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Abstract

Let f be a binary word and let Fd(f) be the set of words of length d which
do not contain f as a factor (alias words that avoid the pattern f). A word
is called even/odd if it contains an even/odd number of 1s. The parity index
of f (of dimension d) is introduced as the difference between the number of
even words and the number of odd words in Fd(f). A word f is called prime if
every nontrivial suffix of f is different from the prefix of f of the same length.
It is proved that if f is a power of a prime word, then the absolute value of
the parity index of f is at most 1. We conjecture that no other word has this
property and prove the conjecture for words 0r1s0t, r, s, t C 1. The conjecture
has also been verified by computer for all words f of length at most 10 and all
d B 31.

Keywords: binary words, combinatorics on words, words avoiding a pattern, parity
index, generalized Fibonacci cubes.

AMS Subject Classification (2010): 05A05, 68R15, 68W32.

�Corresponding author

1



1 Introduction

Elements of B = �0,1� are called bits and an element of Bd is a binary word of length

d. Since all words considered here are binary, we will simply speak about words. A

word u > Bd will be written in the coordinate form as u = u1u2 . . . ud. A word f is a

factor of a word x if f appears as a sequence of Sf S consecutive bits of x. A word u

is called f -free if it does not contain f as a factor. For a word f and positive integer

d, let

Fd(f) = �u > Bd S u is f−free� .
The product notation will mean concatenation, for example, 1r is the word of length

r with all bits equal 1. A word b is a power of a word c if b = ck for some k C 1. A

word is called even if it contains an even number of 1s and odd otherwise.

Suppose that f is a word and d is a positive integer. Then the generalized

Fibonacci cube, Qd(f), is the graph obtained from the d-dimensional cube Qd by

removing all vertices that contain f as a factor. In other words, V (Qd(f)) = Fd(f),
two vertices being adjacent if they differ in exactly one bit. These graphs were

studied for the first time in [3], but special cases were extensively studied earlier.

The most notable special case is formed by Fibonacci cubes Γd = Qd(11), d C 1, see

the survey [4]. The special case of Qd(1s) was introduced in [2] (under the same

name of generalized cubes) and further investigated in [6, 9].

The definition of the generalized Fibonacci cubes naturally leads to different

problems on words. The most fundamental problem is to determine the order of

these graphs. This problem was studied earlier under the notion of words avoiding a

pattern. Calling f a pattern, then the number of words avoiding f is just the number

of f -free words. Baccherini, Merlini and Sprugnoli [1] were interested in the number

of f -free words that contain prescribed numbers of 0s and 1s and established that

they are closely related to proper Riordan arrays. This work was extended in [7].

Another natural problem about generalized Fibonacci cubes is when they embed

isometrically into hypercubes. This question naturally leads to the concept of the

so called good and bad words. A word f is said to be d-good if for any f -free words

u and v of length d, v can be obtained from u by complementing one by one the bits

of u on which u and v differ, such that all intermediate words are f -free. Then f

is good if it is d-good for any d C 1. The main result of [5] asserts that about eight

percent of all words are good.

Our principal motivation for the present paper is a result of [6] asserting that each

Qd(1r) contains a hamiltonian path. This in particular implies that the bipartition

of Qd(1r) is balanced. (By the way, it is not difficult to see that every generalized
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Fibonacci cube is connected.) Clearly, the bipartition sets of Qd(f) are formed

by even and odd words, respectively. Hence, for a set of words X, let e(X) and

o(X) be the number of even and odd words in X, respectively. Let in addition

∆(X) = e(X) − o(X), in particular write ∆(x) = ∆(�x�) for a word x. That is,

∆(x) = 1 if x is even and ∆(x) = −1 if x is odd. Then we define the parity index of

f of dimension d as

PId(f) =∆(Fd(f)) .
Using this notation, a necessary condition for Qd(f) to contain a hamiltonian path

is that SPId(f)S B 1.

In the next section we introduce prime words and prove that if f is a power of

a prime word then SPId(f)S B 1 holds for any d. In Section 3 we consider the parity

index of the words 0r1s0t and prove that for any d large enough, SPId(0r1s0t)S C 2.

For the special case of 0r10r a more precise result is obtained, in particular it is

noted that �SPId(010)S�dC3 is the so-called Padovan sequence. In the final section

we pose a conjecture that powers of prime words are the only words with the property

SPId(f)S B 1 for any d and verify the conjecture for all words of length B 10 and for

all d B 31.

2 Powers of prime words

A word f of length d is prime if for any k, 1 B k B d − 1, the suffix of f of length k

is different from the prefix of f of the same length. In particular, words 0 and 1 are

prime, and if d C 2, then the first bit and the last bit of a prime word are different.

For instance, 001101 is a prime word which easily follows from the fact that the

factor 00 appears only at its beginning. On the other hand the word 01101011 is

not prime as it starts and ends with 011.

For a word f of length ` let Sd(f) = Bd �Fd(f), that is,

Sd(f) = �b = b1b2 . . . bd S b contains factor f� .
For i = 1,2, . . . , d − ` + 1 let in addition

S(i)
d
(f) = �b = b1b2� bd S b > S, bibi+1� bi+`−1 = f� .

Then Sd(f) = �d−`+1
i=1 S(i)

d
(f).

By �X
k
� we denote the set of all k-subsets of the set X.

Lemma 2.1 Let f be a word of length `. Then

∆(Sd(f)) = d−`+1
Q
k=1
(−1)k−1 Q

Ib�Nd−`+1
k
�

∆�9i>IS
(i)
d
(f)� .
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Proof. Let χA be the characteristic function of a set A:

χA(x) = � 1; x > A,

0; otherwise .

Since Sd(f) = �d−`+1
i=1 S(i)

d
(f), the inclusion and exclusion principle implies that for

every x > Sd(f),
d−`+1
Q
k=1
(−1)k−1 Q

Ib�Nd−`+1
k
�

χ
9i>IS

(i)
d
(f)
(x) = 1 .

Therefore,

∆(Sd(f)) = Q
x>Sd(f)

∆(x)

= Q
x>Sd(f)

∆(x)���
d−`+1
Q
k=1
(−1)k−1 Q

Ib�Nd−`+1
k
�

χ9i>IS
(i)
d
(f)(x)

���
= d−`+1
Q
k=1
(−1)k−1 Q

Ib�Nd−`+1
k
�

Q
x>Sd(f)

∆(x)χ9i>IS
(i)
d
(f)(x)

= d−`+1
Q
k=1
(−1)k−1 Q

Ib�Nd−`+1
k
�

∆(9i>IS
(i)
d
(f)) .

j

Theorem 2.2 Let f be a power of a prime word. Then SPId(f)S B 1 for any d C 1.

Proof. Let d C 1. Suppose first that f is a prime word. When d < `, we have

Fd(f) = Bd and if d = `, then Fd(f) contains all but the word f . Hence we may

assume in the rest that d A `. Since e(Bd) = o(Bd), we have e(Fd(f)) + e(Sd(f)) =
o(Fd(f)) + o(Sd(f)). Hence PId(f) = ∆(Fd(f)) = −∆(Sd(f)). It thus suffices to

prove that S∆(Sd(f))S B 1.

We first note that ∆(S(i)
d
(f)) = 0. Indeed, the first i − 1 bits and the last

d−`− i+1 bits of the words from S(i)
d
(f) are arbitrary, hence S(i)

d
(f) contains 2d−`−1

even words and the same number of odd words. Consider now X = 9i>IS
(i)
d
(f) where

I = �i1, i2, . . . , ik� and i1 < i2 < � < ik. Because f is a prime word, X = g as soon as

for some index j, ij+1 − ij < `. Moreover, by the same argument as the one used for

∆(S(i)
d
(f)), ∆(X) = 0 as soon as for some index j, ij+1 − ij A `. Hence ∆(X) can be

nonzero only when k` = d and ij = (j −1)`+1 for each 1 B j B k. Therefore, applying
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Lemma 2.1,

∆(Sd(f)) =
¢̈̈̈
¦̈̈̈
¤

0; ` Ñ d,−1; `Sd, k odd, f contains odd number of 1s,
1; otherwise .

The proof is complete for a prime word f .

Assume now that f = (f ′)r, where f ′ is a prime word and r C 2. Let Sf ′S = `′. The

proof continues similarly as in the case when f was prime. The only difference is

that now X = g as soon as for some index j, the difference ij+1 − ij is not a multiple

of `′ and so ∆(X) can be nonzero only when d is a multiple of `′. j

3 Non-prime words

In this section we study the parity index of words consisting of three blocks, that

is, of words 0r1s0t, r, s, t C 1. Clearly, none of these words is prime. In our main

result (Theorem 3.2) we prove that for no such word f , SPId(f)S B 1 holds for all d.

Before that we separately give a more precise result for the special case of 0r10r. The

obtained results in particular imply that Qd(0r1s0t) does not contain a hamiltonian

path as soon as d is large enough.

Theorem 3.1 Let r C 1. Then

SPId(0r10r)S = � 0; d B 2r,2r + 2 B d B 3r + 1 ,

1; d = 2r + 1,3r + 2 B d B 4r + 3 .

Moreover, for any d C 4r + 4, SPId(0r10r)S C 2.

Proof. Suppose first that d B 2r. Then Fd(0r10r) = Bd and hence PId(0r10r) = 0.

Since F2r+1(0r10r) = Bd � �0r10r� we have PI2r+1(0r10r) = 1.

Let d C 2r + 2. Recall that −PId(0r10r) = ∆(Sd(f)) = Pb>Sd(f)∆(b). By

Lemma 2.1,

−PId(f) = d−`+1
Q
k=1
(−1)k−1 Q

Ib�Nd−`+1
k
�

∆(9i>IS
(i)
d
(f)) .

Suppose that for a set X = 9i>IS
(i)
d
(f) there exists an index i such that if w > X

then also w + ei > X. Then ∆(X) = 0. It follows that ∆(X) x 0 if and only if there

exist k C 0 and r B rj B 2r for all 1 B j B k, such that

X = �0r10r110r21�0rk10r� .
Moreover, in that case ∆(X) =∆(0r10r110r21�0rk10r) = (−1)k+1.
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Hence let k C 0 and r B rj B 2r, 1 B j B k, and set b = 0r10r110r21�0rk10r. Let

v = br1+2bt1+3� bd be the word obtained from b by omitting the first r1 + 1 bits, so

that v > Bd−r1−1. Since b has one more bit of 1 than v does, ∆(v) = −∆(b).
Note that v starts with 0r1. Then

v > �
j>J

S
(j)
d−r1−1(f) if and only if b > S(1)

d
(f)� �9j>JS

(j+r1+1)
d

(f)� .
Now we can compute as follows:

PId(0r10r) = −∆(Sd(f)) = − Q
b>Sd(f)

∆(b)

= −
���� Qb>Sd(f)

r1=r

∆(b) + Q
b>Sd(f)
r1=r+1

∆(b) +� + Q
b>Sd(f)
r1=2r

∆(b)
����

= −�� Q
v>Sd−r−1(f)

−∆d−r−1(v) + Q
v>Sd−r−2(f)

−∆d−r−2(v) +�

+ Q
v>Sd−2r−1(f)

−∆d−2r−1(v)��
= Q

v>Sd−r−1(f)
∆d−r−1(v) + Q

v>Sd−r−2(f)
∆d−r−2(v) +�

+ Q
v>Sd−2r−1(f)

∆d−2r−1(v)
= Q

rBr1B2r

Q
v>Sd−r1−1

(f)
∆d−r1−1(v)

= Q
rBr1B2r

∆d−r1−1
�
� �

v>Sd−r1−1
(f)

v
�
�

= Q
rBr1B2r

∆d−r1−1(Sd−r1−1(f))
= − Q

rBr1B2r

PId−r1−1(0r10r) . (1)

It follows that SPId(0r10r)S = SPrBr1B2r PId−r1−1(0r10r)S.
As the values PId−r1−1(0r10r) have the same sign for all r B r1 B 2r, from Equa-

tion (1) we get

SPId(0r10r)S = Q
rBr1B2r

SPId−r1−1(0r10r)S . (2)

Set ad = SPId(0r10r)S for all d. We already know that ad = 0 for all d B 2r and that

a2r+1 = 1. Let d C 2r + 2. If d B 3r + 1 and there is a word b > Sd(f), then there is an

index i such that if w > X then also w + ei > X and hence ∆(X) = 0.
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Assume d C 3r + 2. When 3r + 2 B d B 4r + 2, PId(0r10r) = ∆(0r10d−2r−210r) = 1

or −1 and hence ad = 1. When d = 4r + 3, ad = a2r+2 +�+a3r+2 = 1. Let d = 4r + 3+u

for some u C 1. Then by Equation (2), a4r+3+u = a2r+2+u +�+ a3r+2+u. If u B r, then

2r+2+u B 3r+2 < 3r+2+u B 4r+2 and therefore ad C 2. Assume u C r+1. Let u′ = u−r.
Then d = 5r + 3 + u′ for u′ C 1. By Equation (2), a5r+3+u′ = a3r+2+u′ +�+ a4r+2+u′ . If

u′ B r, then 3r + 2 B 3r + 2 + u′ < 4r + 3 B 4r + 2 + u′ and therefore ad C 2. Assume

u′ C r + 1. Then let u′′ = u′ − r. Then d = 6r + 3 + u′′ for u′′ C 1. By Equation (2),

a6r+3+u′′ = a4r+2+u′′ +� + a5r+2+u′′ . As 3r + 2 B 4r + 2 + u′′ < 5r + 2 + u′′, ad C 2. Thus

when d C 4r + 4, ad C 2. j
The special case of Theorem 3.1 when r = 1 deserves a special attention. In that

case,

SPId(010)S = SPId−2(010)S + SPId−3(010)S
with initial conditions SPI3(010)S = 1, SPI4(010)S = 0, SPI5(010)S = 1 which is the

Padovan sequence, see sequence A000931 from [8].

Theorem 3.2 Let r, s, t C 1. Let z be the integer such that (z−1)t+2 B r+s B zt+1.

Then

SPId(0r1s0t)S
¢̈̈̈̈
¨̈̈̈
¦̈̈̈
¨̈̈̈̈
¤

= 0; d < r + s + t,

y(r + s + t) < d < (y + 1)(r + s) + t for 1 B y B z ,C 1; d = r + s + t,(y + 1)(r + s) + t B d B (y + 1)(r + s + t) for 1 B y B z,

d = (z + 1)(r + s + t) + 1 .

Moreover, for any d C (z + 1)(r + s + t) + 2, SPId(0r1s0t)S C 2.

Proof. Since PId(0r1s0t) = PId(0t1s0r), it suffices to prove the result for words

0r1s0t with r C t. By the same argument as in the proof of Theorem 3.1, ∆(X) x 0

if and only if there exist k C 0 and r B rj B r + t for all 1 B j B k such that

X = �0r1s0r11s0r21s�0rk1s0t�
where ∆(X) = (−1)(k+1)s. Also

SPId(0r1s0t)S = Q
rBr1Br+t

SPId−r1−s(0r1s0t)S . (3)

Set ad = SPId(0r1s0t)S for all d. We already know that ad = 0 for all d < r + s + t

and that ar+s+t = 1. Let d C r + s + t + 1. In the first part of the proof, we prove the

theorem for d B (z + 1)r + (z + 1)s + (z + 1)t by induction on y for 1 B y B z. Then

we prove the theorem for d C (z + 1)r + (z + 1)s + (z + 1)t + 1. The idea of the proof
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is as follows. From the first part of the proof, we notice that for each y C 1, ad = 0

for r + s − (y − 1)t − 1 consecutive numbers of d and then ad C 1 for the next yt + 1

consecutive numbers of d. As y increases, r + s − (y − 1)t − 1 decreases to zero and

yt + 1 increases. While, by Equation (3), ad = ad−r−s−t +� + ad−r−s, which is a sum

of t + 1 consecutive numbers, where t + 1 is a constant for given 0r1s0t. Therefore

for large enough d, ad C 2.

By a similar argument as in the proof of Theorem 3.1, ad = 0 if d < 2r+2s+ t and

ad = 1 if 2r + 2s+ t B d B 2r + 2s+ 2t. Thus the statement is true for y = 1. Let y C 2.

Suppose the statement is true for all 1 B y0 < y. Let d = yr+ys+yt+u for some u C 1.

Then by Equation (3), ayr+ys+yt+u = a(y−1)r+(y−1)s+(y−1)t+u + � + a(y−1)r+(y−1)s+yt+u.

When d < (y + 1)r + (y + 1)s+ t, i.e., u < r + s− (y− 1)t, (y − 1)r + (y − 1)s+ (y − 1)t <
(y−1)r+(y−1)s+(y−1)t+u < (y−1)r+(y−1)s+yt+u < yr+ys+t and hence by the

induction assumption, ad = 0. When d = (y +1)r+(y+1)s+ t, i.e., u = r+s−(y−1)t,
(y − 1)r + (y − 1)s + yt + u = yr + ys + t and hence by the induction assumption,

ad C ayr+ys+t C 1. Assume d C (y + 1)r + (y + 1)s + t + 1, i.e., u C r + s − (y − 1)t + 1.

Let u′ = u − r − s + (y − 1)t. Then d = (y + 1)r + (y + 1)s + t + u′ where u′ C 1. By

Equation (3), ad = ayr+ys+u′ +�+ ayr+ys+t+u′ . If d B (y + 1)r + (y + 1)s+ (y + 1)t, i.e.,

u′ B yt, then yr + ys+ u′ B yr + ys+ yt. Considering that yr + ys+ t < yr + ys+ t+ u′,

ad C ayr+ys+t + ayr+ys+t+1 or ad C ayr+ys+u′ + ayr+ys+u′+1 depending on whether yr +
ys+u′ < yr + ys+ t or not. Therefore by the induction assumption, ad C 1. Thus the

theorem is proved for all d B (z + 1)r + (z + 1)s + (z + 1)t.
Assume d C (z + 1)r + (z + 1)s + (z + 1)t + 1 C (z + 2)r + (z + 2)s + t. Let d =

(z+2)r+(z+2)s+t+u′′ where u′′ C 0. Then by Equation (3), ad = a(z+2)r+(z+2)s+t+u′′ =
a(z+1)r+(z+1)s+u′′+�+a(z+1)r+(z+1)s+t+u′′ . Note that (z+1)r+(z+1)s+t+u′′ C (z+1)r+
(z+1)s+t. Assume d = (z+2)r+(z+2)s+t, i.e., u′′ = 0. Then (z+1)r+(z+1)s+t+u′′ =
(z + 1)r + (z + 1)s + t. If r + s A zt, then (z + 1)r + (z + 1)s A zr + zs + zt and hence

ad = a(z+1)r+(z+1)s+t C 1. If r + s B zt, then (z + 1)r + (z + 1)s B zr + zs+ zt and hence

ad C azr+zs+zt + a(z+1)r+(z+1)s+t C 2.

Let d A (z + 2)r + (z + 2)s + t, i.e., u′′ A 0. Then (z + 1)r + (z + 1)s + t + u′′ A
(z+1)r+(z+1)s+t. First assume d < (z+2)r+(z+2)s+(z+2)t, i.e., u′′ < (z+1)t. Then

(z + 1)r + (z + 1)s+u′′ < (z + 1)r+ (z + 1)s+ (z + 1)t. Therefore ad C a(z+1)r+(z+1)s+t +
a(z+1)r+(z+1)s+t+1 or ad C a(z+1)r+(z+1)s+u′′ +a(z+1)r+(z+1)s+u′′+1 depending on whether

(z +1)r+(z +1)s+u′′ < (z +1)r+(z+1)s+ t or not. Thus ad C 2 in any case. Second

assume d = (z+2)r+(z+2)s+(z+2)t, i.e., u′′ = (z+1)t. Then (z+1)r+(z+1)s+u′′ =
(z + 1)r + (z + 1)s + (z + 1)t and hence ad C a(z+1)r+(z+1)s+u′′ + a(z+1)r+(z+1)s+u′′+1 C 2

considering that (z+1)r+(z+1)s+(z+1)t < (z+1)r+(z+1)s+u′′+1 < (z+2)r+(z+
2)s+(z+2)t. Finally assume d A (z+2)r+(z+2)s+(z+2)t, i.e., u′′ A (z+1)t. Suppose
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there is u′′ A (z + 1)t such that ad B 1. Let u′′
0

be the smallest such an integer and

d0 = (z + 2)r + (z + 2)s + t+ u′′
0
. Then ad0

= a(z+1)r+(z+1)s+u′′
0
+�+ a(z+1)r+(z+1)s+t+u′′

0
.

Since (z+1)r+(z+1)s+u′′
0
A (z+1)r+(z+1)s+(z+1)t and (z+1)r+(z+1)s+t+u′′

0
< d0,

ad0
C 2, which is a contradiction. Thus the statement is true for all d. j

4 Computer evidence and conjecture

Using computer we obtained the parity index for all words f of length at most 10 and

all d B 31. Since Qd(f) is isomorphic to Qd(f), where f is the binary complement

of f , we have restricted the computation to words f that contain not more 1s than

0s. From the same reason reversed words need not to be considered. In Table 1 all

words f of length at most 8 and with SPId(f)S B 1 for d B 31 are collected.

length f

3 001

4 0001, 0011, 0101

5 00001, 00011, 00101

6 000001, 000011, 000101, 000111
001001, 001011, 001101, 010101

7 0000001, 0000011, 0000101, 0000111
0001001, 0001011, 0001101, 0010011
0010101, 0011101

8 00000001, 00000011, 00000101, 00000111
00001001, 00001011, 00001101, 00001111
00010001, 00010011, 00010101, 00010111
00011001, 00011011, 00011101, 00100011
00100101, 00101011, 00101101, 00110011
00110101, 00111101, 01010101

Table 1: List of words f with Sf S B 8 and SPId(f)S B 1 for d B 31

It can be checked that every word from the table is a power of a prime word.

Moreover, the same was verified also for the obtained words of length 9 and 10 (not

given in the table). Based on this experiment and Theorems 2.2 and 3.2 we pose:

Conjecture 4.1 Let f be a word such that SPId(f)S B 1 holds for any d. Then f is

a power of a prime word.
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A possible approach to the conjecture would be to prove that if f is not a power

of a prime word, then the sequence �SPId(f)S�d satisfies a certain recurrence relation

from which we can deduce the behavior of the sequence. For instance, one can

establish the recurrent formula

SPId(01110)S = SPId−4(01110)S + SPId−5(01110)S,
with initial conditions SPI5(01110)S = 1, SPI6(01110)S = SPI7(01110)S = SPI8(01110)S =
0 and SPI9(01110)S = 1. Similarly, either by applying Equation (3) or by a tedious

case analysis yields, one can get:

SPId(000001000)S = SPId−6(000001000)S + SPId−7(000001000)S
+SPId−8(000001000)S + SPId−9(000001000)S,

with initial conditions SPI9(000001000)S = 1, SPI10(000001000)S = SPI11(000001000)S =
SPI12(000001000)S = SPI13(000001000)S = SPI14(000001000)S = 0, SPI15(000001000)S =
SPI16(000001000)S = SPI17(000001000)S = 1.

In Fig. 1 the values of SPId(01110)S and SPId(000001000)S for 5 B d B 55 are

plotted. Note that the sequence SPId(f)S does not need to be monotone, but it seems

that starting from some large enough dimension the sequence is strictly increasing.

Figure 1: Values of SPId(f)S for f = 01110 and f = 000001000
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[5] S. Klavžar, S. Shpectorov, Asymptotic number of isometric generalized Fi-

bonacci cubes, European J. Combin. 33 (2012) 220–226.

[6] J. Liu, W.-J. Hsu, M. J. Chung, Generalized Fibonacci cubes are mostly Hamil-

tonian, J. Graph Theory 18 (1994) 817–829.

[7] D. Merlini, R. Sprugnoli, Algebraic aspects of some Riordan arrays related to

binary words avoiding a pattern, Theoret. Comput. Sci. 412 (2011) 2981–3001.

[8] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, Published

electronically at http://oeis.org.

[9] N. Zagaglia Salvi, On the existence of cycles of every even length on generalized

Fibonacci cubes, Matematiche (Catania) 51 (1996) 241–251.

11


