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é comparison of (x, + yn/_Z_) (3 + 2/2) and (3, 3)(‘“) shows that all solutions
of t? - 2(2b)2 = 1 are obtained by ‘ Yn

G 3G - ()

+ t, -1
Zﬁﬁir_ll = b? are obtained from a, = 2

and hence all solutions of 5

s bn =

Note that ¢, is odd for all n so a, is an integer.
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1. INTRODUCTION

The central factorials have been introduced and studied by Stephensen; prop-
erties and applications of these factorials have been discussed among others and
by Jordan [3], Riordan [5], and recently by Roman and Rota [4].

For positive integer m,

5] =.9c(x+~%mb - b)(x +%mb - 2;;) (m —%__mb+ b)

defines the generalized central factorial of degree m and increment b. This defi-
nition can be extended to any integer m as follows:

x[o:b] =1

, xlmm bl = g2/ +2,0) 4 positive integer.
The usual central factorial (b = 1) will be denoted by x["]. Note that these fac-
torials are called "Stephensen polynomials" by some authors.

Carlitz and Riordan [1] and Riordan [5, p. 213] studied the connection constants
of the sequences x!™! and z”, that is, the central factorial numbers #(m, #n) and
T(m, n):

m m
2l = E t(m, n)x™, x™ = ET(m, nyatnl;
n=0

n=0

these numbers also appeared in the paper of Comtet [2]. In this paper we discuss
some .properties of the comnection constants of the sequences 2lms 9] and xl7 8], B #
g, of generalized central factorials, that is, the numbers K(m, 7, &):

m
plnag] = 2: g"W " K(m, n, s)xlmt g = h/g.
n=0

2. EXPANSIONS OF CENTRAL FACTORIALS

The central difference operator with increment a, denoted by §,, is defined by

Saf(x) = flx + a/2) - f(x - a/2)
Note that

8, =B — B = E (2.1)
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where E,; and A, denote the displacement and difference operators with increment a,
respectively. Therefore,

8a = S (-1y% () 52 )
2 (%) (2.2)

When the increment a = 1, we write §;, = §, B, = E, and A, = A.
The central factorial of degree m and increment b, denoted by xlm bl ig defined
by
alm bl = x(x + %mb - b)(x + %mb - Zb) cee (x - %mb + b).
Note that
xlm,b] = .',c(x + %mb - b)m—l,b s (2.3)
where

W,y =Yy - b)Yy - 2b) +++ (y - mb + b)

is the falling factorial of degree m and increment b.
It is not difficult to verify that

2
zlm: 2] = [xz - (%m - l) bz]x[”"z’b]; (2.4)
Using the relation -
R S
Wmo = GFmEy, (2.5)
and, by (2.3), we get ,
zl-mbl = % (2.6)
x[m+2,b]
When the increment b = 1, we write
,’x,'[m’1]E x[m]’ (y)m’l = (y)m_
Note also that
()™ = prglm k) p = 1/b. (2.7)

From formula (2.8) (see Riordan [5, p. 147]),

n neo n

1
with oo = bx, B =1/2, u=FE, v = (E - l)E'i = §, we get the symbolic formula
br _ N (n] 1 qn
E n)':‘,o(bx) =56
Since [Eb”(sz)[m]]z=0 = (ax)!"!, s = a/b, we obtain

COLAEEDY [;—!a%sx)“”]ho LR

n=0

Denoting the number in brackets by

K@, n, ) = [L,s”(sx)[’"]] , (2.9)
n! £=0
we have

@)™ = 3 K, n, ) B, 5 = a/b. (2.10)
n=0

Using (2.7), (2.10) may be rewritten in the form
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zlmdl =% "W K(m, n, s)xlmhl, s = h/g. (2.11)
Note also that =0
K(m, n, 8) =|: 1 Saa L2 21 , 8 =alb. (2.12)
ﬂ!bm x=0

From the definition (2.9), we may deduce an explicit expression for the num-
bers K(m, n, 8). Indeed, from the symbolic formula (2.2) with a = 1, and since

T I
nl_! kz:) (—l)k(z> (s[%n - k})lm]
% ki (-1)k(2)(%sn - sk)(%sn + %m - gk - 1>m_1 (2.13)
=0

A recurrence relation for the numbers K(m, n, 8), useful for tabulation pur-
poses, may be obtained from (2.10) and (2.4) as follows:

we get

K(m, n, 8)

m+2

m
(m+2] _ inl o (q2,2 _ 1.2 (n]
(sk) Z Km+ 2, n, 8)x (s x Zm) an)K(m’ n, 8)X

n=0

zm:oK(m, 7, s)[szx["+2]+—ll;(szn2 - mz)xlnl].
ne
Hence

Km+ 2, n, 8) = %(szn2 - m®)K@m, n, 8) + s?K(m, n - 2, 8). (2.14)
The initial conditions are

kK, 0, 8) =1, X(0, n, 8) =0, n >0, K(my 0, 8) = 0, m > 0.
Moreover,
K@2m, 2n + 1, 8) = 0, K2m + 1, 2n, s8) = 0.

From the recurrence relation and the initial conditions, it follows that:
If s is an integer, the numbers
s”2"K(2m, 2n, 8) and 4" "7 TlK(2m 4+ 1, 2n + 1, 8)
are positive integers and, moreover,
If s is a negative integer, the numbers
K(2m, 2n, 8) = 0, m < n, m > n|s|,
XKGm+ 1, 2+ 1, 8) =0, m<n, 2n+ 1> (2n+ 1) |s|.

Other properties of these numbers will be discussed in the next section.
We now proceed to determine the coefficients A(n, m, s) in the expansion

zl-ml = Z A(n, m, 8)(sx)l-"1,

n=m

Since x!™*2] = (x2 - %mz)x['"’], we get

i An, m - 2, 8)(s)l™™ = (xz - %mz’) ZA(n, m, s)(sz)l™™

n=n-2 n=m

f: A, m, 8) [3_2(390)['"”] + %(s'znz—mz)(sx)[""]].

n=m
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Hence

Aln + 2, my, 8) = 71;(327712 - n®Awm, my, 8) + s?Am, m - 2, 8)
with
A0, O, 8) =1, A0, m, 8) =0, > 0.

Comparing this recurrence with (2.14), we conclude that

el-m = ZK(n, m, 3)(3x)['”] y (2.15)
n=m

which may be written in the form

(k)" = Y K(n, m, 8) (ax) [ (2.16)
or nEm
xl-m 9] = }: g*hW"K(n, m, s)xl-mt] s = n/g. (2.17)
n=m

3. SOME PROPERTIES OF THE CENTRAL FACTORIAL NUMBERS

Some other properties of the numbers X(m, mn, s), defined by (2.9) or, equiva-
lently, by (2.12), will be discussed in this section.
From (2.10) we may easily get the relation

m

K(ms ks al/b)K(ks n, bla) = Suns (3.1)
k=n

where S, denotes the Kronecker delta. This relation implies the pairs of inverse
relation

am = Zk(m, ns alb)by s bn = EK(m, ns bla)a,,
n=0 n=0

iK(m, ns al/b)dns d, = ZK(m, ns bla)ey-

m=n m=n

Cn

For the central factorial numbers

| 11 -
t(m, n) = [ETD x‘] i and 7(m, n) = [ZTénx ]x=0
we have (see Riordan [5, p. 213])
m

zlml = 3 tm, m)z” (3.2)
n=0

xm = Z T(m, n)xl?l. (3.3)
n=0

Expanding (sx)[™] into powers of x by means of (3.2) and then the powers into cen-
tral factorials by means of (3.3), we obtain

m m k
(sx)"] = Eskt(m, k)xk = Z E skt(m, k)T (k, n)xln]
£=0 k=0 n=0
or

(sx)") = 3 skt(m, KTk, ],
n=0 k=n



1981] CENTRAL FACTORIAL NUMBERS AND RELATED EXPANSIONS 455

which, in virtue of (2.10) with b =1, a = s, gives

K(m, n, 8) = zm:skt(m, k)T (k, n); (3.4)

similarly, it can be shown that k:"
t(m, n) = s’”E K(m, k, s)t(k, n) (3.5)

and k;n
T(m, n) = sy, T(m, KKk, n, s). (3.6)

k=n

Since lim s (sx){™ = z™, we get, from (2.9),
s+t

lim s~ "K(m, n, 8) = [nl—,d"nc"']x:o = T(m, n). (3.7)

g+t

From (2.12) with » = 1, a = s, and noting that lim s~ '8, = D, we deduce
5+ 0

lim s K(m, n, &) = [Lp”x’"] = t(m, n). (3.8)
s+0 n! =

Turning to the generating function, we find, on using (2.13) and (2.8), with
oc=%sn—sk, B=%, v=y, (u- 1)u'*=y,

that

g, s 9 ZK(m, 7, S)—?H-T

m=0
1zn: (7 ié—sn—sk %sn—sk+—§m—1
=L Sy ( ) R Y — Y
nt k ~ m m- 1
= =@ - u™? , (w- Du =y,

Putting u = e¥ and 8 = r to avoid mistakes in the hyperbolic formulas, we get
. L[5 stan (2m)]"
g,ys ) = o1 sinh (57w
and 1
y = 2 sinh (Ew) .

Therefore, .
e o )]
o [ sinh {1" sinh 7Y

L [2 sinh {p log(%y + —;‘m)}]n (3.9)

N

g, y; r)

n!

The corresponding generating functions for the Carlitz-Riordan central fac-

torial numbers may be obtained as
n
%[2 sinh-1 (%y)] (3.10)

nl—!l:Z sinh (%y)] . (3.11)

Using formulas (3.10), (3.11), and (3.9), and since

©

3 b, M

m=0

Z T(m, n);’%—

m=0

n

8q = [2 sinh (%aD)]n, a™p" = [2 sinh‘l(%—éaﬂn, Sq = [2 sinh {r sinh-? (%513)}],
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we get

1 LI
iT(m, n)a™", a™p” = 2: %Tt(m, n)Sy,

m=0

N

S =53
m=0

3

= \
s, = %{K(m, n, )83, r = a/b.
m=0"

Finally, let .
Qn(z; 8) = 2 (sl
and put e=0

. _ 22+ 1 = Qm,n,s (2 + n)!
Qom (23 8) = 2 n;)2n+1 (z-n)!"

Then

m N m

+7 - 1)1

(sx)[zm} = EQYH,YL,SK“:(F@;O'—)— = Z Qm’";sx[ZM]’
n=0 * n=0

and by (2.10),

Qp, n,s= K(2m, 2n, s).
A similar expression may be obtained for Q2m+1(Z; s).
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Let A be the n X n matrix with elements defined by

a;; =-lif i =4 -1; 1+ pif 2 =g; -uif ¢ =4 + 23
and O otherwise. If n > 3 and | is a positive number, then A is a special case of
a matrix that was shown in[1l] to be useful in the design of two-up, one-down ideal
cascades for uranium enrichment. The purpose of this paper is to derive certain
properties of the determinant D, of 4 and to point out its relation to the Fibo-
nacci numbers.

Expansion of the determinant of 4 according to its first column leads to the

recurrence relation
1) Dy =1+wy,D,=(~-w?, and D, = (1 + WD, , - W,_, for n > 3.

For convenience, set D0 = 1.
By using standard techniques for generating functions, it can be shown that
the generating function D(x) for {D,} (with positive radius of convergence) is
w i ,
2) D) = [1- (1+wWx+px]™t = -15(?)1ﬂ'1+ i-igitad,
(2) @ = [1- Q+we+pe’]™ =37 5 DI(5)wa+w

i=0 j=0



