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Abstract

Adipose tissue produces factors, including adipokines, cytokines and chemokines which, when 
released, systemically exert endocrine effects on multiple tissues thereby affecting their physiol-
ogy. Adipokines also affect the hypothalamic-pituitary-gonadal (HPG) axis both centrally, at 
the hypothalamic-pituitary level, and peripherally acting on the gonads themselves. Among the 
adipokines, leptin, adiponectin, resistin, chemerin and the peptide kisspeptin have pleiotropic 
actions on the HPG axis affecting male and female fertility. Furthermore, adipokines and 
adipose tissue-produced factors readily affect the immune system resulting in inflammation, 
which in turn impact the HPG axis, thus evidencing a link between metabolic inflammation 
and fertility. In this review we provide an overview of the existing extensive bibliography on 
the crosstalk between adipose tissue-derived factors and the HPG axis, with particular focus 
on the impact of obesity and the metabolic syndrome on gonadal function and fertility.
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Introduction

Adipose tissue
The Swiss naturalist, botanist, physician and clas-

sical linguist Conrad Gesner was the first, in 1551, 
to describe adipose tissue as a separate entity. He 
recognized two types of adipose tissue: white adipose 
tissue (WAT) and brown adipose tissue (BAT). We 
now know that WAT stores excess energy and that, 

evolutionarily speaking, it first appeared in the teleost 
fish. On the other hand, the main function of BAT is 
energy expenditure as heat (non-shivering thermo-
genesis) and it first appeared later in the evolution as 
a characteristic of mammals. Up to the 90s, WAT was 
considered a simple depot of excess energy stored in 
the form of triglycerides and the only type of adipose 
tissue present in adults. It is however now known that 
adipose tissue is an extremely active endocrine and 
immune organ producing more than 100 hormones, the 
adipokines, and several immune effectors including 
cytokines and chemokines. In 1993, adipose tissue 
was shown to produce the cytokine tumor necrosis 
factor alpha (TNFa) and the following year, in 1994, 
the hormone leptin.
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It is today well established that adipose tissue is 
an important homeostatic organ regulating several 
vital physiological processes, including food intake 
and energy balance via its multiple effects on hunger 
and satiety centers, at the level of the hypothalamus, 
brain stem and cortex. Adipose tissue also affects 
adaptation to stress and the immune response. In 
the last few years the importance of adipose tissue 
for the hypothalamic-pituitary-gonadal (HPG) axis 
has emerged. More specifically, adipose tissue plays 
a crucial role in the onset of puberty, the seasonal 
regulation of sexual behavior and fertility and their 
adaptation to the availability of energy and the size 
of fat depots. The effects of adipose tissue on the 
HPG axis are mediated by adipokines, cytokines and 
chemokines. In this review, we provide an overview 
of the crosstalk between adipose tissue-derived fac-
tors and the HPG axis.

Obesity as a cause of chronic low-grade 
metabolic inflammation

Obesity is today a major medical problem in the 
developed and developing countries and is the underly-
ing cause of several pathologic conditions. The most 
deleterious consequence of obesity is the development 
of chronic low-grade metabolic inflammation (CLGI), 
first within adipose tissue and subsequently systemi-
cally, which causes insulin resistance resulting in the 
development of diabetes mellitus and the metabolic 
syndrome.1 The accumulation of adipose mass in the 
visceral part of the body (apple-type or android obe-
sity) is associated with metabolic inflammation, while 
subcutaneous fat (pear-type or gynoid obesity) appears 
to be less detrimental to health.2 It is believed that the 
initial cause of metabolic inflammation is adipocyte 
hyperplasia in WAT. Non-esterified fatty acids (NEFA) 
produced by these adipocytes induce local macrophages 
to produce high levels of TNFa which in turn induce 
adipocytes (in a paracrine manner) to produce more 
NEFA, pro-inflammatory cytokines, acute phase proteins 
and chemokines [such as the C-C motif chemokine 
ligand-2 (CCL2) or monocyte attractant protein-1 
(MCP-1)] which attract more monocytes/macrophages 
within adipose tissue.3,4 This self-intensifying crosstalk 
between WAT adipocytes and local macrophages results 
in the development of inflammation of visceral adipose 
tissue as well as systematic low-grade inflammation 
affecting multiple tissues, including the vascular en-

dothelium and the gonads.

The magnitude of metabolic inflammation is best 
assessed in the fasting state, with acute phase inflam-
matory proteins and pro-inflammatory cytokines being 
the most frequently used. High-sensitivity C-reactive 
protein (hs-CRP) is the golden standard. Other acute 
phase proteins that can also be measured in assessing 
metabolic inflammation include haptoglobin, serum 
amyloid A (SAA) and fibrinogen. The cytokines 
measured include the interleukins IL-1, IL-1Ra, IL-6, 
IL-8, IL-18, IL-10 and TNFa. In addition, measurement 
can be made of adhesion and remodelling molecules 
of extracellular matrix, chemokines [(MCP-1, 3, 4, 
angiopoietin, metallothionein, macrophage inflamma-
tory protein 1 (MIP1)], ICAM, VCAM, macrophage 
inhibitory factor (MIF) and soluble receptor factors of 
TNF (TNF receptor (sTNFR)-1. These factors, being 
present in the circulation, have a direct impact on the 
HPG axis. Nevertheless, there is limited information 
on their value as markers capable of revealing associa-
tions between metabolic inflammation and fertility.

 EFFECTS OF METABOLIC INFLAMMATION  
ON THE HPG AXIS

Obesity provokes an inflammatory response within 
visceral adipose tissue which develops into a state 
of systemic CLGI. Indeed, in obesity the phenotype 
of adipocytes changes to a pro-inflammatory phe-
notype that causes the production of cytokines and 
chemokines which attract monocytes and neutrophils 
from the circulation, thus spreading the inflammation 
to adjacent resident stromal cells. This inflammatory 
response of visceral adipose tissue is characterized 
by local inflammation, which results in deregulation 
of adipokine production and subsequent changes of 
their levels in the systemic circulation. The inflam-
matory response is also associated first with insulin 
resistance and finally with hyperglycemia. Such sys-
temic changes of the pro-inflammatory mediators and 
the adipokines as well as the ensuing hyperglycemia 
cause multiple effects on tissues including that of 
the HPG axis. 

The hypothalamus is readily affected by the circulat-
ing cytokines and adipokines. Systemic inflammation 
has been shown to delay puberty in girls with pre-
pubertal onset of inflammatory bowel disease5 and in 
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animal models of inflammatory diseases.6 This effect 
has been partly attributed to decreased levels of leptin. 
It has in fact been demonstrated that leptin-deficient 
mice (ob/ob) are infertile because they are incapable 
of producing gonadotropin-releasing hormone (GnRH) 
from the hypothalamus, this affecting the release of 
luteinizing hormone (LH) and follicle stimulating 
hormone (FSH) from the pituitary with a subsequent 
adverse effect on the release of estradiol from the ova-
ries.7,8 Though leptin administration can reverse this 
effect,7 inflammatory cytokines intervene aggravating 
the suppression of LH production.9 Similarly, systemic 
inflammatory disease affects male fertility and patients 
with rheumatoid arthritis,10 who consequently display 
reduced testosterone levels. These findings suggest 
that both adipokines and inflammatory factors exert 
an impact on the HPG axis and on fertility. In humans, 
the data are fairly consistent regarding the finding 
that obesity, via metabolic inflammation, results in 
reduced fertility in women11 and men.12 Inflammation-
induced leptin resistance has been proposed as being a 
potential mechanism13 linking obesity with HPG axis 
defects and subfertility. Indeed, male hormone levels  
diminish as the body mass index (BMI) increases,14 
an association affected by leptin both in male and 
female subjects.15,16 Subfertility has been directly 
associated with CLGI and low testosterone levels.17 
In a cross-sectional study, CLGI, as demonstrated 
by elevated levels of the pro-inflammatory cytokine 
TNFa and the chemokines MIP1a and MIP1b, was 
associated with low testosterone and subfertility re-
gardless of BMI. This finding suggested a direct link 
between inflammation and the HPG axis. The latter 
association was much stronger when BMI was also 
taken into account.17 A direct link between TNFa and 
the HPG axis has been established in animal models 
where TNFa exerted a transcriptional suppression 
of FSH-induced LH receptor18 and direct effects on 
LH secretion.19 Similarly, adipokines also exert a 
direct effect on components of the HPG axis. For 
example, adiponectin induces FSH production from 
pituitary cells and insulin-induced LH.20 Likewise, 
leptin induces LH secretion,21 clearly pointing to the 
presence of direct crosstalk between adipokines and 
HPG function. Changes in inflammatory markers and 
gonadal sex steroids are causally linked.22,23 It is now 
well-documented that obesity-induced metabolic in-
flammation affects the health of the HPG axis, which 

therefore suggests a potential strategy for its therapy, 
interventions to reduce metabolic inflammation having 
in fact been shown to improve fertility.24 

ADIPOKINES AND THE HPG AXIS

Effects of leptin on the central component  
of the HPG axis

Leptin was isolated and identified as a product of 
adipose tissue in 1994.25 The ob gene, which codes for 
its sequence, is exclusively expressed in adipocytes. 
It was thanks to the fact that leptin redefined adipose 
tissue as an endocrine organ that a complete change 
came about in our understanding of energy homeostasis. 
Leptin is expressed in the human pituitary localized to 
gonadotrophs and thyreoidotrophs in the pars distalis 
and tuberalis, as well as in somatotrophs in the pars 
distalis.26 Leptin exerts multiple effects throughout the 
body via its receptor LepR, a product of the db gene, 
which has several splicing isoforms (a-f), the long 
isoform b appearing to mediate most of its effects. 
Leptin is a potent anorexigenic hormone, decreasing 
appetite through its effects on hypothalamic nuclei, 
inhibiting orexigenic factors neuropeptide Y (NPY) 
and agouti-related peptide (AgRP) and enhancing 
the actions of the anorexigenic peptides alpha-MSH/
pro-opiomelanocortin (POMC) and cocaine- and 
amphetamine-related transcript (CART). It also in-
creases energy expenditure. Leptin activates the Janus 
kinase/signal transducer and activator of transcription 
(JAK/STAT) complex which readily affects cytokine 
and chemokine transcription as well as sex hormone 
expression. Paradoxically, circulating leptin levels 
are high in the obese and closely correlate with fat 
mass/BMI because of the gradual development of 
resistance to leptin. 

One of the major biological effects of leptin is 
its stimulation of the HPG axis. Of note, it has been 
demonstrated that leptin administration stimulates 
the HPG axis in genetically obese ob/ob mice, i.e. 
mice lacking endogenous leptin. These animals are 
infertile but, following the administration of leptin, 
become fertile. Furthermore, food-restricted ani-
mals have low levels of leptin because of its lower 
production by lean adipose tissue. These animals 
exhibit hypogonadotrophic hypogonadism which is 
reversed only by the administration of leptin, i.e. leptin 
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reverses the diet-induced inhibition of gonadotropin 
secretion. In fact, severely fasted animals, displaying 
low endogenous leptin, if given i.v. leptin respond by 
exhibiting an acute induction of their LH production. 
This effect of leptin takes place at the hypothalamic 
level where leptin induces the production of GnRH 
resulting in high LH levels. 

Leptin stimulates the expression of hypothalamic 
GnRH and the neuronal activity of GnRH neurons.27,28 
However, the stimulatory effect of leptin on GnRH 
neurons, located in the preoptic hypothalamic area, 
does not appear to be a direct one. Indeed, leptin treat-
ment does not induce its receptor substrate, pSTAT3, 
in GnRH neurons, while in immuno-cytochemistry 
studies no colocalization of GnRH and pSTAT3 within 
the same neurons is observed. Furthermore, the ad-
ministration of leptin induces pSTAT3 in another area 
of the anterioventral/periventricular hypothalamic 
nucleus, while it has additionally been shown that 
GnRH neurons do not express leptin receptors. It 
now appears that an intermediate type of neurons, 
possessing leptin receptors, convey the adipose tis-
sue/leptin message to GnRH-producing neurons.28

Low leptin levels have been associated with sexual 
immaturity,29,30 while it has been documented that the 
administration of leptin to female adolescents with 
endogenous leptin deficiency and hypogonadotropin 
hypogonadism triggers the onset of menarche.31 The 
role of leptin in menarche is crucial. Thus, for instance, 
a 9-month increase in nutrient intake in young female 
athletes and ballet dancers resulted in an increase of 
leptin levels through the increase of body fat mass 
and the re-establishment of regular menstrual cycles.32 
The association of weight gain with the restoration 
of menses and improved fertility has also been noted 
in athletes with short- or long-term amenorrhea.33 It 
is of particular interest that maternal malnutrition 
additionally appears to affect the fertility of female 
offspring, leading to premature reproductive senes-
cence.34 During the menstrual cycle leptin levels vary, 
the highest appearing in the luteal phase and the low-
est during the early follicular phase.35 Leptin levels 
positively correlate with FSH and LH. In fact, it has 
been suggested that leptin in combination with FSH 
may prove to be a sensitive biomarker for the predic-
tion of sperm retrieval in men with non-obstructive 
azoospermia.36 (Table 1)

Enter kisspeptin
Among the intermediate neurons, which possess 

leptin receptors and transmit adipose tissue/leptin 
messages to the GnRH-producing neurons, are the 
kisspeptin neurons. The kisspeptin gene was first iso-
lated in Hershey, PA (USA), the location of Hershey’s 
chocolate factory and because of this it was named 
after one of its chocolates. The kisspeptin gene was 
first identified as a human metastasis suppressor gene 
of melanomas and breast carcinomas and was given 
the name metastin. The 54-amino-acid product of the 
kisspeptin gene is the natural ligand for the GPR54 
receptor, an orphan G protein-coupled receptor first 
identified in rats. 

The kisspeptin gene is expressed in the central 
nervous system and in several extracranial sites. In 
the central nervous system, the kisspeptin gene is 
expressed in the hypothalamus (in the anteroventral 
periventricular and the arcuate nucleus) and the hip-
pocampal dentate gyrus. In extracranial tissues, it is 
expressed in the vascular endothelium, in the cortex 
of the adrenal gland (where it stimulates aldosterone 
production) and in the islet cells of the pancreas (where 
it stimulates insulin production) and a multitude of 
other metabolic factors.37 Crucially, kisspeptin and 
its receptor are present in the hypothalamic arcuate 
nucleus, located at the base of the hypothalamus outside 
the blood brain barrier and thus easily accessible to 
circulating hormones, where they furnish a vital link 
between peripheral metabolic signals. Most of the 
arcuate nucleus neurons express kisspeptin and the 
kisspeptin receptor gene.38 Kisspeptin neurons send 
afferent projections to the NPY/AgRP (orexigenic) 
and the POMC/CART (anorexigenic) neurons.39,40 

Effect of energy balance on hypothalamic 
kisspeptin

The importance of kisspeptin is that it forms a 
critical link between energy homeostasis and repro-
duction.41-44 Kisspeptin levels are suppressed by food 
restriction, as for instance a 72 h fast, which may 
explain the disruption of the reproductive axis during 
a negative energy balance. Kisspeptin has no effect of 
its own on energy balance. Indeed, kisspeptin knock-
out (KO) and KISS receptor KO mice are viable but 
infertile, with minor changes of body weight, as com-
pared to the wild-type (WT).45 In addition, kisspeptin 
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administration centrally has no effect on food intake, 
body weight and hypothalamic expression of NPY, 
AgRP, POMC or CART.46 Furthermore, exogenous 
kisspeptin has no effect on food intake.47 However, 
kisspeptin suppresses NPY/AgRP neurons, and thus 
appetite, indirectly via synaptic mechanisms,48 while 
central administration of kisspeptin increases meal 
intervals and reduces nocturnal food intake in mice. 
Also of interest, kisspeptin receptor KO animals eat 
larger quantities of food. The fact that the kisspeptin 
gene is also expressed in adipose tissue accounts for 
the existence of a significant correlation between 
kisspeptin expression and BMI in visceral adipose 
tissue but not in subcutaneous tissue obtained from 
the same individuals. The expression of the kisspeptin 
gene in adipose tissue is regulated by sex hormones 
and food intake.37,49 

Kisspeptin as an intermediary between leptin 
and GnRH neurons

A growing number of published reports document 
a direct effect of kisspeptin neurons on GnRH neu-
rons and, moreover, indicate that the effect of leptin 
on GnRH neurons is mediated by kisspeptin. In the 
hypothalamus, the kisspeptin neurons in anterov-
entral periventricular nuclei send projections to the 
medial preoptic area where the GnRH cell bodies 
are located. Kisspeptin immunoreactive fibers are in 
fact present in both the medial preoptic nucleus and 
medial preoptic areas. In addition, GnRH neurons 
express the kisspeptin receptor GPR54, while leptin 
receptors are present in kisspeptin neurons in the hy-
pothalamus. Male ob/ob mice (no leptin) exhibit low 
kisspeptin transcript in the hypothalamus compared 
to WT littermates. Exogenous leptin increases the 
expression of the kisspeptin gene in male ob/ob mice. 
Meanwhile, in guinea pigs, leptin induces depolariza-
tion of kisspeptin neurons. Kisspeptin injected into 
the lateral ventricle of mice elicits rapid and robust 
LH/FSH secretion, with similar observations having 
been reported in rats, sheep, monkeys and humans. 
Kisspeptin stimulates LH/FSH release via a direct 
stimulatory effect on GnRH neurons. However, kiss-
peptin has no direct effect on pituitary gonadotrophs 
but only via the GnRH. The importance of kisspep-
tin for GnRH neurons has been documented in KO 
animals. Thus, inactivating mutations of its receptor, 
GPR54, cause hypogonadotrophic hypogonadism in 

humans,50 while in mice, targeted deletion of GPR54 
results in severe hypogonadism, this showing that 
kisspeptin-GPR54 signaling is essential for LH/FSH 
production (Table 2). 

Kisspeptin as a mediator of gonadal sex 
steroid feedback

Kisspeptin neurons act as the main mechanism 
relaying gonadal sex steroid feedback to GnRH. 
Kisspeptin mediates the positive and negative effects 
of gonadal steroids on GnRH neurons. Indeed, most 
kisspeptin neurons in the anteroventral periventricular 
nucleus express gonadal steroid receptors. Thus, in 
females high levels of estrogens and progesterone 
stimulate kisspeptin neurons of the anteroventral 
periventricular nucleus to induce the preovulatory 
surge of GnRH/LH. RT-PCR analysis reveals that the 
total hypothalamic content of the kisspeptin transcript 
increases following gonadectomy and decreases after 
sex steroid replacement. Furthermore, administra-
tion of estradiol in ovariectomized mice induces the 
expression of kisspeptin. Kisspeptin neurons also 
receive circadian signals from the supra-chiasmatic 
nucleus. When estradiol levels and the circadian 
signals are both high, kisspeptin neurons become 
activated causing ovulation via GnRH. 

Kisspeptin in puberty and seasonal breeding
Leptin stimulates GnRH production and plays the 

most important role in the initiation of puberty. Kiss-
peptin, being a potent inducer of GnRH, conveys the 
adipose tissue signal for the initiation of puberty.51,52 
Some mammals become fertile only during the annual 
breeding season which is controlled by the duration 
of daylight. During the short winter days, these ani-
mals have reduced hypothalamic concentrations of 
kisspeptin and thus their sexual activity is low. But 
in the long summer days, kisspeptin levels increase, 
stimulating the animals to breed. Administration of 
kisspeptin to animals during the winter months causes 
ovulation even in a non-breeding season. 

Effects of adiponectin on the central 
component of the HPG axis

Adiponectin, also known as Acrp30,53 is pre-
dominantly produced by adipocytes. It is the most 
abundantly circulating adipokine, its normal levels 
in the plasma being in the range of 1-50 mg/L. Cir-
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culating adiponectin is found in trimer, hexamer 
and high molecular weight (HMW) forms, the latter 
considered the metabolically bioactive form.54 Two 
distinct receptors have been described and cloned for 
adiponectin, namely AdipoR1 (almost ubiquitously 
expressed and abundantly so in skeletal muscle, binds 
the globular form) and AdipoR2 (predominantly ex-
pressed in the liver and WAT, binds the full-length 
protein). Adiponectin exerts local and systemic anti-
inflammatory effects by inhibiting the formation 
of the NF-κB complex and its translocation to the 
nucleus, thereby suppressing the expression of down-
stream pro-inflammatory genes and the secretion 
of pro-inflammatory cytokines (TNFa, IL-6) while 
also stimulating production of anti-inflammatory 
cytokines (IL-10, IL-1RA). It promotes polarization 
of macrophages towards the anti-inflammatory M2 
phenotype and enhances monocyte apoptosis. Adi-
ponectin also possesses anti-atherogenic properties.55 
Furthermore, adiponectin exhibits insulin-sensitizing 
effects, promotes survival and preserves pancreatic 
β-cells.56 Adiponectin affects energy balance both at 
the arcuate nucleus level and by acting on adipose 
tissue, in a paracrine manner, by up-regulation of fat 
oxidation and by suppressing the local inflammatory 
response.57,58 Unlike most adipokines, adiponectin 
production is down-regulated in obesity and related 
metabolic disorders and circulating levels are nega-
tively correlated with BMI and visceral fat mass.59

Adiponectin exerts direct effects on the HPG axis 
at all levels. Adiponectin is expressed in the porcine 
pituitary, its levels varying depending on the phase 
of the estrous cycle, as well as on GnRH- and/or LH 
and FSH.20 LH administration in vivo during the 
late follicular phase induces adiponectin in follicu-
lar fluids, decreases androgen levels and increases 
ovarian sensitivity to insulin.60 The expression of 
adiponectin receptors is also identified in GH-, FSH-, 
LH- and TSH-producing cells in the pars distalis 
but not in the pars tuberalis. Moreover, AdipoR1 are 
detectable in lateral hypothalamic neurons and on 
the nucleus basalis.26 In the gonads, they are present 
in the granulosa cells of the ovaries.61 In the ovaries, 
the gonadotrophins LH and FSH can modify the 
expression levels of AdipoR2, but not AdipoR1, that 
eventually contribute to enhanced 3βHSD activity and 
increase progesterone secretion in human granulosa 

cells.62 In vitro, AdipoR1 or AdipoR2 knockdown 
in human granulosa-like tumor cell line KGN cells 
affects both their survival as well as their production 
of sex steroids via the MAPK ERK1/2 pathway.63

Direct effects of obesity on the gonads
Adipose tissue and obesity can affect the gonads 

indirectly via effects on the central HPG axis, i.e. by 
affecting the GnRH hypothalamic neurons and/or the 
gonadotrophs of the pituitary or directly, on the gonads 
themselves, irrespective of the central nervous system 
effects. It should be noted here that the gonads have 
their own “sensor of energy reserves”. This is the 
gonadal 5’ AMP-activated protein kinase (AMPK) 
which senses caloric abundance, as in obesity, and 
caloric restriction. AMPK plays a crucial role in the 
regulation of gonadal steroidogenesis and the prolif-
eration and survival of somatic gonadal cells, as well 
as in the maturation of oocytes and spermatozoa and 
that of a host of other steps in gonadal physiology.64 
In the ovaries, AMPK is present in granulosa and 
theca cells, oocytes and corpora lutea. In the testes, 
it is present in Sertoli, Leydig and germinal cells. 
AMPK activators inhibit the production of proges-
terone and estradiol by mammalian granulosa cells. 
Indeed, metformin, a potent insulin sensitizer, sup-
presses IGF1-induced cell proliferation and protein 
synthesis through AMP-activated protein kinase in 
cultured bovine granulosa cells.65 It should be borne 
in mind that metformin is now the first-line treatment 
for obesity-induced polycystic ovaries. High levels of 
saturated free fatty acids, such as palmitic acid and 
stearic acid, suppress granulosa cell survival due to 
increased apoptosis, as evidenced by DNA ladder 
formation and annexin V-EGFP/propidium iodide 
staining.66 Furthermore, women with elevated free fatty 
levels in their follicular fluid have poor morphology 
of the cumulus oocyte complex.67

As mentioned above, the adipokines are hormones 
produced by adipose cells. Their rate of production 
depends on energy homeostasis and adipose cell mass 
and number. In addition to the effects of adipokines 
on GnRH neurons in the hypothalamus and on the 
gonadotrophs of the anterior pituitary, they also affect, 
in a direct manner, both female and male gonads. It 
should be noted however that while the adipokines 
directly affect the gonads, existing data suggest that 
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their gonadal effects do not fully explain the ob-
served reproductive dysfunction in obesity, i.e. their 
impact on reproduction depend on both central and 
peripheral effects.68

Obesity affects several aspects of ovarian physi-
ology including folliculogenesis, ovulation, oocytes 
and the production of ovarian steroids.69 Indeed, 
diet-induced adiposity may cause ovarian dysfunc-
tion ranging from simple menstrual irregularities to 
the polycystic ovarian syndrome. Thus, ovaries taken 
from obese mice exhibit accelerated apoptosis of 
ovarian cell follicles. Similarly, oocytes isolated from 
obese mice are smaller in size and fewer in number 
compared to those of lean controls.70 Furthermore, in 
diet-induced obesity models, mitochondria in mouse 
oocytes and zygotes appear to be malfunctioning 
possibly as a result of oxidative stress.71 Again, the 
mouse model of diet-induced obesity has shown their 
ovaries to display lipid accumulation and lipo-toxicity 
of the oocytes and an acceleration of the apoptosis 
of granulosa and cumulus cells.72 In other words, 
it appears that lipid accumulation, endoplasmatic 
reticulum (ER) stress, mitochondrial dysfunction 
and apoptosis are markedly increased in the ovaries 
of obese mice, resulting in anovulatory cycles and 
decreased fertilization.72

Direct effects of adiponectin on the female 
gonad

The mammalian ovaries and particularly the follicles 
express the AdipoR1 and AdipoR2 receptors; accord-
ingly, treating pig granulosa cells with adiponectin 
induces changes characteristic of the periovulatory 
period. Moreover, additive effects are observed be-
tween adiponectin and insulin in inducing several 
granulosa cell gene expressions, thus suggesting 
that adiponectin actions on the ovary may be medi-
ated via its insulin-sensitizing effects.73 In addition, 
adiponectin and its receptor genes are also expressed 
in theca cells, cumulus cells and oocytes of the domi-
nant follicles compared to atretic follicles during the 
follicular and luteal phases. A positive correlation is 
observed between the adiponectin transcript in the 
ovarian cells of the dominant follicle and follicular 
fluid E2 levels, indicating an association between 
adiponectin and follicular dominance and oocyte 
competence.74 Adiponectin increases the production 

of progesterone in human ovaries,62 though it does 
not alter estrogen production.61,75 Treatment of human 
granulosa cells with adiponectin in vitro increases 
insulin-like growth factor I (IGF-1)-induced pro-
gesterone and E2 secretion but not IGF-1-induced 
proliferation.76 

Direct effects of visfatin on the female gonad
Visfatin directly affects ovarian function. Visfatin, 

which was originally described as an adipokine with 
an insulinomimetic and insulin secretagogue effect,77 
possesses monocyte chemotactic activity by inducing 
TNFa, IL-6 and IL-1β production via stimulation of 
the p38MAPK and ERK pathways. Visfatin levels 
are increased in obesity, type 2 diabetes and cardio-
vascular disease and are positively correlated with 
levels of IL-6 and CRP.78 In addition, visfatin levels 
positively correlate with obesity indices in women 
of reproductive age.79 However, its levels correlate 
with BMI in visceral fat but negatively in subcu-
taneous fat, possibly due to different regulation of 
visfatin production in the two distinct fat depots. In 
the ovaries, visfatin is expressed primarily in human 
granulosa cells (hGCs), in the tumor cell line KGN, 
in human cumulus cells and in oocytes. Interestingly, 
the concentration of visfatin in follicular fluid is as-
sociated with the number of mature oocytes.80 The 
insulin sensitizer metformin elevates the levels of 
visfatin transcript within human granulosa cells.81 

Direct effects of resistin on the female gonad
Resistin is expressed in the porcine ovary, where it 

directly affects ovarian steroidogenesis.82 Gonadotro-
pins and gonadal steroids stimulate the production of 
ovarian resistin, while IGF1 suppresses it.82 Resistin 
levels83 are positively associated with polycystic 
ovary syndrome (PCOS). The ratio of adiponectin to 
resistin levels positively correlates with plasma FSH 
and LH and negatively with free androgen index in 
women with PCOS.84 

Direct effects of chemerin on the female gonad
The primary function of chemerin, identified as 

an adipokine in 2007,85 involves chemoattraction of 
macrophages and dendritic cells during the immune 
response. It is implicated in the regulation of adipo-
genesis, adipocyte metabolism and glucose metabolism 
in mouse models of obesity and diabetes.86 Chemerin 
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regulates insulin secretion and insulin, in turn, and 
induces chemerin secretion from adipocytes. In hu-
mans, chemerin acts as a pro-inflammatory adipokine 
by directly affecting adipocytes in which it is induced 
by TNFa,87 and also by enhancing macrophage adhe-
sion.88 Circulating levels are increased in obesity, type 
2 diabetes, the metabolic syndrome and cardiovascular 
disease and are positively correlated with biomarkers 
of inflammation, including CRP, TNFa, IL-6, as well 
as leptin and resistin.89,90 Chemerin (RARRES2) and 
its receptors chemokine-like receptor 1 (CMKLR1), G 
protein-coupled receptor-1 (GPR1) and -2 (GPR2) are 
present in bovine ovarian cells (granulosa cells, theca 
cells, corpus luteum and oocytes),91 while chemerin 
and CMKLR1 are expressed in rat and human ovar-
ian cells.92,93 Chemerin and resistin down-regulate 
steroidogenesis in bovine ovarian cells,91,94 wherees 
chemerin does so by up-regulating prohibin in rat 
ovarian cells.92

Chemerin has been associated with obesity and 
PCOS.95,96 Our studies have shown that ovarian and 
circulating chemerin levels are elevated in a chronically 
androgenized rat model and that chemerin suppresses 
FSH-induced steroidogenesis.92 However, whether and 
how chemerin is involved in antral follicular growth 
arrest has not as yet been documented. Chronic andro-
gen administration increases chemerin and CKMLR1 
expression that is involved in the induction of antral 
follicle growth arrest. The latter response is character-
ized by dysregulated interactions of survival (p-Akt, 
XIAP, PARP) and proapoptotic (PTEN, caspase-3) 
factors in a cell-specific manner. This hyperandro-
genic state is also accompanied by marked changes 
in follicle structure, including up-regulation of cal-
pain expression and decreased cytoskeletal proteins, 
apoptotic deletion of granulosa cells and oocytes and 
the survival and retention of theca cells. 

In addition to its role in the control of ovarian fol-
licular growth, chemerin is important in the regulation 
of follicular steroidogenesis.5 It has been reported that 
chemerin inhibits FSH-induced aromatase expression 
and estrogen secretion in granulosa cells and that this 
influence is mediated through increased expression 
and action of the mitochondrial protein.5 This observa-
tion, together with our present findings that elevated 
chemerin levels and down-regulated aromatase expres-
sion are positively related to increased granulosa cell 

apoptosis in dihydrotestosterone-treated rats, supports 
the hypothesis that chemerin plays a paracrine and/or 
autocrine-regulatory role in the ovary and contributes 
to the dysfunction of the ovarian function. 

Direct effects of obesity on the male gonad
Male fertility, especially the quality of semen, is 

seriously declining in the developed countries. Among 
other environmental factors, obesity is positively 
associated with defective spermatogenesis. Males 
consuming high-energy diets exhibit sperm cell de-
fects, spermatogenesis arrest and spermatozoa with 
mitochondrial dysfunction and high levels of reac-
tive oxygen species,97 while overtly obese men have 
low total and free testosterone and reduced sperm 
concentration, sperm count and motility.98 Caloric 
restriction in obese men exerts a beneficial effect on 
their fertility via improvement of overall testicular 
function and by a reduction of the conversion of 
testosterone to β-estradiol by aromatase activity in 
adipose tissue.99

Limited information is available on the crosstalk 
between adipokines and male fertility. Adiponectin 
and its receptors are also expressed by most cells in 
male gonads including Leydig cells, spermatozoa and 
epididymis. Adiponectin protects Leydig cells from 
the detrimental effects of pro-inflammatory cytokines 
by suppressing nuclear factor-κB signaling via induc-
tion of AMPK.100 Finally, visfatin induces Leydig cell 
steroidogenesis in in vitro models.101

CONCLUSIONS

Overall, there is accumulating evidence that adi-
pose tissue has a pleiotropic effect on the HPG axis 
affecting fertility at multiple levels. Further research 
will shed light on the mechanisms involved and pro-
vide methods for prevention or amelioration of the 
detrimental effects of obesity on the HPG axis and 
fertility.
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