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1. INTRODUCTION 

A dynamical system is taken here to mean a homeomorphism 
f:X->X-

of a compact metric space X (though the observations here apply equally well to any bijection on 
a set). The number of points with period n under/is 

J>er„(f) = #{xeX\f"x = x}, 

and the number of points with least period n under/is 

U>er„(f) = #{xeX\#{fkx}keI=n}. 

There are two basic properties that the resulting sequences (PerB(/)) and (LPer„(/)) must satisfy 
if they are finite. First, the set of points with period n is the disjoint union of the sets of points 
with least period d for each divisor d ofn, so 

Per„(/) = l L P e r , ( / ) . (1) 
d\n 

Second, if x is a point with least period d, then the d distinct points x, f(x), f2(x),...,fd~l(x) are 
all points with least period d, so 

0<LPer^(/) = 0 modrf. (2) 

Equation (1) may be inverted via the Mobius inversion formula to give 
LPer„C/) = £M«/<OPerdC/-), 

d\n 

where ju( •) is the Mobius function defined by 

ju(n) = 
1 if/i = l, 
0 if n has a squared factor, and 
(-i)r if n is a product of r distinct primes. 

A short proof of the inversion formula may be found in Section 2.6 of [6], 
Equation (2) therefore implies that 

0<^/i(n/rf)Per^(/) = 0 mod* (3) 
d\n 

Indeed, (3) is the only condition on periodic points in dynamical systems: define a given sequence 
of nonnegative integers (Un) to be exactly realizable if there is a dynamical system / : X -> X 
with Un = Perw(/) for all n > 1. Then (Un) is exactly realizable if and only if 

0 < Y, fKn/d)Ud s 0 mod n for all n > 1, 

d\n 
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since the realizing map may be constructed as an infinite permutation using the quantities 

J-L*nld)Ud 
d\n 

to determine the number of cycles of length n. 
Our purpose here is to study sequences of the form 

Un+2 = Un+l+Urt,n>\, Ut = a, U2=b, a,b>0 (4) 

with the distinguished Fibonacci sequence denoted (Fn), so 

Un=aF^2+bF^x for«>3. (5) 

Theorem 1: The sequence (Un) defined by (4) is exactly realizable if and only if b = 3a. 

This result has two parts: the existence of the realizing dynamical system is described first, 
which gives many modular corollaries concerning the Fibonacci numbers. One of these is used 
later on in the obstruction part of the result. The realizing system is (essentially) a very familiar 
and well-known system, the golden-mean shift. 

The fact that (up to scalar multiples) the Lucas sequence (Ln) is the only exactly realizable 
sequence satisfying the Fibonacci recurrence relation to some extent explains the familiar observa-
tion that (L„) satisfies a great array of congruences. 

Throughout, n will denote a positive integer andp, q distinct prime numbers. 

2. EXISTENCE 

An excellent introduction to the family of dynamical systems from which the example comes 
is the recent book by Lind and Marcus [4]. Let 

J!T = {x = (x^)G{0,l}z|xik = l=>JcJt+1 = Ofor .an*eZ} . 

The set AT is a compact metric space in a natural metric (see [4], Ch. 6, for the details). The set X 
may also be thought of as the set of all (infinitely long in both past and future) itineraries of a jour-
ney involving two locations (0 and 1), obeying the rule that from 1 you must travel to 0, and from 
0 you must travel to either 0 or 1. Define the homeomorphism / : X -» X to be the left shift, 

(/(*))* = * w for all k eZ. 
The dynamical system / : X -» X is a simple example of a subshift of finite type. It is easy to 
check that the number of points of period n under this map is given by 

Perw(/)= t r a c e d ) , (6) 

where A = [} o] ( s e e t4L ProP- 2.2.12; the 0-1 entries in the matrix A correspond to the allowed 
transitions 0 -» 0 or 1; 1 -> 0 in the elements of X'thought of as infinitely long journeys in a graph 
with vertices 0 and 1). 

Lemma. 2: If b = 3a in (4), then the corresponding sequence is exactly realizable. 
Proof: A simple induction argument shows that (6) reduces to Perw(/) = Ln for n > 1, so the 

case a == 1 is realized using the golden mean shift itself. For the general case, let X = X x B, 
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where B is a set with a elements, and define / : X -» X by / (x , y) = (/(x), y). Then Perw(/) = 
a x Perw(/), so we are done. • 

The relation (3) must as a result hold for (Ln). 

Corollary 3: "Ld\n fi{n ld)Ld = 0 mod n for all n > 1. 

This has many consequences, a sample of which we list here. Many of these are, of course, 
well known (see [5], §2.IV) or follow easily from well-known congruences. 
(a) Taking n = p gives 

Lp = Fp_2 + 3Fp_l^lmodp. (7) 
(b) It follows from (a) that 

Fp_x = 1 mod p o Fp_2 = -2 modp, (8) 
which will be used below. 

(c) Taking n = pk gives 
lpk ^Lph-i modph (9) 

for all primes/? and k > 1. 
(d) Taking n = pq (a product of distinct primes) gives 

Lpq + l = Lp + Lg modpq. 

3. OBSTRUCTION 

The negative part of Theorem 1 is proved as follows. Using some simple modular results on 
the Fibonacci numbers, we show that, if the sequence (Un) defined by (4) is exactly realizable, 
then the property (3) forces the congruence b = 3a modp to hold for infinitely many primes/?, so 
(Un) is a multiple of (1^). 

Lemma 4: For any prime/?, F^ = 1 modp if p = 5m±2. 

Proof: From Hardy and Wright (see [2], Theorem 180), we have that Fp+t = 0 modp if p = 
5m±2. The identities i*p+1 = 2Jy_1 + i y . 2 - 0 modp and (7) imply that Fp_i&lmodp. D 

Assume now that the sequence (E/J defined by (4) is exactly realizable. Applying (3) for n a 
prime/? shows that t/^ - t/j = 0 mod/?, so by (5), ai^_2 +Wp-i = @ mod/?. If/? is 2 or 3 mod 5, 
Lemma 4 implies that 

( F H - 1 ) « + * B 0 mod/?. (10) 

On the other hand, for such/?, (8) implies that iy_2 = -2 mod/?, so (10) gives b = 3a mod/?. By 
Dirichlet's theorem (or simpler arguments), there are infinitely many primes/? with/? equal to 2 or 
3 mod 5, so b = 3a modp for arbitrarily large values of/?. We deduce that b = 3a, as required. 

4. MEMAKKS 
(a) Notice that the example of the golden mean shift plays a vital role here. If it were not to 

hand, exhibiting a dynamical system with the required properties would require proving Corollary 
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3, and a priori we have no way of guessing or proving this congruence without using the dynami-
cal system. 

(b) The congruence (7) gives a different proof that Fp_x E O or 1 mod p for p * 2,5. If 
Fp_i = a mod p, then (7) shows that Fp_2 = 1 - 3a modp, so Fp = 1 - 2a. On the other hand, the 
recurrence relation gives the well-known equality 

Fp-iFp^Fp-i + l 

(since p is odd), so 1 - 5a + 6a2 = a2 +1, hence 5(a2 - a) = 0 mod p. Since p&5, this requires 
that a2 == a modp, so a = 0 or 1. 

(c) The general picture of conditions on linear recurrence sequences that allow exact realiza-
tion is not clear, but a simple first step in the Fibonacci spirit is the following question: For each 
k > 1, define a recurrence sequence Qiffi) by 

with specified initial conditions Uf* = aj for 1 < j < k. The subshift of finite type associated to 
the 0-1 k x k matrix 

A^ = 

shows that the sequence (U^) is exactly realizable if a- = 2J -1 for 1 < j < k. If the sequence is 
exactly realizable, does it follow that a;. = C(2J -1) for 1 < j < k and some constant CI The spe-
cial case k = 1 is trivial, and k = 2 is the argument above. Just as in Corollary 3, an infinite family 
of congruences follows for each of these multiple Fibonacci sequences from the existence of the 
exact realization. 

(d) We are grateful to an anonymous referee for suggesting the following questions. Given 
a dynamical system / : X —» X for which the quantities Perw(/) are all finite, it is conventional to 
define the dynamical zeta function 
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^ ( z ) = exp^ | ;^Per n C/ ) j , 

which defines a complex function on the disc of radius 

l/limsupPer„(/)1/n. 
ft->00 

It is a remarkable fact that for many dynamical systems—indeed, all "hyperbolic11 ones—the zeta 
function is a rational function. For example, the golden mean subshift of finite type used above 
has zeta function x_l_zl • There are also sharp results that determine exactly what rational func-
tions can arise as zeta functions of irreducible subshifts of finite type or of finitely presented 
systems—these are expansive quotients of subshifts of finite type. A simple application of Theo-
rem 6.1 in [1], which describes the possible shape of zeta functions for finitely presented systems 
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shows that the sequence a, 3a, 4a, 7 a,... can be exactly realized by an irreducible subshift of finite 
type if and only if a - 1. 

It is possible that the recent deep results of Kim, Ormes, and Roush [3] may eventually pro-
vide a complete description of linear recurrence sequences that are exactly realized by subshifts of 
finite type. 
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