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An algorithm has been developed that generates all of the

nonequivalent closest-packed stacking sequences of length N.

There are 2N + 2(ÿ1)N different labels for closest-packed

stacking sequences of length N using the standard A, B, C

notation. These labels are generated using an ordered binary

tree. As different labels can describe identical structures, we

have derived a generalized symmetry group, Q ' DN � S3, to

sort these into crystallographic equivalence classes. This

problem is shown to be a constrained version of the classic

three-colored necklace problem.
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1. Introduction

The most ef®cient way to pack equal-sized spheres in space is

to place them in closest-packed monolayers and stack the

monolayers so that the spheres in one layer are over voids in

the layer below (Kepler, 1611; Barlow, 1883a,b; Hales, 2000).

Many crystal structures can be represented as a repeating

sequence of distorted closest-packed monolayers of anions,

with cations in the interstitial voids between or within the

monolayers. The variety of possible crystal structures based on

a repeat unit of N monolayers depends upon the number of

symmetrically nonequivalent stackings of N monolayers. For

example, the pyroxene structure can be considered to consist

of distorted closest-packed monolayers of O atoms, with

alternating layers of tetrahedrally and octahedrally coordi-

nated cations forming chains between the monolayers (Fig. 1).

Different pyroxene structures are based on different stacking

sequences. Ideal pyroxene topologies based on perfectly

closest-packed sequences have been investigated by many

authors (e.g. Thompson, 1970; Papike et al., 1973; Law &

Whittaker, 1980).

We were only able to ®nd one systematic approach to

generating stacking sequences in the literature. This approach

to deriving the possible nonequivalent stacking sequences of

N monolayers was developed by Zhdanov (1945) and

extended by Patterson & Kasper (1959). The technique

de®nes an A layer to be any layer with a sphere at [0,0,z].

Plane group p3m1 de®nes the lattice vectors a and b, and c is

de®ned to be orthogonal to these. If the layer above an A layer

has a sphere at [2/3, 1/3, z + c0], where c0 = |c|/N is the
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separation between two monolayers, this next layer is termed

a B layer. The only other possibility is that the next layer has a

sphere at [1/3, 2/3, z + c0] and, in this case, is called a C layer. If

two adjacent monolayers fall somewhere along the ordered

sequence A! B! C! A in the stacking direction, then the

change between them is called a positive change and one from

A ! C ! B ! A is called a negative change. Stacking

sequences can be de®ned in terms of Zhdanov numbers,

wherein the digits represent the numbers of successive layers

with positive and negative changes. As an example where N =

9, the Zhdanov number 4221 represents the stacking sequence

A+B+C+A+BÿAÿC+A+Bÿ. Partitioning a number N into

unique Zhdanov numbers gives a set of nonequivalent

stacking sequences.

Patterson & Kasper (1959) revisited and extended Zhda-

nov's work. They added notation to the Zhdanov numbers in

order to indicate symmetry operators. Mirror planes can occur

only within a monolayer, and only in sequences with an even

number of monolayers in the repeat unit. If the ®rst half of the

digits in a Zhdanov number repeat in reverse order to

complete the number, then there is a mirror plane. This mirror

plane is indicated in modi®ed Zhdanov notation by a vertical

bar. As an example where N = 8, |31|13| translates to

A+B+C+AÿC+AÿCÿBÿ (underlines indicate the location of

the mirror planes). Inversion centers in modi®ed Zhdanov

numbers are indicated by parentheses. Parentheses around an

odd digit in a modi®ed Zhdanov number indicate an inversion

center located in the octahedral void between layers and

parentheses around an even digit indicate an inversion center

located on a sphere. For example, (4)(1) translates to

A+B+(C)+A+B(ÿ), which Patterson and Kasper rewrite as

(C)+A+B(ÿ)A+B+, so that the symmetry center is in the ®rst

position.

The intent of the Zhdanov approach is to classify different

stacking sequences by symmetry. As de®ned by Zhdanov, a

stacking sequence of length N does not necessarily have a

physical repeat unit of N monolayers. For stacking sequences

with rhombohedral lattices, the repeat unit, in terms of A's, B's

and C's, contains 3N monolayers. As an example, for N = 3,

this approach gives a unique stacking sequence with modi®ed

Zhdanov notation (2)(1). This translates into a repeat unit of

(A)+B(ÿ)A+(B)+C(ÿ)B+(C)+A(ÿ)C+. Furthermore, if p is the

total number of positive changes represented by a Zhdanov

number, n is the total number of negative changes and

(p ÿ n)/3 is not an integer, then the Zhdanov number repre-

sents a sequence with 3N monolayers (Beck, 1967). For

instance, the Zhdanov number in the previous example is

(2)(1). Since (p ÿ n)/3 = (2 ÿ 1)/3 is not an integer, the

sequence represented by (2)(1) has nine monolayers. Beck

rewrites (2)(1) as 212121 so that N = 9.

Zhdanov numbers make no distinction between ABC and

ABCABCABCABC. Both of these have Zhdanov number

(1)(0).

A general formula for calculating the number of Zhdanov

sequences without generating them was developed by Iglesias

(1981). Another general formula for calculating the number of

sequences that satisfy the Beck criterion was developed by

McLarnan (1981c).

Our interest lies in creating theoretical closest-packed

analogs to crystal structures. When we refer to the length N of

a stacking sequence, we mean the number of monolayers in

the repeat unit along a stacking vector that is perpendicular to

the planes. Thus, we wish to generate the symmetrically

nonequivalent ways of mixing up N letters (A's, B's and C's)

such that no two adjacent letters are identical. In addition, we

cannot consider ABC and ABCABCABCABC to be equiva-

lent when dealing with real crystal structures. Fig. 1 shows a

slice of an ideally cubic closest-packed clinopyroxene. Its

repeating unit in the stacking direction a* is ABCABCAB-

CABC.

Law & Whittaker (1980) generated the possible pyroxene

and amphibole stacking sequences for the special cases of N =

4 and 8. They used a technique speci®c to these structures that

takes into account the increased number of nonequivalent

sequences due to chains of cations running between the

monolayers. In this paper, we derive a general mathematical

solution and use this to construct an algorithm that will

directly generate the possible stacking sequences for any value

of N.

2. Counting sequences

We ®rst derive a formula for the number of different

sequences of N letters (A's, B's and C's) such that no two

adjacent letters are identical. Note that many of these

sequences will turn out to be equivalent under symmetry

operations. Let SN equal the set of all such sequences. We can

determine the number of elements in SN, #SN, using the
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Figure 1
A slice of an ideally cubic closest-packed clinopyroxene showing that the
repeat unit in the stacking direction a* is 12 monolayers deep.
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multiplication and addition rules for counting (cf. Epp, 1995).

There are three choices for the ®rst letter of such a sequence.

Each of the next N ÿ 2 letters must be different from their

predecessors and so each are limited to two possibilities.

Therefore, there are 3� 2N ÿ 2 partial sequences of length Nÿ
1. The last letter of the sequence must be different from both

the ®rst and the (N ÿ 1)th letter. Let fA = the fraction of the

3� 2N ÿ 2 partial sequences of length Nÿ 1 that begin and end

with the same letter. For each of these, there are two choices

for the Nth letter. There is only one choice for the 3� 2N ÿ 2 �
(1 ÿ fA) remainder of these sequences, since the Nth letter

cannot be the same as the ®rst letter or the (N ÿ 1)th letter.

Counting gives

#SN � 3 � 2Nÿ2 � �2fA � �1 ÿ fA��: �1�
To derive an expression for fA, we will use an ordered binary

tree of depth N to enumerate our sequences. Fig. 2 illustrates a

sequence tree for N = 4. The sequences that begin with A are

symmetrically equivalent under permutation of the letters to

the sequences that begin with B and C, so we will only build

trees with A at the root. Owing to this equivalence, fA = the

fraction of the 3 � 2N ÿ 2 sequences of length N ÿ 1 that begin

and end with A. Fig. 3 shows two partial branches from an

arbitrary sequence tree of depth N, N > 4. An examination of

the nth row and its two predecessors leads to a formula for the

number of A's in row n, an. Row n ÿ 2 has 2n ÿ 3 letters, of

which m are A's and (2n ÿ 3 ÿ m) are O's, where O can be

either B or C. Each O spawns one A, so row n ÿ 1 has 2n ÿ 2

letters, of which (2n ÿ 3 ÿ m) are A's, and (2n ÿ 3 + m) are O's.

Row n has 2n ÿ 1 letters and (2n ÿ 3 + m) A's. Thus

an � 2nÿ3 �m � anÿ1 � 2anÿ2:

We can now obtain an explicit formula for an by using a

standard technique for solving a second-order linear homo-

genous recurrence relation with constant coef®cients (cf. Epp,

1995). The characteristic equation of our relation for an is t2 ÿ
t ÿ 2 = 0 with roots 2 and ÿ1. This gives an = C2n + D(ÿ1)n,

where C and D are coef®cients. Since a1 = 1 and a2 = 0, then

an � 2n=6 ÿ 2=3�ÿ1�n

and

fA � aNÿ1=2Nÿ2:

Making the appropriate substitutions into (1) gives the total

number of non-unique stacking sequences

#SN � 2N � 2�ÿ1�N: �2�
For example, there are 258 different sequences for N = 8.

3. Sorting sequences

Since many of these sequences are equivalent under symmetry

operations, we need to partition SN into symmetrical equiva-

lence classes. From these we can choose representative

examples of every nonequivalent sequence of length N. There

are three types of symmetry operations under which stacking

sequences are equivalent. The ®rst type is permutation of

letters, e.g. ABCAB' BCABC. Note that it is not the physical

positions of the letters that are being permuted, but rather

which letters are chosen to label the given positions in the

sequence. For instance, the permutation (AB) replaces all of

the A's with B's and vice versa. Such a permutation can result

from moving the origin within a monolayer, or rotating the

basis vectors a and b 60� around c or a combination of these

operations. The details of these permutations are given in the

Appendix. These permutations form a group of the order 6,

isomorphic to the symmetric group S3. We label this group P =

{pi | 0 � i < 6} = {1,(AB),(AC),(BC),(ABC),(ACB)}.

The second type of symmetry operation reverses the order

of the letters in a sequence, e.g. ABCAB � BACBA. The

essential feature that distinguishes this symmetry operation

from the others is that it reverses the direction of c (see

Appendix), i.e. reverses the stacking direction. A double

reversal is the identity. We label this operation b. Note that

b0 = b2 = e.

Finally, to illustrate the third type of symmetry operation,

let s 2 SN. Then s can be written as L1L2...LN, where Li 2 {A, B,

C}. De®ne an operator r such that ri(s) = Li + 1Li + 2...LNL1...Li.

For example, r2(ABCAB) = CABAB, so ABCAB ' CABAB.

Such a rearrangement results from moving the origin along c.

The operators b and r relate as follows: rib= brN ÿ i. Thus, they

generate a group R = {r, b|rN = b2 = (rb)2 = 1} isomorphic to the

dihedral group DN.

Let the group Q = R� P = {qm = (ribj, pk) | 0 � i < N, 0� j�
1, 0 � k � 5, m = 6i + 6Nj + k} ' DN � S3 act on SN so that

qm(s) = (ribj, pk)(s) = ri(bj(pk(s))). Then s2 ' s1 if and only if

s2 = q(s1), for some q 2Q, is an equivalence relation on SN, and

Figure 2
An ordered binary tree representation of all the possible sequences of
A's, B's and C's of length N = 4 that start with A. Sequences ending in A
are not valid closest-packed stacking sequences. Sequences starting with
B or C are symmetrically equivalent under the permutation of letters and
need not be considered in the quest for representative nonequivalent
sequences.

Figure 3
Two branches of an ordered binary sequence tree showing the number of
A's in row n = 2n ÿ 3 + m = an ÿ 1 + 2an ÿ 2, where ax is the number of A's in
row x.
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the orbit of s under Q is the set of all sequences that are

symmetrically equivalent to s. Q acts on SN to partition SN into

symmetrical equivalence classes.

4. Algorithm

We designed an algorithm to generate and sort SN into its

symmetrical equivalence classes. First, we build a tree of depth

N (Fig. 2) with the letter A at the root, because the trees

beginning with B and C are symmetrically equivalent to A

under the action of P. Next, the algorithm chooses the

sequence held in the leftmost branch of the tree and operates

on it with Q. All the resulting sequences, qm(s), which start

with A are marked in the tree as belonging to the same orbit.

Sequences that start with B or C are ignored because they are

symmetrically equivalent to sequences beginning with A.

When this is completed, the algorithm looks for an unmarked

sequence and the process begins again. Finally, the tree is

traversed and one example from each orbit is output.

5. Results

Table 1 contains two representative nonequivalent sequences

for N = 4 along with their symmetrical equivalents. Table 2

contains the number of nonequivalent sequences for N = 1±24.

Table 3 lists those sequences for N � 12 as determined by our

algorithm, including notation using modi®ed Zhdanov

numbers (Patterson & Kasper, 1959) and hc symbols (cf.

O'Keeffe & Hyde, 1996).

6. Mathematical context

There is also an analytical procedure that can be followed to

generate these sequences. It is based on the solution to a

constrained version of the classic necklace problem: How

many distinguishable necklaces can be made from N beads,

where the beads are chosen from three different colors? The

®rst constraint is that permuted color sequences are consid-

ered to be equivalent, i.e. blue±red±blue±yellow ' red±

yellow±red±blue. Note that the colors are permuted, not the

beads. The important information is that the ®rst and third

beads are the same color, while the second and fourth are

different from them and each other. The coloring scheme

chosen to communicate this information is not important. The

second constraint is that no two adjacent beads can be the

same color. This problem is amenable to attack using PoÂ lya

theory (cf. Grove, 1997). For examples of application of PoÂ lya

theory to crystallographic problems, see McLarnan (1978,

1981a,b,c) and Hawthorne (1983).

Any permutation, � 2 group G, that acts on a set, S,

partitions S. Each element of S in a given partition, p, is

cyclically related to every other element in p under the action

of �. A polynomial called the cycle index, Z, of the action of G

on S can be created that catalogs the ways each element of G

partitions S. For example, examine ZD4,V4 = 1/8(t1
4 + 3t2

2 + 2t4
+ 2t1

2t2), the cycle index of the action of the dihedral group D4

on V4, the set of vertices of a square (or the beads in a four-

beaded necklace). By way of illustration, we dissect the term

2t1
2t2. The coef®cient 2 indicates that the rest of the term

describes how two of the elements of D4 partition V4. They

both break V4 into three subsets. The exponent in t1
2 indicates

two subsets, while the subscript indicates that each contains

one vertex. The indeterminate, t2, represents one subset

containing two vertices. These two elements are the 180�

rotations about the diagonals of the square. These rotations

leave the vertices at the ends of the rotation axis ®xed, while

taking the other two vertices into each other.

We choose to color the vertices of our square with the

letters A, B or C. Substituting t1 = A + B + C, t2 = A2 + B2 + C2,

t4 = A4 + B4 + C4 into ZD4,V4 gives the pattern inventory

PID4,V4 = A4 + B4 + C4 + A3B + A3C + B3C + AB3 + AC3

+ BC3 + 2A2B2 + 2A2C2 + 2B2C2 + 2A2BC + 2AB2C + 2ABC2.

Maple software (Char et al., 1991) was used to construct this

pattern inventory. PID4,V4 tells us how many symmetrically

distinguishable necklaces can be made from different combi-

nations of four letters. For instance, the term 2A2BC indicates

Acta Cryst. (2001). B57, 766±771 Thompson and Downs � Generation of stacking sequences 769
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Table 1
The two nonequivalent sequences for N = 4 and their symmetrical
equivalents.

ABAB ABAC

ACAC ABCB
BABA ACAB
BCBC ACBC
CACA BABC
CBCB BACA

BCBA
BCAC
CACB
CABA
CBCA
CBAB

Table 2
N and its number of nonequivalent sequences.

1 0
2 1
3 1
4 2
5 1
6 4
7 3
8 8
9 8
10 18
11 21
12 48
13 63
14 133
15 205
16 412
17 685
18 1354
19 2385
20 4644
21 8496
22 16 431
23 30 735
24 59 344
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that there are two distinguishable necklaces made from two

A's, one B and one C.

We now introduce the constraint that permutations of the

letters are equivalent. Thus, A4 ' B4 ' C4. Removing terms

which are equivalent under this condition results in the

modi®ed pattern inventory MPIQ = D4 � S3,V4 = A4 + A3B

+ 2A2B2 + 2A2BC.

We now apply the ®nal constraint that no two adjacent

letters be the same. Any term that has an exponent e > N/2

must have adjacent letters, so we need look only at 2A2B2 +

2A2BC. The two distinguishable necklaces from two A's and

two B's are ABAB and AABB. The two distinguishable

necklaces from two A's and one B and one C are ABAC and

AABC. Therefore, all closest-packed stacking sequences of

length N = 4 are equivalent to either ABAB or ABAC. Table 4

Table 3
The unique closest-packed stacking sequences of length N � 12.

N ABC notation Zhdanov number hc notation

1 None
2 AB |(1)|(1)| h
3 ABC (1)(0) c
4 ABAB |(1)|(1)| h

ABAC |(2)|(2)| hc
5 ABABC (4)(1) hhccc
6 ABABAB |(1)|(1)| h

ABABAC |21|12| hhhchc
ABACBC |(3)|(3)| hcc
ABCABC (1)(0) c

7 ABABABC (4)1(1)1 hhhhccc
ABABCAC (3)1(2)1 hhcchhc
ABACABC (5)(2) hchcccc

8 ABABABAB |(1)|(1)| h
ABABABAC |211|112| hhhhhchc
ABABACAC |1(2)1|1(2)1| hhhc
ABABACBC |31|13| hhhcchcc
ABABCABC (7)(1) hhcccccc
ABABCBAC (3)2(1)2 hhchcchc
ABACABAC |(2)|(2)| hc
ABACBABC |(4)|(4)| hccc

9 ABABABABC (4)11(1)11 hhhhhhccc
ABABABCAC 312111 hhhhcchhc
ABABACABC 5211 hhhchcccc
ABABCABAC 4221 hhccchchc
ABABCACBC (2)3(1)3 hhcchchcc
ABABCBCAC (2)(1) hhc
ABACBACBC (6)(3) hccccchcc
ABCABCABC (1)(0) c

10 ABABABABAB |(1)|(1)| h
ABABABABAC |2111|1112| hhhhhhhchc
ABABABACAC |1211|1121| hhhhhchhhc
ABABABACBC |311|113| hhhhhcchcc
ABABABCABC (7)1(1)1 hhhhcccccc
ABABABCBAC (3)21(1)12 hhhhchcchc
ABABACABAC |221|122| hhhchchchc
ABABACACBC 321211 hhhchhchcc
ABABACBABC |41|14| hhhccchccc
ABABACBCBC |1(3)1|1(3)1| hhhcc
ABABCABABC (4)(1) hhccc
ABABCABCAC (6)1(2)1 hhccccchhc
ABABCABCBC (5)1(3)1 hhcccchhcc
ABABCACBAC 4312 hhcchccchc
ABABCBABAC |2(1)2|2(1)2| hhchc
ABACABACBC |32|23| hchchcchcc
ABACABCABC (8)(2) hchccccccc
ABACBACABC |(5)|(5)| hcccc

11 ABABABABABC (4)111(1)111 hhhhhhhhccc
ABABABABCAC 312111111 hhhhhhcchhc
ABABABACABC 5211111 hhhhhchcccc
ABABABCABAC 422111 hhhhccchchc
ABABABCACAC (3)111(2)111 hhhhcchhhhc
ABABABCACBC (2)31(1)13 hhhhcchchcc
ABABABCBCAC (2)121(1)121 hhhhchhchhc
ABABACABABC 412211 hhhchchhccc
ABABACABCAC 421121 hhhchccchhc
ABABACABCBC 313211 hhhchcchhcc
ABABACACABC (5)11(2)11 hhhchhhcccc
ABABACBACBC 6311 hhhccccchcc
ABABCABACBC 4331 hhccchcchcc
ABABCABCABC (10)(1) hhccccccccc
ABABCABCBAC 5321 hhcccchcchc
ABABCACABAC (3)12(2)21 hhcchhchchc
ABABCACBCAC 322121 hhcchchchhc
ABABCBACBAC (6)2(1)2 hhchccccchc
ABACABACABC (5)2(2)2 hchchchcccc
ABACABCACBC (4)2(3)2 hchccchchcc
ABACBABCABC (7)(4) hccchcccccc

12 ABABABABABAB |(1)|(1)| h
ABABABABABAC |21111|11112| hhhhhhhhhchc
ABABABABACAC |12111|11121| hhhhhhhchhhc

Table 3 (continued)

N ABC notation Zhdanov number hc notation

ABABABABACBC |3111|1113| hhhhhhhcchcc
ABABABABCABC (7)11(1)11 hhhhhhcccccc
ABABABABCBAC (3)211(1)112 hhhhhhchcchc
ABABABACABAC |2211|1122| hhhhhchchchc
ABABABACACAC |11(2)11|11(2)11| hhhhhc
ABABABACACBC 32121111 hhhhhchhchcc
ABABABACBABC |411|114| hhhhhccchccc
ABABABACBCBC |1311|1131| hhhhhcchhhcc
ABABABCABABC (1)14(1)41 hhhhccchhccc
ABABABCABCAC 612111 hhhhccccchhc
ABABABCABCBC 513111 hhhhcccchhcc
ABABABCACBAC 342111 hhhhcchccchc
ABABABCBABAC (1)221(1)122 hhhhchchhchc
ABABABCBACAC 32111211 hhhhchcchhhc
ABABACABABAC |21|12| hhhchc
ABABACABACAC (2)211(2)112 hhhchchchhhc
ABABACABACBC 332211 hhhchchcchcc
ABABACABCABC 8211 hhhchccccccc
ABABACABCBAC |123|321| hhhchcchcchc
ABABACACBABC 312114 hhhchhcchccc
ABABACACBCAC |2121|1212| hhhchhchchhc
ABABACACBCBC (3)112(1)211 hhhchhchhhcc
ABABACBABABC |1(4)1|1(4)1| hhhccc
ABABACBABCBC 312411 hhhccchchhcc
ABABACBACABC |51|15| hhhcccchcccc
ABABACBCACBC |231|132| hhhcchchchcc
ABABCABABCAC 413121 hhccchhcchhc
ABABCABACABC 5241 hhccchchcccc
ABABCABACBAC 5412 hhccchcccchc
ABABCABCABAC 7221 hhcccccchchc
ABABCABCACBC 6231 hhccccchchcc
ABABCABCBCAC (5)12(1)21 hhccccchchhc
ABABCACABCBC (3)(1) hhcc
ABABCACBABAC |312|213| hhcchcchhchc
ABABCACBACBC (5)3(1)3 hhcchcccchcc
ABABCACBCBAC 123123 hhcchchhcchc
ABABCBABCBAC 322212 hhchchchcchc
ABABCBACBCAC (4)21(2)12 hhchccchchhc
ABACABACABAC |(2)|(2)| hc
ABACABACBABC |42|24| hchchccchccc
ABACABCBACBC (4)3(2)3 hchcchccchcc
ABACBACBACBC (9)(3) hcccccccchcc
ABACBACBCABC |(6)|(6)| hccccc
ABACBCABACBC |(3)|(3)| hcc
ABCABCABCABC (1)(0) c
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shows how adding these constraints reduces the number of

possibilities.

The cycle index for the action of Q ' DN � S3 on SN also

contains useful information, although it is much more dif®cult

to construct than that for DN on VN. If we replace t1 by 1 + x, t2
by 1 + x2 etc., the coef®cient of x is the number of orbits of Q in

SN, which is the number of nonequivalent closest-packed

stacking sequences of length N. For N = 4, ZQ,S = 1/48(t1
18 +

5t2
9 + 2t3

6 + 4t6
3 + 12t1

2t2
8 + 3t1

4t2
7 + t1

6t2
6 + 2t1

12t2
3 + 2t2

3t4
3

+ 2t3
2t6

2 + 4t3
4t6 + 4t6t12 + 6t1

2t2
2t4

3). Making the described

replacement gives a coef®cient of 2 in the x term.

7. Summary

A given position in a closest-packed stacking sequence label

can have one of three values: A, B or C. The action of the

group Q ' DN � S3 on a given sequence explicitly described

with A's, B's and C's generates all equivalent sequences. This

action is effected through certain types of simple rearrange-

ments of the letters of the sequence. Each rearrangement

represents a change of basis. An ordered binary tree can be

used to generate all possible stacking sequences of length N

and Q can be used to sort them out.

APPENDIX A
A1. Permutations

De®ne � to be a rotation of 60� around c. Then �(A) = A,

�(B) = C, �(C) = B. De®ne t1 to be a translation of the origin

to [2/3,1/3,z]. Then t1(A) = C, t1(B) = A, t1(C) = B and �t1(A) =

B, �t1(B) = A, �t1(C) = C. De®ne t2 to be a translation of the

origin to [1/3,2/3,z]. Then t2(A) = B, t2(B) = C, t2(C) = A and

�t2(A) = C, �t2(B) = B, �t2(C) = A. Thus, P = {e, �, t1, t2, �t1,

�t2}.

A2. Reversals

An exact reversal of the order of letters in a sequence, s, is

accomplished by the operation r1�
[100]2(s), where r1 shifts the

origin by the distance c0 along c and c0 = |c|/N is the separation

between two monolayers, � is de®ned as above and [100]2 is a

twofold rotation parallel to a.
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Table 4
The number of distinguishable necklaces possible using N beads of three
colors, then with the constraint that necklaces whose bead colors are
permutations of each other are considered equivalent, and ®nally such
that no two adjacent beads are the same color.

N 1 2 3 4 5 6 7 8 9 10 11 12

Necklaces 3 6 10 21 39 92 198 498 1219 3210 8418 22 913
One

constraint
1 2 3 6 9 22 40 100 225 582 1464 3960

Two
constraints

0 1 1 2 1 4 3 8 8 18 21 48

corrected reprint


