then determined as:
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λ̃1 = λ̃2 =

√
MNγ

2
(14)

To estimate ω from Us, we first let α = 2 cos(ω). According to the linear
prediction property of sk + sk−2 = αsk−1, we construct:

cα ≈ d (15)

where c =
[

cT1 cT2
]T
, d =

[

dT
1 dT

2

]T
, ci =

[

[ui]2 [ui]3 · · · [ui]M−1

]T

and di =
[

[ui]1 + [ui]3 [ui]2 + [ui]4 · · · [ui]M−2 + [ui]M
]T

with [ ]i being
the ith element in a vector. Employing the WLS technique, the ideal estimate
of α, denoted by α̂, is [5]:

α̂ =
cTWM(α)d

cTWM(α)c
(16)

DefiningA = Toeplitz
(

[

1 01×(M−3)

]T
,
[

1 −α 1 01×(M−3)

]

)

where Toeplitz(a,bT )

is a Toeplitz matrix with first column a and first row bT and 0i×j represents

an i× j zero matrix, and us =
[

uT
1 uT

2

]T
, and noting that Aũs = 0(M−2)×1,

the optimal weighting matrixWM(α), which is characterized by the unknown
α, is computed as:

WM(α) = σ2
[

E

{

(cα− d) (cα− d)T
}]−1

= σ2
[

E{Ausu
T
s A

T}
]−1

= diag
(

λ̃2
1, λ̃

2
2

)

⊗
(

AAT
)−1

≈ diag
(

λ2
1, λ

2
2

)

⊗
(

AAT
)−1

(17)

where E, ⊗, −1 denote the expectation operator, Kronecker product and
matrix inverse, respectively. Note that the noise-free singular values are
approximated by λ1 and λ2. As α is unknown, we use the following iterative
relaxation procedure [5] for its determination:

(i) Obtain an initial estimate of α, α̂, using (16) withWM(α) = diag (λ2
1, λ

2
2)⊗

IM−2, where Ii denotes an i× i identity matrix.

(ii) Construct (17) using α = α̂.

(iii) Compute an updated α̂ using (16).

(iv) Repeat Steps (ii)-(iii) until a stopping criterion is reached.
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(v) The frequency estimate based on Us, denoted by ω̂L, is calculated as:

ω̂L = cos−1

(

α̂

2

)

(18)

Let β = 2 cos(Mω). In a similar manner, the conceptual solution for β
obtained from Vs is

β̂ =
eTWN(β)f

eTWN(β)e
(19)

where WN(β) ≈ diag
(

λ2
1, λ

2
2

)

⊗
(

BBT
)−1

(20)

with B = Toeplitz
(

[

1 01×(N−3)

]T
,
[

1 −β 1 01×(N−3)

]

)

, e =
[

eT1 eT2
]T
,

f =
[

fT1 fT2
]T
, ei =

[

[vi]2 [vi]3 · · · [vi]N−1

]T
and fi = [[vi]1 + [vi]3

[vi]2 + [vi]4 · · · [vi]N−2 + [vi]N ]
T . To estimate ω using (19), we notice that β̂

corresponds to M possible estimates of ω, denoted by ω̂R,i, i = 1, 2, · · · ,M :

ω̂R,i =
1

M

[

(−1)(i−1) cos−1(β̂/2) +

⌊

i

2

⌋

2π

]

(21)

where ⌊ ⌋ rounds the value to the nearest integer towards −∞. In this study,
we calculate the absolute difference between ω̂L and each of {ω̂R,i}, and the

frequency estimate according to β̂, denoted by ω̂R, is given by the latter with
the smallest difference. Mathematically, ω̂R = ω̂R,k where k is obtained from

k = arg min
i∈{1,2,··· ,M}

|ω̂R,i − ω̂L| (22)

The variances of α̂ and β̂, denoted by var(α̂) and var(β̂), under sufficiently
large M and N , are [5]

var(α̂) ≈ σ2

c̃TWM(α)c̃
(23)

var(β̂) ≈ σ2

ẽTWN(β)ẽ
(24)

Employing α = 2 cos(ω) and β = 2 cos(Mω), the variances of ω̂L and ω̂R are
computed as [5]:

var(ω̂L) ≈
var(α̂)

4 sin2(ω)
≈ σ2

4 sin2(ω)c̃TWM(α)c̃
(25)

var(ω̂R) ≈
var(β̂)

4M2 sin2(Mω)
≈ σ2

4M2 sin2(Mω)ẽTWN(β)ẽ
(26)
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Apparently, (26) is smaller than (25) because the former has a factor of 1/M2.
In fact, we have shown in the Appendix that

var(ω̂R) ≈
24σ2

K3γ2
(27)

which approaches the asymptotic CRLB whenK → ∞, namely, 24σ2/(γ2K(K2−
1)) [1]. As a result, it is sufficient to employ ω̂R as the final frequency esti-
mate. Nevertheless, we can combine ω̂R and ω̂L by assuming that they are
uncorrelated, to produce the estimate ω̂ as:

ω̂ =

ω̂L

var(ω̂L)
+

ω̂R

var(ω̂R)
1

var(ω̂L)
+

1

var(ω̂R)

(28)

≈ ω̂L sin
2(ω̂)cTWM(α̂)c+ ω̂RM

2 sin2(Mω̂)eTWN(β̂)e

sin2(ω̂)cTWM(α̂)c+M2 sin2(Mω̂)eTWN(β̂)e
(29)

where the noise-free and ideal parameters in (25)–(26) are substituted by the
noisy or estimated values.

3. Numerical Examples

Computer simulations have been carried out to evaluate the frequency es-
timation performance of the proposed estimator by comparing with the WLS
[5], ML [8] and ARMA [7] approaches. Three iterations are employed as the
stopping criterion in the WLS and proposed methods because no significant
improvement is observed for more iterations while the golden section search
is used for computing the ML solution after a discrete Fourier transform style
coarse estimate is obtained. The mean square error (MSE) is assigned as the
performance measure and CRLB is also included to validate the algorithm
optimality. The sinusoidal amplitude is chosen as γ = 1 and we properly
scale the zero-mean white Gaussian noise sequences {qk} to produce differ-
ent SNR conditions, where SNR = γ2/(2σ2) = 1/(2σ2). All results provided
are averages of 1000 independent runs using a computer with Intel Core i7
2.67 GHz processors and 3GB RAM.

In the first test, the performance of the proposed scheme based on ω̂R and
ω̂ of (28) is compared. Figure 1 shows their MSEs versus SNR at K = 256
and K = 1024 with M = N = 16 and M = N = 32, respectively. The tone
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frequency is ω = 0.1π while the phase φ is uniformly chosen from [0, 2π) for
each independent trial. It is seen that both ω̂R and ω̂ perform almost the
same for K = 256 and K = 1024, and their accuracy attains the CRLB for
sufficiently high SNR conditions. The corresponding threshold SNRs are 0 dB
and −4 dB, indicating that a larger K gives a better threshold performance.
According to Figure 1, only ω̂R is considered in the remaining experiments.

Figures 2 and 3 investigate different combinations of M and N for K =
256 and K = 1024, respectively. The other parameter settings are identi-
cal to those of Figure 1. Although the MSEs of different combinations can
attain optimality for sufficiently high SNRs, we should avoid M ≪ N or
M ≫ N because these correspond to a larger threshold SNR. For K = 256,
the average computation times of the proposed estimator with (M,N) equals
(4, 64), (8, 32), (16, 16), (32, 8) and (64, 4) are 0.0023s, 0.0014s, 0.0013s,
0.0014s, 0.0024s, respectively. The corresponding measured times for (8, 128),
(16, 64), (32, 32), (64, 16) and (128, 8) are 0.0086s, 0.0031s, 0.0027s, 0.0032s,
0.0092s. Summarizing the results, the best combination in terms of estima-
tion performance and computational complexity is M ≈ N .

In the remaining tests, the proposed method is compared with the WLS,
ML and ARMA approaches. Figure 4 shows the MSEs versus SNR at K =
256. The parameter settings are identical to those of Figure 1. The proposed,
WLS, ML and ARMA estimators have threshold SNRs of 0 dB, 10 dB, −6 dB
and 6 dB, while their average computation times are measured as 0.0013s,
0.0147s, 0.0086s and 0.0002s. Although the ARMA method is the most
computationally efficient, it produces biased estimation when SNR ≥ 16 dB.
On the other hand, the ML estimator has the best threshold performance
but its complexity is higher than that of the proposed scheme. The MSEs
of different methods versus ω ∈ (0, π) at SNR = 10 dB are plotted in Figure
5. Similar to the ML and WLS algorithms, the proposed method also has
uniform estimation performance when ω is not close to 0 or π.

4. Conclusion

A fast and accurate estimator for a single real tone based on singular value
decomposition of the corresponding data matrix has been devised. The tech-
niques of linear prediction and weighted linear squares (WLS) are utilized in
the principal singular vectors which contain the frequency information, for
parameter estimation. It is proved that the performance of the estimator
attains Cramér-Rao lower bound at sufficiently large data lengths. Further-
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more, it is demonstrated that the proposed method is superior to the WLS,
maximum likelihood and autoregressive moving average model fitting meth-
ods in terms of accuracy and/or computational complexity.

Appendix

In this Appendix, we prove that var(ω̂R) attains the CRLB when K → ∞.
With the use of (13) and (14), the asymptotic value of var(β̂) of (24) is
derived as

var(β̂) ≈ σ2

ẽTWN(β)ẽ
=

σ2

∑2
i=1 λ̃

2
i ẽ

T
i (BBT )−1

ẽi

≈ 4σ2

MNγ2
∑2

i=1 ẽ
T
i (BBT )−1

ẽi
(A.1)

where [ẽ1]k = cos(Mkω + θ), [ẽ2]k = sin(Mkω + θ), k = 1, 2, · · · , N − 2.
When N is sufficiently large, it is shown that [5]:

1

ẽT1 (BBT )−1
ẽ1

≈ 1

ẽT2 (BBT )−1
ẽ2

≈ 96 sin2 (Mω)

(N − 4)
(

(N − 4)2 − 1
) ≈ 96 sin2 (Mω)

N3

(A.2)

Substituting (A.2) into (A.1) yields

var(β̂) ≈ 96σ2 sin2 (Mω)

MN3γ2
(A.3)

As a result, (26) is:

var(ω̂R) ≈
var(β̂)

4M2 sin2 (Mω)
≈ 24σ2

K3γ2
(A.4)

which is (27).

References

[1] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory,
Upper Saddle River, NJ: Prentice-Hall, 1993

[2] P. Stoica and R. Moses, Spectral Analysis of Signals, Upper Saddle River, NJ
: Prentice-Hall, 2005

9



[3] V. F. Pisarenko, ”The retrieval of harmonics by linear prediction,” Geophys.

J. Roy. Astron. Soc., vol.33, pp.347-366, 1973

[4] H. C. So and K. W. Chan, “Reformulation of Pisarenko harmonic decompo-
sition method for single-tone frequency estimation,” IEEE Transactions on

Signal Processing, vol.52, no.4, pp.1128-1135, Apr. 2004

[5] H. C. So, K. W. Chan, Y. T. Chan and K. C. Ho, “Linear prediction approach
for efficient frequency estimation of multiple real sinusoids: algorithms and
analyses,” IEEE Transactions on Signal Processing, vol.53, no.7, pp.2290-
2305, Jul. 2005

[6] R. Elasmi-Ksibi, S. Cherif, R. Lopez-Valcarce and H. Besbes, “Closed-form
real single-tone frequency estimator based on a normalized IIR notch filter,”
Signal Processing, vol.90, pp.1905-1915, 2010

[7] B. G. Quinn and J. M. Fernandes, “A fast efficient technique for the estima-
tion of frequency,” Biometrika, vol.78, no.3, pp.489-497, Sep. 1991

[8] R. J. Kenefic and A. H. Nuttall, “Maximum likelihood estimation of the
parameters of tone using real discrete data,” IEEE Journal of Oceanic Engi-

neering, vol.12, no.1, pp.279-280, 1987

[9] A. Saucier, “New periodograms for single-tone frequency estimation in the
presence of an additive polynomial background signal,” Signal Processing,
vol.90, pp.1800-1814, 2010

[10] H. W. Fung, A. C. Kot, K. H. Li and K. C. Teh, “Parameter estimation of a
real single tone from short data records,” Signal Processing, vol.84, pp.601-
617, 2004

[11] I. Djurovic and V. V. Lukin, “Estimation of single-tone signal frequency by
using the L-DFT,” Signal Processing, vol.87, pp.1537-1544, 2007

[12] K. W. K. Lui and H. C. So, “Two-stage autocorrelation approach for accu-
rate single sinusoidal frequency estimation,” Signal Processing, vol.88, no.7,
pp.1852-1857, Jul. 2008

[13] R. Elasmi-Ksibi, H. Besbes, R. Lopez-Valcarce and S. Cherif, “Frequency
estimation of real-valued single-tone in colored noise using multiple autocor-
relation lags,” Signal Processing, vol.90, pp.2303-2307, 2010

10



[14] H. C. So, F. K. W. Chan, W. H. Lau and C. F. Chan, “An efficient approach
for two-dimensional parameter estimation of a single-tone,” IEEE Transac-

tions on Signal Processing, vol.58, no.4, pp.1999-2009, Apr. 2010

[15] H. C. So, F. K. W.Chan and W. Sun, “Subspace approach for fast and ac-
curate single-tone frequency estimation,” IEEE Transactions on Signal Pro-

cessing, vol.59, no.2, pp.827-831, Feb. 2011

−10 −5 0 5 10 15 20 25 30
−120

−100

−80

−60

−40

−20

0

K=1024

K=256

SNR (dB)

M
ea

n 
S

qu
ar

e 
E

rr
or

 (
dB

)

 

 

CRLB

ω̂

ω̂R

Figure 1: Mean square frequency error versus SNR for different K
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Figure 2: Mean square frequency error versus SNR for different combinations of (M,N)
at K=256
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Figure 4: Mean square frequency errors versus SNR at K = 256
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Figure 5: Mean square frequency errors versus ω ∈ (0, π) at SNR = 10 dB

13


