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ABSTRACT

The exact number of periodic Ducci sequences of vectors with arbitrary dimension but with
specified period is computed, assuming natural identifications of certain sequences having the
same behavior. A duality tkeory is developed which shows that this computation is equivalent
to a result of A. Ludington Young on the number of periodic Ducci sequences of specified
dimension but arbitrary period.

1. THE MAIN THEOREM
For any integer n > 0 define T =T, : R* — R® by the rule

T((ai)ocicn) = (| @i — (i +1)modn)o<icn

where for any s € Z we let s mod n denote the remainder when s is divided by n (so that
0<smodn <n). Ifv € R" then the sequence (T" (v))i>o is called an n-number game [4, p.
259] or Ducci sequence [5, p. 145], or Diffy game [6]. We say that a Ducci sequence (Ti('b'))izo
has period k > 0 (and that the vector v has Ducci period k) if T*(v) = v. Two basic themes
in the study of Ducci sequences are the behavior of the periodic ones and the convergence of
- arbitrary ones to periodic ones (e.g., see 2, 4, 7]). In this paper we count, after making some
natural identifications, the exact number of Ducci sequences with a specified period k.

We now make some standard reductions in the study of periodic Ducci sequences. It is
well-known that if a € R has some Ducci period, then a € {0,7}" for some positive YyER
(e-g., see [1, Claim 2, p. 48] or [3, Lemma 3, p. 256]). Since T*(y~'a) = y~1T"(a) for all i > 0,
we may as well assume that v = 1 and that a € {0,1}™. Moreover since |e— f| = (e+f) mod 2
for all e, f € {0,1}, we may identify {0,1} with Z, and regard T, as the linear map Z% — Z3
with T5.((a3)o<i<n) = (@i + @(i1+1)modn )o<i<n.

It is natural to identify a vector such as v — (0,1,1) with its iterates, say for example
w = (0,1,1,0,1,1, 0,1,1), since both give rise to Ducci sequences with the same behavior.
(For each i > 0, T§(w) is obtained by iterating the coordinates of T3 (v).)

Definition 1: Call vectors g = (@i)o<icm € ZP* and b = (bi)o<i<n € Z% similar if aimodm =
bimoan for all i € Z.

Similarity is clearly an equivalence relation on UnsoZ%. We will see in Lemma 1 below

that vectors a and b as above are similar if and only if we have

m
a= (ao,...,a,_l,ag,...,a,._l,...,ao,...,ar_l) € Z]
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and
— n
b= (aU:---:ar—l,a‘O:---:Gr—lz--':aﬂn---:ar—l) € Zy

where r = (m, n) is the greatest common divisor of m and n. It follows easily that if ¢ and b
are similar, then their Ducci sequences have essentially the same behavior; in particular, one
has Ducci period k if and only if the other does also (see Lemma 2).

Let us now fix a positive integer k; we let 2; denote the largest power of 2 dividing k.

Main Theorem: The number of similarity classes of vectors in UpsoZ% with Ducci period
k is 25—,

The proof of the above theorem in §2 will give a simple method of listing all the similarity
classes of vectors in J,,,, Z% with Ducci period k.

If £ > 0 is least such that v € Unso Z% has Ducci period k, then we say that v has minimal
Ducci period k and the Ducci sequence (T*(v))i>o0 has minimal period k. In §3 we will show
how to compute the number of similarity classes of vectors with minimal Ducci period k.

In §4 we will develop a duality between the vectors in Z% of Ducci period k and the vectors
in Z% of Ducci period n. This duality will show that the main theorem above is equivalent to
the following observation of A. Ludington Young.

Young’s Theorem: [3, p. 260, last paragraph]. There are ezactly 22 vectors in Z% with
a finite Ducci period.

The duality plus Young’s Theorem yield together a second proof of the Main Theorem.
In §4 we will also sketch a quick proof of Young’s Theorem using linear algebra.

2. COUNTING SIMILARITY CLASSES

For each a = (a;)o<icm € Z73" let 6 (a) denote the doubly infinite sequence (a;modm )iez €
ZZ%, ie., the map Z — Z, taking each i € Z to @imodm. One might, for example, visualize
63((0,0,1)) as the doubly infinite tuple (---0,0,1,0,0,1,0,0,1 - -), although this notation does
not clearly indicate the value of the doubly infinite sequence at any particular integer.
Lemma 1: Let a = (a:)o<icm € ZF* and b = (b;)o<icn € Zj; set r = (m,n). The following
are equivalent: B
(i) a and b are similar;
(ii) em(a) = e‘n(b) ;
(“;3-) bimodn = Vimodr = Qimodr = Gimodm for alli € Z.

Proof: We prove (i) = (iii) (that (iii) = (ii) = (i) is trivial). Assume that a and b are
similar. Write r = sm + tn and i = rq + (i mod r) where s,¢,q € Z. Then

Gimodm = bimodn = b(amq+imodr)modn

= @(imodr)modm = @imodr = Bimodr

since 0 <imod r < min{n,m}. 0O

The interpretation of similarity given after Definition 1 follows from the above lemma.
The next lemma will show that similar vectors have the same Ducci period (if either has a
finite Ducci period).

Note that the image of each of the maps 6, : Z} — ZZ is the set of doubly infinite
sequences (c;)iez with block length n, i.e., with ¢;yn = ¢; for all i € Z. (We use the term
“block length” instead of “period” to avoid confusion with Ducci periods.)
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Let T : Z§ — ZZ be the map taking each doubly infinite sequence a = (a;)icz € ZZ to
(ai + ait1)icz. We say a has Ducci period k if T*(a) = a.
Lemma 2: Suppose a € ZJ* and b € Ly are similar. If one of a, b, 6,,(a) or 6, (b) has Ducci
period k, then they all have Ducci period k.
Proof: The lemma follows from the fact that Om(a) = 0,(b) (Lemma 1) and the fact that
for all 2 > 0, . _
T*(0m(a)) = 81 (T, (a)). (1)

(Note that formula (1) follows from the easy case where i =1.) O

We now prove the Main Theorem. The above lemmas show that the set of similarity classes
of vectors in (J,,,, Z2 with period & is bijective with the set D of doubly infinite sequences in
ZZ which have a finite block length and Ducci period k. It therefore suffices to show that the
projection map 7 : ZZ — Z;‘_z" taking each (a;);ez to (@i)o<i<k—2, carries D bijectively onto
2%

Let I and S denote the identity and shift operators on Z%, so S((ai)iez) = (ait1)iez.
Then T = S + I and hence for any ¢ > 0 and q = (ai)icz € Z% we have

-5 (o= ()

=0 i€Z
Suppose 1 < j < 2; set t = /2;, so ¢ is odd and 2; < 2;. Hence t(f) — %(f:ll) is even,
S0 (k) is even. On the other hand (2'1) is odd [9, Lemma 4.16, p. 80]. Thus a = (@i)icz € Z%
has ‘bucci period k if and only if for alli € Z

or, equivalently,
k
0=aitz, + Z (-)ai-hj + Gkt (3)
2x<ji<k J

Equation (3) can be reindexed to say that for all i € Z,

=2, k=2, k
dy= Z (k_j)a,-_j = ?:: (j+2k)ai+j: (4)

i=1
which expresses each a; in terms of the preceding or succeeding a;’s.

Now suppose a = (a;)o<ick—2, € Z¥~?*. It suffices to show that there is a unique o’ € D
with Ducci period k which under the projection 7 maps to a. If we define a’ — (ai)icz by the
(forwards and backwards) recursion relations (4), then a’ will satisfy the equations (3) for all
¢ € Z and hence a’ will have Ducci period k; indeed it is the only element of Z% which 7 maps
to a having Ducci period k. It remains to show that o’ has a finite block length. Since Zi g
finite, for some integers u > v > 0 we must have (ay41,--- 1 Qutk—2;) = (Gygr, - 2 Gygk—2, ):
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But then the recursion relations (4) show that ay4; = au; for all i € Z, and hence that
a' = (a;)iez has block length u — v. This completes the proof of the Main Theorem. [J

Note: The above argument shows that any nonzero vector in ZJ with Ducci period k is similar
to one in Z7* for some m < 2¥~2 —1. For example any vector in Un>o Z% with Ducci period 5 is
similar to one in ZJ* for some m < 2*—1 = 15. Actually one can say more than this. A nonzero
vector of Ducci period 5 has minimal Ducci period 5 and by Proposition 1 below there are
exactly 15 similarity classes of such vectors. These similarily classes therefore must be exactly
the similarity classes of the 15 shifts of the vector w = (1,0,1,0,1,1,0,0,1,0,0,0,1,1,1) € Z1
of minimal Ducci period 5.

3. MINIMAL DUCCI PERIODS

Let p denote the usual Moebius function and let k¥ denote a positive integer. The Main
Theorem above together with the Moebius inversion formula [8, Theorem 4.7, p. 111] give a
formula for the number N (k) of similarity classes of vectors with minimal Ducci period k.

Proposition 1: N(k) = 37, u(k/d)24-2.

For example if £ is divisible by exactly one prime p, then the proposition says that N(k) =
2k=2& — 9k/p=2x/5_ Similarly, if k has exactly two distinct prime factors p and g, then

N(k) = 282 ok/P=2x/p _ 9k/9=2k/q 4 9k/PA~2k/pg

When k has three or more distinct prime factors, then the summation in Proposition 1 is
~ more complicated. The next proposition shows that in this case a truncation of the sum in
Proposition 1 to just two terms gives a surprisingly good relative approximation to N (k).
Proposition 2: Let Ny(k) = 282 — 25/P=2/» where p is the smallest prime dividing k.
Suppose that k has at least & distinct prime factors. If k is odd, then

N(k) 1 1
<1- <
O<l-F@ S w1901
and if k is even, then
14
b<1_ Nk _16 24 1

=7 No(k) ~ 1521 —1220°

Proof: Let p(0) < --- < p(r) be the distinct odd prime divisors of k, so r > 1 and if k is
odd, then r > 2. Let B=5and § =0if p #2 and let B =2 and § = 1 if p= 2. Since odd
primes always differ by at least 2,

k k k

E(ﬁj o m = p(0)p(3) (p(%) — p(0)) > B2i. (5)
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Since every Ducci sequence with minimal period k has period k but not k/p, No(k) > N(k).
Since every Ducci sequence of period k but not of minimal period k has period k/g for some
prime g dividing k&,

r

N(k) > 9k=2k _ so(k—2x)/2 _ sz/p(i)—z,,

i=0
T .
= No(k) — sz/p(e)—zk + (1 — §)2k/P(0)=2¢
1=0
"
1
— — 5)9%/p(0)=2 _ 9k/p(0)-2 e
— Ng(k) + (1 5)2 p 3 2 P L ZU zk/p(ﬂ)—k/p(i)
=
k/p(0)—2 k/p(0)—2 —223
2 Nolk) -+ (1 —B)aerlO e gheli=a e

(applying inequality (5) and summing the infinite series Y (55)")- Thus

<1-
0= No(k) = 2k—2x _ 9k/p—2k/p

N(k 9k /p(0)~2% 92B
()< (223g1—1+6).

When £ is odd we have p = p(0) and 2 = 1, so

k/p—1 2B
G N(k)< 2 ( 2 1_1)

=7 No(k) = 2F—1_2k/p—1 \ 22B _
1 1 1 1 1 1
= 9k—k/p _ 1 210_15210_1 22k/3_1-<-210_1 270 _ 1 (6)

sincep>3andk>3-5.7.
Now suppose k is even, so that k > 2,p(0)p(1) > (30)(2x/2) > 30 and hence 14 < 7k/15 =
k/2 —k/30 < (k — 2;)/2. Then

- N(k) 92B 2]:/1}(0)—2,,
= No(k) — 922B _ 1 9k—2 _ 9(k—2:)/2
928 1 1
= 22B _ 1 9k—k/p(0) 1— E(k____%_km
24 214 1 24 214 1
S 941 oW_1 286 S 5] 214 _1 220° (")

This completes the proof of Proposition 2. [J

Remark: One can show that 1— _ﬁN_a(t% < 212;,?‘,7;. If k has at least 3 distinct prime divisors,

then this follows from the formulas (6) and (7) above. If k has exactly two distinct prime
divisors, then it is easy to show that 1— Nio((% <2-3k. Of course, if k has a unique prime
divisor, then N (k) = Ny(k).
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4. DUALITY

We begin with an example. The vector v = (1,1,0,0,0) € Z§ has minimal Ducci period
15 and w = (1,0,1,0,1,1,0,0,1,0,0,0,1,1,1) € Z® has minimal Ducci period 5. These facts
turn out to be related. Consider the 5 x 15 matrix whose rows are the vectors THw),0<i<5
(of course T°(w) = w):

w 1010110010001 1°71
T(w) 111101011001000
T(w)[ =10 0 0 1 1 1101011001
T3(w) 001 000111101011
T*(w) 011001000111101

The columns of the above matrix are exactly the transposes of the vectors T%(v),0 < i < 15.
We now show that this kind of behavior is not anomalous.

It is convenient for us to develop some terminology parallel to that in §2 that lets us deal
simultaneously with an entire similarity class of vectors; we will use sequences here in place
of the doubly infinite sequences of §2. (The use of doubly infinite sequences facilitated the
analysis of similarity and the recursion arguments of §2.)

For each integer m > 0 let 7y, : ZT* — Z4 be the map assigning to each vector (ai)o<icm €
ZT the sequence

(aimodm)iZD = (a{)modm,almodm: G2modm; " * ) € Z;J

One checks that vectors a € ZJ* and b € Z? are similar if and only if Tm(a) = mn(b). The
image of 7, is the set of sequences (a;)i>o of block length m, i.e., with a;im, = a; for all i > 0.
We let T : Z3 — Z3 map each sequence (a;)i>o to (a; + ai+1)i>0 and say that a sequence
a € ZY has Ducci period k if T*(a) = a.

For all ¢ > 0, m > 0 and a € ZJ* we have T*(my(a)) = mm(T% (a)). Therefore a vector
a € 27" has Ducci period k if and only if 7., (a) has Ducci period k.

We call a sequence a = (a;)i>0 € Z4 a Ducci list if it has a finite block length and a finite
Ducci period, and hence if and only if for some m > 0 it is the image under 7, of a vector in VAL
which is the initial term of a periodic Ducci sequence. The infinite Ducci matriz of a Ducci list
a € Z3 is the infinite matrix [a;;]i>0, j>0 such that for all i > 0, T%(a) = (aio, ai1, - ). By the
transpose of any infinite matrix A = [aj;]i>0, j>0 We mean the infinite matrix A* = [a;i]i>0, j>0-
Duality Theorem: Let a € Z§ be a Ducci list with block length m, Ducci period k, and
infinite Ducci matriz A. Then the transpose of the first column of A is a Ducci list with block
length k, Ducci period m, and infinite Ducci matriz AT,

Proof: Write A = [a;j]i>0, >0 and let b = (ago, a10,a20,- -+ ) be the transpose of the first
column of A. By the definition of T (and of A) for all i > 0 and j > 0 we have

Bit1,j = Gij + Qi 41

and hence a;ji1 = ai; + aj41,;. This says that for all j > 0, T(aoj,a1j,a2;, - -) =
(ﬂo,j-;-l, al’j+1,az,j+1’...) and hence that

T7(b) = (aoj, 81,825, ) (8)
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so the j-th column of A is just the transpose of T7(b), for all > 0. Since a, and hence T%(a)
for each 7 > 0, has block length m, the columns of A repeat with period m, so b has Ducci
period m. Similarly, since @ has Ducci period k, the rows of A repeat with period k and hence
b has block length k. The formula (8) further tells us that A" is exactly the infinite Ducci
matrix of b, as claimed. [

Remark: With a and b as in the above proof we call b the dual of a. Since (A7) = A, the
dual of the dual of a is a. Note that if m is the minimal block length and k is the minimal
Ducci period of a, then k is the minimal block length and m is the minimal Ducci period of
the dual of a.

The set & of periodic n-number games (with vectors in Z7) is bijective with the set 8y of
Ducci lists with block length n. By duality, S, is bijective with the set 83 of Ducci lists with
Ducci period n. The Main Theorem says that 83 has 2"~2n glements and Young’s Theorem
says that §; has 2"~2n elements. Thus the two theorems are equivalent. We end this section
by sketching a quick proof of Young’s Theorem using linear algebra.

Proof of Young’s Theorem: Write n = 27¢ with t odd (so 2, = 27). The characteristic
polynomial of T}, is

(@+1)"+1=(z+ 1) +1)* = 2¥p(z)

for some p(z) € Zy[z] not divisible by z. (Note that 0 is a simple root of (z+1)*+1.) Then
Z3 decomposes into a direct sum V & W of Tn—invariant subspaces where V and W denote
the null spaces of T2?" and of p(T7), respectively. But T, |y is nilpotent and T, |y is invertible.
It follows that W is exactly the set of vectors in Z% with a finite Ducci period (clearly this set
Is contained in W and if w € W then Ti(w) = T#(w) for some positive integers ¢ > j > 0,
whence 7777 (w) = w). Since dimV = 27 — 2n, therefore dim W =n — 2, ie., W has 272«
elements. [J
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