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In [1] we s tudied the c l a s s of recurrence r e l a t i o n s 
k 

<V= Gn-1 + Gn-2 + E «7.WJ (1) 

with GQ = G± = 1. The main result of [1] consists of an expression for Gn in 
terms of the Fibonacci numbers Fn and ̂ n_13 and in the parameters a , ..., an. 

The present note is devoted to the related family of recurrences that is 
obtained by replacing the (ordinary or power) polynomial in (1) by a factorial 
polynomial; viz. 

with #0 = #! = 1, n̂ '} = n(n - 1) (n - 2) . . . (n - j + 1) for j > 1, and n(0) = 1. 
The structure of this note resembles the one of [1] to a large extent. 

As usual (cf. e.g., [2] and [4]) the solution Hn of the homogeneous equa-
tion corresponding to (2) is 

with (\>1 = h(l + J3) and <f>2 = %(1 - y/E) . 
Next we try as a particular solution 

^ = 0 

which yields 

E ^ n ^ - Efl;(«- l)(i) - E Bi(« - 2)(i) - E Yi«(f) = 0. 
i =0 i = 0 i = Q i = 0 

In order to rewrite this equality, we need the following Binomial Theorem for 
Factorial Polynomials* 

Lemma 1: <«+*)<»> = Z ( J ^ V " ^ -
k = 0 

Proof (A. A. Jagers ) : 

(x + y) 
nn x + y 

+ y)Wtx + y = tn — 
dtn 

(Leibniz f s formula) 

Cancel la t ion of tx+y y i e l d s the des i red e q u a l i t y . 
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Thus, we have 

E * f » ( i ) - E ( E B i ( o ) ( ( - D ( i - 4 ) + ( -2 ) ( M ) )» ( 1 ) ) - E Y ^ = o; 

hence, for each i (0 ̂  i ̂  k), 

k 
Bi - E ^ T A - Yi = 0 (3) 

77? = £ 

with, for m ̂  i, 

6im = (J)((-l)<*-*> + (-2)(w^>). 

Since (-^)(n) = (~l)n (x + n - i)(n ) and n(n) = n!, we have 

6iw= (^)(-l)m-M(/77 - i)! + (̂  - i + 1)!) 

= (^)(-l)'n"i(m - i + 2) (772 - £)! 

= (-l)m"̂ (77? - i + 2)m^-l\ 

From the family of recurrences (3), we can successively determine B^s ..*, 
BQi the coefficient B^ is a linear combination of y., . . . , y, . Therefore, we 
set 

k 
Bi = " E ^ J Y J 

(cf. [1]) which yields, together with (3), 

k k / k \ 
" E ^ i j Y j + E ^ J E m̂£Y£ ) - Yi = 0. 

J = i 777=i \ £ = 777 / 

Thus, for 0 < i < J < k9 we have 

& i i = l 

a 
E 5imz? . , if i < j , 

m = i + 1 

Hence, for the particular solution E^ of (2), we obtain 

*?}- - E E ^ - Y ^ - - E Y Y E & ^ A . 
^ = 0J = ̂  j =0 U = 0 / 

As in [1] the determination of C1 and C2 from H0 = H1 = 1 yields 

Therefore, we have 

Proposition 2: The solution of (2) can be expressed as 

Hn = (1 +Mk)Fn + y ^ . , - E ^ - T T ^ n ) , 
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where Mk is a linear combination of y0, „.., yk5 \\k is a linear combination of 
Yi 9 •••> Y^5 a n d for each j (0 < J < fc) * TTj (n) is a factorial polynomial of 
degree j : 

k k j 
Mr £ ^o,-Y, 3 yk = E 6wY7-. 7T.7 (n) = E *i,-w(i)-

J-0 
Oj 'J 

J = 1 i = 0 

Table 1 

7 
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77^ (n) 

1 

n(1)+3 

n(2) + 6 n ( D + 1 0 

n(3) + 9 n(2) + 3 0 n(i) + 4 8 

n(4) + 12n(3) + 60n(2) + 192n(1) + 312 

n(s) + 15n(4) + 100n(3) + 480n(2) + 1560n(1) + 2520 

n«) + i8n(s) + 15(^(4) + 960n(3) + 4680n(2) + 15120n(1) + 24480 

rc(7) + 21n(6) + 210n(s) + 1680n(4) + 10920n(3) + 52920n(2) + 171360n(1) + 277200 

n(8) + 24n(7) + 280n(6) + 2688n(s) + 21840n(4) + 141120n(3) + 685440n(2) + 
+ 2217600n(1) + 3588480 

n(9) + 27n(8) + 360n(7) 4- 4032n(6) + 39312n(5) + 317520n(4) + 2056320n(3) + 
+ 9979200n(2) + 32296320n(1) + 52254720 

Table 1 displays the factorial polynomials TTj (n) for j = 0, 1, ...s 9. 

The coefficients of y0, y1, y2> • • • i n
 Mk a n d of Yi» Y2 > • • • i n V1* are inde-

pendent of k; cf. [1]. As k tends to infinity they give rise to two infinite 
sequences M and y of natural numbers (not mentioned in [3]) of which the first 
few elements are 

M: 1, 3, 10, 48, 312, 2520, 24480, 277200, 3588480, 52254720, ... 

y: 1, 6, 30, 192, 1560, 15120, 171360, 2217600, 322963 , ... 

Contrary to the corresponding sequences A and A in [1], M and y obviously show 
more regularity. Formally, this is expressed in 

Proposition 3- For each i and j with 0 < i < j < k9 

1 bdo 
j u - % - i + 2 , i f i < J-

Consequently, 

M^ = Y0 + E 3^ y and y k = Y l + E ^ ^ + 1 Y 
j = 1 J J J " 2 

Proof: The argument proceeds by induction on j - i. 

Initial step (j - i = 1): ^ - i s J - = -&j-i,jbjj 

induction hypothesis: For all m with i < m < j 9 bmj = j(J~m)F_ 

(-1)1 • 3j • 1 

777 J ^ ^ J -777+2 

J(l)^3 
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3 J ~ 1 
I n d u c t i o n s t e p : b ^ = ~ E &imbmj = ~&ijbjj " £ 7̂77 fe777J 

7?7 == £ + 1 777 = i + 1 

J - 1 . 
= ( _ i ) j - i + i ( j - _ i + 2 ) j ( J " ^ + E (-l)m-i+l(m - i .+ 2)m{m"^bnd. 

m= i+ 1 

From t h e i n d u c t i o n h y p o t h e s i s , i t f o l l o w s t h a t 

•*>xj = J y " ° ( ( - l ) J " " £ + 1 ( J " * + 2 ) + E (-l)m-i+\m - i + 2)Fd_n+2j. 

As F 0 = F-L = 1, we may r e p l a c e j - i + 2 by F 0 + ( j - t + l ) - ^ * Adding 

3(j-i)({-l)j-i(F0 + Fx - Fz) 

+ ' E (-Dm-i+1(m - i + l)(F3._m + Fj_m+1 - Fd_m+2)) = 0 
777= i+ 1 / 

yields, after rearranging, 

Ui3 J K J-i j - i + l J J j-i + 29 

which completes the induction. m 

Clearly, Proposition 3 provides a different way of computing the coeffi-
cients CLJJ (and hence the elements of the sequences A and X) from [1]; viz. by 

i » 
ai3 = is(i,m)( ZKtSa.J)) (i<3)-. 

7 7 7 = l \ £ = 77Z / 

where s(i9m) and 5(£, j) are the Stirling numbers of the first and second kind, 
respectively. 
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