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Abstract

Biodegradable metals are breaking the current paradigm in biomaterial science to 

develop only corrosion resistant metals. In particular, metals which consist of trace 

elements existing in the human body are promising candidates for temporary implant

materials. These implants would be temporarily needed to provide mechanical 

support during the healing process of the injured or pathological tissue. Magnesium 

and its alloys have been investigated recently by many authors as a suitable

biodegradable biomaterial. In this investigative review we would like to summarize

the latest achievements and comment on the selection and use, test methods and 

the approaches to develop and produce magnesium alloys that are intended to 

perform clinically with an appropriate host response.
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1 Introduction

Biodegradable metals are breaking the current paradigm in biomaterial science to 

develop only corrosion resistant metals. In particular, metals which consist of trace 

elements existing in the human body are promising candidates for this approach. The 

purpose of biodegradable implants and coatings is to support tissue regeneration and 

healing in a specific application by material degradation and concurrent implant 

replacement through the surrounding tissue. Biodegradable metals have an 

advantage over existing biodegradable materials such as polymers, ceramics or 

bioactive glasses in load bearing applications that require higher tensile strength and 

Young`s modulus closer to bone [1] (Table 1).

In this review we will focus on biodegradable magnesium and its alloys. Preliminary 

and most recent advances will be reviewed. Magnesium and its alloys are generally 

known to degrade in aqueous environments via an electrochemical reaction 

(corrosion) which produces magnesium hydroxide and hydrogen gas. Thus, 

magnesium corrosion is relatively insensitive to various oxygen concentrations in 

aqueous solutions which occur around implants in different anatomical locations. The 

overall corrosion reaction of magnesium in aqueous environments is given below:

Mg (s) + 2 H2O (aq) ⇌ Mg(OH)2 (s) + H2 (g) (1)

This overall reaction may include the following partial reactions:

Mg (s) ⇌ Mg2+
(aq) + 2 e- (anodic reaction) (2)

2 H2O (aq) + 2 e- ⇌ H2 (g) + 2 OH-
(aq) (cathodic reaction) (3)

Mg2+
(aq) + 2 OH-

(aq) ⇌ Mg(OH)2 (s) (product formation) (4)



Magnesium hydroxide accumulates on the underlying magnesium matrix as a 

corrosion protective layer in water, but when the chloride concentration in the 

corrosive environment rises above 30 mmol/l [2], magnesium hydroxide starts to 

convert into highly soluble magnesium chloride. Therefore, severe pitting corrosion 

can be observed on magnesium alloys in vivo where the chloride content of the body 

fluid is about 150 mmol/l [3-5]. In magnesium and its alloys, elements (impurities) and 

cathodic sites with low hydrogen overpotential facilitate hydrogen evolution [6], thus 

causing substantial galvanic corrosion rates and potential local gas cavities in vivo.

The corrosion morphology of magnesium and its alloys depends on the alloy 

chemistry and the environmental conditions [4, 6]. Currently investigated magnesium 

alloys were obtained off-the-shelf, purchasable standard alloys or alloys which can be 

easily cast.

As discussed in the field of biodegradable materials, there is at least a two-way 

relationship between the material and the biological host response i.e. the

degradation process or the corrosion products can induce local inflammation and the 

products of inflammation can enhance the degradation process. The complexity of 

this relationship is generally unknown for biodegradable metals, even though first 

results have shown that fast corroding magnesium alloys respond with a mild foreign 

body reaction [7].

1.1 General: Major recent advances

The major recent advances in magnesium alloys as temporary biomaterials have 

been in understanding the interface and interaction of magnesium alloys and their 

biological environment. In contrast to previous technical alloy developments aiming 

on the improvement of mechanical properties, corrosion resistance and production 

costs, the main focus is shifting to the influence of the alloying elements on the 



formation of the corrosion protective interfaces and on the surrounding biological 

environment in vitro and in vivo. However, currently available magnesium alloys were 

investigated in different biomedical applications. Indisputably the most advanced 

clinical applications are biodegradable cardiovascular magnesium stents which have 

been successfully investigated in animals [8-10] and first clinical human trials have 

been conducted [11-13]. Magnesium alloys were also investigated as bone implants 

[3, 4, 14] and can be applied in various designs e.g. as screws, plates or other fixture

devices. Magnesium chips have been investigated for vertebral fusion in spinal 

surgery of sheep [15] and open-porous scaffolds made of magnesium alloys have 

been introduced as load bearing biomaterials for tissue engineering [7, 16-18]. 

However, high extracellular magnesium concentrations have been found beneficial 

for cartilage tissue engineering [19].

2 Magnesium and its alloys

2.1 Chemical composition and production process of magnesium

2.1.1 Magnesium alloys

The magnesium alloys currently under investigation as implant materials are mostly

commercial alloys which have been developed for the needs in transportation 

industry [20]. The designation system of magnesium alloys is generally following the 

nomenclature of the American Society for Testing and Materials (ASTM) [21, 22] and 

uses a typical letter-figure combination (Table 2). The magnesium alloys can be 

divided into three major groups: pure magnesium (Mg) with traces of other elements,

aluminium (Al) containing alloys and those alloys which are free of Al [3-7, 14, 17, 18, 

23-36]. Typical Al containing magnesium alloys are AZ91, AZ31, AE21, calcium (Ca)



modified AZ alloys, and LAE442. AZ31 and AZ91 have been used over decades in 

technical applications [20, 37].  In addition to the given elements Al and zinc (Zn),

these alloys also contain a small amount of manganese (Mn) [20, 37]. AE21 consists 

of Mg, Al, rare earth elements (RE), a small amount of Mn. Furthermore, its 

composition is very similar to the commercial creep resistant alloy AE42 [20, 37]. 

LAE442 is based on the alloy AE42 and contains Al, RE, Mn and additionally lithium 

(Li). LAE442 has been developed recently as a density reduced magnesium alloy 

with improved ductility and enhanced corrosion properties [38, 39].

Typical Al-free magnesium alloy systems are WE, MZ, WZ, and Mg-Ca alloys. The 

magnesium alloy WE43 has been developed to improve creep resistance and high 

temperature stability [20, 37, 40]. This alloy contains yttrium (Y), zirconium (Zr) and 

RE respectively. Manganese-zinc (MZ) alloys have comparable properties to the 

alloying system ZM, which is a known system for wrought applications in the 

transportation industry [20, 37].

However, almost none of the above mentioned alloys have been originally developed 

to be a biodegradable implant material. Due to the complex alloy composition it is not 

certain, if the observed in vivo degradation can be truly connected to a chemical 

element, an intermetallic compound or a microstructural effect based on the 

processing route.

2.1.2 The alloying elements

Alongside pure magnesium, the chemical elements Al, Mn, Zn, Ca, Li, Zr, Y and RE 

are used in magnesium implant materials [3-7, 14, 17, 18, 23-36]. The detailed 

metallurgical and metal physical reasons for their use are described in [20, 37, 41]. In 

general, these elements influence the mechanical and physical properties of 

magnesium alloys in industrial applications. As long as the alloying elements remain



in solid solution, they can be used for solid solution strengthening. Furthermore, most 

of the given alloying elements can react with magnesium or among each other to 

form intermetallic phases. Theses phases contribute to enhance the alloy`s strength 

by precipitation strengthening. Both solid solution strengthening and precipitation 

strengthening improve strength, but deteriorate the alloy`s ductility. However, almost 

any alloying element contributes to some extent to grain refinement which serves as 

a strengthening mechanism known as grain boundary strengthening or Hall-Petch 

strengthening. Grain boundary strengthening improves both strength and ductility.

Characteristic impurities in magnesium alloys are iron (Fe), copper (Cu), nickel (Ni), 

and beryllium (Be). The amount of impurities depends on the alloy`s composition, the 

technology for production and the progress in alloy development. Typically, Be is 

limited to 4 ppm. The amount of Cu is limited normally to 100-300 ppm, Fe to 35-50 

ppm, and Ni should not exceed 20-50 ppm. Other chemical elements are referred as 

normal alloying elements and their limits are given together with the nominal contents 

of alloying elements [42]. For biomedical applications, the amount of these impurities 

has to be strictly controlled. Although the given impurity concentration are low

compared to the physiological range of concentration in the body, elements such as 

especially beryllium and nickel should be avoided. In general, the amount of 

impurities should be kept minimal, supporting the aim to obtain more comparable and 

standardized magnesium alloys. A brief summary for pathophysiological and 

toxicological characteristics of the alloying elements and the impurities in magnesium 

alloys are given in Table 3.

2.1.3 The production process

Casting is the predominant process to manufacture magnesium parts and implants. 

Casting is suitable for the production of small series of near net shape components 



as well as for the mass production with high dimensional precision. The limitations of 

casting are dependent on the casting parameters and could appear as segregations, 

precipitation shrinkage, micro- and macroporosity, inhomogeneous grain size and 

grain size distribution during solidification. Additional heat treatment can not be 

applied to overcome some of these problems [20, 43]. 

Wrought materials are preheated prior to deformation to dissolve precipitates and to 

activate additional slide systems in magnesium base materials with a hexagonal 

close-packed (h.c.p.) crystal structure [20]. Depending on the wrought process and 

its parameters (i.e. deformation ratio, deformation speed, billet temperature), it is 

possible to achieve a magnesium alloys with a fine grained, homogeneous 

microstructure.

The combination of different processing steps, heat treatments and the variety in the 

alloy composition influences the microstructure – property relationship and can lead 

to drastic differences in strength, ductility, creep resistance and corrosion 

performance. Therefore, the process chain has to be determined with regard to the 

intended application and its requirements.

2.1.4 The effect of alloying elements

Compared to high purity magnesium none of the alloying elements improve the 

corrosion behavior [37]. Any of the alloying elements in its pure form or intermetallic 

phase are nobler compared to pure magnesium. Thus, the matrix acts in any case as 

a cathode and gets dissolved.

Depending on the production process, the grain size and grain size distribution is 

affected by the process itself and by the selection of alloying elements. Compared to 

the matrix, a grain boundary is a distorted area with high imperfection and high 



internal energy. Any corrosive attack in a pure material attacks therefore normally the 

grain boundary first. Segregation of the alloying elements towards the grain boundary 

occurs depending on the present alloying element and the chosen solidification route.

Therefore, the composition in the center of the grain will be different from those close 

to the grain boundary. This fact influences corrosion behaviour and normally the 

matrix close to the grain boundary shows a more cathodic behavior compared to the 

center of the grain.

Since the grain boundary is a weak area that promotes early corrosive attacks it 

could be assumed that coarse grains should be preferred. However, segregations are 

minimized in small grained magnesium alloys and the corrosion behaviour appears to 

be more homogeneous.

As an alloying element, Al can provide both solid solution strengthening and 

precipitation strengthening. Unfortunately the Mg17Al12 phase in the Mg-Al system 

has a low melting point and can not be used to improve high temperature strength. 

Additionally the increase of the content of Al lowers the temperature of liquidus and 

solidus lines and enhances the castability of alloys with high Al contents.

Manganese is mainly used to enhance ductility. More important is the formation of Al-

Mn intermetallic phases in Al containing magnesium alloys. These phases can pickup 

iron (Fe) and can therefore be used to control the corrosion of magnesium alloys due 

to the detrimental effect of Fe on the corrosion behavior.

In smaller amounts, Zn contributes to strength due to solid solution strengthening. It 

can also improve the castability but in larger amounts (> 2 wt.-%) Zn leads to an 

embrittlement in combination with Al [37, 44].

Calcium contributes to solid solution strengthening and precipitation strengthening. It 

also acts to some extent as a grain refining agent and additionally contributes to 



grain boundary strengthening. In binary Mg-Ca alloys the Laves phase Mg2Ca is 

formed while in Al containing alloys the Laves phase Al2Ca forms first. Both phases

improve creep resistance due to solid solution strengthening, precipitation 

strengthening and grain boundary pinning. Larger amounts of Ca (> 1 wt.-%) can 

lead to problems during casting like hot tearing or sticking.

Lithium is the only element known that is able to change the lattice structure from 

hexagonal close-packed (h.c.p.) to body-centered cubic (b.c.c.) crystal structure in 

magnesium alloys [45]. Therefore, it can be used to enhance ductility and formability 

of magnesium alloys but unfortunately it has a negative effect on strength. Zirconium

is an effective grain refining agent in Al free magnesium alloys. With regard to the 

Hall-Petch relationship it contributes to strengthening due to the formation of fine 

grains (grain boundary strengthening).

Rare earth elements (RE) are introduced into magnesium alloys normally by master 

alloys such as mischmetal (typically 50% cerium (Ce), 45% lanthanum (La), small 

amounts of neodymium (Nd) and praseodymium (Pr)), Y-, Ce- or Nd-rich hardeners 

[20, 37, 40, 46]. These master alloys or hardeners contain one or two RE in larger 

quantity and almost any other RE in different amounts. In general, the RE can be 

divided into two groups: the first group contains elements with large solid solubilities 

in Mg such as Y, gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), 

erbium (Er), thulium (Tm), ytterbium (Yb), and lutetium (Lu) while the second group 

shows only limited solubility in Mg (Nd, La, Ce, Pr, samarium (Sm), europium (Eu)) 

[45].

Some amount of the RE is kept in solid solution and therefore RE can strengthen the 

material by solid solution strengthening. Additionally, all RE can form complex 

intermetallic phases with Al or Mg. These intermetallic phases act as obstacles for 



the dislocation movement at elevated temperatures and cause precipitation 

strengthening. The RE with limited solubility forms intermetallic phases early during 

solidification. Thus, RE can arrest grain boundaries at elevated temperatures and 

contribute to strength mainly by precipitation strengthening. This mechanism 

increases the service temperature of Mg alloys in transportation industry and 

improves creep resistance as well as corrosion resistance [47].

2.2 Experimental test systems used in in vivo and in vitro studies

2.2.1 In vivo testing of magnesium alloys

In vivo studies were predominantly performed in small animals, i.e. rats

(subcutaneously), guinea pigs and rabbits [3-5, 7, 14, 17]. However, an experimental

study in sheep reported about the corrosion of magnesium chips in spinal 

applications [15] and preclinical experiments for cardiovascular stent applications 

have been performed in pigs [9, 48, 49]. Since the local blood flow and the water 

content of the different tissues (local chloride content, hydrogen diffusion coefficient) 

can be assumed to be different in various animal models (Table 4, 5, 6), the obtained 

corrosion rates are not directly comparable. Basically, the obtained different local 

corrosion patterns due to various anatomical locations or different mechanical loading 

situations might shed light on the underlying corrosion mechanism of the investigated 

magnesium alloy in vivo. Dissolved ions from metal implants are always a concern to 

induce hypersensitivity and allergy. Magnesium alloys AZ31, AZ91, WE43 and 

LAE442 have been shown to be non-allergenic in an epicutaneous patch test in 

accordance with the ISO standard [50]. Various analytical methods have been used 

to determine the elemental components of biodegradable magnesium alloys (Mg, Al, 

Li, Zn, rare earth elements) in histological sections, bone, tissue and body fluids



(Table 7). The application of these methods for trace and ultra trace analysis in often 

small sample volumes is hampered by several problems. The typical concentrations 

of the elements mentioned above range from < 1 µg/L to about 1 mg/L in serum and 

from < 1 mg/kg up to about 500 mg/kg for example in liver and bone. Thus, the 

sensitivity of the method is not sufficient (AES, GD-OES, XRF, SEM-EDX) [51, 52]. 

Other problems are caused by time consuming sample preparation (AES, OES, ICP-

MS), the access to the method (NAA, synchrotron-based methods), the lack of 

sufficient lateral resolution for solid sample analysis (GD-OES) or difficulties to 

overcome interferences during the measuring process (AAS, AES, ICP-MS, XRF) 

[53-55]. Phosphate ions in dissolved bone samples may hamper the accurate 

determination of trace metal concentrations by AAS due to the formation of very 

stable phosphate compounds. High concentrations of alkaline and earth alkaline 

elements cause problems in AES measurements due to their strong influence on the 

line intensities of other elements. In ICP-MS measurements, signal distortion can 

occur due to contributions of other ions or molecular ions with the same mass-to-

charge (m/z) ratios as the elements which are currently analysed. These effects are 

known for calcium, phosphorous, iron and zinc. Additionally, oxide formation of rare 

earth elements could be observed leading to decreased signals and shifts in ICP-MS. 

Furthermore, X-ray spectra of rare earth element mixtures are characterized by 

strong signal overlaps when using energy dispersive measurements.

Sensitivity problems could be minimized if the samples are completely dissolved. In 

this case, ICP-MS, with or without preconcentration of the analyte, will provide good 

results for most elements of the periodic system. However, locally resolved multi-

element analysis of solid samples is still a challenging task. At present, micro-XRF 

and laser ablation ICP-MS are the most promising methods [56-58], even though

their sensitivity is limited.



2.2.2 In vitro testing of magnesium alloys

To investigate magnesium corrosion has always been a challenge. Corrosion rates of 

the same magnesium alloy obtained from various corrosion tests exhibit usually 

different corrosion rates [41]. Thus, in more complex corrosive solutions which 

simulate physiological body fluids, the corrosion rate is even more difficult to 

determine. Therefore, some authors started to measure the volume of hydrogen gas 

which evolves with ongoing magnesium corrosion. This simple and inexpensive 

method has some limitations due to atmospheric pressure changes and possible 

hydrogen leakages from the experimental set-up. Furthermore, the stoichiometry of 

the redox equation which produces elemental hydrogen is not fully understood and 

thus the hydrogen gas volume cannot be directly correlated to the production of 

magnesium ions [59]. The most common methods to determine the corrosion rate 

in vitro are gravimetric measurements and electrochemical measurements (linear 

polarization, Electrochemical Impedance Spectroscopy). As a non-destructive 

method microtomography, especially synchrotron-based microtomography, was 

introduced to obtain general corrosion rates by observing the time-depending change 

in the metallic volume of the remaining implant. This method was also applied to 

estimate corrosion rates from explanted samples [5, 60].

The advised guide line for biomaterial testing is the European standard ISO 10993. 

However, some limitations are conjunct with the use of this standard mainly for 

testing biodegradable or corroding biomaterials: (i) the recommended cells are cell 

lines; (ii) for biodegradable materials it is recommended to prepare extracts and apply 

these to the cells. One major obstacle is the preparation of extracts from magnesium 

alloys. The resulting solution, regardless of which alloy is used, shows a high 

osmolarity and pH and hence exposes the investigated cells to an osmotic shock 



[61]. By definition, this would classify nearly all magnesium alloys as cytotoxic. For 

magnesium research, it is reported that other testing methods produce data in vitro

that are also not well correlated to the obtained in vivo data [5].

Following the recommendations of [62] for screening purposes a simple set of tests 

could be applied, leading to more complex systems for a more rigid selection up to 

the final in vivo experiment. However, for some magnesium alloys, simple test 

systems such as formazan-based cytotoxcicity tests (i.e. MTT, WST-1, XTT) are 

restricted by the interference between the corrosion and the test agent (unpublished 

data). Similar problems are also reported for other biodegradable materials such as

polymers and calcium phosphates [63, 64]. Thus, a systematic approach to 

determine suitable in vitro test methods is needed. This in vitro test system should be 

able to simulate the desired implantation site and its local environment.

3 Environmental conditions influencing Mg corrosion – in vitro

and in vivo

3.1 Effect of the solution and organic content

Many authors performed systematic corrosion studies on magnesium alloys with 

different corrosion media (± proteins) [24, 25, 27]. The composition of the corrosive 

medium influenced the magnesium corrosion behavior, which was additionally altered 

by the presence or absence of proteins. Proteins such as albumin have been 

demonstrated to form a corrosion blocking layer on the magnesium alloys in in vitro

experiments [24, 27, 36, 65]. This layer is enriched by calcium phosphates in vitro

[27, 36] and in vivo [3, 4, 15] and concomitantly participate in corrosion protection.



More systematic studies have to be performed, until all factors which are influencing 

the corrosion behavior are fully discovered.

3.2 Effect of flow and temperature

Blood flow and temperature is different in various anatomical sites and especially the 

flow of the corrosive media has a significant effect on the corrosion rate of 

magnesium alloys [65], while the effect of temperature in the human physiological 

range 35.8 – 37.2 °C seem to be less important for magnesium corrosion, it may 

influence the adsorption of proteins and thus the response of the biological 

environment.

3.3 Effect of hydrogen diffusion coefficient

The diffusion and solubility coefficient of hydrogen in biological tissues has been 

widely reviewed [66]. The solubility of hydrogen in tissues is influenced by the content 

of lipids, proteins and salinity, but in fat and oils, the solubility seems to be 

approximately independent of temperature in the physiological range [66] (Table 4).

Not only viscosity, but also different tissue components and structures like lipids, 

proteins and glycosaminoglycans influence the numeric value of the hydrogen 

diffusion coefficient [66] (Table 5). Depending on experimental configuration, the 

diffusion coefficient may be underestimated in both stagnant and flowing media due 

to a boundary layer formation, which increases the effective diffusion distance [66].

This finding might be important for intravascular magnesium applications. Correlating 

the hydrogen diffusion coefficients from various biological media having fractional 

water contents from about 68% to 100% demonstrated that the diffusion coefficient of 

hydrogen increases exponentially with the increasing water fraction of the tissue [67]. 

Table 5 demonstrates that the tissue water content increases from adipose tissue to 



skin to bone and to muscles in animals and humans, but is similar for the same tissue 

regardless of the species. This might explain why different corrosion rates and gas 

cavities were observed for magnesium alloys in different anatomical implantation 

sites [3, 4, 7, 15]. In an animal study with rats, it was shown that the adsorption of 

hydrogen gas from subcutaneous gas pockets was limited by the diffusion coefficient 

of hydrogen in the tissue; the overall hydrogen adsorption rate was determined as 

0.954 ml per hour [68] (Table 6). Thus, the local blood flow and the water content of 

the tissue surrounding the implant are the most important parameters which should 

be considered in designing biodegradable magnesium alloys with an appropriate 

corrosion rate. Concomitantly, it can be assumed that local hydrogen cavities occur 

when more hydrogen is produced per time interval than it can be dissolved in the 

surrounding tissue or diffuse from the implant surface into the extracellular medium 

which is renewed depending on the local blood flow.

This means that magnesium alloys are corroding in vivo with an appropriate 

corrosion rate when no local gas cavities are observed during the implantation period

in a specific anatomical site.

4 How to choose the right magnesium alloy?

Current investigated magnesium alloys are used “off-the-shelf” or are known for their 

properties in technical applications. The empirical approach in biodegradable stent 

development lead to magnesium alloys containing rare earth elements. This 

approach seems to be obviously one successful way to obtain usable implant 

materials [12, 13]. Most rare earth elements show a beneficial effect on magnesium 

corrosion in vivo [4]. However, the rare earth elements are used as mischmetal in 

alloy hardeners containing various element concentrations. Therefore, a more 

systematic approach is needed. Currently, aluminium containing magnesium alloys 



are investigated by several research groups in biomedical applications. Even though 

the authors of this review feel that aluminium containing magnesium alloys should not 

be implanted into humans, a lot of data from various in vitro and in vivo experiments 

are available today. Therefore, it is recommended that Mg-Al alloy systems should 

just be used as experimental alloys to investigate the improvements of processing 

and surface modification technologies (i.e. coatings) in biomedical applications. For 

the use in humans the authors of this review recommend to use aluminium free 

magnesium alloy systems. As indicated in Figure 1, it seems to be of major 

importance that an interdisciplinary team of researchers is designing the magnesium 

alloy and the production process according to the intended application and use as 

well as reviewing available data from literature and the critical analysis of their 

methods.
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Table 1: Mechanical properties of different normal tissues and requirements in standard stent and orthopaedic implants compared with
available data for currently investigated magnesium alloys

Tissue/
Material

Comp. strength
(MPa)

Tensile strength
(MPa)

E-mod.
tensile (GPa)

Apparent density
(g/cm³)

Yield strength
(MPa)

Elongation
(A) at break [%]

Impact strength
Charpy V-Notch (J/m-2)

Cortical bone 1 164-240 35-283 5-23 1.8 - 2.0 1.07-2.10 4-70
Cancellous bone 1 1.5-38 10-1570 (MPa) 1.0 - 1.4
Arterial wall 0.50-1.72 1 (MPa)
Titanium (TiAl6V4, cast) 830-1025 114 4.43 760-880 12 19
Titanium (TiAl6V4, wrought) 896-1172 114 4.43 827-1103 10-15
Stainless steel 316L 480-620 193 8.0 170-310 30-40
Synthetic Hydrxyapatite 100-900 40-200 70-120 3.05 - 3.15
Bioactive glass 40 - 60 35 - 35
DL-PLA 29-35 1.9-2.4 5-6
AZ91E-F sand cast 97 165 45 1.81 97 2.5 0.79
AZ91E-F HPDC 165 230 45 1.81 150 3 2.7
AZ91E- GAE 457 45 1.81 517 11.1
AZ31 extruded 83-97 241-260 165-200 12-16 1.78
AZ31 sheet 110-180 255-290 150-220 15-21 1.78
AZ31GAE 445 424 11.5 1.78
LAE442 247 148 18
WE43A-T6 250 1.84 162 2
WE43-B 345 220 2
WE43 extruded 277 198 17
WE43 tube 260 170 25
AZ91+2Ca-GAE 452 427 5.4
AZ91+2Ca 147 1.7 1.3
Mg0.8Ca 428
Mg(0-4)Ca 210-240
AM50A-F 113 210 1.80 10
AM60B-F 130 225 1.80 8 2.8

1 the range of values are depending on species, age of species, anatomical location and testing conditions

Data were compiled from [1, 32, 37, 65, 69-78].



Table 2: Influence of alloying elements and impurities on properties and processing 

of Mg alloys at ambient temperatures
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Aluminium A + + + + +
Calcium X + – ++ – + +
RE E ++ + +
Copper C – + – – – –
Iron F + – –
Lithium L – + – –
Manganese M + + + + + 2 +
Nickel N – –
Silicon S – + + + + – –
Strontium J + + + + + +
Yttrium W + – ++ + + +
Zinc Z + – 1

Zirconium K + + + ++

UTS = ultimate tensile stress, UCS = ultimate compressive stress, effect coding: ++ = 

excellent, + = good, - = bad, -- = detrimental; 1) at high Zn concentration, 2) only in 

combination with Al; 



Table 3: A brief summary of the toxicology and pathophysiology of some alloying 

elements and impurities.

Element Pathophysiology/Toxicology Ref.

Magnesium normal blood serum level 0.73-1.06 mmol/L [79]
influences growth factor effectiveness [80]
co-regulator of energy metabolism, cell proliferation, 
protein synthesis, onset of DNA synthesis

[80, 81]

regulator of more than 350 proteins [82]
stabilizer of DNA and RNA [83]
long-term influence on cellular reactions [84]
cellular up-take via transient receptor potential (TRP) ion 
channels

[85, 86]

co-regulator and activator of integrins (cell migration) [87-89]

Calcium normal serum level 0.919-0.993 mg/L [90]
most abundant mineral in the human body (1-1.1 kg) [91]
mainly stored in bone, teeth [91]
is tightly regulated by homoestasis of skeletal, renal and 
intestinal mechanism

[91]

Aluminium normal blood serum level 2.1-4.8 µg/L [92]
established alloying element in titanium implants [93, 94]
risk factor in generation of Alzheimer`s disease [95]
can cause muscle fiber damage [96]
decrease osteoclast viability [97]
in magnesium alloys: mild foreign body reactions were 
observed in vivo

[7]

Zinc normal blood serum level 12.4-17.4 µmol/L [98]
trace element [99]
essential for the immune system [99]
co-factor for specific enzymes in bone and cartilage [100, 101]
neurotoxic at higher concentrations [102]

Manganese normal blood serum level < 0.8 µg/L [103]
essential trace element [104]
important role in metabolic cycle of e.g. lipids, amino 
acids and carbohydrates

[104]

influences the function of the immune system, bone 
growth, blood clotting, cellular energy regulation and 
neurotransmitter synthesis

[104]

scavenger of free radicals in the manganese superoxide 
dismutase

[105]

neurotoxic in higher concentration (manganism) [106]

Lithium normal blood serum level 2-4 ng/g [107]



compound of drugs for treatment of psychiatric disorders [108]
overdosage causes nephrological or lung dysfunctions [109, 110]
possible teratogenic effects [111]
further reading on lithium intoxication see reference [107, 112]

Rare Earth 
elements

many rare earth elements exhibit anticancerogenic 
properties

[113-116],

Impurities

Nickel normal blood serum level 0.05-0.23 µg/L [117]

strong allergenic agent which can induce metal 
sensitivity

[118]

carcinogenic and genotoxic [118]

Beryllium toxic dosage > 2 µg/m3 [119]
induces metal sensitivity, highly carcinogenic [120, 121]

Iron normal blood serum level 5.0-17.6 g/L [122, 123]
essential for life and metabolically regulated and stored [122, 123]
generator of age related diseases by reactive oxygen 
species

[124]

Copper normal blood serum level 74-131 µmol/L [125]



Table 4: Ostwald solubility coefficient L (ml gas per ml medium) for hydrogen in 

biological media at various temperatures (°C) according to Langö et al. [66].

Table 5: Fick diffusion coefficient D (10-5 cm2/s), Krogh diffusion coefficient K (10-5 

ml gas per ml solvent per atm times cm2 per second) and D37°C for hydrogen in 

biological solvents at various temperatures (°C) according to the review of Langö et 

al. [66].

Medium/Tissue °C D D37°C K

Brain, guinea pig 21 2.2 3.1 -

Blood serum, ox 37 3.9 - -

Lard 25 1.1 1.4 -

Skeletal muscle, rat 37 2.57 - 0.054

Olive oil 25.3 2.9 3.7 -

Water 25 4.6 ± 0.6 6.0 ± 0.8 -

Medium/Tissue °C L

Water 37 0.0185

Saline 0.15M 38 0.0178

Plasma, ox 38 0.0175

Red cells, ox 38 0.0166

Whole blood, ox 38 0.0170

Whole blood, man 37 0.018

Skeletal muscle, rat 37 0.0218

Olive oil 25.3 0.036

Lard 25 0.039



Table 6: Comparison of tissue water in animals and humans without blood, the 

residual blood content of rat tissue and the average blood flow of the specific organ.

Rat         Rabbit         Human

Tissue Water
content 
[%]

Residual
blood 
[µl/g] 

Blood
flow 
[ml/min/100g]

Water
content 
[%]

Blood
flow 
[ml/min/100g]        

Water
content 
[%]

Blood
flow 
[ml/min/100g]        

Heart 79.0 ± 
0.2

61 39 78.2-
79.0

5.0 ± 0.8 71.2-
80.3

1000

Muscle 75.6 ± 
0.3

7.2 33 76.5-
77.0

22.3 ± 2.2 76.0 38

Brain 78.8 ± 
0.2

17 0.75 ± 0.09 1 74.0-
85.0

57.2 ± 5.3 76.0-
78.0

560

Liver 70.5 ± 
0.7

150 29.4 ± 2.0 70.0-
76.0

19.4 72.9-
77.3

1000

Spleen 77.1 ± 
0.4

311 1.19 ± 0.9 1 75.5-
78.0

6.35 1 76.5-
81.1

1200

Intestine 74.9 ± 
0.7

12 2.23 ± 0.3 80.6-
82.3

149.1 ± 11.3 71.0-
72.7

1000

Adipose 18.3 ± 
1.7

3.9 9.8 ± 1.3 8.5 87 -- 28

Skin 65.1 ± 
0.7

7.1 18.9 ± 1.4 54.0-
67.8

12.7 ± 1.7 67.8-
75.8

120

Bone 44.6 ± 
1.7

59 2.3 ± 2.0 39.2-
58.1

19.1 ± 1.7 43.9 120

Data were compiled from [126-142]. 1 = mg/min/g



Table 7: Analytical methods used in studying the corrosion rate of magnesium alloys 

in vivo and in vitro.

Methods used in vitro Reference

hydrogen evolution method [28, 29, 143]

electrochemical measurements (linear polarization, EIS) [24, 25, 27, 28, 143]

volume change of the metallic volume of the remaining 
sample, microtomography

[5, 60]

Methods used in vivo Reference

atomic absorption spectroscopy (AAS) [144]

atomic emission spectroscopy (AES) [145]

mass spectrometry with inductively coupled plasma (ICP-MS) [144, 146, 147]

laser ablation for solid sampling [148]

X-ray fluorescence analysis with synchrotron source [149]

electron beam (SEM-EDX) [3, 4, 15]

X-ray diffraction (XRD) [150]

microtomography [151]

neutron activation analysis (NAA) [152]

glow-discharge optical emission spectroscopy (GD-OES) [153]



Figure Captions

Figure 1: Following the steps in this flow chart might help to select the appropriate 

magnesium alloy for the intended implant.
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