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Abstract. The aim of this paper is to find the general term of the complementary sequence
of a given strictly increasing sequence of non-negative integers. Finally, some applications are
given.

1. Introduction

We are motivated by the large number of papers in connection with the problem of comput-
ing or estimating the so called modified harmonic series, i.e., the series obtained by omitting
some terms of the harmonic series.

One of the first preoccupations in this sense refers to the series formed by the inverses
of all positive integers whose denominator expressed in base 10 does not contain the digit
9. Kempner [3] proved that this series is convergent and that the limit is smaller than 80.
This bound is rough though. Irwin [2] reduced the bound to 24. Baillie and Schmelzer [1, 4]
developed an algorithm for the numerical approximation of such limits.

Let (an)n∈N be a strictly increasing sequence of non-negative integers. Then the set of all
non-negative integers which are not terms of the sequence (an)n∈N, being assumed an infinite
set, can be ordered as a strictly increasing sequence, which will be called in the sequel the
complementary sequence of (an)n∈N.

As a simple example, the complementary sequence of the sequence of the even non-negative
integers is the sequence of the odd non-negative integers.

Note that if (bn)n∈N is the complementary sequence of the sequence (an)n∈N, then (an)n∈N
is the complementary sequence of the sequence (bn)n∈N.

2. The Main Results

In this section we consider the strictly increasing sequences (an)n∈N, (bn)n∈N ⊂ N, being
complementary each one to the other. We start with the following theorem.

Theorem 2.1. For every n, k ∈ N, the following implication holds true:

n ∈ N ∩ [ak − k, ak+1 − k − 1) ⇒ bn = n+ k + 1.

Proof. The sequence (bn)n∈N takes all the values between two consecutive terms ak < ak+1,
so for every m ∈ N, the following implication holds true:

ak < bm < bm+1 < ak+1 ⇒ bm+1 − bm = 1. (2.1)

Now, for a given index k with ak+1 − ak ≥ 2, let m be the minimal rank such that ak < bm.
Then bm = ak + 1.

There are k + 1 terms a0, a1, . . . , ak of the sequence (an)n∈N which are less than bm. The
others ak + 1 − (k + 1) = ak − k terms are terms of the sequence (bn)n∈N, in fact they are
b0, b1, . . . , bak−k−1 < bm.
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Now we can deduce that m = ak − k and so bak−k = ak + 1, which is bm = m+ k + 1.
Finally, if we assume that bm, bm+1, . . . , bm+s are all the (consecutive) terms between ak

and ak+1, then the conclusion follows from (2.1). �

Now we can conclude by giving the result which provides the formula of the general term
of the complementary sequence.

Theorem 2.2. Let (an)n∈N be a strictly increasing sequence of non-negative integers, with
a0 = 0 such that the sequence (an − n)n∈N is unbounded from above. Then the complementary
sequence (bn)n∈N of the sequence (an)n∈N is given by the formula bn = n + un + 1, where
un = max{k ∈ N | ak − k ≤ n}.

Proof. Note that for every non-negative integer n, there exists a rank k depending on n, say
k = un, such that

ak − k ≤ n < ak+1 − (k + 1). (2.2)

By Theorem 2.1, we have bn = n+ k + 1, or equivalent bn = n+ un + 1. �

In consequence, we can see that the problem of finding the general term of the complemen-
tary sequence is in fact the problem of solving the double inequality (2.2).

If we look carefully at relation (2.2), we can see that it is more convenient to denote the
given sequence as in the following.

Theorem 2.3. Let (an)n∈N be a strictly increasing sequence of non-negative integers, with
a0 = 0, given in the form an = n+ f(n), where the function f : [0,∞) → [0,∞) is increasing,
invertible and assume that f transforms integers into integers. Then the general term of the
complementary sequence (bn)n∈N of the sequence (an)n∈N is given by the formula

bn = n+ 1 + [f−1(n)]. (2.3)

([·] means rounding towards 0).

Proof. The sequence (an−n)n∈N is unbounded above, so formula (2.2) can be written equiva-
lently as f(k) ≤ n < f(k + 1) and by the monotonicity of the functions f and f−1, we obtain
k ≤ f−1(n) < k + 1.

It follows that k = [f−1(n)], so we are done. �

3. Examples of Complementary Sequences

Corollary 3.1. The general term of the sequence of the positive integers which are not perfect
squares is given by the formula

zn = n+

[√
n+

1

2

]
, n ∈ Nr {0}.

Proof. The sequence (bn)n∈N is the complementary sequence of the sequence an = n2. In
order to use Theorem 2.3, we write an = n + f(n), where the function f : [1,∞) → [0,∞) is

f(x) = x2 − x, with f−1(x) = 1+
√
4x+1
2 .

Directly using formula (2.3), we deduce that

bn = n+

[
3 +

√
4n+ 1

2

]
, n ∈ N.
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To finish the proof, we have to show that bn = zn+1, for every n ∈ N, which is[√
n+

1

4
+

1

2

]
=

[√
n+ 1 +

1

2

]
.

Indeed, by Hermite’s formula [x+ 1
2 ] = [2x]− [x], we get[√

n+
1

4
+

1

2

]
= [

√
4n+ 1]−

[√
n+

1

4

]
= [

√
4n+ 4]− [

√
n+ 1] =

[√
n+ 1 +

1

2

]
.

The penultimate equality follows from the fact that

[
√
4n+ 4]− [

√
4n+ 1] = [

√
n+ 1]−

[√
n+

1

4

]
∈ {0, 1},

where the value 1 is taken if and only if n+ 1 is a perfect square. �

Using the same method, we can find the sequence b0 = 2 and

bn = n+ 1 +

 3

√
n

2
+

√
n2

4
− 1

27
+

3

√
n

2
−

√
n2

4
− 1

27

 , n ≥ 1

of the positive integers which are not perfect cubes.
Similarly, the complementary sequence of the sequence of triangular numbers Tn = 1+ 2+

· · ·+ n, n ≥ 1 is

bn = n+

[
3 +

√
8n+ 1

2

]
, n ∈ N,

while the complementary sequence of the sequence of tetrahedral numbers τn = T1+T2+ · · ·+
Tn, n ≥ 1 is c0 = 2, c1 = 3, c2 = 5, with

cn+1 = n+ 1 +

 3

√
3n+

√
9n2 − 343

27
+

3

√
3n−

√
9n2 − 343

27

 , n ≥ 2.

4. Sums of Complementary Sequences

These results can be used to compute some interesting sums involving the values of the
inverse of a given function. More precisely, let us take the example of the sum of all integers
less than or equal to n, which are not squares. This sum can be obtained by retracting from
the sum 1+2+ · · ·+n the sum of all squares which are less than or equal to n. The advantage
of this method is that we can compute the sum of the first few squares involved, so the other
sum can be also calculated. We illustrate this idea in the following theoretical background.

Theorem 4.1. Let (an)n∈N be a strictly increasing sequence of integers with a0 = 0, such that
(an − n)n∈N is unbounded from above and let (bn)n∈N be its complementary sequence. Then
for every positive integer s and any injective function φ : N → R, we have

s∑
j=0

φ(bj) =

bs∑
k=0

φ(k)−
bs−s−1∑
i=0

φ(ai). (4.1)
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In particular, the following inequality holds true:

s∑
j=0

bj =
bs(bs + 1)

2
−

bs−s−1∑
i=0

ai. (4.2)

Proof. The particular case (4.2) is obtained from (4.1) with φ(x) = x. Let us consider the
disjoint union of sets:

{φ(b0), φ(b1), . . . , φ(bs)}∪{φ(a0), φ(a1), . . . , φ(ak)} = {φ(0), φ(1), . . . , φ(bs−1), φ(bs)}, (4.3)

where k is the greatest integer such that ak < bs. Indeed, from (s + 1) + (k + 1) = bs + 1, it
results that k = bs− s−1. Moreover, by writing the equality of the sums of the elements from
the terms of (4.3), we obtain

s∑
j=0

φ(bj) +

bs−s−1∑
i=0

φ(ai) =

bs∑
k=0

φ(k),

which is the conclusion. �

If we use the representations from Theorem 2.3 for the sequences (an)n∈N and (bn)n∈N, then
we obtain the following interesting form.

Theorem 4.2. Let f : [0,∞) → [0,∞) be an increasing, invertible function which transforms
integers into integers. For every positive integer s, we have:

s∑
j=1

[
f−1(j)

]
= (s+ 1) ·

[
f−1(s)

]
−

[f−1(s)]∑
i=1

f(i). (4.4)

Proof. Let us define the increasing sequence an = n+ f(n) and let bn = n+ 1 +
[
f−1(n)

]
be

its complementary sequence by Theorem 2.3. Then (4.2) becomes

s∑
j=1

(j + 1 + [f−1(j)]) =
bs(bs + 1)

2
−

bs−s−1∑
i=1

(i+ f(i)),

or

(s+ 1)(s+ 2)

2
+

s∑
j=1

[f−1(j)] =
bs(bs + 1)

2
− (bs − s− 1)(bs − s)

2
−

bs−s−1∑
i=1

f(i).

Now the conclusion follows by replacing bs and after some easy calculations. �

If we take f(x) = x2, then by (4.4), we deduce

s∑
j=1

[√
j
]
= (s+ 1) ·

[√
s
]
− [

√
s]([

√
s] + 1)(2[

√
s] + 1)

6
,

while for f(x) = x3, we get

s∑
j=1

[
3
√

j
]
= (s+ 1) ·

[
3
√
s
]
−

(
[ 3
√
s] ([ 3

√
s] + 1)

2

)2

.
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Further, by applying (4.4) to the function f(x) = x2 − x and from Corollary 3.1, we obtain
the formula

s∑
j=1

[
1 +

√
4j + 1

2

]
= (s+ 1)vs −

vs(v
2
s − 1)

3
,

where vs =
[
1+

√
4s+1
2

]
.

Similarly we can obtain the following results about modified harmonic series. By taking
φ(x) = x−1 in (4.1), the sum of the inverses of the first s integers which are not triangular
numbers is equal to

s∑
j=0

1

j +
[
3+

√
8j+1
2

] =

s+
[
3+

√
8s+1
2

]∑
k=1

1

k
+

2[
3+

√
8s+1
2

] − 2.

We are convinced that our summation method can be successfully used to compute or to
evaluate other interesting partial sums of modified harmonic series.
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