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Preface

Many scientific experiments subject to rigorous statistical analyses involve the
simultaneous evaluation of more than one question. Multiplicity therefore be-
comes an inherent problem with various unintended consequences. The most
widely recognized result is that the findings of an experiment can be mislead-
ing: Seemingly significant effects occur more often than expected by chance
alone and not compensating for multiplicity can have important real world
consequences. For instance, when the multiple comparisons involve drug effi-
cacy, they may result in approval of a drug as an improvement over existing
drugs, when there is in fact no beneficial effect. On the other hand, when drug
safety is involved, it could happen by chance that the new drug appears to be
worse for some side effect, when it is actually not worse at all. By contrast, mul-
tiple comparison procedures adjust statistical inferences from an experiment
for multiplicity. Multiple comparison procedures thus enable better decision
making and prevent the experimenter from declaring an effect when there is
none.

Other books on multiple comparison procedures

There are different ways to approach the subject of multiple comparison pro-
cedures. Hochberg and Tamhane (1987) provided an extensive mathematical
treatise on this topic. Westfall and Young (1993) focused on resampling-based
multiple test approaches that incorporate stochastic dependencies in the data.
Another approach is to introduce multiple comparison procedures by compar-
ison type (multiple comparisons with a control, multiple comparisons with
the best, etc.), as done in Hsu (1996). Westfall, Tobias, Rom, Wolfinger, and
Hochberg (1999) chose an example-based approach, starting with simple prob-
lems and progressing to more challenging applications while introducing new
methodology as needed. Dudoit and van der Laan (2008) described multiple
comparison procedures relevant to genomics. Finally, Dmitrienko, Tamhane,
and Bretz (2009) reviewed multiple comparison procedures used in pharma-
ceutical statistics by focusing on different drug development applications.

How is this book different?

The emphasis of this book is similar to the previous books in the development
of the theory, but differs in the way that applications of multiple comparison
procedures are presented. Too often, potential users of these methods are over-

xiii
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xiv PREFACE

whelmed by the bewildering number of possible approaches. We adopt a uni-
fying theme based on maximum statistics that, for example, shows Dunnett’s
and Tukey’s methods to be essentially no different. This theme is emphasized
throughout the book, as we describe the common underlying theory of mul-
tiple comparison procedures by use of several examples. In addition, we give
a detailed description of available software implementations in R, a language
and environment for statistical computing and graphics (Ihaka and Gentle-
man 1996). This book thus provides a self-contained introduction to multiple
comparison procedures, with discussion and analysis of many examples using
available software. In this book we focus on “classical” applications of multiple
comparison procedures, where the number of comparisons is moderate and/or
where strong evidence is needed.

How to read this book

In Chapter 1 we discuss the “difficult and ubiquitous problems of multiplic-
ity” (Berry 2007). We give several characterizations and provide examples
to motivate the discussion in the subsequent chapters. In Chapter 2 we give
a general introduction to multiple hypotheses testing. We describe different
error rates and introduce standard terminology. We also cover basic multi-
ple comparison procedures, including the Bonferroni method and the Simes
test. Chapter 3 provides the theoretical framework for the applications in
Chapter 4. We briefly review standard linear model theory and show how
to perform multiple comparisons in this framework. The resulting methods
require the common analysis-of-variance assumptions and thus extend the ba-
sic approaches of Bonferroni and Simes. We then extend this framework and
consider multiple comparison procedures in parametric models relying only
on standard asymptotic normality assumptions. We further give a detailed
introduction to the multcomp package in R, which provides a convenient in-
terface to perform multiple comparisons in this general context. Applications
to illustrate the results from this chapter are given in Chapter 4. Examples
include the Dunnett test, Tukey’s all-pairwise comparisons, and general mul-
tiple contrast tests, both for one-way layouts as well as for more complicated
models with factorial treatment structures and/or covariates. We also give ex-
amples using mixed-effects models and applications to survival data. Finally,
we review in Chapter 5 a selection of further multiple comparison procedures,
which do not quite fit into the framework of Chapters 3 and 4. This includes
the comparison of means with two-sample multivariate data using resampling-
based procedures, methods for group sequential or adaptive designs, and the
combination of multiple comparison procedures with modeling techniques.

Those who are facing multiple comparison problems for the first time might
want to glance through Chapter 2, skip the detailed theoretical framework of
Chapter 3 and proceed directly to the applications in Chapter 4. The quick
reader may start with Chapter 4, which can be read mostly on its own; nec-
essary theoretical results are linked backwards to Chapters 2 and 3. Similarly,

© 2011 by Taylor and Francis Group, LLC



PREFACE xv

the selected multiple comparison procedures in Chapter 5 can be read without
necessarily having read the previous chapters.

Who should read this book

This book is for statistics teachers and students, undergraduate or graduate,
who are learning about multiple comparison procedures, whether in a stand-
alone course on multiple testing, a course in analysis-of-variance, a course in
multivariate analysis, or a course in nonparameterics. Additionally, the book
is helpful for scientists who need to use multiple comparison procedures, in-
cluding biometricians, clinicians, medical doctors, molecular biologists, agri-
cultural analysts, etc. It is oriented towards users (i) who have only limited
knowledge of multiple comparison procedures but need to apply those tech-
niques in R, and (ii) who are already familiar with multiple comparison pro-
cedures but lack the related implementations in R. We assume that the reader
has a basic knowledge of R and can perform elementary data handling steps.
Otherwise, we recommend standard textbooks on R for a quick introduction;
see Dalgaard (2002) and Everitt and Hothorn (2009) among others.

Conventions used in this book

We use bold-face capital letters (e.g., C,R,X, . . .) to denote matrices and
bold-face small letters (e.g., c,x,y, . . .) to indicate vectors. If the distinction
between column and row vectors matters, we introduce vectors as column
vectors. A transpose of a vector or matrix is indicated by the superscript >;
for example, c> denotes the transpose of the (column) vector c. To simplify the
notation, we do not distinguish between random variables and their observed
values, unless noted explicitly.

We use many code examples in R throughout this book. Samples of code
that could be entered interactively at the R command line are formatted as
follows:

R> library("multcomp")

Here, R> denotes the prompt sign from the R command line and the user enters
everything else. In some instances the expressions to be entered will be longer
than a single line and it will appear as follows:

R> summary(glht(recovery.aov, linfct = mcp(blanket = contr),
+ alternative = "less"))

The symbol + indicates additional lines which are appropriately indented.
Finally, output produced by function calls is shown below the associated code

R> rnorm(10)

[1] 0.0310 1.3378 0.4158 0.0413 -1.4383 1.0761 -1.2687
[8] 0.8262 -0.8603 -0.7134
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xvi PREFACE

Computational details and reproducibility

In this book, we use several R packages to access different example datasets
(such as ISwR, MASS, etc.), standard functions for the general parametric
analyses (such as aov, lm, nlme, etc.) and the multcomp package to perform
the multiple comparsion procedures. All of the packages used in this book are
available at the Comprehensive R Archive Network (CRAN), which can be
accessed from http://CRAN.R-project.org.

The source code for the analyses presented in this book is available from
the multcomp package. A demo containing the R code to reproduce the
individual results is available for each chapter by invoking
R> library("multcomp")
R> demo("Ch_Intro")
R> demo("Ch_Theory")
R> demo("Ch_GLM")
R> demo("Ch_Appl")
R> demo("Ch_Misc")

The results presented in this book and obtained with the multcomp package
in general have been validated to the extent possible against the SAS macros
described in Westfall et al. (1999). The multcomp package also includes SAS
code for most of the examples presented in Chapters 1, 3 and 4. It can be
accessed in R via
R> file.show(system.file("MCMT", "multcomp.sas",
+ package = "multcomp"))

Readers should not expect to get exactly the same results as stated in
this book. For example, differences in random number generating seeds or
truncating the number of significant digits in the results may result in slight
differences to the output shown here.

Acknowledgments

This book started as a presentation at the 2004 UseR! conference in Vi-
enna, Austria. Many individuals have influenced the writing of this book since
then. Our joint work over many years with Werner Brannath, Edgar Brunner,
Alan Genz, Ekkehard Glimm, Gerhard Hommel, Ludwig Hothorn, Jason Hsu,
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CHAPTER 1

Introduction

Many scientific experiments subject to rigorous statistical analyses involve the
simultaneous evaluation of more than one question. For example, in clinical
trials one may compare more than one treatment group with a control group,
assess several outcome variables, measure at various time points, analyze mul-
tiple subgroups or look at any combination of these and related questions; but
multiplicity problems occur if we want to make simultaneous inference across
multiple questions. Similar problems may arise in agricultural field experi-
ments which simultaneously compare several irrigation systems, investigate
the dose response relationship of a fertilizer, involve repeated assessments of
growth curves for a particular culture, etc. Recently, high-dimensional screen-
ing studies have become widely available in molecular biology and its appli-
cations, such as gene expression experiments and high throughput screenings
in early drug discovery. Those screening studies have in common the problem
of identifying a small subset of relevant variables from a huge set of candi-
date variables (e.g., genes, compounds, proteins). Scientific research provides
many examples of well-designed experiments involving multiple investigational
questions. Multiplicity is likely to become important when strong evidence and
good decision making is required.

In hypotheses test problems involving a single null hypothesis H the sta-
tistical tests are often chosen to control the Type I error rate of incorrectly
rejecting H at a pre-specified significance level α. If multiple hypotheses, m
say, are tested simultaneously and the final inferences should be valid across
all experimental questions of interest, the probability of declaring non-existing
effects significant increases in m. Assume, for example, that m = 2 hypotheses
H1 and H2 are each tested at level α = 0.05 using independent test statistics.
For example, let Hi, i = 1, 2, denote the null hypotheses that a drug does not
show a beneficial effect over placebo for two primary outcome variables. As-
sume further that both H1 and H2 are true. Then the probability of retaining
both hypotheses is (1−α)2 = 0.9025 under the independence assumption. The
complementary probability of incorrectly rejecting at least one null hypothesis
is 1− (1 − α)2 = 2α − α2 = 0.0975. This is substantially larger than the ini-
tial significance level of α = 0.05. In general, when testing m null hypotheses
using independent test statistics, the probability of committing at least one
Type I error is 1 − (1 − α)m, which reduces to the previous expression for
m = 2. Figure 1.1 displays the probability of committing at least one Type I
error for m = 1, . . . , 100 and α = 0.01, 0.05, and 0.10. Clearly, the probability
quickly reaches 1 for sufficiently large values of m. In other words, if there is

1
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2 INTRODUCTION

a large number of experimental questions and no multiplicity adjustment, the
decision maker will commit a Type I error almost surely and conclude for a
seemingly significant effect when there is none.
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Figure 1.1 Probability of committing at least one Type I error for different sig-
nificance levels α and number of hypotheses m.

To further illustrate the multiplicity issue, consider the problem of testing
whether or not a given coin is fair. One may conclude that the coin was biased
if after 10 flips the coin landed heads at least 9 times. Indeed, if one assumes
as a null hypothesis that the coin is fair, then the likelihood that a fair coin
would come up heads at least 9 out of 10 times is 11 · (0.5)10 = 0.0107. This
is relatively unlikely, and under common statistical criteria such as whether
the p-value is less than or equal to 0.05, one would reject the null hypothesis
and conclude that the coin is unfair. While this approach may be appropriate
for testing the fairness of a single coin, applying the same approach to test
the fairness of many coins could lead to a multiplicity problem. Imagine if one
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INTRODUCTION 3

was to test 100 fair coins by this method. Given that the probability of a fair
coin coming up heads 9 or 10 times in 10 flips is 0.0107, one would expect that
in flipping 100 fair coins 10 times each, it would still be very unlikely to see
a particular (i.e., pre-specified) coin come up heads 9 or 10 times. However,
it is more likely than not that at least one coin will behave this way, no
matter which one. To be more precise, the likelihood that all 100 fair coins
are identified as fair by this criterion is only (1 − 0.0107)100 = 0.34. In other
words, the likelihood of declaring at least one of the 100 fair coins as unfair
is 0.66; this result can also be approximated from Figure 1.1. Therefore, the
application of our single-test coin-fairness criterion to multiple comparisons
would more likely than not lead to a false conclusion: We would mistakenly
identify a fair coin as unfair.

Let us consider a real data example to illustrate yet a different perspective
of the multiplicity problem. Consider the thuesen regression example from
Altman (1991) and reanalyzed by Dalgaard (2002). The data are available
from the ISwR package (Dalgaard 2010) and contain the ventricular shorten-
ing velocity and blood glucose measurements for 23 Type I diabetic patients
with complete observations. In Figure 1.2 we show a scatter plot of the data
including the regression line. Assume that we are interested in fitting a lin-
ear regression model and subsequently in testing whether the intercept or the
slope equal 0, resulting in two null hypotheses of interest. We will consider
this example in more detail in Chapter 3, but we use it here to illustrate some
of the multiplicity issues and how to address them in R.

Consider the linear model fit

R> thuesen.lm <- lm(short.velocity ~ blood.glucose,
+ data = thuesen)
R> summary(thuesen.lm)

Call:
lm(formula = short.velocity ~ blood.glucose,

data = thuesen)

Residuals:
Min 1Q Median 3Q Max

-0.401 -0.148 -0.022 0.030 0.435

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.0978 0.1175 9.34 6.3e-09 ***
blood.glucose 0.0220 0.0105 2.10 0.048 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.217 on 21 degrees of freedom
(1 observation deleted due to missingness)

Multiple R-squared: 0.174, Adjusted R-squared: 0.134
F-statistic: 4.41 on 1 and 21 DF, p-value: 0.0479
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Figure 1.2 Scatter plot of the thuesen data with regression line.

From the p-values associated with the intercept (p < 0.001) and the slope
(p = 0.048) one might be tempted to conclude that both parameters differ
significantly from zero at the significance level α = 0.05. However, these as-
sessments are based on the marginal p-values, which do not account for a
multiplicity adjustment. A better approach is to adjust the marginal p-values
with a suitable multiple comparison procedure, such as the Bonferroni test.
When applying the Bonferroni method, the marginal p-values are essentially
multiplied by the number of null hypotheses to be tested (that is, by 2 in
our example). One possibility to perform the Bonferroni test in R is to use
the multcomp package. Understanding the details of the statements below
will become clear when introducing the multcomp package formally in Chap-
ter 3. For now we prefer to illustrate the key ideas without getting distracted
by theoretical details.
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INTRODUCTION 5

R> library("multcomp")
R> thuesen.mc <- glht(thuesen.lm, linfct = diag(2))
R> summary(thuesen.mc, test = adjusted(type = "bonferroni"))

Simultaneous Tests for General Linear Hypotheses

Fit: lm(formula = short.velocity ~ blood.glucose,
data = thuesen)

Linear Hypotheses:
Estimate Std. Error t value Pr(>|t|)

1 == 0 1.0978 0.1175 9.34 1.3e-08 ***
2 == 0 0.0220 0.0105 2.10 0.096 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Adjusted p values reported -- bonferroni method)

In the column entitled Pr(>|t|), the slope parameter now fails to be signifi-
cant. The associated adjusted p-value is 0.096, twice as large as the unadjusted
p-value from the previous analysis. This is because now the p-value is corrected
(i.e., adjusted) for multiplicity using the Bonferroni test. Thus, if the original
aim was to draw a simultaneous inference across both experimental questions
(that is, whether intercept or slope equal zero), one would conclude that the
intercept is significantly different from 0 but the slope is not.

The multcomp package provides a variety of powerful improvements over
the Bonferroni test. As a matter of fact, when calling the glht function above,
the default approach accounts for the correlations between the parameter es-
timates. This leads to smaller p-values compared to the Bonferroni test, as
shown in the output below:

R> summary(thuesen.mc)

Simultaneous Tests for General Linear Hypotheses

Fit: lm(formula = short.velocity ~ blood.glucose,
data = thuesen)

Linear Hypotheses:
Estimate Std. Error t value Pr(>|t|)

1 == 0 1.0978 0.1175 9.34 1e-08 ***
2 == 0 0.0220 0.0105 2.10 0.064 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Adjusted p values reported -- single-step method)

The adjusted p-value for the slope parameter is now 0.064 and thus consider-
ably smaller than the 0.096 from the Bonferroni test, although we still have
not achieved significance. During the course of this book we will discuss even
more powerful methods, which allow the user to safely claim that the slope is
significant at the level α = 0.05 after having adjusted for multiplicity.

© 2011 by Taylor and Francis Group, LLC



6 INTRODUCTION

In summary, this example illustrates (i) the necessity of using proper mul-
tiple comparison procedures when aiming at simultaneous inference; (ii) a
variety of different multiplicity adjustments, some of which are less powerful
than others and should be avoided whenever possible; and (iii) the availabil-
ity of flexible interfaces in R, such as the multcomp package, which provide
fast results for data analysts interested in simultaneous inferences of multiple
hypotheses.

We conclude this chapter with a few general considerations. Broadly speak-
ing, multiplicity is a concern whenever reproducibility of results is required.
That is, if an experiment needs to be repeated, not initially adjusting for
multiplicity may increase the likelihood of observing different results in later
experiments. Because scientific research and development can often be re-
garded as a sequence of experiments that confirm or add to the understanding
of previously established results, reproducibility is an important aspect. Ac-
cording to Westfall and Bretz (2010), replication failure can happen in at least
three ways. Assume that we are interested in assessing the effect of multiple
conditions (treatments, genes, ...). It may then happen that
(i) a condition has an effect in the opposite direction than was reported in

an experiment;
(ii) a condition has an effect, but one that is substantially smaller than was

reported in an experiment;
(iii) a condition is ineffective, despite being reported as efficacious in an ex-

periment.
Such failures to replicate are commonly attributed to flawed study designs
and various types of biases; however, multiplicity is as likely a culprit. Further
details about the three types of replication errors given above follow.
Errors of declaring effects in the “wrong direction”. This is related to the
problem of testing two-sided hypotheses with associated directional decisions.
Although one might not believe point-zero null hypotheses can truly exist,
two-sided tests are common and directional errors are real. It is likely that
directions of the claims are erroneous when multiple comparisons are per-
formed without multiplicity adjustment. For example, if a test of a two-sided
hypothesis is done at the 0.05 level, then there is (at most) a 0.025 probability
that the test will be declared significant, but in the wrong direction. When
multiple tests are performed, this probability increases, so that if 40 tests are
performed, we may expect one directional error (in a worst case). Note that
although the probability of committing a directional error may be small, it has
a severe impact once it is made because of the decision to the wrong direction.
Errors of declaring inflated effect sizes. A second characterization of the mul-
tiplicity problem is the impact on selection effects. In this scenario, we need
not postulate directional errors. In fact, we may believe with a priori certainty
that all effects are in their expected directions. Nevertheless, when we isolate
a single, “most significant” comparison from this collection, we can only pre-
sume that the estimated effect size is biased upward due to selection effects.
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Assume, for example, an experiment, where we investigate m treatments. If
at the final analysis we select the “best” treatment based on the observed re-
sults, then the associated näıve treatment estimate will be biased upward. To
illustrate this phenomenon, we assume that m random variables x1, . . . , xm
associated with m distinct treatments are independently standard normally
distributed. We consider selecting the treatment with the maximum observed
value max{x1, . . . , xm}. Figure 1.3 displays the resulting density curves for
different values of m. The shift in distribution towards larger values for in-
creasing m is evident. In other words, if we would repeat an experiment a large
number of times for m = 5 (say) treatment groups and at each time report
the observed estimate for the selected treatment (that is, the one with the
largest observed value), then the average reported estimate would be around
1 instead of 0 (which is the true value). The same pattern holds if the true
effects are of equal size, but different from 0. Note that in practice the true
bias may even be larger than suggested in Figure 1.3, if one were to only
report the treatment effect estimates from successful experiments with statis-
tically significant results. That is, in practice the selection bias observed in
Figure 1.3 may be confounded with reporting bias (Bretz, Maurer, and Gallo
2009c). Finally, note from Figure 1.3 that multiplicity does not impact only
the location of the distribution, but leads also to a reduction in the variability
and an increase in the skewness as m increases.

Errors of declaring effects when none exist. The classical characterization of
multiplicity is in terms of the “1 in 20” significance criterion: In 20 tests of
hypotheses, all of which are (unknown to the analyst) truly null, we expect to
commit one Type I error and incorrectly reject one of the 20 null hypotheses.
Thus, multiple testing can increase the likelihood of Type I errors. This char-
acterization is closely related to the motivating discussion at the beginning
of this chapter and the probabilities displayed in Figure 1.1. In fact, much of
the material in this book is devoted to this classical characterization and the
description of suitable multiple comparison procedures, which account for the
impact of multiple significance testing.

While we often attribute lack of replication to poor designs and data collec-
tion procedures, we should also consider selection effects related to multiplicity
as a cause. In many cases these effects can be subtle. Consider, for example, a
clinical efficacy measure taken one month after administration of a drug. The
efficacy can be determined (a) using the raw measure, (b) using the percentage
change from baseline, (c) using the actual change from baseline or (d) using the
baseline covariate-adjusted raw measure. If we follow an aggressive strategy
and chose the “best” (and most significant) measure, then the reported effect
size measure will clearly be inflated, because the maximal statistic capitalizes
(unfairly) on random variations in the data. In such a case, it is not surprising
that follow-up studies may produce less stellar results; this phenomenon is an
example of regression to the mean.

In all three characterizations above, there is a concern that the presentation
of the scientific findings from an experiment may be exaggerated. In some areas
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Figure 1.3 Density curves of the effect estimate after selecting the “best” treat-
ment with the maximum observed response for different numbers m
of treatments.

(especially in the health care environment) regulatory agencies recognized this
problem and released corresponding (international) guidelines to ensure a good
statistical practice. In 1998, the International Conference on Harmonization
published a tripartite guideline for statistical principles in clinical trials (ICH
1998), which reflects concerns with multiplicity:

When multiplicity is present, the usual frequentist approach to the analysis of
clinical trial data may necessitate an adjustment to the Type I error. Multiplicity
may arise, for example, from multiple primary variables, multiple comparisons of
treatments, repeated evaluation over time, and/or interim analyses ... [multiplic-
ity] adjustment should always be considered and the details of any adjustment
procedure or an explanation of why adjustment is not thought to be necessary
should be set out in the analysis plan.

In addition, the European Medicines Agency in its Committee for Proprietary
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Medicinal Products document “Points to Consider on Multiplicity Issues in
Clinical Trials” (EMEA 2002), states that

... multiplicity can have a substantial influence on the rate of false positive con-
clusions whenever there is an opportunity to choose the most favorable results
from two or more analyses ...

and later echoes the ICH recommendation to state details of the multiple
comparison procedure in the analysis plan. While these documents allow that
multiplicity adjustment might not be necessary, they also request justifications
for such action. As a result, pharmaceutical companies have routinely begun
to incorporate adequate multiple comparison procedures in their statistical
analyses. But even if guidelines are not available or do not apply, control of
multiplicity is to the experimenter’s advantage as it ensures better decision
making and safeguards against selection bias.
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CHAPTER 2

General Concepts and Basic Multiple
Comparison Procedures

The objective of this chapter is to introduce general concepts related to multi-
ple testing as well as to describe basic strategies for constructing multiple com-
parison procedures. In Section 2.1 we introduce relevant error rates used for
multiple hypotheses test problems. In addition, we discuss general concepts,
such as adjusted and unadjusted p-values, single-step and stepwise test proce-
dures, etc. In Section 2.2 we review different principles of constructing multiple
comparison procedures, including union-intersection tests, intersection-union
tests, the closure principle and the partitioning principle. We then review
commonly used multiple comparison procedures constructed from marginal
p-values. Methods presented here include Bonferroni-type methods and their
improvements (Section 2.3) as well as modified Bonferroni methods based on
the Simes inequality (Section 2.4). For each method, we describe its assump-
tions, advantages and limitations.

2.1 Error rates and general concepts

In this section we introduce relevant error rates for multiple comparison proce-
dures, which extend the familiar error rates used when testing a single null hy-
pothesis. We also introduce general concepts important to multiple hypotheses
testing, including weak and strong error rate control, adjusted and unadjusted
p-values, single-step and stepwise test procedures, simultaneous confidence in-
tervals, coherence, consonance and the properties of free and restricted com-
binations. For more detailed discussions of these and related topics we refer
the reader to the books by Hochberg and Tamhane (1987) and Hsu (1996)
as well as to the articles on general multiple test methodology by Lehmann
(1957a,b); Gabriel (1969); Marcus, Peritz, and Gabriel (1976); Sonnemann
(1982); Stefansson, Kim, and Hsu (1988); Finner and Strassburger (2002) and
the references therein.

2.1.1 Error rates

Type I error rates

Let m ≥ 1 denote the number of null hypotheses H1, . . . ,Hm to be tested.
Assume each elementary hypothesis Hi, i = 1, . . . ,m, is associated with a
given experimental question of interest. The number m of null hypotheses is

11
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12 GENERAL CONCEPTS

application specific and can vary substantially from one case to another. For
example, standard clinical dose finding studies compare a small number of
distinct dose levels of a new drug, m = 4 say, with a control treatment. The
elementary hypothesis Hi then states that the treatment effect at dose level
i is not better than the effect under the control, i = 1, . . . , 4. The number m
of hypotheses can be in the 1,000s in a microarray experiment, where a null
hypothesis Hi may state that gene i is not differentially expressed under two
comparative conditions (Dudoit and van der Laan 2008). Finally, the number
of hypotheses is infinite when constructing simultaneous confidence bands over
a continuous covariate region (Liu 2010).

For any test problem, there are three types of errors. A false positive deci-
sion occurs if we declare an effect when none exists. Similarly, a false negative
decision occurs if we fail to declare a truly existing effect. In hypotheses test
problems, these errors are denoted as Type I and Type II errors, respectively.
The correct rejection of a null hypothesis coupled with a wrong directional
decision is denoted as Type III error. The related notation is summarized in
Table 2.1. Let M = {1, . . . ,m} denote the index set associated with the null
hypotheses H1, . . . ,Hm and let M0 ⊆M denote the set of m0 = |M0| true hy-
potheses, where |A| denotes the cardinality of a set A. In Table 2.1, V denotes
the number of Type I errors and R the number of rejected hypotheses. Note
that R is an observable random variable, S, T , U , and V are all unobservable
random variables, while m and m0 are fixed numbers, where m0 is unknown.

Hypotheses Not Rejected Rejected Total

True U V m0

False T S m−m0

Total W R m

Table 2.1 Type I and II errors in multiple hypotheses testing.

A standard approach in univariate hypothesis testing (m = 1) is to choose
an appropriate test, which maintains the Type I error rate at a pre-specified
significance level α. Different extensions of the univariate Type I error rate to
multiple test problems are possible. In the following we review several error
rate definitions commonly used for multiple comparison procedures.

The per-comparison error rate

PCER =
E(V )
m

is the expected proportion of Type I errors among the m decisions. If each of
the m hypotheses is tested separately at a pre-specified significance level α,
then PCER = αm0/m ≤ α.

In many applications, however, controlling the per-comparison error rate at
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ERROR RATES AND GENERAL CONCEPTS 13

level α is not considered adequate. Instead, the hypotheses H1, . . . ,Hm are
considered jointly as a family, where a single Type I error already leads to an
incorrect decision. This motivates the use of the familywise error rate

FWER = P(V > 0),

which is the probability of committing at least one Type I error. The fam-
ilywise error rate is the most common error rate used in multiple testing,
particularly historically, and also in current practice where the number of com-
parisons is moderate and/or where strong evidence is needed. The familywise
error rate is closely related to the motivating considerations from Chapter 1.
From Figure 1.1 we can see that FWER approaches 1 for moderate to large
number of hypotheses m if there is no multiplicity adjustment. Note that the
familywise error rate reduces to the common Type I error rate for m = 1.

When the number m of hypotheses is very large and/or when strong evi-
dence is not required (as is typically the case in high-dimensional screening
studies in molecular biology or early drug discovery), control of the familywise
error rate can be too strict. That is, if the probability of missing differential
effects is too high, the use of the familywise error rate may not be appropri-
ate. In this case, a straightforward extension of the familywise error rate is
to consider the probability of committing more than k Type I errors for a
pre-specified number k: If the total number of hypotheses m is large, a small
number k of Type I errors may be acceptable. This leads to the generalized
familywise error rate gFWER = P(V > k), see Victor (1982); Hommel and
Hoffmann (1988), and Lehmann and Romano (2005) for details. Control of
the generalized familywise error rate is less stringent than control of the fam-
ilywise error rate at a common significance level α: A method controlling the
generalized familywise error rate may allow, with high probability, a few Type
I errors, provided that the number is less than or equal to the pre-specified
number k. On the other hand, methods controlling the familywise error rate
ensure that the probability of committing any Type I error is bounded by α.

An alternative approach is to relate the number V of false positives to the
total number R of rejections. Let Q = V/R if R > 0 and Q = 0 otherwise.
The false discovery rate

FDR = E(Q)

= E
(
V

R

∣∣∣∣R > 0
)
P(R > 0) + 0 · P(R = 0)

= E
(
V

R

∣∣∣∣R > 0
)
P(R > 0)

is then the expected proportion of falsely rejected hypotheses among the re-
jected hypotheses (Benjamini and Hochberg 1995). Earlier ideas related to the
false discovery rate can be found in Seeger (1968) and Sorić (1989). The intro-
duction of the false discovery rate has initiated the investigation of alternative
error control criteria and many further measures have been proposed recently.
Storey (2003), for example, proposed the positive false discovery rate pFDR =
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14 GENERAL CONCEPTS

E(V/R|R > 0), which is defined as the expected proportion of falsely rejected
hypotheses among the rejected hypotheses given that some are rejected. A
different concept is to control the proportion V/R directly: Korn, Troendle,
McShane, and Simon (2004) and van der Laan, Dudoit, and Pollard (2004)
independently introduced computer-intensive multiple comparison procedures
to control the proportion of false positives PFP = P(V/R > g), 0 < g < 1.
For a recent review we refer the reader to Benjamini (2010) and the references
therein.

In general,
PCER ≤ FDR ≤ FWER

for a given multiple comparison procedure. This can be seen by noting that
V/m ≤ Q ≤ 1{V >0}, where the indicator function 1A = 1 if an event A is
true and 1A = 0 otherwise, and that PCER = E(V/m), FDR = E(Q), and
FWER = E(1{V >0}). Thus, a multiple comparison procedure which controls
the familywise error rate also controls the false discovery rate and the per-
comparison error rate, but not vice versa. In contrast, familywise error rate
controlling procedures are more conservative than false discovery rate control-
ling procedures in the sense that they lead to a smaller number of rejected
hypotheses. In any case, good scientific practice requires the specification of
the Type I error rate control to be done prior to the data analysis.

For any of the error concepts above, the error control is denoted as weak, if
the Type I error rate is controlled only under the global null hypothesis

H =
⋂
i∈M0

Hi, M0 = M,

which assumes that all null hypotheses H1, . . . ,Hm are true. Consequently, in
case of controlling the familywise error rate in the weak sense, it is required
that

P(V > 0|H) ≤ α.
Consider an experiment investigating a new treatment for multiple outcome
variables. Controlling the familywise error rate in the weak sense then implies
the control of the probability of declaring an effect for at least one outcome
variable, when there is no effect on any variable. In practice, however, it is
unlikely that all null hypotheses are true and the global null hypothesis H
is rarely expected to hold. Thus, a stronger error rate control under less re-
strictive assumptions is often necessary. If, for a given multiple comparison
procedure, the Type I error rate is controlled under any partial configuration
of true and false null hypotheses, the error control is denoted as strong. For
example, to control the familywise error rate strongly it is required that

max
I⊆M

P

(
V > 0

∣∣∣∣∣⋂
i∈I

Hi

)
≤ α,

where the maximum is taken over all possible configurations ∅ 6= I ⊆ M of
true null hypotheses. In the previous example, controlling the familywise error
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rate in the strong sense implies the control of the probability of declaring an
effect for at least one outcome variable, regardless of the effect sizes for any
of the outcome variables. Note that if m0 = 0, then V = 0 and FDR = 0. If
m0 = m, then FDR = E(1|R > 0)P(R > 0) = P(R > 0) = FWER. Hence, any
false discovery rate controlling multiple comparison procedure also controls the
familywise error rate in the weak sense.

Having introduced different measures for Type I errors in multiple test prob-
lems, we are now able to formally define a multiple comparison procedure as
any statistical test procedure designed to account for and properly control the
multiplicity effect through a suitable error rate. In this book, we focus on ap-
plications where the number of comparisons is moderate and/or where strong
evidence is needed. Thus, we restrict our attention to multiple comparison
procedures controlling the familywise error rate in the strong sense.

The appropriate choice of null hypotheses being of primary interest is a
controversial question. That is, it is not always clear which set of hypotheses
should constitute the family H1, . . . ,Hm. This topic has often been in dispute
and there is no general consensus. Any solution will necessarily be application
specific and at its best serve as an example for other areas. Westfall and Bretz
(2010), for example, provided some guidance, on when and how to adjust for
multiplicity at different stages of drug development.

Type II error rates

A common requirement for any statistical test is to maximize the power and
thereby to minimize the Type II error rate for a given Type I error criterion.
Power considerations are thus an integral part of designing a scientific experi-
ment. Analogous to extending the Type I error rate, power can be generalized
in various ways when moving from single to multiple hypotheses test problems.
Power concepts to measure an experiment’s success are then associated with
the probability of rejecting an elementary null hypothesis Hi, i ∈M , when in
fact Hi is not true. The problem is that the individual events

“Hi is rejected” , i ∈M,

can be combined in different ways, thus leading to different measures of suc-
cess. Below we use the notation from Table 2.1 to briefly review some common
power concepts.

The individual power

πind
i = P(reject Hi), i ∈M1 = M \M0,

is the rejection probability for a false hypothesis Hi. The concept of aver-
age power is closely related to individual power. It is defined as the average
expected number of correct rejections among all false null hypotheses, that is,

πave =
E(S)
m1

=
1
m1

∑
i∈M1

πind
i ,

where m1 = |M1| denotes the number of false null hypotheses. Alternatively,
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the disjunctive power
πdis = P(S ≥ 1)

is the probability of rejecting at least one false null hypothesis. An appealing
feature of the disjunctive power is that πdis decreases to the familywise error
rate as the effect sizes related to the false null hypotheses Hi, i ∈M1, decrease.
In contrast, the conjunctive power

πcon = P(S = m1)

is the probability of rejecting all false null hypotheses. Note that disjunctive
and conjunctive power have also been referred to as multiple (or minimal) and
total (or complete) power, respectively; see Maurer and Mellein (1988) and
Westfall et al. (1999). But since πdis ≥ πcon, these naming conventions often
lead to confusion (Senn and Bretz 2007). When the family of tests consists of
pairwise mean comparisons, the previously mentioned power measures have
been introduced as per-pair power, any-pair power, and all-pairs power (Ram-
sey 1978). Finally, it should be noted that these power definitions are readily
extended to any subset M ′1 ⊆ M1 of false null hypotheses. Note also that all
of these probabilities are conditional on which null hypotheses are true and
which are false.

The relevant practical question is to determine the appropriate power con-
cept to use for a given study. One may argue that conjunctive power should
be used in studies that aim at detecting all existing effects, such as in inter-
section union settings, see Section 2.2.2. Disjunctive power is recommended
in studies that aim at detecting at least one true effect, such as in union in-
tersection settings, see Section 2.2.1. Individual power is appealing in clinical
trials with multiple secondary outcome variables (Bretz, Maurer, and Hom-
mel 2010) and average power can be useful for comparing different multiple
comparison procedures. In general, however, a suitable power definition can
be given only on a case-by-case basis by choosing power measures tailored to
the study objectives.

Directional errors

A particular issue arises in two-sided test problems, when the elementary hy-
potheses H1, . . . ,Hm are point-null hypotheses. Having rejected Hi, the natu-
ral inclination is to make a directional decision on the sign of the effect being
tested. This requires control of both Type I errors and errors in determining
the sign of non-null effects. A directional error (also known as Type III error)
is defined as the rejection of a false null hypotheses, where the sign of the true
effect parameter is opposite to the one of its sample estimate.

Let A1 denote the event of at least one Type I error such that P(A1) =
FWER. Let further A2 denote the event that there is at least one sign error
among the true non-null effects. The problem becomes how to control the com-
bined error rate P(A1 ∪ A2) at a pre-specified level. Stepwise test procedures
(see Section 2.1.2 for a definition) are powerful methods for controlling the
familywise error rate, but do not necessarily control the combined error rate.
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Shaffer (1980) gave a counterexample involving shifted Cauchy distributions;
however, she also noted that for independent test statistics satisfying certain
distributional conditions (which include the normal but rule out the Cauchy
case), the combined error rate is controlled by the Holm procedure from Sec-
tion 2.3.2 (Holm 1979a). Moreover, Holm (1979b) noted the control of the
combined error rate for conditionally independent tests including noncentral
multivariate t with identity dispersion matrix. Finner (1999) further extended
the class of stepwise tests that control the combined error rate to include some
step-up tests, closed F tests, and modified S method tests. He also noted that
while specialized procedures guaranteeing combined error rate control have
been developed (see, for example, Bauer, Hackl, Hommel, and Sonnemann
(1986)), they are often less powerful than standard closed and stepwise tests.
Westfall, Tobias, and Bretz (2000) systematically investigated combined er-
ror rates of stepwise test procedures relevant to analysis-of-variance models
involving correlated comparisons, using both analytic and simulation-based
methods. No cases of excess directional error were found for typical applica-
tions involving noncentral multivariate t distributions.

2.1.2 General concepts

Single-step and stepwise procedures

One possibility of classifying multiple comparison procedures is to divide them
into single-step and stepwise procedures. Single-step procedures are character-
ized by the fact that the rejection or non-rejection of a null hypothesis does
not take the decision for any other hypothesis into account. Thus, the order
in which the hypotheses are tested is not important and one can think of the
multiple inferences as being performed in a single step. A well-known exam-
ple of a single-step procedure is the Bonferroni test. In contrast, for stepwise
procedures the rejection or non-rejection of a null hypothesis may depend on
the decision of other hypotheses. The equally well-known Holm procedure is
a stepwise extension of the Bonferroni test using the closure principle un-
der the free combination condition (see Section 2.3 for a description of these
procedures).

Stepwise procedures are further divided into step-down and step-up proce-
dures. Both types of procedures assume a sequence of hypotheses H1 ≺ . . . ≺
Hm, where the ordering “≺” of the hypotheses can be data dependent. Step-
down procedures start testing the first ordered hypothesis H1 and step down
through the sequence while rejecting the hypotheses. The procedure stops at
the first non-rejection (at Hi, say), and H1, . . . ,Hi−1 are rejected. The Holm
procedure is an example of a step-down procedure. Step-up procedures start
testing Hm and step up through the sequence while retaining the hypotheses.
The procedure stops at the first rejection (at Hi, say), and H1, . . . ,Hi are all
rejected.

Single-step procedures are generally less powerful than their stepwise ex-
tensions in the sense that any hypothesis rejected by the former will also be
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rejected by the latter, but not vice versa. This will become clear when intro-
ducing the closure principle in Section 2.2.3. The power advantage of stepwise
test procedures, however, comes at the cost of increased difficulties in con-
structing compatible simultaneous confidence intervals for the parameter of
interest, which have a joint coverage probability of at least 1− α (see below).

Adjusted p-values

The computation of p-values is a common exercise in univariate hypothesis
test problems. Therefore, it is desirable to also compute adjusted p-values
for a given multiple comparison procedure, which are directly comparable
with the significance level α. An adjusted p-value qi is defined as the smallest
significance level for which one still rejects the elementary hypothesis Hi, i ∈
M , given a particular multiple comparison procedure. In case of the familywise
error rate,

qi = inf{α ∈ (0, 1)|Hi is rejected at level α},
if such an α exists, and qi = 1 otherwise; see Westfall and Young (1993)
and Wright (1992). Adjusted p-values capture by construction the multiplic-
ity adjustment induced through a given multiple comparison procedure and
incorporate the potentially complex underlying decision rules. Consequently,
whenever qi ≤ α, the associated elementary null hypothesis Hi can be rejected
while controlling the familywise error rate at level α. Examples of computing
adjusted p-values are given later when we describe the individual multiple
comparison procedures. The marginal p-values pi are denoted as unadjusted
p-values in this book.

Simultaneous confidence intervals

The duality between testing and confidence intervals is well established in
univariate hypotheses test problems (Lehmann 1986). A general method for
constructing a confidence set from a significance test is as follows. Let θ de-
note the parameter of interest. For each parameter point θ0, test the hypothesis
H : θ = θ0 at level α. The set of all parameter points θ0, for which H : θ = θ0

is accepted, constitutes a confidence set for the true value of θ with coverage
probability 1 − α. This method is essentially based on partitioning the pa-
rameter space into subsets, where each subset consists of a single parameter
point.

The partitioning principle described in Section 2.2.4 provides a natural ex-
tension for deriving compatible simultaneous confidence intervals in multiple
test problems, which have a joint coverage probability of at least 1−α for the
parameters of interest (Finner and Strassburger 2002). Here, compatibility be-
tween a multiple comparison procedure and a set of simultaneous confidence
intervals means that if a null hypothesis is rejected with the test procedure,
then the associated multiplicity corrected confidence interval excludes all pa-
rameter values for which the null hypothesis is true (Hayter and Hsu 1994).

Applying the partitioning principle, the parameter space is partitioned into
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small disjoint subhypotheses, where each is tested appropriately. The union of
all non-rejected hypotheses then yields a confidence set C for the parameter
vector of interest. Note that the finest possible partition is given by a pointwise
partition such that each point of the parameter space represents an element
of the partition. Most of the classical (simultaneous) confidence intervals can
be derived by using the finest partition and an appropriate family of one-
or two-sided tests. In general, however, this may not be the case, although
a confidence set C can always be used to construct simultaneous confidence
intervals by simply projecting C on the coordinate axes. Compatibility can
be ensured by enforcing mild conditions on the partition and the test family
(Strassburger, Bretz, and Hochberg 2004).

Simultaneous confidence intervals are available in closed form for many stan-
dard single-step procedures and will be used in Chapters 3 and 4. Simultaneous
confidence intervals for stepwise procedures, however, are usually more diffi-
cult to derive and often have limited practical use. We refer to Strassburger
and Bretz (2008) and Guilbaud (2008, 2009) for recent results and discussions.

Free and restricted combinations

A family of null hypotheses Hi, i ∈M , satisfies the free combination condition
if for any subset I ⊆ M the simultaneous truth of Hi, i ∈ I, and falsehood
of the remaining hypotheses is a plausible event. Otherwise, the hypotheses
H1, . . . ,Hm satisfy the restricted combination condition (Holm 1979a; Westfall
and Young 1993).

As an example of a hypotheses family satisfying the free combination con-
dition, consider the comparison of two treatments with a control treatment
(resulting in m = 2 null hypotheses). Any of the three events “none/one/both
of the treatments is better than the control treatment” is then a plausible
configuration and likely to be true in practice. As an example of a hypotheses
family satisfying the restricted combination condition, consider all pairwise
comparisons of three treatments means θ1, θ2, and θ3 (resulting in m = 3 null
hypotheses). In this example, not all configurations of null and alternative
hypotheses are logically possible. For example, if θ1 6= θ2, then θ1 = θ3 and
θ2 = θ3 cannot be true simultaneously, thus restricting the possible configu-
rations of true and false null hypotheses.

The motivation for the distinction between free and restricted combina-
tions will become clear later when deriving stepwise test procedures based on
the closure principle. The Holm procedure (Section 2.3.2) and the step-down
Dunnett procedure (Section 4.1.2) are both examples of a large class of closed
test procedures tailored to hypotheses satisfying the free combination con-
dition. Correspondingly, the Shaffer procedure (Section 2.3.2) and the closed
Tukey test (Section 4.2.2) are examples of closed test procedures for restricted
hypotheses.
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Coherence and consonance

A multiple comparison procedure is called coherent if it has the following
property: If Hi ⊆ Hj and Hj is rejected, then Hi is rejected as well (Gabriel
1969). Coherence is an important requirement for any multiple comparison
procedure. If coherence is not satisfied, problems with the interpretation of the
test results may occur. The closed test procedures described in Section 2.2.3
are coherent by construction. By contrast, the Holm procedure described in
Section 2.3.2 is coherent with free combinations, but in special cases involving
restricted combinations, may not be coherent (Hommel and Bretz 2008). Note
that any non-coherent multiple comparison procedure can be replaced by a
coherent procedure which is uniformly at least as powerful (Sonnemann and
Finner 1988).

Consonance is another desirable property of multiple comparison proce-
dures, although it is not as important as coherence. Let HI =

⋂
i∈I Hi denote

the intersection hypothesis for an index set I ⊆M . Furthermore, denote a hy-
pothesis HI as non-maximal if there is at least one J ⊆M with HJ ) HI ; oth-
erwise, denote HI as as maximal. Consonance implies that if a non-maximal
hypothesis HI is rejected, one can reject at least one maximal hypothesis
HJ ⊇ HI (Gabriel 1969). In many applications, the elementary null hypothe-
ses H1, . . . ,Hm are maximal. Consonance then ensures that if an intersection
hypothesis HI is rejected, at least one elementary hypothesis Hi with i ∈ I can
be rejected as well. Consonance will become important later when describing
max-t tests that allow one to draw inferences about the individual null hy-
potheses Hi (Section 2.2.1), and it will become the basis to construct efficient
shortcut procedures (Section 2.2.3). A more rigorous discussion of consonance
can be found in Brannath and Bretz (2010).

2.2 Construction methods for multiple comparison procedures

We now consider different methods to construct multiple comparison proce-
dures. These include union intersection (and intersection union) tests to con-
struct multiple comparison procedures for the intersection (union) of several
elementary null hypotheses. The closure principle and the recently introduced
partitioning principle are powerful tools, which extend the union intersec-
tion test principle to obtain individual assessments for the elementary null
hypotheses.

2.2.1 Union intersection test

Historically, the union intersection test was the first construction method for
multiple comparison procedures (Roy 1953; Roy and Bose 1953). Assume, for
example, that several irrigation systems are compared with a control. It is
natural to claim success if at least one of the comparative irrigation systems
leads to better results than the control. If Hi denotes the elementary hypoth-
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esis of no difference in effect between irrigation system i and control, we wish
to correctly reject any (but at least one) false Hi.

To formalize this multiple comparison problem, consider a family of null
hypotheses Hi with associated alternative hypotheses Ki, i ∈M . We are then
interested in testing the intersection null hypothesis H =

⋂
i∈M Hi. One ap-

proach is to use test statistics ti, i ∈ M , and reject H if any ti exceeds its
associated critical value ci. The rejection region is thus a union of rejection
regions,

⋃
i∈M{ti > ci}, giving rise to the “union” in the “union intersection”

term. In summary, this construction leads to union intersection tests, which
test the intersection of the null hypotheses Hi against the union of the alter-
native hypotheses Ki, that is,

H =
⋂
i∈M

Hi against K =
⋃
i∈M

Ki.

Note that union intersection tests consider the global intersection null hy-
pothesis H without formally allowing individual assessments of the elementary
hypotheses H1, . . . ,Hm. That is, if H is rejected by a union intersection test,
one is still left with the question, which of the elementary hypotheses Hi

should be rejected. This shortcoming can be dealt with in numerous ways,
including simultaneous confidence interval construction in Section 2.1.2, or by
applying the closure principle described in Section 2.2.3. It turns out that the
union intersection test procedure dovetails nicely with multiple comparison
procedures in general; many of the procedures described in this book take the
union intersection method as a foundation.

Max-t tests form an important class of union intersection tests and will
become essential in Chapters 3 and 4. Let t1, . . . , tm denote the individual
test statistics associated with the hypotheses H1, . . . ,Hm. Assume without
loss of generality that larger values of ti favor the rejection of Hi. A natural
approach is then to consider the maximum of the individual test statistics ti,
leading to the max-t test

tmax = max{t1, . . . , tm}. (2.1)

We then reject the global null hypothesis H if and only if tmax ≥ c, where
the common constant c is chosen to control the Type I error rate at level
α, that is, P(tmax ≥ c|H) = α. The critical value c is calculated from the
joint distribution of the random variables t1, . . . , tm. Determining c is often
difficult or sometimes even impossible if that joint distribution is not available
or numerically intractable, and conservative solutions have to be applied.

It follows from Gabriel (1969) that applying max-t tests often leads to co-
herent and consonant multiple comparison procedures, giving rise to their
practical importance. Many popular multiple comparison procedures are in
fact max-t tests by construction, such as the Bonferroni test (Section 2.3.1),
the Dunnett test (Section 4.1.1), or the Tukey test (Section 4.2.1). In addi-
tion, powerful stepwise test procedures can be derived based on the closure
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principle, which allows us to assess the elementary hypotheses H1, . . . ,Hm

(Hochberg and Tamhane 1987, p. 55); see Section 2.2.3 for further details.
Note that if smaller values of ti favor the rejection of Hi, the minimum

of the individual test statistics ti has to be taken instead. Because this is
conceptually similar to Equation (2.1), we use the common term max-t tests,
regardless of the sideness of the test problem. In two-sided test problems the
maximum is taken over the absolute values of the individual test statistics, that
is, tmax = max{|t1|, . . . , |tm|}. Finally, note that the individual test statistics
ti (or, equivalently, their associated p-values pi) can be combined in other
ways instead of taking their maximum; see Westfall (2005) for an overview.

2.2.2 Intersection union test

Consider the following example from drug development. International guide-
lines require that combination therapies (that is, the simultaneous adminis-
tration of two or more medications) have to show a clinical benefit against all
individual monotherapies before being considered for market release (EMEA
2009). In contrast to the union intersection settings considered in Section 2.2.1,
here it is required that all null hypotheses of no beneficial effect are rejected
in order to claim that the combination therapy has a beneficial effect.

Formally, we are given the test problem

H ′ =
⋃
i∈M

Hi versus K ′ =
⋂
i∈M

Ki.

The intersection union test then rejects the union null hypothesis H ′ at over-
all level α, if all elementary hypothesis Hi are rejected by their local α-level
tests (Berger 1982). If all test statistics ti, i ∈M , have the same marginal dis-
tribution, the intersection union test rejects H ′ if and only if mini∈M ti ≥ c,
where c is the (1 − α)-quantile from that marginal distribution. In this par-
ticular case the intersection union test is also known as min-test, as coined by
Laska and Meisner (1989). Suppose that in the example above we have t test
statistics comparing the combination therapy with the individual monother-
apies. The hypothesis H ′ is rejected and we conclude for a beneficial effect
of the combination therapy, if the smallest t test statistic is larger than the
(1− α)-quantile from the univariate t distribution.

Note that if only some of the null hypotheses Hi are rejected locally (for
example, ti > c for some i in case of the min-test), the union null hypothesis
H ′ is retained and no individual assessments are possible. In such cases no
elementary null hypothesis Hi can be rejected, because otherwise the family-
wise error rate may not be controlled. This property often leads to the mis-
conception that the intersection union test is conservative in the sense that
the nominal Type I error rate is not exhausted and therefore the test would
lack in power. In fact, the intersection union test fully exploits the Type I
error and is moreover uniformly most powerful within a certain class of mono-
tone α-level tests (Laska and Meisner 1989). Improvements, which discard
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the monotonicity condition or restrict the parameter space, can be found in
Sarkar, Snapinn, and Wang (1995) and Patel (1991), respectively. Compatible
confidence intervals for intersection union tests involving two hypotheses are
given by Strassburger et al. (2004).

2.2.3 Closure principle

The union intersection tests from Section 2.2.1 test the global null hypothesis
H without formally assessing the individual hypotheses H1, . . . ,Hm. That is,
if H =

⋂
i∈M Hi is rejected by a union intersection test, we cannot make any

conclusions about the elementary hypotheses Hi. The closure principle intro-
duced by Marcus et al. (1976) is a general construction method which leads
to stepwise test procedures (Section 2.1.2) and allows one to draw individual
conclusions about the elementary hypotheses Hi.

To describe the closure principle, we consider initially the case of m = 2
null hypotheses H1 and H2 and discuss the general case later. Suppose we
want to assess whether any of two treatments (for example, two new drugs
or irrigations systems) is better than a control treatment. Let µj denote the
mean effect for treatment j, where j = 0 (control), 1, 2. Let further θi =
µi − µ0 denote the mean effect difference between treatment i = 1, 2 and the
control. The θi are the parameters of interest and the resulting elementary null
hypotheses are Hi : θi ≤ 0, i = 1, 2. When using the Bonferroni test (which is
formally described in Section 2.3), each hypothesis Hi is tested at level α/2 in
order to control the familywise error rate at level α. However, the Bonferroni
test can be improved by applying the closure principle, as described now.

It is useful to formally consider the hypotheses Hi as subsets of the parame-
ter space, about which we want to draw our inferences. Let Θ = R2 denote the
parameter space with θ = (θ1, θ2) ∈ Θ. Figure 2.1 visualizes the hypotheses
Hi = {θ ∈ R2 : θi ≤ 0}, i = 1, 2, as subsets of the real plane (the parameter
space). Clearly, the two elementary hypothesesH1 andH2 are not disjoint: The
intersection of both is given byH12 = H1∩H2 = {θ ∈ R2 : θ1 ≤ 0 and θ2 ≤ 0},
which is the lower left quadrant in Figure 2.1. Testing the intersection hypoth-
esis H12 requires an adjustment for multiplicity. This is taken into account by
the Bonferroni test, which actually tests the entire union H1∪H2 at level α/2
and not just the intersection hypothesis H12. However, Figure 2.1 suggests
that the remaining parts H1 \ H12 and H2 \ H12 can each be tested at full
level α, without the need to adjust further for multiplicity. This leads to the
“natural” test strategy of first testing the intersection hypothesis H12 with an
appropriate union intersection test, and, if this is significant, continue testing
H1 and H2, each at full level α. The null hypothesis H1 is rejected (while
controlling the familywise error rate strongly at level α) if and only if both
H1 and H12 are rejected, each at (local) level α. Conversely, H2 is rejected
if both H2 and H12 are rejected. If H12 is not rejected at first place, further
testing is unnecessary; otherwise, if H1 (say) is rejected, but H12 is not, this
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would lead to interpretation problems (coherence property, see Section 2.1.2).
This construction method is the key idea of the closure principle.

θ1

θ2

H1

H2H12
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Figure 2.1 Visualization of two null hypotheses H1 and H2 and their intersection
H12 in the parameter space R2.

There are alternative possibilities of visualizing the closure principle than
shown in Figure 2.1. In Figure 2.2 we provide a Venn-type diagram for two
null hypotheses H1 and H2 and their intersection H12. In Figure 2.3 we show a
related schematic diagram, which provides a convenient way of visualizing the
test dependencies among the hypotheses. The intersection hypothesis H12 is
shown at the top, while the two elementary hypotheses H1 and H2 are shown
at the bottom of the diagram. Testing occurs in a “top-down” fashion. As
described above, H12 is tested with a union intersection test at level α. If H12

is not rejected, further testing is unnecessary. Otherwise, H1 and H2 are each
tested at level α. Finally, H1 is rejected (while controlling the familywise error
rate strongly at level α) if H12 and H1 are both locally rejected. A similar
decision rule holds also for H2.

We now consider the case of testing any number m of null hypotheses
Hi, i = 1, . . . ,m (such as comparing m treatments with a control). The clo-
sure principle considers all intersection hypotheses constructed from the initial
hypotheses set. Each intersection hypothesis is tested at local level α. Note
that we can specify any α-level union intersection test for the intersection
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Figure 2.2 Visualization of two null hypotheses H1 and H2 and their intersection
H12 using a Venn-type diagram.

H12 = H1 ∩H2

H1 H2

? ?

Figure 2.3 Schematic diagram of the closure principle for two null hypotheses H1

and H2 and their intersection.

hypotheses. In particular, different tests can be used for different hypotheses.
For the final inference, an elementary null hypothesis Hi is rejected if and
only if all intersection hypotheses implying Hi are rejected by their individual
tests at local level α, too. It can be shown that the above procedure controls
the familywise error rate strongly at level α (Marcus et al. 1976). Following
the example below, a proof is sketched.

Multiple comparison procedures based on the closure principle are called
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closed test procedures below. Operationally, closed test procedures are per-
formed as follows:

(i) Define a set H = {H1, . . . ,Hm} of elementary hypotheses.

(ii) Construct the closure set

H̄ =

{
HI =

⋂
i∈I

Hi : I ⊆ {1, . . . ,m}, HI 6= ∅

}
of all non-empty intersection hypotheses HI .

(iii) For each intersection hypothesis HI ∈ H̄ find a suitable (local) α-level
test.

(iv) Reject Hi, if all hypotheses HI ∈ H̄ with i ∈ I are rejected, each at (local)
level α.

If a closed test procedure is performed, adjusted p-values qi for the null hy-
potheses Hi are computed as follows. An elementary null hypothesis Hi is
only rejected, if all HI ∈ H̄ with i ∈ I are rejected, and the maximum p-value
from this set needs to be less than or equal to α. Let pI denote the p-value for
a given intersection hypothesis HI , I ⊆ {1, . . . ,m}. Then the adjusted p-value
for Hi is formally defined as

qi = max
I:i∈I

pI , i = 1, . . . ,m. (2.2)

Example 2.1. We provide an example of the closure principle with m = 3
hypotheses in Figure 2.4. Accordingly, we have three hypotheses of interest in
the family H = {H1, H2, H3}. These three hypotheses could involve, for exam-
ple, the comparison of three treatments with a control, although the following
considerations are generic. This completes step 1 from above. For step 2, we
need to consider all intersection hypotheses HI =

⋂
i∈I Hi, I ⊆ {1, . . . ,m}.

In this example, m = 3 and four additional intersection hypotheses have to
be considered to obtain the closed hypotheses set. Specifically, the full clo-
sure H̄ = {H1, H2, H3, H12, H13, H23, H123} contains all seven intersection hy-
potheses, where Hij = Hi ∩ Hj , 1 ≤ i 6= j ≤ 3, and H123 = H1 ∩ H2 ∩ H3

is the global null hypothesis. Note that H̄ is closed under intersection. That
is, any intersection HI ∩HI′ of some HI , HI′ ∈ H̄ is contained in H̄. For step
3, we assume suitable (local) α-level tests for each of the seven intersection
hypotheses. A simple approach is to use the Bonferroni test, which is formally
introduced in Section 2.3. Finally, according to step 4, we reject H1 (while con-
trolling the familywise error rate strongly at level α) if H123, H12, H13 and H1

are all rejected by their α-level tests. Similarly, we reject H2 if H123, H12, H23

and H2 are all rejected, and we reject H3 if H123, H13, H23 and H3 are all
rejected. In Figure 2.4, the arrows linking two hypotheses at a time reflect
that the hypotheses are nested, where the smallest hypothesis H123 is drawn
on top. For example, the arrow between H1 and H12 with H1 drawn one level
below H12 indicates that H1 ⊇ H12 and H1 can only be rejected if H12 is also
rejected (coherence property, see Section 2.1.2). 2
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Figure 2.4 Schematic diagram of the closure principle for three null hypotheses
H1, H2, and H3 and their intersections.

The closure principle can be seen to control the familywise error rate in the
example above as follows. First, recall that the familywise error rate is the
probability of rejecting at least one null hypothesis incorrectly. We wish to
control this probability at level α, regardless of which set M0 ⊆M = {1, 2, 3}
of null hypotheses happens to be true. Suppose, in the example above, that
H12 happens to be true. Then, M0 = {1, 2} and a Type I error occurs if either
H1 or H2 is rejected.

If the closure principle is used, H1 is rejected if and only if H123, H12, H13

and H1 are all rejected. Note that the set of experiments for which H123, H12,
H13 and H1 are all rejected is a subset of the set of experiments for which H12

is rejected. Mathematically, {H1 rejected using closure} = {H123 rejected} ∩
{H12 rejected} ∩ {H13 rejected} ∩ {H1 rejected} ⊆ {H12 rejected}.

Similarly, H2 is rejected if and only if H123, H12, H23 and H2 are all rejected.
Note that the set of experiments for which H123, H12, H23 and H2 are all re-
jected is also a subset of the set of experiments for which H12 is rejected. Math-
ematically, {H2 rejected using closure} = {H123 rejected} ∩ {H12 rejected} ∩
{H23 rejected} ∩ {H2 rejected} ⊆ {H12 rejected}.

Since both

{H1 rejected using closure} ⊆ {H12 rejected}

and

{H2 rejected using closure} ⊆ {H12 rejected},
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it follows that

{{H1 rejected using closure} ∪ {H2 rejected using closure}}
⊆ {H12 rejected}

and therefore that

P ({H1 rejected using closure} ∪ {H2 rejected using closure})
≤ P (H12 rejected) = α.

Hence the method controls the familywise error rate at level less than or equal
to α when the true null state of nature is H12. An analogous argument shows
that we have familywise error rate control when the true state of nature is H13,
H23, or H123. This argument also clarifies why all intersection hypotheses have
to be tested: One needs to protect oneself against every possible combination
of true and false nulls, if one wishes to control the familywise error rate in the
strong sense.

The closure principle is a flexible construction method which can be tailored
to a variety of applications. In particular, it provides a large degree of flexi-
bility to map the difference in importance as well as the relationship between
the various study objectives onto an adequate multiple test procedure. Many
common multiple comparison procedures are in fact closed test procedures,
such as the step-down procedures of Holm (1979a), Shaffer (1986), and West-
fall and Young (1993), fixed sequence tests (Maurer, Hothorn, and Lehmacher
1995; Westfall and Krishen 2001), fallback procedures (Wiens 2003; Wiens and
Dmitrienko 2005) and gatekeeping procedures (Bauer, Röhmel, Maurer, and
Hothorn 1998; Westfall and Krishen 2001; Dmitrienko, Offen, and Westfall
2003). One disadvantage of the closure principle is that related simultaneous
confidence intervals for the parameters of interest θi are difficult to derive and
often have limited practical use; see Strassburger and Bretz (2008) for a recent
discussion.

Note that for the closure principle the number of operations is in general of
order 2m, where m is the number of hypotheses of interest. It is often useful
to find shortcut procedures that can reduce the number of operations to the
order of m in the best case scenario (Grechanovsky and Hochberg 1999). The
aim of shortcut procedures is to reach decisions for the elementary hypotheses,
but not necessarily for the entire closure test. By construction, the decisions
resulting from a shortcut procedure coincide with those of a closed test pro-
cedure. Shortcut procedures thus reduce the computational demand, which
can be substantial for large numbers m of hypotheses and/or if resampling-
based tests are used together with the closure principle. We refer to Romano
and Wolf (2005), Hommel, Bretz, and Maurer (2007), Westfall and Tobias
(2007), and Brannath and Bretz (2010) for further details. Related graph-
ical approaches for sequentially rejective closed test procedures have been
described by Bretz, Maurer, Brannath, and Posch (2009b); Bretz et al. (2010)
and Burman, Sonesson, and Guilbaud (2009). Shortcut procedures will be-
come essential in Chapters 3 and 4, where we use the multcomp package in
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R, which implements efficient methods to reduce the complexity of the under-
lying closed test procedures. Related details are described in Sections 4.1.2
and 4.2.2, where we consider closed test procedures based on max-t tests in
the form of Equation (2.1) for hypotheses satisfying the free and restricted
combination condition, respectively.

2.2.4 Partitioning principle

The partitioning principle was formally introduced by Finner and Strassburger
(2002), with early ideas dating back to Takeuchi (1973, 2010), Stefansson et al.
(1988) and Hayter and Hsu (1994). Using the partitioning principle, one can
derive powerful multiple test procedures and simultaneous confidence inter-
vals, which otherwise would be difficult to obtain when applying the closure
principle. The key idea of the partition principle is to partition the parameter
space into disjoint subsets and test each partition element with a suitable test
at level α. Because the partition elements are disjoint to each other, only one
of them contains the true parameter vector and can lead to a Type I error.
Hence, test procedures based on the partitioning principle strongly control the
familywise error rate at level α.

To motivate the partitioning principle, we consider again the problem from
Section 2.2.3 of comparing two treatments with a control. As before, let θi =
µi−µ0, i = 1, 2, denote the parameters of interest. Let further Θ = R2 denote
the parameter space with θ = (θ1, θ2) ∈ Θ. Recall the two hypotheses of
interest, Hi = {θ ∈ R2 : θi ≤ 0}, i = 1, 2, and let Ki = Θ \ Hi denote
the associated alternative hypotheses. Figure 2.1 visualizes the hypotheses H1

and H2 as subsets of the real plane (the parameter space). We now partition
the parameter space Θ into the following sets, see also Figure 2.5: Θ1 = H1,
Θ2 = H2 ∩ K1, and Θ3 = K1 ∩ K2. Since Θi, i = 1, 2, 3, are disjoint and
Θ1 ∪ Θ2 ∪ Θ3 = Θ, these sets constitute a partition of the parameter space
Θ. The true parameter vector θ thus lies in one and only one of the disjoint
subsets Θi. Applying tests at (local) level α to each of these subsets therefore
leads to a multiple test procedure which controls the familywise error rate
in the strong sense at level α. Note that the resulting test procedure is at
least as powerful as the corresponding closed test procedure based on H1 and
H2, because it is sufficient to control the Type I error rate over Θ1 = H1

and the smaller subspace Θ2  H2. In addition, a confidence set for the
parameter vector θ is obtained by intersecting the complementary regions of
those hypotheses, which have been rejected.

Note that the interpretation of Θ1 is the same as of H1 (“treatment 1 is
not better than the control”). However, the interpretation of Θ2 (“treatment 2
is not better than the control, but treatment 1 is”) has changed as compared
with that of H2 (“treatment 2 is not better than the control”). There are many
possibilities for partitioning the parameter space and it is not always clear
which partition to apply for a given test problem. In Figure 2.5 we illustrate
one example of partitioning the real plane (and which has a straightforward
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interpretation, as described above). Other partitions may give similar or even
additional information about the parameter vector θ.

θ1

θ2

Θ1 = H1

Θ2 = H2 ∩K1

Θ3 = K1 ∩K2

-

6

q q q q q q q q q q q q qq q q q q q q q q q q q qq q q q q q q q q q q q qq q q q q q q q q q q q qq q q q q q q q q q q q qq q q q q q q q q q q q qq q q q q q q q q q q q qq q q q q q q q q q q q qq q q q q q q q q q q q qq q q q q q q q q q q q qq q q q q q q q q q q q qq q q q q q q q q q q q qq q q q q q q q q q q q q

Figure 2.5 Partitioning principle for two null hypotheses H1 and H2.

The previous example illustrates the basic partitioning principle for two
hypotheses. In the general case of m hypotheses H1, . . . ,Hm, the partitioning
principle can be performed operationally as follows:

(i) Choose an appropriate partition {Θ` : ` ∈ L} of the parameter space Θ
for some index set L.

(ii) Test each Θ` with an α-level test.

(iii) Reject the null hypothesis Hi if all Θ` with Θ` ∩Hi 6= ∅ are rejected.

(iv) The union of all retained Θ` constitute a confidence set for θ at level
1− α.

For extensions of the basic partitioning principle we refer to Finner and Strass-
burger (2002). Applications of the partitioning principle have been investi-
gated for a number of test problems, such as dose response analyses (Hsu and
Berger 1999; Bretz, Hothorn, and Hsu 2003; Liu, Hsu, and Ruberg 2007b;
Strassburger, Bretz, and Finner 2007), multiple outcome analyses (Liu and
Hsu 2009), intersection union tests (Strassburger et al. 2004), equivalence
tests (Finner, Giani, and Strassburger 2006), and simultaneous confidence in-
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tervals for step-up and step-down procedures (Finner and Strassburger 2006;
Strassburger and Bretz 2008).

2.3 Methods based on Bonferroni’s inequality

The Bonferroni method is probably the best known multiplicity adjustment.
Although more powerful multiple comparison procedures exist, the Bonfer-
roni test continues to be very popular because of its simplicity and its mild
assumptions. In this section we describe the Bonferroni test, a stepwise ex-
tension (Holm 1979a) and discuss further topics related to these methods. We
also describe briefly some software implementations in R, leaving the details
for Section 3.3.

2.3.1 Bonferroni test

The Bonferroni test is a single-step procedure, which compares the unadjusted
p-values p1, . . . , pm with the common threshold α/m, where m is the number
of hypotheses under investigation. Equivalently, a null hypothesis Hi, i ∈ M ,
is rejected, if the adjusted p-value qi = min{mpi, 1} ≤ α. Here, the minimum
is used to ensure that the resulting adjusted p-value qi is not larger than 1. The
strong control of the familywise error rate follows directly from Bonferroni’s
inequality

P(V > 0) = P

( ⋃
i∈M0

{qi ≤ α}

)
≤
∑
i∈M0

P(qi ≤ α) ≤ m0α/m ≤ α, (2.3)

where the probability expressions are conditional on
⋂
i∈M0

Hi and M0 ⊆ M
denotes the set of m0 = |M0| true null hypotheses (recall Table 2.1 for the
related notation).

Example 2.2. Consider the following numerical example with m = 3 null
hypotheses being tested at level α = 0.025. Let p1 = 0.01, p2 = 0.015, and
p3 = 0.005 denote the unadjusted p-values. Because p3 < α/3 = 0.0083,
but p1, p2 > α/3, only the null hypothesis H3 is rejected. Alternatively, the
adjusted p-values q1 = 0.03, q2 = 0.045, and q3 = 0.015 can be compared with
α = 0.025, leading to the same test decisions. 2

A convenient way to perform the Bonferroni test in R is to call the p.adjust
function from the stats package. Its use is self-explanantory. To calculate the
adjusted p-values qi in the previous example, we first define a vector contain-
ing the unadjusted p-values and subsequently call the p.adjust function as
follows:

R> p <- c(0.01, 0.015, 0.005)
R> p.adjust(p, "bonferroni")

[1] 0.030 0.045 0.015

In Section 3.3 we provide a detailed description of the multcomp package in
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R, which provides an interface to the multiplicity adjustments implemented
in the p.adjust function and also allows one to perform more sophisticated
multiple comparison procedures.

The Bonferroni method is a very general approach, which is valid for any
correlation structure among the test statistics. However, the Bonferroni test
is conservative in the sense that other test procedures exist, which reject at
least as many hypotheses as the Bonferroni test (often at the cost of additional
assumptions on the joint distribution of the test statistics). In the following
we describe some improvements or generalizations of the Bonferroni approach.

2.3.2 Holm procedure

Holm (1979a) introduced a multiple comparison procedure, which uniformly
improves the Bonferroni approach. The Holm procedure is a step-down proce-
dure, which basically consists of repeatedly applying Bonferroni’s inequality
while testing the hypotheses in a data-dependent order. Let p(1) ≤ . . . ≤ p(m)

denote the ordered unadjusted p-values with associated hypotheses H(1), . . .,
H(m). Then, H(i) is rejected if p(j) ≤ α/(m− j+ 1), j = 1, . . . , i. That is, H(i)

is rejected if p(i) ≤ α/(m− i+ 1) and all hypotheses H(j) preceding H(i) are
also rejected. Adjusted p-values for the Holm procedure are given by

q(i) = min{1,max[(m− i+ 1)p(i), q(i−1)]}. (2.4)

Alternatively, the Holm procedure can be described by the following sequen-
tially rejective test procedure. Start testing the null hypothesis H(1) associated
with the smallest p-value p(1). If p(1) > α/m, the procedure stops and no hy-
pothesis is rejected. Otherwise, H(1) is rejected and the procedure continues
testing H(2) at the larger significance level α/(m−1). These steps are repeated
until either the first non-rejection occurs or all null hypotheses H(1), . . . ,H(m)

are rejected.

Example 2.3. Consider again the p-values from Example 2.2. Since p(1) =
0.005 < 0.0083 = α/3, H(1) = H3 is rejected at α = 0.025. At the second step,
p(2) = 0.01 < 0.0125 = α/2 and H(2) = H1 is also rejected. At the final step,
p(3) = 0.015 < 0.025 = α and H(3) = H2 is also rejected. Alternatively, the
adjusted p-values are calculated as q(1) = 0.015, q(2) = 0.02, and q(3) = 0.02,
which are all smaller than α = 0.025 and thus lead to the same test decisions.
Using the p.adjust function introduced in Section 2.3.1, we obtain these
adjusted p-values by calling

R> p.adjust(p, "holm")

[1] 0.020 0.020 0.015

Note that q(3) = 0.02 (and not 0.015, as one might expect) due to the mono-
tonicity enforcement induced by the maximum argument in (2.4). 2

It becomes clear from this example that the Holm procedure is a step-down
procedure, which by construction rejects all hypotheses rejected by the Bonfer-
roni test and possibly others. We now give a different perspective on the Holm
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procedure by considering the closure principle from Section 2.2.3. For null hy-
potheses H1, . . . ,Hm satisfying the free combination condition (Section 2.1.2),
the Holm procedure is a shortcut of the closure principle when applying the
Bonferroni test to each intersection hypothesis HI =

⋂
i∈I Hi, I ⊆ {1, . . . ,m}

(Holm 1979a). That is, the Holm procedure leads to the same decisions for
the elementary hypotheses H1, . . . ,Hm as a Bonferroni-based closed test pro-
cedure. To see this, consider again the example from Section 2.2.3 comparing
two treatments with a control. The related closure principle for the two null
hypotheses H1 and H2 is shown in Figure 2.3. Assume now that the Bonfer-
roni method is used to test the intersection hypothesis H12 = H1 ∩H2, that
is, H12 is rejected if min(p1, p2) ≤ α/2. If H12 is rejected, then one of the
elementary hypotheses H1 and H2 is immediately rejected as well and only
the remaining hypothesis needs to be tested at level α: If, say, p1 < α/2, then
trivially p1 < α and H1 is rejected; H2 remains to be tested at level α. More
generally, if HI =

⋂
i∈I Hi, I ⊆ M , is rejected, then there exists an index

i∗ ∈ I such that pi∗ ≤ α/|I| and all hypotheses HJ with i∗ ∈ J ⊆ I are also
rejected, because |J | ≤ |I| and consequently pi∗ ≤ α/|I| ≤ α/|J |.

Because the Holm procedure is based on the conservative Bonferroni in-
equality (2.3), more powerful step-down procedures can be obtained by ac-
counting for the stochastic dependencies between the test statistics. In Sec-
tion 4.1.2 we discuss a parametric extension of the Holm procedure based on
max-t tests in the form (2.1). We also show how to implement these methods
using R.

H123

H12 H13 H23

? ? ?

Figure 2.6 Schematic diagram of the closure principle for the three null hypothe-
ses Hij : µi = µj , 1 ≤ i < j ≤ 3.

If the null hypotheses H1, . . . ,Hm satisfy the restricted combination con-
dition, however, the Holm procedure is still applicable, but conservative. To
see this, consider all pairwise comparisons of three treatments means µ1, µ2,
and µ3, resulting in m = 3 null hypotheses Hij : µi = µj . The related clo-
sure principle for the three null hypotheses H12, H13, and H23 is shown in
Figure 2.6, where H123 : µ1 = µ2 = µ3 is the only non-trivial intersection
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hypothesis. Applying the Bonferroni test leads to the rejection of H123 if
min(p1, p2, p3) < α/3. Once H123 has been rejected, one of the elementary
hypotheses is immediately rejected as well and only the two remaining hy-
potheses need to be tested at level α. Note that for the ordered set of p-values
(p(1), p(2), p(3)) the Holm procedure would apply the significance thresholds
(α/3, α/2, α), whereas the thresholds (α/3, α, α) would suffice, as seen from
this example. Note also that in some cases the Holm procedure may not be co-
herent under the restricted combination condition (Hommel and Bretz 2008).

Shaffer (1986) extended the Holm procedure, utilizing logical restrictions to
improve the power of closed tests. Her method is a “truncated” closed test pro-
cedure: Closed testing is performed, in sequence H(1), H(2), . . . corresponding
to the ordered p-values, and testing stops at the first insignificance. Trunca-
tion ensures that H(i′) cannot be rejected if H(i) is not rejected, for i′ > i.
Without truncation, a closed test procedure can result in the possibly unde-
sirable outcome that H(i′) is rejected and H(i) is not rejected, for i′ > i; see
Bergmann and Hommel (1988), Hommel and Bernhard (1999), and Westfall
and Tobias (2007) for details. When the tests satisfy the free combinations
condition, all these procedures reduce to the ordinary Holm procedure.

Although based on the conservative Bonferroni inequality, Shaffer’s method
can be much more powerful than standard methods when combinations are
restricted. In Section 4.2.2, we discuss a parametric extension of Shaffer’s
method (called the extended Shaffer-Royen procedure by Westfall and Tobias
(2007)) that is yet more powerful than Shaffer’s method. The increase in power
comes from using specific dependence information rather than the conservative
Bonferroni inequality. We also show how to implement this powerful method
using the multcomp package in R.

2.3.3 Further topics

In this section we describe additional extensions of the procedures by Bonfer-
roni and Holm. Simultaneous confidence intervals compatible with the Bonfer-
roni test are easily obtained by computing the marginal confidence intervals at
the adjusted significance levels α/m. For the Holm procedure, such confidence
intervals are more difficult to construct (Section 2.1.2). We refer to Strass-
burger and Bretz (2008) and Guilbaud (2008), who independently applied
the partitioning principle from Section 2.2.4 to derive compatible simultane-
ous confidence intervals for the Holm procedure and other Bonferroni-based
closed test procedures.

If the test statistics were independent, the familywise error rate would be-
come

FWER = P(V > 0) = 1− P(V = 0) = 1− (1− α)m.

This gives the motivation for the Šidák (1967) approach, which rejects a null
hypothesis Hi, if pi ≤ 1− (1− α)1/m, or, equivalently, if the adjusted p-value
qi = 1 − (1 − pi)m ≤ α. The Šidák approach also holds for non-negatively
correlated test statistics (Tong 1980). Note that the Šidák approach is more
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powerful than the Bonferroni test, although the gain in power is marginal in
practice. A further modification of the Bonferroni method, which has attracted
substantial research interest, is based on the Simes inequality described in Sec-
tion 2.4. Further improvements of the Bonferroni method, which incorporate
stochastic dependencies in the data, are parametric approaches described in
Chapter 3 and resampling-based approaches reviewed in Section 5.1.

It follows from the inequality (2.3) that the Bonferroni test controls the fam-
ilywise error rate strongly at level α or less, that is, FWER ≤ m0α/m ≤ α. If
the number m0 of true null hypotheses was known, more powerful procedures
could be obtained by applying the Bonferroni test at level m0α/m instead of
α. Several methods are available to estimate m0 and five of them were com-
pared in Hsueh, Chen, and Kodell (2003). The authors concluded that the
approach proposed by Benjamini and Hochberg (2000) gives satisfactory em-
pirical results. The latter considered the slopes of the lines passing the points
(m + 1, 1) and (i, p(i)), and took the lowest slope estimator to approximate
m0. More recently, Finner and Gontscharuk (2009) derived conditions which
ensure familywise error rate control of Bonferroni-based test procedures using
plug-in estimates similar to those proposed by Schweder and Spjøtvoll (1982)
and Storey (2002).

Westfall, Kropf, and Finos (2004) described weighted methods that are use-
ful when some hypotheses Hi are deemed more important than others. For
example, in clinical trials the various patient outcomes might be ranked a
priori, and the test procedure designed to give more power to the more im-
portant hypotheses. The simplest weighted multiple comparison procedure is
the weighted Bonferroni test, discussed in, for example, Rosenthal and Ru-
bin (1983). The weighted Bonferroni test divides the overall significance level
α into portions w1α, . . . , wmα, such that

∑
i wiα = α. Accordingly, an ele-

mentary hypothesis Hi is rejected if pi ≤ w1α. Holm (1979a) introduced the
following weighted test procedure, which extends the weighted Bonferroni test
described above. Order the weighted p-values p̃i = pi/wi as p̃(1) ≤ . . . ≤ p̃(m),
where p̃(j) = p̃ij (that is, ij denotes the index of the j-th ordered weighted
p-value). Define the sets Sj = {ij , . . . , im}, j = 1, . . . ,m. Let Hw

(j) denote the
hypothesis corresponding to p̃(j). The weighted Holm procedure rejects Hw

(j),
if p̃(i) ≤ α/

∑
h∈Si wh, for all i = 1, . . . , j. This method controls the familywise

error rate strongly at level α, and when the weights are equal, it reduces to the
ordinary Holm procedure. Closed test procedures based on weighted Bonfer-
roni tests have recently attracted much attention for the analysis of multiple
outcome variables; see Dmitrienko et al. (2003), Hommel et al. (2007), and
Bretz et al. (2009b).

2.4 Methods based on Simes’ inequality

Simes (1986) proposed the following modification of the Bonferroni method
to test the global intersection hypothesis H =

⋂
i∈M Hi. Let again p(1) ≤

. . . ≤ p(m) denote the ordered unadjusted p-values with associated hypotheses
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H(1), . . . ,H(m). Using the Simes test, one rejects H if there is an index j ∈
M = {1, . . . ,m}, such that p(j) ≤ jα/m. However, one cannot assess the
elementary hypotheses Hi with the Simes test. In particular, one cannot reject
H(i) if p(i) ≤ iα/m for some i ∈ M , because the familywise error rate is not
controlled in this case (Hommel 1988).

By construction, the Simes test is more powerful than the Bonferroni test
in the sense that whenever H is rejected by the latter it will also be rejected
by the former, but not vice versa. Figure 2.7 compares the rejection regions
of the Bonferroni and the Simes tests for m = 2. Recall that when m = 2 the
Bonferroni test rejects the global intersection hypothesis H if either p1 ≤ α/2
or p2 ≤ α/2. The Simes test rejects H if either p(1) ≤ α/2 or p(2) ≤ α. As
seen from Figure 2.7, the Simes test “adds” the square [α/2, α] × [α/2, α] to
the rejection region of the Bonferroni test and is therefore more powerful.
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Figure 2.7 Rejection regions for the Bonferroni test (horizontal lines) and the
Simes test (horizontal and vertical lines).

To illustrate the impact on the (disjunctive) power, Figure 2.8 displays 100
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simulated pairs of independent p-values (p1, p2) under a given alternative. Set-
ting α = 0.1, the Bonferroni test rejects in those 88 cases, where in Figure 2.8
the dots lie in the lower left “L-shaped” region {p1 ≤ α/2} ∪ {p2 ≤ α/2}. The
Simes test rejects in one additional case, where (p1, p2) = (0.0807, 0.0602),
confirming its slight power advantage. In the remaining 11 cases neither the
Bonferroni nor the Simes test rejects.
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p 2

Figure 2.8 Illustration of the power difference for the Bonferroni and Simes tests
by plotting 100 pairs of independent p-values (p1, p2).

Note that the power advantage of the Simes test comes at the cost of ad-
ditional assumptions on the underlying dependency structure. Simes (1986)
proved that for his test FWER = α under independence of p1, . . . , pm. If the
independence assumption is not met, the Type I error rate control is not al-
ways clear. In many practically relevant cases the inflation in size is marginal
(Samuel-Cahn 1996), although pathological counter-examples exist, where the
impact can be substantial (Hommel 1983). For one-sided tests, it can be shown
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that the Simes test controls the familywise error rate if, for example, the test
statistics are multivariate normally distributed with non-negative correlations
or multivariate t distributed with the associated normals having non-negative
correlations, as long as α < 1/2. We refer to Sarkar and Chang (1997) and
Sarkar (1998) for further results.

Hochberg (1988) proposed a step-up extension of the Simes test, which
allows one to make inferences about the elementary null hypotheses Hi, i ∈M .
The Hochberg procedure can be seen as a reversed Holm procedure, since it
uses the same critical values, but in a reversed test sequence: H(i) is rejected
if there is a j = i, . . . ,m, such that p(j) ≤ α/(m − j + 1). Adjusted p-values
for the Hochberg procedure are given by

q(i) = min{1,min[(m− i+ 1)p(i), q(i+1)]}.

Alternatively, the Hochberg procedure can be described by the following se-
quentially rejective test procedure. Start testing the null hypothesis H(m) as-
sociated with the largest p-value p(m). If p(m) ≤ α, the procedure stops and
all hypothesis H(1), . . . ,H(m) are rejected. Otherwise, H(m) is retained and
the procedure continues testing H(m−1) at the smaller significance level α/2.
If p(m−1) ≤ α/2, the procedure stops and all hypothesis H(1), . . . ,H(m−1) are
rejected. These steps are repeated until either the first rejection occurs or all
null hypotheses H(1), . . . ,H(m) are retained. By construction, the Hochberg
procedure is more powerful than the Holm procedure.

Example 2.4. Consider the following numerical example with m = 4 null
hypotheses tested at the significance level α = 0.05. Let p1 = 0.022, p2 =
0.02, p3 = 0.01, and p4 = 0.09 be the unadjusted p-values. Consider first
the Holm procedure. Since p(1) = p3 = 0.01 < 0.0125 = α/4, H(1) = H3 is
rejected. At the second step, p(2) = p2 = 0.02 > 0.0167 = α/3 and the Holm
procedure stops with no further rejections. The Hochberg procedure, however,
starts with the largest p-value, steps through the ordered p-values, and stops
with the first significant result. Because p(4) = p4 = 0.09 > 0.05 = α but
p(3) = p1 = 0.022 < 0.025 = α/2, the Hochberg procedure rejects H1, H2,
and H3 but not H(4) = H4. Table 2.2 summarizes this example and gives the
associated adjusted p-values. 2

Hommel (1988) introduced an improved procedure by applying the Simes
test to each intersection hypothesis of a closed test procedure. This procedure
can be shown to be uniformly more powerful than the Hochberg procedure
(Hommel 1989). As an example consider the case m = 3 and assume that
p1 ≤ p2 ≤ p3. The Hochberg procedure then rejects H1 if any of the events

{p3 ≤ α}
or {p2 ≤ α/2 and p1 ≤ α/2}
or {p1 ≤ α/3}
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Threshold Decision Adjusted p-value

i p(i) α/(4− i+ 1) Holm Hochberg Holm Hochberg

1 0.01 0.0125 Rej. Rej. 0.04 0.04
2 0.02 0.0167 N.R. Rej. 0.06 0.044
3 0.022 0.025 N.R. Rej. 0.06 0.044
4 0.09 0.05 N.R. N.R. 0.09 0.09

Table 2.2 Comparison of the Holm and Hochberg procedures for m = 4 hypothe-
ses and α = 0.05. Rej. = rejection, N.R. = no rejection.

is true. In contrast, the procedure by Hommel rejects H1 if any of the events

{p3 ≤ α}
or {p2 ≤ 2α/3 and p1 ≤ α/2}
or {p1 ≤ α/3}

is true. Thus, if α/2 < p2 ≤ 2α/3 and p1 ≤ α/2, the Hommel procedure
rejects H1, but the Hochberg procedure does not.

Both the Hochberg and the Hommel procedure are available in R with the
p.adjust function introduced in Section 2.3.1. For example, calling

R> p <- c(0.01, 0.02, 0.022, 0.09)
R> p.adjust(p, "hochberg")

[1] 0.040 0.044 0.044 0.090

gives the adjusted p-values from Table 2.2. Similarly, the Hommel procedure
is available with

R> p.adjust(p, "hommel")

[1] 0.030 0.040 0.044 0.090

Note that in this example the Hommel procedure leads to smaller adjusted
p-values for H1 and H2 than the Hochberg procedure, reflecting the previous
comment about its power advantage.
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CHAPTER 3

Multiple Comparison Procedures in
Parametric Models

In this chapter we introduce a general framework for multiple hypotheses
testing in parametric and semi-parametric models. This chapter provides the
theoretical basis for the applications analyzed in Chapter 4. In Section 3.1 we
review briefly the standard linear model theory and show how to perform mul-
tiple comparisons in this framework, including analysis-of-variance (ANOVA),
analysis-of-covariance (ANCOVA) and regression models as special cases. We
extend the basic approaches from Chapter 2 by using inherent distributional
assumptions, particularly by accounting for the structural correlation between
the test statistics, thus achieving larger power. In addition, we revisit the lin-
ear regression example from Chapter 1 to illustrate the resulting methods. In
Section 3.2 we extend the previous linear model framework and introduce mul-
tiple comparison procedures for general parametric models relying on standard
asymptotic normality results. The methods apply, for example, to generalized
linear models, linear and non-linear mixed-effects models as well as survival
data. Again, the use of the inherent stochastic dependencies leads to pow-
erful methods. The multcomp package in R provides a convenient interface
to perform multiple comparisons for the parametric models considered in Sec-
tions 3.1 and 3.2. An in-depth introduction to the multcomp package is given
in Section 3.3. Detailed examples to illustrate and extend the results from this
chapter are left for Chapter 4.

3.1 General linear models

In Section 3.1.1 we introduce the canonical framework for multiple hypotheses
testing in general linear models. We refer to several standard results from the
theory of linear models which will be used subsequently; see Searle (1971) for
a detailed mathematical treatise of this subject. In Section 3.1.2 we revisit
the linear regression example from Chapter 1 to illustrate some of the results
using R.

3.1.1 Multiple comparisons in linear models

Multiple comparisons in linear models have been considered previously in
the literature; see, for example, the standard textbooks from Hochberg and
Tamhane (1987) and Hsu (1996). Here, we follow the description from Bretz,

41
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Hothorn, and Westfall (2008a) and consider the common general linear model

y = Xβ + ε, (3.1)

where y = (y1, . . . , yn)> denotes the n× 1 vector of observations, X = (xij)ij
denotes the fixed and known n × p design matrix, and β = (β1, . . . , βp)>

denotes the fixed and unknown parameter vector. The random, unobserv-
able n × 1 error vector ε is assumed to follow an n-dimensional normal
distribution with mean vector 0 = (0, . . . , 0)> and covariance matrix σ2In,
ε ∼ Nn(0, σ2In) for short, where Nn denotes an n-dimensional normal dis-
tribution, σ2 the common variance, and In the identity matrix of dimension
n. Model (3.1) implies that each individual observation yi follows the linear
model

yi = β1xi1 + . . .+ βpxip + ε,

where ε ∼ N(0, σ2). Extensions of this linear model will be considered in
Section 3.2 and a variety of applications will be discussed in Chapter 4.

Assume that we want to perform pre-specified comparisons among the pa-
rameters β1, . . . , βp. To accomplish this, define a p×1 vector c = (c1, . . . , cp)>

of known constants. If the vector c is chosen such that c>1 = 0, where
1 = (1, . . . , 1)>, it is denoted as contrast vector. The vector c thus reflects
a single experimental comparison of interest through the linear combination
c>β with associated null hypothesis

H : c>β = a (3.2)

for a fixed and known constant a. In the following, we refer to c>β as the
(linear) function of interest; all such functions are assumed to be estimable as
defined below. If we have multiple experimental questions, m say, we obtain m
vectors c1, . . . , cm, which can be summarized by the matrix C = (c1, . . . , cm),
resulting in the m elementary null hypotheses

Hj : c>j β = aj , j = 1, . . . ,m.

Example 3.1. Recall the linear regression example from Chapter 1. There
we considered the multiple test problem of whether intercept or slope from a
linear regression model differ significantly from zero. Based on the thuesen
data, we want to predict the ventricular shortening velocity y from blood
glucose x using the model

yi = β1 + β2xi + εi

for the i-th patient, where β1 denotes the intercept and β2 denotes the slope.
We can thus assume that the n = 23 individual measurements follow the linear
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model (3.1), where

y =



1.76
1.34
1.27

...
1.03
1.12
1.70


, X =



1 15.3
1 10.8
1 8.1
...

...
1 4.9
1 8.8
1 9.5


, and β =

(
β1

β2

)
.

For the thuesen data example we are interested in testing the m = 2 elemen-
tary null hypotheses

H1 : β1 = 0 and H2 : β2 = 0,

where

a =
(
a1

a2

)
=
(

0
0

)
and C =

(
1 0
0 1

)
in the notation from Equation (3.2). 2

Standard linear model theory provides the usual least squares estimates

β̂ = (X>X)−X>y (3.3)

and

σ̂2 =
(y −Xβ̂)>(y −Xβ̂)

ν
, (3.4)

where ν = n − rank(X) and (X>X)− denotes some generalized inverse of
X>X. Under the model assumptions (3.1), σ̂2 is an unbiased estimate of σ2.
If rank(X) = p, the estimate β̂ = (X>X)−1X>y is also unbiased.

We can test the hypotheses Hj using the quantities

tj =
c>j β̂ − aj

σ̂
√

c>j (X>X)−cj
, j = 1, . . . ,m, (3.5)

one for each experimental question defined through cj . By construction, each
test statistic tj , j = 1, . . . ,m, follows under the null hypothesis (3.2) a central
univariate t distribution with ν degrees of freedom. When the null hypothesis
Hj : c>j β = a is not true, tj follows a non-central univariate t distribution
with ν degrees of freedom and noncentrality parameter

τj =
c>j β − aj

σ
√

c>j (X>X)−cj
, j = 1, . . . ,m.

The joint distribution of t1, . . . , tm is multivariate t with ν degrees of freedom
and correlation matrix

R = DC>(X>X)−CD,

where D = diag(c>j (X>X)−cj)−1/2. If σ is known or in the asymptotic case
ν →∞, the (limiting) multivariate normal distribution holds.
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Let u1−α denote the critical value derived from the multivariate normal or
t distribution for a pre-specified significance level α. We then reject the null
hypothesis Hj if |tj | ≥ u1−α. Alternatively, if qj denotes the adjusted p-value
for Hj computed from either the multivariate normal or t distribution, we
reject Hj if qj ≤ α (recall Section 2.1.2 for a generic definition of adjusted
p-values). Confidence intervals for c>j β − aj , j = 1, . . . ,m, with simultaneous
coverage probability 1− α are given through[

c>j β̂ − aj − u1−ασ̂
√

c>j (X>X)−cj ; c>j β̂ − aj + u1−ασ̂
√

c>j (X>X)−cj
]
.

We obtain similar results for one-sided test problems by reformulating the
null hypotheses, taking the test statistics tj instead of their absolute values
|tj |, and computing the associated one-sided critical values and/or adjusted
p-values. Genz and Bretz (1999, 2002, 2009) described numerical integration
methods to calculate multivariate normal and t probabilities. For a general
overview of these distributions we refer the reader to the books of Tong (1990);
Kotz, Balakrishnan, and Johnson (2000) and Kotz and Nadarajah (2004).

The methods discussed in this section lead to powerful multiple comparison
procedures. These procedures extend the classical Bonferroni method from
Section 2.3.1 by considering the joint multivariate normal or t distribution
of the individual test statistics (3.5). However, the methods presented here
belong to the class of single-step procedures. As explained in Section 2.2.3,
more powerful closed test procedures based on max-t tests of the form (2.1)
can be constructed, which utilize the correlation structure involved in the
joint distribution of the test statistics (either multivariate t or multivariate
normal). It is the combination of the methods from this section with the closure
principle described earlier, that results in powerful stepwise procedures and
forms the core methodology for the application analyses in Chapter 4.

Example 3.2. Revisiting the thuesen data from Example 3.1, we have β̂ =
(1.098, 0.022)> and σ̂ = 0.217. In Section 3.1.2 we will extract this information
from the fitted linear model in R. These numbers can also be computed using
Equations (3.3) and (3.4). Plugging the estimates β̂ and σ̂ into Equation (3.5)
results in the test statistics t1 = 9.345 and t2 = 2.101 with ν = 21 degrees of
freedom. Based on the correlation of −0.923 between the two test statistics,
we can then compute the required bivariate t probabilities for the multiplicity
adjusted p-values, as shown in Section 3.1.2. 2

We conclude this section by reviewing the estimability conditions for linear
functions in general linear models. We again refer to Searle (1971) for further
details. A function c>β is called estimable if there exists a n×1 vector z such
that E

(
z>y

)
= E (

∑n
i=1 ziYi) = c>β. If such a vector z cannot be found, the

function c>β is not estimable. A necessary and sufficient condition for the
estimability of c>β is given by

c>
(
X>X

)−
X>X = c>.
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Further, if c>β is estimable, then E
(
z>y

)
= c>β, where

z> = c>
(
X>X

)−
X>.

Moreover, if c>β is estimable, then c>β̂ = z>y is the best linear unbiased
estimator of c>β and its variance

V(z>y) = σ2c>
(
X>X

)−
c

does not depend on the particular choice of the generalized inverse. Thus, once
the estimability of c>β is confirmed, we obtain a good and unique estimate
of the function c>β of interest through c>

(
X>X

)−
X>y. Note that we have

used this result already in Equations (3.3) and (3.5).

3.1.2 The linear regression example revisited using R

As a direct consequence of the linear model theory reviewed in Section 3.1.1,
the implementation of any advanced multiple comparison procedure requires
careful consideration of several individual steps. Flexible interfaces, such as
the multcomp package in R, facilitate the use of such advanced methods.
In this section we revisit the linear regression example based on the thuesen
data from Chapter 1 to illustrate the key steps when using the multcomp
package. A detailed introduction to the package is given in Section 3.3.

If the multcomp package was not available, we would need to make the
necessary calculations step by step based on the methods from Section 3.1.1.
The necessary estimates of the regression coefficients β and their covariance
matrix can be extracted from the previously fitted model (see Chapter 1 for
the associated lm fit) by calling

R> betahat <- coef(thuesen.lm)
R> Vbetahat <- vcov(thuesen.lm)

Given these quantities we can compute the vector t containing the two individ-
ual t test statistics and its associated correlation matrix as (see Section 3.1.1
for the theoretical background):

R> C <- diag(2)
R> Sigma <- diag(1 / sqrt(diag(C %*% Vbetahat %*% t(C))))
R> t <- Sigma %*% C %*% betahat
R> Cor <- Sigma %*% (C %*% Vbetahat %*% t(C)) %*% t(Sigma)

Note that t = (9.345, 2.101)> with associated correlation matrix

[,1] [,2]
[1,] 1.000 -0.923
[2,] -0.923 1.000

Adjusted p-values are finally computed from the underlying bivariate t dis-
tribution using the pmvt function of the mvtnorm package (Hothorn, Bretz,
and Genz 2001; Genz and Bretz 2009):
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R> library("mvtnorm")
R> thuesen.df <- nrow(thuesen) - length(betahat)
R> q <- sapply(abs(t), function(x)
+ 1 - pmvt(-rep(x, 2), rep(x, 2), corr = Cor,
+ df = thuesen.df))

We obtain the multiplicity adjusted p-values

q1 < 0.001 and q2 = 0.064, (3.6)

indicating that the intercept is significantly different from 0 but the slope is
not.

Alternatively, we can compute a critical value u1−α derived from the bi-
variate t distribution and compare the test statistics t = (t1, t2)> against it.
Using the function

R> delta <- rep(0, 2)
R> myfct <- function(x, conf) {
+ lower <- rep(-x, 2)
+ upper <- rep(x, 2)
+ pmvt(lower, upper, df = thuesen.df, corr = Cor,
+ delta, abseps = 0.0001)[1] - conf
+ }

we can compute the critical value u1−α with the uniroot function

R> u <- uniroot(myfct, lower = 1, upper = 5, conf = 0.95)$root
R> round(u, 3)

[1] 2.23

In our example we set the confidence level as 1−α = 0.95 and obtain u1−α =
2.229. Because the test statistics for the two-sided test problem are |t1| =
9.345 > u1−α and |t2| = 2.101 < u1−α, we obtain the same test decisions as
in (3.6). In addition, the critical value u1−α = 2.229 can be used to compute
simultaneous confidence intervals for the parameters β1 and β2. Note that
because the parameter estimates are highly correlated, the critical value 2.229
from the bivariate t distribution is considerably smaller than the Bonferroni
critical value t1−α/2,ν = 2.414 from the univariate t distribution.

As seen from the thuesen example, performing advanced multiple com-
parisons can involve a number of individual steps. The multcomp package
provides a formal framework to replace the previous calculations with stan-
dardized function calls. Details of the multcomp package are given in Sec-
tion 3.3, but for illustration purposes we apply it now to the thuesen data.
The following lines replicate some of the calculations from Chapter 1, where
we first used the multcomp package.

The glht function from multcomp takes a fitted response model and a
matrix C defining the hypotheses of interest to perform the multiple compar-
isons:
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R> library("multcomp")
R> thuesen.mc <- glht(thuesen.lm, linfct = C)
R> summary(thuesen.mc)

Simultaneous Tests for General Linear Hypotheses

Fit: lm(formula = short.velocity ~ blood.glucose,
data = thuesen)

Linear Hypotheses:
Estimate Std. Error t value Pr(>|t|)

(Intercept) == 0 1.0978 0.1175 9.34 1e-08 ***
blood.glucose == 0 0.0220 0.0105 2.10 0.064 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Adjusted p values reported -- single-step method)

For each parameter βi, i = 1, 2, multcomp reports its estimate and standard
error. Taking the ratio of these two values for each parameter results in the
reported test statistics. Adjusted p-values are given in the last column of the
standard output from multcomp. As expected, they are the same as calcu-
lated in (3.6). In addition, simultaneous confidence intervals can be calculated
for each parameter using the the confint method:

R> confint(thuesen.mc)

Simultaneous Confidence Intervals

Fit: lm(formula = short.velocity ~ blood.glucose,
data = thuesen)

Quantile = 2.23
95% family-wise confidence level

Linear Hypotheses:
Estimate lwr upr

(Intercept) == 0 1.09781 0.83591 1.35972
blood.glucose == 0 0.02196 -0.00134 0.04527

The two-sided confidence interval for the slope includes the 0, thus reflecting
the previous test decision that the slope is not statistically significant different
from 0. We further conclude that the intercept lies roughly between 0.84 and
1.36.

So far we have only illustrated single-step procedures, which account for
the correlation among the test statistics. As we know from Chapter 2, asso-
ciated closed test procedures are available and uniformly more powerful. In
multcomp we can call, for example,
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R> summary(thuesen.mc, test = adjusted(type = "Westfall"))

Simultaneous Tests for General Linear Hypotheses

Fit: lm(formula = short.velocity ~ blood.glucose,
data = thuesen)

Linear Hypotheses:
Estimate Std. Error t value Pr(>|t|)

(Intercept) == 0 1.0978 0.1175 9.34 1e-08 ***
blood.glucose == 0 0.0220 0.0105 2.10 0.048 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Adjusted p values reported -- Westfall method)

to extract related adjusted p-values. Note that the p-value associated with the
slope parameter is now p = 0.048 < 0.05 and one can thus safely claim that
the slope is significant at level α = 0.05 after having adjusted for multiplicity.
Details on the implemented stepwise procedures in the multcomp package
are given in Section 3.3 and Chapter 4.

3.2 Extensions to general parametric models

In Section 3.1 we introduced multiple comparison procedures, which are well
established for common regression and ANOVA models allowing for covariates
and/or factorial treatment structures with independent and identically dis-
tributed normal errors and constant variance. In this section we extend these
results and provide a unified description of multiple comparison procedures
in parametric models with generally correlated parameter estimates. We relax
the standard ANOVA assumptions, such as normality and homoscedasticity,
thus allowing for simultaneous inference in generalized linear models, mixed-
effects models, survival models, etc. As before, we assume that each individual
null hypothesis is specified through a linear combination of p elemental model
parameters and we simultaneously test m null hypotheses.

In Section 3.2.1 we introduce the necessary asymptotic results for the linear
functions of interest under rather weak conditions. In Section 3.2.2 we de-
scribe the framework for multiple comparison procedures in general parametric
models. We give important applications of the methodology in Section 3.2.3.
Numerical examples to illustrate the methods using the multcomp package
are left for Chapter 4. Much of the following material follows the outline of
Hothorn, Bretz, and Westfall (2008).

3.2.1 Asymptotic results

We extend the notation from Section 3.1 to cope with the generality required
below. Let M({z1, . . . , zn},θ,η) denote a parametric or semi-parametric sta-
tistical model, where {z1, . . . , zn} denotes the set of n observation vectors,
θ denotes the p × 1 fixed parameter vector and the vector η contains other
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(random or nuisance) parameters. We are primarily interested in the linear
functions ϑ = C>θ of the parameter vector θ as specified through the p×m
matrix C with fixed and known constants. Assume that we are given an esti-
mate θ̂n of the parameter vector θ. In what follows we describe the underlying
model assumptions, the limiting distribution for the estimates of our param-
eters of interest, ϑ = C>θ, as well as the corresponding test statistics for
hypotheses involving ϑ and their limiting joint distribution.

Consider, for example, a standard regression model to illustrate the new
notation and how it relates to the one used in Section 3.1. Here, the observa-
tions zi of subject i = 1, . . . , n consist of a response variable yi and a vector of
covariates xi = (xi1, . . . , xip), such that zi = (yi,xi) and xi1 = 1 for all i. The
response is modeled by a linear combination of the covariates with normal
error εi ∼ N(0, σ2) and constant variance σ2,

yi = β1 +
p∑
j=2

βjxij + εi.

The parameter vector is then θ = (β1, . . . , βp), resulting in the linear functions
of interest ϑ = C>θ.

Coming back to the general theory, suppose θ̂n is an estimate of θ and
Sn ∈ Rp,p is an estimate of cov(θ̂n) with

anSn
P−→ Σ ∈ Rp,p (3.7)

for some positive, nondecreasing sequence an. Furthermore, we assume that
the multivariate central limit theorem holds, that is,

a1/2
n (θ̂n − θ) d−→ Np(0,Σ). (3.8)

If both (3.7) and (3.8) are fulfilled, we write θ̂n
a∼ Np(θ,Sn). Then, by

Theorem 3.3.A in Serfling (1980), the estimate of our parameter of interest,
ϑ̂n = C>θ̂n, is approximately multivariate normally distributed, that is,

ϑ̂n = C>θ̂n
a∼ Nm(ϑ,S?n)

with covariance matrix S?n = C>SnC for any fixed matrix C. Thus, we do not
need to distinguish between the model parameter θ and the derived parameter
ϑ = C>θ. In analogy to (3.7) and (3.8) we can thus assume that

ϑ̂n
a∼ Nm(ϑ,S?n)

holds, where
anS?n

P−→ Σ? = C>ΣC ∈ Rm,m,
and that the m parameters in ϑ are the parameters of interest. It is as-
sumed that the diagonal elements of the covariance matrix are positive, that
is, Σ?

jj > 0 for j = 1, . . . ,m. Consequently, the standardized estimate ϑ̂n
is again asymptotically multivariate normally distributed. Following Hothorn
et al. (2008),

tn = D−1/2
n (ϑ̂n − ϑ) a∼ Nm(0,Rn)
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where Dn = diag(S?n) contains the diagonal elements of S?n and

Rn = D−1/2
n S?nD−1/2

n ∈ Rm,m

is the correlation matrix of the m-dimensional statistic tn. This leads to the
main asymptotic result in this section,

tn = (anDn)−1/2a1/2
n (ϑ̂n − ϑ) d−→ Nm(0,R).

For the purpose of multiple comparisons, we need convergence of multivari-
ate probabilities calculated for the vector tn, where tn is assumed normally
distributed and Rn treated as if it was the true correlation matrix. However,
the necessary probabilities are continuous functions of Rn (and the associated
critical value) which converge by Rn

P−→ R as a consequence of Theorem
1.7 in Serfling (1980). In cases where tn is assumed to be multivariate t dis-
tributed with Rn treated as the estimated correlation matrix, we have similar
convergence as the degrees of freedom approach infinity.

Since we only assume that the parameter estimates θ̂n are asymptotically
normally distributed with an available consistent estimate of the associated
covariance matrix, the framework in this section covers a wide range of sta-
tistical models, including linear regression and ANOVA models, generalized
linear models, linear mixed-effects models, Cox models, robust linear models,
etc. Standard software packages can be used to fit such models and obtain the
estimates θ̂n and Sn, which are the only two quantities that are needed here.

3.2.2 Multiple comparisons in general parametric models

Based on the asymptotic results from Section 3.2.1, we can derive suitable
multiple comparison procedures for the class of parametric models introduced
there. We start considering the global null hypothesis

H : ϑ = a

where, as before, ϑ = C>θ and a = (a1, . . . , am)> denotes a vector of fixed
and known constants. Under the conditions of H it follows from Section 3.2.1
that

tn = D−1/2
n (ϑ̂n − a) a∼ Nm(0,Rn).

This approximating distribution will be used as the reference distribution
when constructing suitable multiple comparison procedures below. Note that
the asymptotic results can be sharpened if we assume exact normality θ̂n ∼
Np(θ,Σ) instead of the asymptotic normality assumption (3.8). If the covari-
ance matrix Σ is known, it follows by standard arguments that tn ∼ Nm(0,R),
where tn is normalized using fixed and known variances. Otherwise, in the typ-
ical situation of linear models with independent, normally distributed errors
and Σ = σ2A, where σ2 is unknown but A is fixed and known, the exact
distribution of tn is multivariate t; see Section 3.1.1.

The global null hypothesisH can be tested using standard tests, such as F or
χ2 tests, see Hothorn et al. (2008) for analytical expressions. An alternative
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approach is to consider the maximum of the individual components of the
vector tn = (t1n, . . . , tmn), leading to the max-t test tmax = max |tn| (see also
Section 2.2.1 for a brief discussion about max-t tests). The distribution of this
statistic under the conditions of H can be computed using the m-dimensional
distribution function

P(tmax ≤ t) ∼=
t∫
−t

· · ·
t∫
−t

ϕm(x; R, ν)dx =: gν(R, t) (3.9)

for some t ∈ R, where ϕm denotes the density function of either the limiting
m-dimensional normal (with ν =∞ degrees of freedom and the “≈” operator)
or the exact multivariate t distribution (with ν < ∞ and the “=” operator).
Because R is usually unknown, we plug in the consistent estimate Rn, as
discussed in Section 3.2.1. The resulting (exact or asymptotic) p-value for H
is then given by 1 − gν(Rn,max |tobs|), where tobs = (tobs

1 , . . . , tobs
m ) denotes

the vector of observed test statistics tobs
j . Efficient methods to calculate mul-

tivariate normal and t integrals are described in Genz and Bretz (1999, 2002,
2009).

Note that in contrast to standard global F or χ2 tests, max-t tests of the
form tmax = max |tn| additionally provide information about the elementary
null hypotheses (consonance property, see Section 2.2.1). To this end, recall
that C = (c1, . . . , cm) and let ϑj = c>j θ denote the j-th linear function of
interest, j = 1, . . . ,m. The elementary null hypotheses of interest are given by

Hj : c>j θ = aj , j = 1, . . . ,m,

for fixed and known constants aj , such that H =
⋂m
j=1Hj . Adjusted p-values

(exact or asymptotic) are given by

qj = 1− gν(Rn, |tobs
j |), j = 1, . . . ,m,

and calculated from expression (3.9). By construction, we reject an elementary
null hypothesis Hj whenever the associated adjusted p-value qj is less than or
equal to the pre-specified significance level α, that is, qj ≤ α. Alternatively, if
u1−α denotes the (1−α)-quantile of the distribution (asymptotic, if necessary)
of tn, we reject Hj if |tobs

j | ≥ u1−α. In addition, simultaneous confidence
intervals for ϑj with coverage probability 1−α can be constructed from ϑ̂n±
u1−αdiag(Dn)1/2. Similar results also hold for one-sided test problems.

Similar to Section 3.1.1, the methods discussed here can be used to construct
more powerful closed test procedures, as first discussed by Westfall (1997).
That is, applying closed test procedures (Section 2.2.3) based on max-t tests
of the form (2.1) in combination with the results from here gives powerful
stepwise procedures for a large class of parametric models. The multcomp
package implements these methods while exploiting logical constraints, leading
to computationally efficient, yet powerful truncated closed test procedures
(Westfall and Tobias 2007), as described in Section 3.3 and illustrated with
examples in Chapter 4.
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3.2.3 Applications

The methodological framework described in Section 3.2.1 is very general and
thus applicable to a wide range of statistical models. Many estimation tech-
niques, such as (restricted) maximum likelihood and M estimates, provide at
least asymptotical normal estimates of the original parameter vector θ and a
consistent estimate of the covariance matrix. In this section we review some
potential applications. Detailed numerical examples are discussed in Chap-
ter 4.

In Section 3.2.1 we already provided a connection between the general para-
metric framework and standard regression models. Similarly, ANOVA models
are easily embedded in that framework as well. With an appropriate change
of notation, one can verify that the results from Section 3.1 are a special case
of the general framework considered in Section 3.2.1.

In generalized linear models, the exact distribution of the parameter es-
timates is usually unknown and the asymptotic normal distribution is the
basis for all inference procedures. If inferences about model parameters corre-
sponding to levels of a certain factor are of interest, one can use the multiple
comparison procedures described above.

Similarly, in linear and non-linear mixed-effects models fitted by restricted
maximum likelihood, the asymptotic normal distribution using consistent co-
variance matrix estimates forms the basis for inference. All assumptions of the
general parametric framework are satisfied again and one can set up simul-
taneous inference procedures for these models as well. The same is true for
either the Cox model or other parametric survival models such as the Weibull
survival model.

Yet another application is to use robust variants of the previously discussed
statistical models. One possibility is to consider the use of sandwich estimators
Sn for the covariance matrix cov(θ̂n) when the variance homogeneity assump-
tion is questionable. An alternative approach is to apply robust estimation
techniques in linear models (such as S-, M - or MM -estimates), which again
provide asymptotically normal estimates (Rousseeuw and Leroy 2003).

Herberich (2009) investigated through an extensive simulation study the op-
erating characteristics (size and power) of the multiple comparison procedures
described in this section for a variety of statistical models (generalized linear
models, mixed effects models, survival data, etc.). It transpires that the family-
wise error rate is generally well maintained even for moderate to small sample
sizes, although under certain models and scenarios the resulting tests may be-
come either conservative (especially for binary data with small sample sizes)
or liberal (survival data, depending on the censoring mechanism). Further
simulations indicated a good overall performance of the proposed parametric
multiple comparison procedures compared with existing procedures, such as
the simultaneous confidence intervals for binomial parameters introduced by
Agresti, Bini, Bertaccini, and Ryu (2008).
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3.3 The multcomp package

In this section we introduce the multcomp package in R to perform multiple
comparisons under the parametric model framework described in Sections 3.1
and 3.2. In Section 3.3.1 we detail the glht function, which provides the core
functionality to perform single-step tests based on a given matrix C reflecting
the experimental questions of interest and the underlying multivariate normal
or t distribution. In Section 3.3.2 we describe the summary method associated
with the glht function, which provides detailed output information, includ-
ing the results of several p-value adjustment methods and stepwise test pro-
cedures. Finally, we describe in Section 3.3.3 the confint method associated
with the glht function, which provides the functionality to compute and plot
simultaneous confidence intervals for some of the multiple comparison proce-
dures. The multcomp package includes additional functionality not covered
in this section. In Chapter 4 we illustrate some of its enhanced capabilities.
The complete documentation is available with the package (Hothorn, Bretz,
Westfall, Heiberger, and Schützenmeister 2010a). As any other package used
in this book, the multcomp package can be downloaded from CRAN.

3.3.1 The glht function

In this section we consider the warpbreaks data from Tukey (1977), which are
also available from the base R datasets package. The data give the number of
breaks in yarn during weaving for two types of wool (A and B) and three levels
of tension (L, M , and H). For illustration purposes, here we only consider the
effect of the tension on the number of breaks, neglecting the potential effect
of the wool type. Figure 3.1 shows the associated boxplots for the data.

Assume that we are interested in assessing whether the three levels of tension
differ from each other with respect to the number of breaks. In other words, if
µj denotes the mean number of breaks for tension level j = L,M,H, we are
interested in testing the three null hypotheses

Hij : µi − µj = 0 (3.10)

against the alternative hypotheses

Kij : µi − µj 6= 0, i, j ∈ {L,M,H, }, i 6= j.

In the following we use this example to illustrate the multcomp package.
To analyze the warpbreaks data we use the well-known Tukey test, which
perfoms all pairwise comparisons between the three treatments and which we
formally introduce in Section 4.2. We use the aov function to fit the one-factor
ANOVA model

R> warpbreaks.aov <- aov(breaks ~ tension, data = warpbreaks)
R> summary(warpbreaks.aov)

Df Sum Sq Mean Sq F value Pr(>F)
tension 2 2034 1017 7.21 0.0018 **
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Figure 3.1 Boxplots of the warpbreaks data.

Residuals 51 7199 141
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Based on the ANOVA F test we conclude that the factor tension has an
overall significant effect.

The glht function from the multcomp package provides a convenient and
general framework in R to test multiple hypotheses in parametric models,
including the general linear models introduced in Section 3.1, linear and non-
linear mixed-effects models as well as survival models. Generally speaking,
the glht function takes a fitted response model and a matrix C defining
the hypotheses of interest to perform the multiple comparisons. The general
syntax for the glht function is
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glht(model,
linfct,
alternative = c("two.sided", "less", "greater"),
rhs = 0,
...

)

In this call, the model argument is a fitted model, such as an object returned
by lm, glm, or aov. It is assumed that the parameter estimates and their covari-
ance matrix are available for the model argument. That is, the model argument
needs suitable coef and vcov methods to be available. The argument linfct
specifies the matrix C introduced in Section 3.1. There are alternative ways of
specifying the matrix C and we illustrate them below using the warpbreaks
example. The alternative argument is a character string specifying the alter-
native hypothesis, which must be one of "two.sided" (default), "greater"
or "less", depending on whether two-sided or one-sided hypotheses are of
interest. The rhs argument is an optional numeric vector specifying the right
hand side of the hypothesis (in Equation (3.10) the right hand side is 0 for all
three hypotheses). Finally, with “...” additional arguments can be passed on
to the modelparm function in all glht methods.

We now review the different possibilities of specifying the matrix C, which
can, but does not have to be a contrast matrix; see Section 3.1.1 for the defi-
nition of a contrast. The most convenient way is to use the mcp function. Mul-
tiple comparisons of means are defined by objects of the mcp class as returned
by the mcp function. For each factor contained in model as an independent
variable, a (contrast) matrix or a symbolic description of the comparisons of
interest can be specified as an argument to mcp. A symbolic description may
be a character or an expression where the factor levels are only used as
variables names. In addition, the type argument to the (contrast) matrix gen-
erating function contrMat may serve as a symbolic description as well. To
illustrate the latter, we invoke the Tukey test consisting of all pairwise com-
parisons for the factor tension by using a symbolic description, that is, using
the type argument to the contrMat function

R> glht(warpbreaks.aov, linfct = mcp(tension = "Tukey"))

General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts

Linear Hypotheses:
Estimate

M - L == 0 -10.00
H - L == 0 -14.72
H - M == 0 -4.72

Note that the contrMat function also permits pre-specifying other contrast
matrices, such as "Dunnett", "Williams", and "Changepoint"; see Section 4.3.2
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for further examples and the online documentation for a complete list (Hothorn
et al. 2010a).

Another way of defining the matrix C is to use a symbolic description,
where either a character or an expression vector is passed to glht via its
linfct argument. A symbolic description must be interpretable as a valid R
expression consisting of both the left and the right hand side of the expression
for the null hypotheses. Only the names of coef(beta) can be used as variable
names. The alternative hypotheses are given by the direction under the null
hypothesis (= or == refer to "two.sided", <= refers to "greater" and >= refers
to "less"). Numeric vectors of length one are valid arguments for the right
hand side. If we call

R> glht(warpbreaks.aov,
+ linfct = mcp(tension = c("M - L = 0",
+ "H - L = 0",
+ "H - M = 0")))

General Linear Hypotheses

Multiple Comparisons of Means: User-defined Contrasts

Linear Hypotheses:
Estimate

M - L == 0 -10.00
H - L == 0 -14.72
H - M == 0 -4.72

we obtain the same results as before.
Alternatively, the matrix C can be defined directly by calling

R> contr <- rbind("M - L" = c(-1, 1, 0),
+ "H - L" = c(-1, 0, 1),
+ "H - M" = c( 0, -1, 1))
R> contr

[,1] [,2] [,3]
M - L -1 1 0
H - L -1 0 1
H - M 0 -1 1

and again we obtain the same results as before:

R> glht(warpbreaks.aov, linfct = mcp(tension = contr))

General Linear Hypotheses

Multiple Comparisons of Means: User-defined Contrasts

Linear Hypotheses:
Estimate
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M - L == 0 -10.00
H - L == 0 -14.72
H - M == 0 -4.72

Finally, the matrix C can be specified directly via the linfct argument. In
this case, the number of columns of the matrix needs to match the number
of parameters estimated by model. It is assumed that suitable coef and vcov
methods are available for model. In the warpbreaks example, we can specify

R> glht(warpbreaks.aov,
+ linfct = cbind(0, contr %*% contr.treatment(3)))

General Linear Hypotheses

Linear Hypotheses:
Estimate

M - L == 0 -10.00
H - L == 0 -14.72
H - M == 0 -4.72

and again we obtain the same results as before. Note that in the last statement
we used the so-called treatment contrasts

R> contr.treatment(3)

2 3
1 0 0
2 1 0
3 0 1

which are used as default in R to fit ANOVA and regression models. The first
group is treated as a control group, to which the other groups are compared. To
be more specific, the analysis is performed as a multiple regression analysis by
introducing two dummy variables which are 1 for observations in the relevant
group and 0 elsewhere.

We now turn our attention to the description of the output from the glht
function and the available methods for further analyses. Using the glht func-
tion, a list is returned with the elements

R> warpbreaks.mc <- glht(warpbreaks.aov,
+ linfct = mcp(tension = "Tukey"))
R> names(warpbreaks.mc)

[1] "model" "linfct" "rhs" "coef"
[5] "vcov" "df" "alternative" "type"
[9] "focus"

where print, summary, and confint methods are available for further infor-
mation handling. If glht is called with linfct as an mcp object, the additional
element focus is available, which stores the names of the factors tested. In
the following we describe the output in more detail. Some of the associated
methods will be discussed in the subsequent sections.

The first element of the returned object
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R> warpbreaks.mc$model

Call:
aov(formula = breaks ~ tension, data = warpbreaks)

Terms:
tension Residuals

Sum of Squares 2034 7199
Deg. of Freedom 2 51

Residual standard error: 11.9
Estimated effects may be unbalanced

gives the fitted model, as used in the glht call. The element

R> warpbreaks.mc$linfct

(Intercept) tensionM tensionH
M - L 0 1 0
H - L 0 0 1
H - M 0 -1 1
attr(,"type")
[1] "Tukey"

returns the matrix C used for the definition of the linear functions of interest,
as discussed above. Each row of this matrix essentially defines the left hand
side of the hypotheses defined in equation (3.2). The associated right hand
side of equation (3.2) is returned by

R> warpbreaks.mc$rhs

[1] 0 0 0

The next two elements of the list returned by the glht function give the
estimates and the associated covariance matrix of the parameters specified
through model,

R> warpbreaks.mc$coef

(Intercept) tensionM tensionH
36.4 -10.0 -14.7

R> warpbreaks.mc$vcov

(Intercept) tensionM tensionH
(Intercept) 7.84 -7.84 -7.84
tensionM -7.84 15.68 7.84
tensionH -7.84 7.84 15.68

As an optional element the degrees of freedom

R> warpbreaks.mc$df

[1] 51

is returned if the multivariate t distribution is used for simultaneous inference.
Because we have 54 observations in total for the warpbreaks data and the
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factor tension has 3 levels, we obtain the displayed 51 degrees of freedom for
the underlying one-way layout. Note that inference is based on the multivariate
t distribution whenever a linear model with normally distributed errors is
applied; the limiting multivariate normal distribution is used in all other cases.
The element

R> warpbreaks.mc$alternative

[1] "two.sided"

is a character string specifying the sideness of the test problem. Finally,

R> warpbreaks.mc$type

[1] "Tukey"

optionally specifies the name of the applied multiple comparison procedure.

3.3.2 The summary method

The multcomp package provides a summary method to summarize and dis-
play the results returned from the glht function. In addition, the summary
method provides several functionalities to perform further analyses and ad-
justments for multiplicity. We start applying the summary method to the object
returned by glht as

R> summary(warpbreaks.mc)

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts

Fit: aov(formula = breaks ~ tension, data = warpbreaks)

Linear Hypotheses:
Estimate Std. Error t value Pr(>|t|)

M - L == 0 -10.00 3.96 -2.53 0.0385 *
H - L == 0 -14.72 3.96 -3.72 0.0014 **
H - M == 0 -4.72 3.96 -1.19 0.4631
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Adjusted p values reported -- single-step method)

As seen from the output above, for each of the m = 3 linear functions of
interest the estimates c>j β̂ are reported together with the associated standard

errors
√
V̂(c>j β̂), resulting in the test statistics

tj =
c>j β̂√
V̂(c>j β̂)

, j = 1, 2, 3,
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recall Equation (3.5) for the general expression (note that a = 0 in the
warpbreaks example). Multiplicity adjusted p-values qj are reported in the
last column. These p-values are calculated from the underlying multivariate
t (or normal, if appropriate) distribution and can be directly compared with
the significance level α. In the warpbreaks example, we conclude that both
tension levels M (medium) and H (high) are significantly different from L
(low) at level α = 0.05, because q1 = qML = 0.0385 < 0.05 = α and
q2 = qHL = 0.0014 < 0.05. Note that q3 = qHM = 0.4631 > 0.05 and the
tension levels M and H are not declared to be significantly different.

If we save the information provided by the summary method into the object
R> warpbreaks.res <- summary(warpbreaks.mc)

we can extract the numerical information from the resulting list element
warpbreaks.res$test for further analyses. For example,
R> warpbreaks.res$test$pvalues

[1] 0.03840 0.00144 0.46307
attr(,"error")
[1] 0.000184

returns the adjusted p-values from the previous analysis.
In addition to summarizing and displaying the information from the object

returned by the glht function, the summary method provides a test argument,
which allows one to peform further analyses. Recall Equation (3.10) for the
elementary null hypotheses of interest in the warpbreaks example. The global
null hypothesis H = HML∩HHL∩HHM can then be tested with the common
F test by calling
R> summary(warpbreaks.mc, test = Ftest())

General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts

Linear Hypotheses:
Estimate

M - L == 0 -10.00
H - L == 0 -14.72
H - M == 0 -4.72

Global Test:
F DF1 DF2 Pr(>F)

1 7.2 2 51 0.00175

Note that the above F test result coincides with the result from the analysis
following Equation (3.10), where we used the aov function to fit the one-
factor ANOVA model. Similarly, a Wald test can be performed by specifying
Chisqtest().

If no multiplicity adjustment is foreseen, the univariate() option can be
passed to the test argument
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R> summary(warpbreaks.mc, test = univariate())

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts

Fit: aov(formula = breaks ~ tension, data = warpbreaks)

Linear Hypotheses:
Estimate Std. Error t value Pr(>|t|)

M - L == 0 -10.00 3.96 -2.53 0.0147 *
H - L == 0 -14.72 3.96 -3.72 0.0005 ***
H - M == 0 -4.72 3.96 -1.19 0.2386
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Univariate p values reported)

This results in unadjusted p-values, as if we had performed m separate t tests
without accounting for multiplicity. If we compare the unadjusted p-values pj
from the output above with the adjusted p-values qj from the Tukey test, we
conclude that pj < qj , j = 1, 2, 3, as expected.

Table 3.1 summarizes the multiplicity adjustment methods available with
the summary method via the adjusted argument to the test function. In
particular, an interface to the multiplicity adjustments implemented in the
p.adjust function from the stats package is available. Given a set of unad-
justed p-values, the p.adjust function provides the resulting adjusted p-values
using one of several methods. Currently, the following methods implemented in
p.adjust are available: "none" (no multiplicity adjustment), "bonferroni"
(Section 2.3.1), "holm" (Section 2.3.2), "hochberg" (Section 2.4), "hommel"
(Section 2.4), "BH" (Benjamini and Hochberg 1995), and "BY" (Benjamini
and Yekutieli 2001). The last two methods are tailored to control the false
discovery rate; see Section 2.1.1. To illustrate the functionality, assume that
we want to apply the Bonferroni correction to the warpbreaks data. This can
be achieved by specifying the type argument to the adjusted option as

R> summary(warpbreaks.mc, test = adjusted(type = "bonferroni"))

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts

Fit: aov(formula = breaks ~ tension, data = warpbreaks)

Linear Hypotheses:
Estimate Std. Error t value Pr(>|t|)

M - L == 0 -10.00 3.96 -2.53 0.0442 *
H - L == 0 -14.72 3.96 -3.72 0.0015 **
H - M == 0 -4.72 3.96 -1.19 0.7158
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type argument Reference Comments
to adjusted (section number)

"none" no multiplicity adjustment; identical to test=univariate() option
"BH","BY" procedures controlling the false discovery rate
"bonferroni" 2.3.1
"holm" 2.3.2 stepwise extension of and more powerful than "bonferroni"
"hochberg" 2.4 based on Simes test; more powerful than "holm", but has additional assumptions
"hommel" 2.4 more powerful than "hochberg"
"single-step" 3.1, 3.2 default option; incorporates correlations and is more powerful than "bonferroni"
"free" 4.1.2 stepwise extension of and more powerful than "single-step"
"Shaffer" 2.3.2 stepwise extension of "bonferroni" under restricted combination condition
"Westfall" 4.2.2 extension of "Shaffer" that incorporates correlations

Table 3.1 Multiple comparison procedures available with the summary method from the multcomp package. In addition, global F
and χ2 tests are available as direct arguments to test.
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---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Adjusted p values reported -- bonferroni method)

Note that all methods from the p.adjust function are based on unadjusted
p-values. More powerful methods are available by taking the correlations be-
tween the test statistics into account, as described in Sections 3.1 and 3.2. In
multcomp, four additional options for the type argument to adjusted are
implemented to accomplish this. The type = "single-step" option specifies
a single-step test (Section 2.1.2), which incorporates the correlations between
the test statistics using either the multivariate normal or t distribution imple-
mented in the mvtnorm package (Genz, Bretz, and Hothorn 2010). Conse-
quently, calling

R> summary(warpbreaks.mc, test = adjusted(type = "single-step"))

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts

Fit: aov(formula = breaks ~ tension, data = warpbreaks)

Linear Hypotheses:
Estimate Std. Error t value Pr(>|t|)

M - L == 0 -10.00 3.96 -2.53 0.0385 *
H - L == 0 -14.72 3.96 -3.72 0.0014 **
H - M == 0 -4.72 3.96 -1.19 0.4631
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Adjusted p values reported -- single-step method)

results in the same adjusted p-values and test decisions as for the Tukey test
considered previously. The type = "free" option leads to a step-down test
procedure under the free combination condition (Section 2.1.2), which incor-
porates correlations and is thus more powerful than the Holm procedure; see
Section 4.1.2 for a detailed description of its usage. Under the restricted com-
bination condition, the type = "Shaffer" option performs the S2 procedure
from Shaffer (1986), which uses Bonferroni tests for each intersection hypoth-
esis of the underlying closed test procedure (Section 2.3.2). When the tests
satisfy the free combinations condition instead, Shaffer’s procedure reduces to
the ordinary Holm procedure. Finally, type = "Westfall" is yet more power-
ful than Shaffer’s procedure. The increase in power comes from using specific
dependence information rather than the conservative Bonferroni inequality
(Westfall 1997; Westfall and Tobias 2007); see Section 4.2.2 for a detailed
discussion.
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3.3.3 The confint method

So far we have focused on the capabilities of multcomp to provide adjusted
p-values for a variety of multiple comparison procedures. In this section we
describe the available functionality to compute and plot simultaneous confi-
dence intervals using the confint method. As mentioned in Section 2.1.2, si-
multaneous confidence intervals are available in closed form for many standard
single-step procedures, but they are usually more difficult to derive for step-
wise procedures. Consequently, the confint method implements simultaneous
confidence intervals for single-step tests in the parametric model framework
from Sections 3.1 and 3.2. Note that the confint method is only available
for glht objects. Simultaneous confidence intervals for the Bonferroni test,
for example, are not directly available but can be computed by specifying the
calpha argument; see further below.

Consider again the warpbreaks example analyzed previously in this chap-
ter. We can calculate simultaneous confidence intervals for the Tukey test by
applying the confint method to the warpbreaks.mc object from the glht
function:

R> warpbreaks.ci <- confint(warpbreaks.mc, level = 0.95)
R> warpbreaks.ci

Simultaneous Confidence Intervals

Multiple Comparisons of Means: Tukey Contrasts

Fit: aov(formula = breaks ~ tension, data = warpbreaks)

Quantile = 2.41
95% family-wise confidence level

Linear Hypotheses:
Estimate lwr upr

M - L == 0 -10.000 -19.559 -0.441
H - L == 0 -14.722 -24.281 -5.164
H - M == 0 -4.722 -14.281 4.836

We conclude from the output that the upper confidence bounds for the pair-
wise differences µM − µL and µH − µL are negative, indicating that both
tension levels M (medium) and H (high) significantly reduce the number of
breaks as compared to tension level L (low). Moreover, we cannot conclude at
the 95% confidence level that the groups M and H differ significantly. In ad-
dition, we can display the confidence intervals graphically using the associated
plot method

R> plot(warpbreaks.ci, main = "", ylim = c(0.5, 3.5),
+ xlab = "Breaks")

© 2011 by Taylor and Francis Group, LLC



THE MULTCOMP PACKAGE 65

see Figure 3.2 for the resulting plot. An improved greaphical display of the
confidence intervals is available with the plot.matchMMC command from the
HH package (Heiberger 2009); see Section 4.2.1 for an example of its use.
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Figure 3.2 Two-sided simultaneous confidence intervals for the Tukey test in the
warpbreaks example.

Note that unadjusted (marginal) confidence intervals can be computed by
specifying calpha = univariate_calpha() to confint. Alternatively, the
critical value can be directly specified as a scalar to calpha. In the previ-
ous example, the 95% critical value u0.95 = 2.4142 was calculated from the
multivariate t distribution using the mvtnorm package. If instead
R> cbon <- qt(1-0.05/6, 51)
R> cbon

[1] 2.48

was specified to calpha, one would obtain the two-sided 95% simultaneous
confidence intervals for the Bonferroni test with
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R> confint(warpbreaks.mc, calpha = cbon)

Simultaneous Confidence Intervals

Multiple Comparisons of Means: Tukey Contrasts

Fit: aov(formula = breaks ~ tension, data = warpbreaks)

Quantile = 2.48
95% confidence level

Linear Hypotheses:
Estimate lwr upr

M - L == 0 -10.000 -19.804 -0.196
H - L == 0 -14.722 -24.526 -4.919
H - M == 0 -4.722 -14.526 5.081

In case of all pairwise comparisons among several treatments, the mult-
comp package also provides the option of plotting the results using a compact
letter display (Piepho 2004). With this display, treatments that are not sig-
nificantly different are assigned a common letter. In other words, significantly
different treatments have no letters in common. This type of graphical display
has advantages when a large number of treatments is being compared with
each other, as it summarizes the test results more efficiently than a simple
collection of simultaneous confidence intervals.

Using multcomp, the cld function extracts the necessary information from
glht, summary.glht or confint.glht objects to create a compact letter dis-
play of all pairwise comparisons. In case of confint.glht objects, a pairwise
comparison is reported significant if the associated simultaneous confidence
interval does not contain 0. Otherwise, the associated adjusted p-value is com-
pared with the given significance level α. For the warpbreaks example, we can
extract the necessary information from the glht object by calling

R> warpbreaks.cld <- cld(warpbreaks.mc)

Once this information has been extracted, we can use a plot method asso-
ciated with cld objects to create the compact letter display of all pairwise
comparisons. If the fitted model contains any covariates, boxplots for each
level are plotted. Otherwise, different types of plots are used, depending on
the class of the response variable and the cld object; see the online documen-
tation for further details (Hothorn et al. 2010a).

Figure 3.3 reproduces the boxplots for each of the three tension levels from
Figure 3.1 together with the letter display when using the command

R> plot(warpbreaks.cld)

Because tension level L has no letter in common with any other tension level, it
is significantly different at the chosen significance level (α = 0.05 by default).
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Figure 3.3 Compact letter display for all pairwise comparisons in the warpbreaks

example.

Furthermore, the groups M and H do not differ significantly, as they share a
common letter. These conclusions are in line with the previous results obtained
in Figure 3.2.
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CHAPTER 4

Applications

In this chapter we use several applications to illustrate the multiple hypothe-
ses testing framework developed in Chapter 3 for general parametric models.
The combination of the methods from Chapter 3 with the closure principle de-
scribed in Section 2.2.3 leads to powerful stepwise procedures, which form the
core methodology for analyzing the examples in this chapter. At the same time
we illustrate the capabilities of the multcomp package in R, which provides
an efficient implementation of these methods.

In Section 4.1 we approach the common problem of comparing several
groups with a control and describe the Dunnett test. In Section 4.2 we consider
the equally important problem of all pairwise comparisons for several groups
and describe the Tukey test. Sections 4.1 and 4.2 both focus on important
applications and accordingly we discuss the illustrating examples in detail. In
addition, we describe stepwise extensions, which lead to more powerful pro-
cedures than the original Dunnett and Tukey tests. The developed methods
are very general, hold for any type of comparison within the framework from
Chapter 3, and are available in multcomp.

In the remainder of this chapter we illustrate the conduct of multiple com-
parison procedures for the general linear and parametric models from Chap-
ter 3, including a number of applications beyond the common ANOVA or
regression setting, as discussed in Hothorn et al. (2008). In Section 4.3 we
consider an ANCOVA example of a dose response study with two covariates.
Here, we focus on the evaluation of non-pairwise contrast tests as opposed to
the preceeding two sections, where we were only interested in pairwise com-
parisons. In Section 4.4 we use a body fat prediction example to illustrate the
application of multiple comparison procedures to variable selection in linear
regression models. In Section 4.5 we consider the comparison of two linear re-
gression models using simultaneous confidence bands. In Section 4.6 we look
at all pairwise comparisons of expression levels for various genetic conditions
of alcoholism in a heteroscedastic one-way ANOVA model using sandwich es-
timators. In Section 4.7 we use logistic regression to estimate the probability
of suffering from Alzheimer’s disease. In Section 4.8 we compare several risk
factors for survival of leukemia patients using a Weibull model. Finally, in
Section 4.9 we obtain probability estimates of deer browsing for various tree
species from mixed-effects models.

The examples in this chapter are self-contained. Readers, who only glanced
through Chapters 2 and Chapter 3, should be able to follow the examples
and apply the techniques (and, in particular, the relevant function calls using

69
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Figure 4.1 Boxplots of the recovery data.

multcomp) to their own problems. Theoretical results are linked back to
previous chapters, where necessary. For details on the multcomp package we
refer to Section 3.3.

4.1 Multiple comparisons with a control

In this section we consider the problem of comparing several groups with
a common control group in an unbalanced one-way layout. In Section 4.1.1
we introduce the well-known Dunnett test, which is the standard method in
this situation. In Section 4.1.2 we then consider a stepwise extension of the
Dunnett test based on the closure principle, which is more powerful than the
original Dunnett test.
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4.1.1 Dunnett test

To illustrate the Dunnett test we consider the recovery data from Westfall
et al. (1999). A company developed specialized heating blankets designed to
help the body heat following a surgical procedure. Four types of blankets
b0, b1, b2, and b3 were tested on surgical patients to assess recovery times.
The blanket b0 was a standard blanket already in use at various hospitals.
The primary outcome of interest was recovery time in minutes of patients
allocated randomly to one of the four treatments. Lower recovery times would
indicate a better treatment effect.

The recovery dataset is available from the multcomp package,

R> data("recovery", package = "multcomp")
R> summary(recovery)

blanket minutes
b0:20 Min. : 5.0
b1: 3 1st Qu.:12.0
b2: 3 Median :13.0
b3:15 Mean :13.5

3rd Qu.:16.0
Max. :19.0

As seen from the summary above, the group sample sizes differ considerably:
20 patients received blanket b0, 3 patients received blanket b1, another 3 pa-
tients received blanket b2, and 15 patients received blanket b3. Figure 4.1
displays the boxplots for the recovery data. We conclude from the boxplots
that the observations are approximately normally distributed with equal group
variances. Blanket b2 seems to reduce the mean recovery time as compared to
the standard blanket b0, but we want to make this claim while controlling the
familywise error rate with a suitable multiple comparison procedure.

To analyze the data more formally we assume the unbalanced one-way lay-
out

yij = γ + µi + εij (4.1)

with independent, homoscedastic and normally distributed residual errors
εij ∼ N(0, σ2). In Equation (4.1), yij denotes the j-th observation in treat-
ment group i, j = 1, . . . , ni, where ni denotes the sample size of group i, γ
denotes the intercept (i.e., the overall mean), and µi denotes the mean effect
of treatment group i = 0, . . . , 3. Note that model (4.1) is a special case of the
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general linear model (3.1), where

y =



15
13
...

12
13
...
9
14
...

13



, X =



1 1 0 0 0
1 1 0 0 0
...

...
...

...
...

1 1 0 0 0
1 0 1 0 0
...

...
...

...
...

1 0 0 1 0
1 0 0 0 1
...

...
...

...
...

1 0 0 0 1



, and β =


γ
µ0

µ1

µ2

µ3

 .

The natural question of this study is whether any of the blanket types
b1, b2, or b3 significantly reduces the recovery time compared with b0. This
is the classical many-to-one problem of comparing several treatments with a
control. Thus, we are interested in testing the three one-sided null hypotheses

Hi : µ0 ≤ µi, i = 1, 2, 3.

The null hypothesis Hi therefore indicates that the mean recovery time for
blanket b0 is lower than it is for blanket bi. Accordingly, the alternative hy-
potheses are given by

Ki : µ0 > µi, i = 1, 2, 3.

Rejecting any of the three null hypotheses Hi thus ensures that at least one
of the new blankets is better than the standard b0 at a given confidence level
1− α, if suitable multiple comparison procedures are employed.

The standard multiple comparison procedure to address the many-to-one
problem is the Dunnett (1955) test. In essence, the one-sided Dunnett test
takes the minimum (or the maximum, depending on the sideness of the test
problem) of the m, say, pairwise t tests

ti =
ȳi − ȳ0

s
√

1
ni

+ 1
n0

, i = 1, . . . ,m, (4.2)

where ȳi =
∑ni
j=1 yij/ni denotes the arithmetic mean of group i = 0, . . . ,m,

and s2 =
∑m
i=0

∑ni
j=1(yij − ȳi)2/ν denotes the pooled variance estimate with

ν =
∑m
i=0 ni − (m + 1) degrees of freedom. Note that these are the standard

expressions for one-way ANOVA models, which are special cases of the more
general expressions (3.3) and (3.4). In the recovery data example, we have
m = 3 treatment-control comparisons, leading to three test statistics of the
form (4.2).

As immediately seen from expression (4.2), each test statistic ti is univariate
t distributed. The vector of test statistics t = (t1, . . . , tm) follows an m-variate
t distribution with ν degrees of freedom and correlation matrix R = (ρij)ij ,
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where for i 6= j

ρij =
√

ni
ni + n0

√
nj

nj + n0
, i, j = 1, . . . ,m. (4.3)

In the balanced case, n0 = n1 = . . . = nm and the correlations are constant,
ρij = 0.5 for all i 6= j. As discussed in Chapter 3, either multidimensional in-
tegration routines, such as those from Genz and Bretz (2009), or user-friendly
interfaces on top of such routines, such as the multcomp package in R, can
be used to calculate adjusted p-values or critical values.

In the following we show how to analyze the recovery data with mult-
comp. We start fitting an ANOVA model by calling the aov function

R> recovery.aov <- aov(minutes ~ blanket, data = recovery)

The glht function from multcomp takes the fitted response model to perform
the multiple comparisons through

R> library("multcomp")
R> recovery.mc <- glht(recovery.aov,
+ linfct = mcp(blanket = "Dunnett"),
+ alternative = "less")

In the previous call, we used the mcp function for the linfct argument to
specify the comparisons type (i.e., the contrast matrix) we are interested in.
The syntax is almost self-descriptive: Specify the factor of relevance (blanket
in our example) and select one of several pre-defined contrast matrices; see
the applications discussed in the subsequent sections of this chapter for other
examples of pre-defined comparison types. Because we have a one-sided test
problem and we are interested in showing a reduction in recovery time, we
have to pass the alternative = "less" argument to glht.

We obtain a detailed summary of the results by using the summary method
associated with the glht function,

R> summary(recovery.mc)

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Dunnett Contrasts

Fit: aov(formula = minutes ~ blanket, data = recovery)

Linear Hypotheses:
Estimate Std. Error t value Pr(<t)

b1 - b0 >= 0 -2.133 1.604 -1.33 0.241
b2 - b0 >= 0 -7.467 1.604 -4.66 <0.001 ***
b3 - b0 >= 0 -1.667 0.885 -1.88 0.092 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Adjusted p values reported -- single-step method)
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The main part of the output consists of a table with three rows, one for
each of the m = 3 hypotheses. From left to right we have a short descriptor
of the comparisons, the effect estimates with associated standard errors and
the test statistics, as defined in Equation (4.2). Multiplicity adjusted p-values
are reported in the last column. By default, these p-values are calculated from
the underlying multivariate t distribution (thus accounting for the correlations
between the test statistics) and can be compared directly with the pre-specified
significance level α. For the recovery example we conclude at level α = 0.05
that blanket b2 leads to significantly lower recovery times as compared with
the standard blanket b0.

For the purpose of illustration, we compare the Dunnett test with the stan-
dard Bonferroni approach. Recall that the Bonferroni approach does not ac-
count for the correlations between the test statistics (Section 2.3.1) and is
thus less powerful than the Dunnett test. With the multcomp package we
can apply the Bonferroni approach by using the adjusted option from the
summary method,

R> summary(recovery.mc, test = adjusted(type = "bonferroni"))

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Dunnett Contrasts

Fit: aov(formula = minutes ~ blanket, data = recovery)

Linear Hypotheses:
Estimate Std. Error t value Pr(<t)

b1 - b0 >= 0 -2.133 1.604 -1.33 0.29
b2 - b0 >= 0 -7.467 1.604 -4.66 6.1e-05 ***
b3 - b0 >= 0 -1.667 0.885 -1.88 0.10
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Adjusted p values reported -- bonferroni method)

As expected, the adjusted p-values for the Dunnett test are uniformly smaller
than those from the Bonferroni adjustment. The differences in p-values are
not that large in this example because of the relatively small correlations
ρ12 = 0.13, ρ13 = 0.236, and ρ23 = 0.236; see Equation (4.3).

Next, we compute 95% one-sided simultaneous confidence intervals for the
mean effect differences µi − µ0, i = 1, 2, 3. It follows from Section 3.1.1 that
for the Dunnett test these are given by(

−∞; ȳi − ȳ0 + u1−α s

√
1
ni

+
1
n0

]
,

where u1−α denotes the (1− α)-quantile from the multivariate t distribution
with the correlations (4.3). Alternatively, we can use the confint method
associated with the glht function,
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R> recovery.ci <- confint(recovery.mc, level = 0.95)
R> recovery.ci

Simultaneous Confidence Intervals

Multiple Comparisons of Means: Dunnett Contrasts

Fit: aov(formula = minutes ~ blanket, data = recovery)

Quantile = 2.18
95% family-wise confidence level

Linear Hypotheses:
Estimate lwr upr

b1 - b0 >= 0 -2.133 -Inf 1.367
b2 - b0 >= 0 -7.467 -Inf -3.966
b3 - b0 >= 0 -1.667 -Inf 0.265

We conclude from the output that only the upper confidence bound for µ2−µ0

is negative, reflecting the previous test decision that blanket b2 leads to a
significant reduction in recovery time compared with the standard blanket
b0. Moreover, we conclude at the designated confidence level of 95% that the
mean recovery time for b2 is at least 4 minutes shorter than for b0. In addition,
we can display the confidence intervals graphically with

R> plot(recovery.ci, main = "", ylim = c(0.5, 3.5),
+ xlab = "Minutes")

see Figure 4.2 for the resulting plot.
As explained in Section 3.3.1, there are several ways to specify the com-

parisons of interest. A convenient way is to call pre-defined contrast matrices,
as done above when selecting the mcp(blanket = "Dunnett") option for the
linfct argument. Alternatively, we can directly specify the contrast matrix
C reflecting the comparisons of interest. The contrast matrix associated with
the many-to-one comparisons for the levels of the factor blanket is given by

C> =

 −1 1 0 0
−1 0 1 0
−1 0 0 1

 ,

such that

C>


µ0

µ1

µ2

µ3

 =

 µ1 − µ0

µ2 − µ0

µ3 − µ0


leads to the pairwise comparisons of interest. Using multcomp, we first define
the contrast matrix manually and then call the glht function,
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Figure 4.2 One-sided simultaneous confidence intervals for the Dunnett test in
the recovery example.

R> contr <- rbind("b1 -b0" = c(-1, 1, 0, 0),
+ "b2 -b0" = c(-1, 0, 1, 0),
+ "b3 -b0" = c(-1, 0, 0, 1))
R> summary(glht(recovery.aov, linfct = mcp(blanket = contr),
+ alternative = "less"))

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: User-defined Contrasts

Fit: aov(formula = minutes ~ blanket, data = recovery)

Linear Hypotheses:
Estimate Std. Error t value Pr(<t)

b1 -b0 >= 0 -2.133 1.604 -1.33 0.241
b2 -b0 >= 0 -7.467 1.604 -4.66 <0.001 ***
b3 -b0 >= 0 -1.667 0.885 -1.88 0.093 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Adjusted p values reported -- single-step method)

As expected, we obtain the same adjusted p-values as in the previous call with
the mcp(blanket = "Dunnett") option for the linfct argument.

The advantage of defining the contrast matrix manually is the retained
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flexibility to perform multiple comparisons which are less often applied in
practice and thus not pre-defined in multcomp. To illustrate this advantage,
consider the following modification of the recovery example. Suppose that
both blankets b0 and b1 are standard treatments. Assume further that we are
interested in comparing the two new blankets b2 and b3 with both b0 and
b1. The original Dunnett test is not applicable, because it assumes only a
single control treatment. Comparing several treatments with more than one
control group was investigated by Solorzano and Spurrier (1999) and Spurrier
and Solorzano (2004). With multcomp we can simply specify the comparison
type ourselves and run the glht function as done above for the Dunnett test.
To illustrate this, assume that we want to compare each of the new blankets
b2 and b3 with both b0 and b1, resulting in a total of m = 4 comparisons.
Accordingly,

R> contr2 <- rbind("b2 -b0" = c(-1, 0, 1, 0),
+ "b2 -b1" = c( 0, -1, 1, 0),
+ "b3 -b0" = c(-1, 0, 0, 1),
+ "b3 -b1" = c( 0, -1, 0, 1))

defines the contrast matrix of interest and we pass contr2 to mcp,

R> summary(glht(recovery.aov, linfct = mcp(blanket = contr2),
+ alternative = "less"))

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: User-defined Contrasts

Fit: aov(formula = minutes ~ blanket, data = recovery)

Linear Hypotheses:
Estimate Std. Error t value Pr(<t)

b2 -b0 >= 0 -7.467 1.604 -4.66 <0.001 ***
b2 -b1 >= 0 -5.333 2.115 -2.52 0.027 *
b3 -b0 >= 0 -1.667 0.885 -1.88 0.105
b3 -b1 >= 0 0.467 1.638 0.28 0.915
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Adjusted p values reported -- single-step method)

The output gives the correct results for this multiple comparison problem and
we conclude that blanket b2 is better than both b0 and b1.

4.1.2 Step-down Dunnett test procedure

In Section 4.1.1 we considered the original Dunnett test, which is a single-step
test. As explained in Section 2.1.2, stepwise extensions of single-step multiple
comparison procedures are often available and lead to more powerful methods
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in the sense that they reject at least as many hypotheses as their single-
step counterparts. Step-down extensions of the original Dunnett test were
investigated by Naik (1975); Marcus et al. (1976); Dunnett and Tamhane
(1991) and others. Step-up versions of the Dunnett test are also available
(Dunnett and Tamhane 1991) but will not be considered here. In the following,
we apply the closure principle described in Section 2.2.3 to the many-to-one
comparison problem, give a general step-down testing algorithm based on
max-t tests (which includes the Dunnett test as a special case) and then come
back to the recovery data example to illustrate the step-down Dunnett test,
which is also available in the multcomp package.

To make the ideas concrete, recall the m = 3 null hypotheses Hi : µ0 ≤
µi, i = 1, 2, 3, in the recovery example from Section 4.1.1. Following the
closure principle, we construct from the set H = {H1, H2, H3} of elementary
null hypotheses the full closure H̄ = {H1, H2, H3, H12, H13, H23, H123} of all
intersection hypotheses HI =

⋂
i∈I Hi, I ⊆ {1, 2, 3}. The closure principle

demands that we reject an elementary null hypothesis Hi, i = 1, 2, 3, only, if
all intersection hypotheses HI ∈ H̄ with i ∈ I are rejected by their local α-level
tests. For example, in order to reject H1, we need to ensure that all intersection
hypotheses contained in H1 are also rejected (i.e., H12, H13, and H123). This
induces a natural top-down testing order; see also Figure 4.3 for a visualization
of the resulting closed test procedure. We start with testing H123. If we do
not reject H123, none of the elementary hypotheses H1, H2, H3 can be rejected
and the procedure stops. Otherwise, we reject H123 and continue testing one
level down, that is, all pairwise intersection hypotheses H12, H13, H23; and so
on.

We have not mentioned before, which tests to use for the intersection hy-
potheses. Consider in more detail the global intersection hypothesis

H123 = H1 ∩H2 ∩H3 : µ0 ≤ µ1 and µ0 ≤ µ2 and µ0 ≤ µ3, (4.4)

which states that the blanket types b1, b2, and b3 are all inferior to the standard
blanket b0. If at least one of the new blankets is superior to b0 and reduces the
recovery time, the null hypothesis H123 would no longer be true and we would
like to reject it with high probability. This is the union intersection setting
discussed in Section 2.2.1. A natural approach is to consider the minimum
of the m standardized pairwise differences ti from Equation (4.2), leading to
max-t tests of the form (2.1); recall that we keep the common term “max-t”
regardless of the sideness of the test problem. Thus, we can use the single-step
Dunnett test (which, of course, is a max-t test) for the global intersection
hypothesis H123. Similarly, we can apply the Dunnett test for any of the
pairwise intersection hypotheses H12, H13, and H23 while only accounting for
the pair of treatment groups involved in the respective intersection. Finally,
the elementary hypotheses H1, H2, and H3 are tested using the t tests from
Equation (4.2). This leads to a closed test procedure which uses Dunnett
tests for each intersection hypothesis (adjusted for the number of treatments
entering the corresponding intersection).
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As mentioned in Section 2.2.1, however, a particularly appealing property
of max-t tests is that they admit shortcuts of the full closure, significantly
reducing the complexity. In other words, if m null hypotheses satisfying the
free combination condition (which is true for many-to-one comparison prob-
lems; see Section 2.1.2) are tested with max-t tests, shortcuts of size m can be
applied. This avoids testing the 2m− 1 intersection hypotheses in the full clo-
sure. Below we give a general step-down algorithm to test m hypotheses under
the free combination condition, assuming that larger values of ti favour the
rejection of Hi. For two-sided and lower-sided test problems the arg maxi ti
operations have to be modified accordingly.

Step-down algorithm based on max-t tests
under the free combination condition

Step 1: Test the global intersection hypothesis HI1 =
⋂
i∈I1 Hi, I1 =

{1, . . . ,m}, with a suitable max-t test, resulting in the p-value
pI1 ; if pI1 ≤ α, reject Hi1 with adjusted p-value qi1 = pI1 and
proceed, where i1 = arg maxi∈I1 ti; otherwise stop.

Step 2: Let I2 = I1 \{i1}. Test HI2 =
⋂
i∈I2 Hi with a suitable max-t

test, resulting in the p-value pI2 ; if pI2 ≤ α, reject Hi2 with
adjusted p-value qi2 = max{qi1 , pI2} and proceed, where i2 =
arg maxi∈I2 ti; otherwise stop.
...

Step j: Let Ij = Ij−1 \ {ij−1}. Test HIj =
⋂
i∈Ij Hi with a suit-

able max-t test resulting in the p-value pIj ; if pIj ≤ α, reject
Hij with adjusted p-value qij = max{qij−1 , pIj} and proceed,
where ij = arg maxi∈Ij ti; otherwise stop.
...

Step m: Let Im = Im−1 \ {im−1} = {im}. Test Him with a t test,
resulting in the p-value pim ; if pim ≤ α, reject Him with ad-
justed p-value qim = max{qim−1 , pim}; the procedure stops in
any case.

The Holm procedure described in Section 2.3.2 is a well-known example
of this algorithm, because it repeatedly applies Bonferroni’s inequality in at
mostm steps (recall that the Bonferroni method is also a max-t test). However,
because the Bonnferroni method does not account for the correlations between
the test statistics, the Holm procedure can be improved. By applying Dunnett
tests at each step for the many-to-one comparison problem of the recovery
example, we obtain the powerful step-down Dunnett procedure.

To illustrate the step-down Dunnett test, consider Figure 4.3, which shows
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the closed representation of the Dunnett tests for the recovery example. The
observed one-sided t statistics shown at the bottom level for the comparisons
with the control are tobs

1 = −1.33, tobs
2 = −4.656, and tobs

3 = −1.884, respec-
tively for the b1 - b0, b2 - b0, and b3 - b0 comparisons. At the top level,
the global intersection hypothesis (4.4) is HI1 in Step 1 of the step-down
algorithm, where I1 = {1, 2, 3}. We test H123 using tobs

123 = −4.656, which
is highly significant with p123 = P(min{t1, t2, t3} ≤ −4.656) < 0.001. This
allows one to use a shortcut for the rest of the tree for tests that include
the b2 - b0 comparison: It follows from P(min{t1, t2, t3} ≤ −4.656) < 0.001
that P(min{t1, t2} ≤ −4.656) < 0.001, P(min{t2, t3} ≤ −4.656) < 0.001,
and P(t2 ≤ −4.656) < 0.001. Hence, all intersection hypotheses including
the b2 - b0 comparison can be rejected by virtue of rejecting the global
null hypothesis. Thus, the b2 - b0 comparison can itself be deemed signif-
icant. This logic explains Step 1 of the step-down algorithm above. The re-
maining steps are explained similarly. In the notation from the step-down
algorithm, i1 = 2 and consequently I2 = I1 \ {2} = {1, 3}. Consider Fig-
ure 4.3 again. The remaining non-rejected pairwise intersection hypothesis is
H13 : µ0 ≤ µ1 and µ0 ≤ µ3. The related test statistic is tobs

13 = −1.884 with
p13 = P(min{t1, t3} ≤ −1.884) = 0.064. Thus, we cannot reject H13 at sig-
nificance level α = 0.05, which renders further testing unnecessary. This logic
explains Step 2 of the algorithm, and, because we cannot reject at this step,
we have to terminate the step-down procedure.

In summary, we conclude from this example that step-down procedures are
special cases of closed test procedures and that the use of max-t tests allows
for shortcuts to the full closure, where only the subsets corresponding to the
ordered test statistics need to be tested. Note that the step-down algorithm
presented here is valid under the free combination condition; for restricted
hypotheses we refer to the discussion in Section 4.2.2.

We conclude this section by showing how to invoke the step-down Dunnett
test with the multcomp package using the recovery data. The step-down
algorithm for hypotheses satisfying the free combination condition is available
with the adjusted(type = "free") option in the summary method
R> summary(recovery.mc, test = adjusted(type = "free"))

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Dunnett Contrasts

Fit: aov(formula = minutes ~ blanket, data = recovery)

Linear Hypotheses:
Estimate Std. Error t value Pr(<t)

b1 - b0 >= 0 -2.133 1.604 -1.33 0.096 .
b2 - b0 >= 0 -7.467 1.604 -4.66 6e-05 ***
b3 - b0 >= 0 -1.667 0.885 -1.88 0.064 .
---
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Figure 4.3 Closed Dunnett test in the recovery example.

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Adjusted p values reported -- free method)

The results from the output above match the results from the previous discus-
sion. In particular, the step-down Dunnett test provides substantially smaller
adjusted p-values than the single-step Dunnett test from Section 4.1.1; see also
Table 4.1 for a side-by-side comparison. In Table 4.1 we have also included
for illustration purposes the unadjusted p-values pi as well as the adjusted
p-values from the Bonferroni test and the Holm procedure

R> summary(recovery.mc, test = adjusted(type = "holm"))

Both step-down procedures (Holm, step-down Dunnett) are clearly more pow-
erful than their single-step counterparts (Bonferroni, Dunnett). In addition, we
conclude from Table 4.1 that methods accounting for correlations between the
test statistics (Dunnett, step-down Dunnett) are more powerful than methods
which do not (Bonferroni, Holm). As explained in Section 4.1.1, the correla-
tions are fairly small in this example and thus the Bonferroni-based procedures
behave reasonably well. Finally, note that simultaneous confidence intervals
for stepwise procedures are not implemented in multcomp, since they are
typically hard to compute, if available at all. Simultaneous confidence inter-
vals have been investigated by Bofinger (1987) for the step-down Dunnett
procedure and by Strassburger and Bretz (2008) and Guilbaud (2008) for the
Holm procedure.
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Adjusted p-values qi
Comparison pi Bonferroni Dunnett Holm step-down Dunnett

b1 - b0 0.096 0.287 0.241 0.096 0.096
b2 - b0 0.001 0.001 0.001 0.001 0.001
b3 - b0 0.034 0.101 0.092 0.067 0.064

Table 4.1 Comparison of several multiple comparison procedures for the recovery
data.

4.2 All pairwise comparisons

In this section we consider all pairwise comparisons of several means in a
two-way layout. In Section 4.2.1 we introduce the well-known Tukey test,
which is the standard procedure in this situation. In Section 4.2.2 we consider
a stepwise extension based on the closure principle, which is more powerful
than the original Tukey test.

4.2.1 Tukey test

To illustrate the Tukey test we consider the immer data from Venables and
Ripley (2002) describing a field experiment on barley yields. Five varieties of
barley were grown in six locations in both 1931 and 1932. Following Venables
and Ripley (2002), we average the results for the two years. To analyze the
data we consider the two-way layout

yij = γ + µi + αj + εij (4.5)

with independent, homoscedastic and normally distributed residual errors
εij ∼ N(0, σ2). In Equation (4.5), yij denotes the average barley yield for
variety i at location j, γ the intercept (i.e., the overall mean), µi the mean
effect of variety i = 1, . . . , 5, and αj the mean effect of location j = 1, . . . , 6.
Note that model (4.5) is a special case of the general linear model (3.1), where

y =



109.35
77.30

...
123.50
100.25

...
131.45


, X =



1 1 0 . . . 0 1 0 . . . 0
1 1 0 . . . 0 0 1 . . . 0
...

...
... . . .

...
...

... . . .
...

1 1 0 . . . 0 0 0 . . . 1
1 0 1 . . . 0 1 0 . . . 0
...

...
... . . .

...
...

... . . .
...

1 0 0 . . . 1 0 0 . . . 1


,

and β = (γ, µ1, . . . , µ5, α1, . . . , α6)>.
The immer data are available with the MASS package (Venables and Ripley

2002). Consequently, we can run a standard analysis of variance using the aov
function as follows:
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R> data("immer", package = "MASS")
R> immer.aov <- aov((Y1 + Y2)/2 ~ Var + Loc, data = immer)
R> summary(immer.aov)

Df Sum Sq Mean Sq F value Pr(>F)
Var 4 2655 664 5.99 0.0025 **
Loc 5 10610 2122 19.15 5.2e-07 ***
Residuals 20 2217 111
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The ANOVA F tests indicate that both Var and Loc have a significant effect
on the average barley yield. Following Venables and Ripley (2002), we are
interested in comparing the k = 5 varieties with each other while averaging
the results for the two years, resulting in k(k−1)/2 = 10 pairwise comparisons.
We can retrieve the mean yields for the five varieties by a call to model.tables

R> model.tables(immer.aov, type = "means")$tables$Var

Var
M P S T V

94.4 102.5 91.1 118.2 99.2

This leads to the classical all-pairwise comparison problem. We are thus
interested in testing the 10 two-sided null hypotheses

Hij : µi = µj , i, j ∈ {M,P, S, T, V }, i 6= j.

The null hypothesis Hij indicates that the mean yield in barley does not differ
for the varieties i and j. Accordingly, the alternative hypotheses are given by

Kij : µi 6= µj , i, j ∈ {M,P, S, T, V }, i 6= j.

Rejecting any of the 10 null hypotheses Hij ensures that at least two of the
five varieties differ with respect to their average yield. We make this claim
at a given confidence level 1 − α, if we employ suitable multiple compari-
son procedures. The standard multiple comparison procedure to address the
all-pairwise comparison problem is the Tukey (1953) test, also known as stu-
dentized range test. Note that some textbooks suggest performing the Tukey
test only after observing a significant ANOVA F test result. We recommend
using the methods described below, regardless of whether or not the ANOVA
F test is significant.

In essence, the Tukey test takes the maximum over the absolute values of
all pairwise test statistics, which in the completely randomized layout of the
immer example take the form

tij =
ȳi − ȳj
s
√

2
n

. (4.6)

In the last expression, ȳi denotes the least squares mean estimate for variety i
(which coincides with the usual arithmetic mean estimate in this case), s the
pooled standard deviation and n the common sample size, that is, n = 6 as
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we have six locations and one observation for each combination of variety and
location; see Equations (3.3) and (3.4) for the more general expressions.

Each test statistic tij is univariate t distributed. The vector of the test
statistics follows a multivariate t distribution. Until the emergence of modern
computing facilities, the exact calculation of critical values for the Tukey test
was only possible for limited cases. One example is the balanced independent
one-way layout. Hayter (1984) proved analytically that in cases, where the
covariance matrix of the mean estimates is diagonal (which includes the un-
balanced one-way layout), using the critical values from the balanced case is
conservative. In fact, it has been conjectured that using the balanced critical
points will always be conservative. This was proved when k = 3 (Brown 1984)
and in a more general context by Hayter (1989). However, efficient numerical
integration methods, such as those from Bretz, Hayter, and Genz (2001) and
Genz and Bretz (2009), or user-friendly interfaces on top of such routines, such
as the multcomp package in R, can be used to calculate adjusted p-values or
critical values without restrictions.

In the following we show how to analyze the immer data with multcomp.
For details on the multcomp package we refer to Section 3.3. We use the
fitted ANOVA model immer.aov and apply the glht function to perform the
multiple comparisons through

R> immer.mc <- glht(immer.aov, linfct = mcp(Var = "Tukey"))

In the previous call, we used the mcp function for the linfct argument to
specify the comparison type (i.e., the contrast matrix) that we are interested
in. The syntax is almost self-descriptive: Specify the factor of relevance and
select one of several pre-defined contrast matrices (Var = "Tukey" in our
example).

We obtain a detailed summary of the results by using the summary method
associated with the glht function,

R> summary(immer.mc)

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts

Fit: aov(formula = (Y1 + Y2)/2 ~ Var + Loc, data = immer)

Linear Hypotheses:
Estimate Std. Error t value Pr(>|t|)

P - M == 0 8.15 6.08 1.34 0.6701
S - M == 0 -3.26 6.08 -0.54 0.9824
T - M == 0 23.81 6.08 3.92 0.0067 **
V - M == 0 4.79 6.08 0.79 0.9310
S - P == 0 -11.41 6.08 -1.88 0.3607
T - P == 0 15.66 6.08 2.58 0.1132
V - P == 0 -3.36 6.08 -0.55 0.9803
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T - S == 0 27.07 6.08 4.45 0.0020 **
V - S == 0 8.05 6.08 1.32 0.6798
V - T == 0 -19.02 6.08 -3.13 0.0377 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Adjusted p values reported -- single-step method)

The main part of the output consists of a table with 10 rows, one for each
pairwise comparison. From left to right we have a short descriptor of the
comparisons, the effect estimates with associated standard errors and the test
statistics, as defined in Equation (4.6). Multiplicity adjusted p-values are re-
ported in the last column. By default, these p-values are calculated from the
underlying multivariate t distribution (thus accounting for the correlations be-
tween the test statistics) and can be compared directly with the pre-specified
significance level α. For the immer example we conclude at level α = 0.05
that the pairwise comparisons T - M, T - S, and V - T are all significantly
different.

As an aside, we point out that the immer example can also be analyzed
using the TukeyHSD function from the stats package. Calling

R> immer.mc2 <-TukeyHSD(immer.aov, which = "Var")
R> immer.mc2$Var

diff lwr upr p adj
P-M 8.15 -10.04 26.338 0.67006
S-M -3.26 -21.45 14.929 0.98242
T-M 23.81 5.62 41.996 0.00678
V-M 4.79 -13.40 22.979 0.93102
S-P -11.41 -29.60 6.779 0.36068
T-P 15.66 -2.53 33.846 0.11322
V-P -3.36 -21.55 14.829 0.98035
T-S 27.07 8.88 45.254 0.00203
V-S 8.05 -10.14 26.238 0.67982
V-T -19.02 -37.20 -0.829 0.03771

we conclude that the results obtained with glht are the same as those from
TukeyHSD. Note however that the TukeyHSD function is specifically designed to
perform the Tukey test for models with one-way structures (Hsu 1996, Section
7.1). Consequently, the TukeyHSD function lacks the flexibility of the mult-
comp package, which allows one to perform the Tukey test (and other types
of contrast tests) for the general parametric models described in Chapter 3.
For example, the previous call to glht can easily be changed to

R> glht(immer.aov, linfct = mcp(Var = "Tukey"),
+ alternative = "greater")

in order to perform the one-sided studentized range test investigated by Hayter
(1990), which is a one-sided version of the Tukey test with potential applica-
tion to dose response analyses.

We now consider the computation of 95% two-sided simultaneous confidence
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intervals for the mean effect differences µi−µj . It follows from Equation (4.6)
that in the completely randomized layout of the immer example the simulta-
neous confidence intervals for the Tukey test are given by[

ȳi − ȳj − u1−α s

√
2
n

; ȳi − ȳj + u1−α s

√
2
n

]
,

where u1−α denotes the (1 − α)-quantile of the multivariate t distribution.
Alternatively, we can use the confint method associated with the glht func-
tion,

R> immer.ci <- confint(immer.mc, level = 0.95)
R> immer.ci

Simultaneous Confidence Intervals

Multiple Comparisons of Means: Tukey Contrasts

Fit: aov(formula = (Y1 + Y2)/2 ~ Var + Loc, data = immer)

Quantile = 2.99
95% family-wise confidence level

Linear Hypotheses:
Estimate lwr upr

P - M == 0 8.150 -10.038 26.338
S - M == 0 -3.258 -21.446 14.930
T - M == 0 23.808 5.620 41.996
V - M == 0 4.792 -13.396 22.980
S - P == 0 -11.408 -29.596 6.780
T - P == 0 15.658 -2.530 33.846
V - P == 0 -3.358 -21.546 14.830
T - S == 0 27.067 8.879 45.255
V - S == 0 8.050 -10.138 26.238
V - T == 0 -19.017 -37.205 -0.829

We conclude from the output that only the confidence intervals for the T
- M, T - S, and V - T comparisons exclude 0, which is consistent with the
previously established test results. Moreover, we conclude at the designated
confidence level of 95% that the average barley yield for variety T is larger
than the yield for the varieties M, S, and V. The critical value is u0.95 = 2.993.
In addition, we can display the confidence intervals graphically with

R> plot(immer.ci, main = "", xlab = "Yield")

see Figure 4.4 for the resulting plot. The plot.matchMMC method from the HH
package orders the confidence intervals in a different, often more intuitive way
and can be used alternatively; see the bottom plot of Figure 4.7.

If the number k of treatments or conditions is large, the number of pairwise
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Figure 4.4 Two-sided simultaneous confidence intervals for the Tukey test in the
immer example.

comparisons, k(k − 1)/2, increases rapidly. In such cases, plotting the result-
ing set of simultaneous confidence intervals or adjusted p-values might be too
extensive and more efficient methods to display the treatment effects together
with the associated significances are required. Compact letter displays are
a convenient tool to provide the necessary summary information about the
obtained significances. With this display, treatments are asigned letters to in-
dicate significant differences. Treatments that are not significantly different
are assigned a common letter. In other words, two treatments without a com-
mon letter are statistically significant at the chosen significance level. Using
such a letter display, an efficient presentation of the test results is available,
which is often easier to communicate than extensive tables and confidence
interval plots, such as those presented in Figure 4.4. Piepho (2004) provided
an efficient algorithm for a compact letter-based representation of all pair-
wise comparisons, which is also implemented in the multcomp package. This
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method works for general lists of pairwise p-values, regardless of how they were
obtained. In particular, this method is applicable to the case of unbalanced
data.

The cld function extracts the necessary information from glht objects that
is required to create a compact letter display of all pairwise comparisons. Using
the immer example from above, we can call

R> immer.cld <- cld(immer.mc)

Next, we can use the plot method associated with cld objects. Figure 4.5
shows the boxplots for each of the five varieties together with the letter display
when calling

R> plot(immer.cld)

Because variety T has no letter in common with any other variety than P, it
differs significantly from M, S, and V, but not from P at the chosen significance
level (α = 0.05 by default). No further significant differences can be declared,
because the remaining four varieties all share the common letter b. These
conclusions are in line with the previous results obtained in Figure 4.4. More
details about the cld function are given in Section 3.3.3.

One advantage of using R is the retained flexibility to fine tune standard
output. For example, one may wish to improve Figure 4.5 by ordering the
boxplots according to the mean yields for the five varieties. Such ordering
may enhance the readability, as treatments with common letters are more
likely to be displayed side-by-side. One way of doing this is shown below; see
Figure 4.6 for the resulting boxplots.

R> data("immer", package = "MASS")
R> library("HH")
R> immer2 <- immer
R> immer2$Var <- ordered(immer2$Var,
+ levels = c("S", "M", "V", "P", "T"))
R> immer2.aov <- aov((Y1 + Y2)/2 ~ Var + Loc, data = immer2)
R> position(immer2$Var) <- model.tables(immer2.aov,
+ type = "means")$tables$Var
R> immer2.mc <- glht(immer2.aov, linfct = mcp(Var = "Tukey"))
R> immer2.cld <- cld(immer2.mc)
R> immer2.cld$pos.x <- immer2.cld$x
R> position(immer2.cld$pos.x) <- position(immer2$Var)
R> lab <-
+ immer2.cld$mcletters$monospacedLetters[levels(immer2$Var)]
R> bwplot(lp ~ pos.x, data = immer2.cld,
+ panel=function(...){
+ panel.bwplot.intermediate.hh(...)
+ cpl <- current.panel.limits()
+ pushViewport(viewport(xscale = cpl$xlim,
+ yscale = cpl$ylim,
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Figure 4.5 Compact letter display for all pairwise comparisons in the immer ex-
ample.

+ clip = "off"))
+ panel.axis("top", at = position(immer2$Var),
+ labels = lab, outside = TRUE)
+ upViewport()
+ },
+ scales = list(x = list(limits = c(90, 120),
+ at = position(immer2$Var),
+ labels = levels(immer2$Var))),
+ main = "", xlab = "Var", ylab = "linear predictor")

An alternative graphical representation of the Tukey test was developed by
Hsu and Peruggia (1994) and extended to arbitrary contrasts by Heiberger
and Holland (2004, 2006). The resulting mean-mean multiple comparison plot
allows the display of multiple relevant information in the same plot, including
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Figure 4.6 Alternative compact letter display for all pairwise comparisons in the
immer example.

the observed group mean values, with correct relative distances, and point
estimates for arbitrary contrasts together with their associated simultaneous
confidence intervals. In the following we illustrate the mean-mean multiple
comparison plot with the immer data.

Mean-mean multiple comparison plots are available with the HH package
(Heiberger 2009) via the glht.mmc function. Its syntax is very similar to the
one used for glht,

R> library("HH")
R> immer.mmc <- glht.mmc(immer.aov, linfct = mcp(Var = "Tukey"),
+ focus = "Var", lmat.rows = 2:5)

In the previous statement, the focus argument defines the factor whose con-
trasts are to be computed. In addition, the lmat.rows argument specifies the
rows in lmat for the focus factor, where by convention lmat is the transpose
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of the linfct component produced by glht (see Section 3.3.1 for details on
glht objects). In our example,

R> t(immer.mc$linfct)

P-M S-M T-M V-M S-P T-P V-P T-S V-S V-T
(Intercept) 0 0 0 0 0 0 0 0 0 0
VarP 1 0 0 0 -1 -1 -1 0 0 0
VarS 0 1 0 0 1 0 0 -1 -1 0
VarT 0 0 1 0 0 1 0 1 0 -1
VarV 0 0 0 1 0 0 1 0 1 1
LocD 0 0 0 0 0 0 0 0 0 0
LocGR 0 0 0 0 0 0 0 0 0 0
LocM 0 0 0 0 0 0 0 0 0 0
LocUF 0 0 0 0 0 0 0 0 0 0
LocW 0 0 0 0 0 0 0 0 0 0
attr(,"type")
[1] "Tukey"

and we see that the Tukey contrasts for the focus factor Var are specified in
rows 2 through 5; thus the lmat.rows=2:5 specification in the glht.mmc call
above.

With these preparations, we can display the mean-mean multiple compari-
son plot for the the immer data using

R> plot(immer.mmc, ry = c(85, 122), x.offset = 8,
+ main = "", main2 = "")

where ry and x.offset are arguments to fine tune the appearance of the plot;
see the top graph in Figure 4.7 for the results. The 95% confidence intervals
on µT − µM , µT − µS , and µT − µV lie entirely to the right of 0, while all
other confidence intervals include 0. We thus conclude at the 5% level that the
average barley yield for variety T is larger than the yield for the varieties M,
S, and V. No further significances between the varieties are uncovered, which
reflects the test decisions obtained from Figure 4.4.

Each of the simultaneous confidence intervals for the 10 pairwise differences
µi − µj in Figure 4.7 is centered at a point whose height on the left y-axis is
equal to the average of the corresponding means ȳi and ȳj and whose loca-
tion along the x-axis is at distance ȳi − ȳj from the vertical line at 0. Note
that the confidence intervals on µP − µS amd µV − µM appear almost at
the same height in Figure 4.7, leading to an informative overprinting of the
contrast names at the right y-axis. In cases of overprinting, Heiberger and
Holland (2006) suggested a tiebreaker plot of the simultaneous confidence in-
tervals similar to Figure 4.4, where the contrasts are evenly spaced vertically
in the same order as in the mean-mean multiple comparison plot and on the
same horizontal scale. The tiebreaker plot for the immer data displayed at the
bottom of Figure 4.7 was obtained with the command

R> plot.matchMMC(immer.mmc$mca, main = "")

The isomeans grid in the center of Figure 4.7 is particularly useful when
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Mean−mean multiple comparison plot
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Figure 4.7 Mean-mean multiple comparison plot (top) and tiebreaker plot (bot-
tom) for all pairwise comparisons in the immer example.
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plotting simultaneous confidence intervals for orthogonal or more general con-
trasts, as shown now. It is well known that the use of carefully selected or-
thogonal contrasts is often preferable to a redundant set of contrasts. Because
we have a total of five varieties, we can choose a basis of four orthogonal con-
trasts, such that any other contrast can be constructed as a linear combination
of the elements of this basis set. Assume that we are interested in the four
orthogonal contrasts

R> immer.lmat <- cbind("M-S" = c(1, 0,-1, 0, 0),
+ "MS-V" = c(1, 0, 1, 0,-2),
+ "VMS-P" = c(1,-3, 1, 0, 1),
+ "PVMS-T" = c(1, 1, 1,-4, 1))
R> row.names(immer.lmat) <- c("M","P","S","T","V")

We would like to repeat a similar analysis based on a mean-mean multiple
comparison plot as done above for the Tukey test. The statement

R> immer.mmc2 <- glht.mmc(immer.aov, linfct = mcp(Var = "Tukey"),
+ focus.lmat = immer.lmat)

is sufficient to construct the plot in Figure 4.8. Clearly, the T-PVMS comparison
is highly significant, thus underpinning the previously observed good result
of variety T. By comparing Figures 4.7 and 4.8, one notices that the point
estimates associated with the pairwise contrasts are constructed as a linear
combination of point estimates of the orthogonal contrasts. Note also that
the confidence intervals in Figure 4.7 are not necessarily centered anymore at
the intersections of the isomeans grid. Finally, we note that intervals obtained
with the glht.mmc statement above are by default based on the conservative
generalized Tukey test, which allows for selection of contrasts based on findings
suggested by the pairwise analysis (Hochberg and Tamhane 1987, p. 80).

As mentioned previously, the mean-mean multiple comparison plots imple-
mented in the HH package are applicable to general contrasts in factorial
designs. We refer to Heiberger and Holland (2004, 2006) for further details
and examples.

4.2.2 Closed Tukey test procedure

In Section 4.2.1 we considered the original Tukey test, which is a single-step
test. Similar to the Dunnett test described in Section 4.1, stepwise extensions
are also available for the Tukey test, leading to more power; see, for example,
Finner (1988). As explained in Section 2.1.2, stepwise test procedures reject
at least as many hypotheses as their single-step counterparts. In the following,
we apply the closure principle described in Section 2.2.3 to the all-pairwise
comparison problem, discuss efficient methods to prune the full closure and
then come back to the immer data example to illustrate the closed Tukey test,
which is also available in the multcomp package.

Recall from Section 2.2.3 that the closure principle constructs all possible
intersection hypotheses from an initial set of elementary hypotheses. In some
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Figure 4.8 Mean-mean multiple comparison plot for selected orthogonal contrasts
in the immer example.

cases, depending upon the structure of the hypotheses tested, the closure tree
can be pruned considerably, resulting in much smaller adjusted p-values and
hence more powerful tests. For example, consider the pairwise comparisons
case with three groups: The basic hypotheses are H12 : µ1 = µ2, H13 : µ1 = µ3,
and H23 : µ2 = µ3. As seen in Figure 2.6, these are the three elementary
hypotheses. However, unlike the many-to-one case displayed in Figure 4.3,
there is only one possible intersection hypothesis, rather than four, because
every intersection hypothesis has the form H123 : µ1 = µ2 = µ3. Having fewer
intersections to test implies greater power. In this case, the adjusted p-values
for each of the three elementary hypotheses Hij are the maximum of just two
p-values: The unadjusted p-value from Hij and the p-value from the global
intersection hypothesis H123; see Equation (2.2) for a general definition of
adjusted p-values using the closure principle.

Pruning of the closure set happens when HI = HI′ for distinct subsets I
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and I ′, and in this case the hypotheses are said to be restricted; see also Sec-
tion 2.1.2. On the other hand, if HI 6= HI′ for each pair of distinct subsets I
and I ′, then the hypotheses are said to satisfy the free combination condition.
Examples of free combinations include the many-to-one comparisons consid-
ered in Section 4.1 as well as comparisons of means with two-sample multi-
variate data (as discussed, for example, in Section 5.1). Examples of restricted
combinations include all-pairwise comparisons, response surface comparisons,
and general complex contrast sets.

Figure 4.9 shows how the pruned tree looks in the case of all pairwise com-
parisons among four groups. The size of the tree is considerably smaller than
the 26 − 1 = 63 intersection hypotheses that would apply if the tests were
in free combinations. Because in the restricted combination case many of the
intersections produce identical intersection hypotheses, there are only 14 dis-
tinct subsets in the closure.

Shaffer (1986) presented a method for using the pruned closure tree in
the case of restricted combinations to produce more powerful tests, using
Bonferroni tests for each node; see also Section 2.3.2. Bergmann and Hommel
(1988) extended the consept of the Shaffer procedure and found an algorithm
for pruning the closure test, which was subsequently implemented by Bernhard
(1992), see also Hommel and Bernhard (1992). Royen (1991) noted that the
Shaffer method is in fact a truncated closed test procedure, where the individual
tests are performed in the order of the unadjusted p-values, stopping as soon
as an insignificance occurs. Hommel and Bernhard (1999) investigated more
powerful closed test procedures that are obtained if testing is done without
truncation, but the resulting inference may no longer be monotone in the p-
values. Hommel and Bretz (2008) gave an example where a non-monotonic
decision pattern still leads to a meaningful interpretation. Finally, Westfall
(1997) and Westfall and Tobias (2007) showed how to perform the truncated
closed test procedure for general contrasts. The method of Westfall (1997) is
available in the multcomp package and will be illustrated below with the
immer data example.

Recall from Section 4.1.2 that the step-down Dunnett procedure may be
obtained as follows: (i) order the unadjusted p-values p(1) ≤ . . . ≤ p(m) as
usual, corresponding to hypotheses H(1), . . . ,H(m); (ii) test H(1), . . . ,H(m)

sequentially and obtain the adjusted p-values q(i) = maxI:i∈I pI , stopping
as soon as q(i) > α, where α is the desired significance level to control the
familywise error rate. Truncated closed test procedures use the same method,
but apply it to restricted combinations, where the set of subsets I considered
in the computation of q(i) = maxI:i∈I pI is often much smaller than the same
set under the free combination condition, leading to smaller adjusted p-values
q(i) and hence more powerful tests. The method is called “truncated” because
it is applied in the order of the adjusted p-values; it is possible to make the
method even more powerful by removing this constraint. On the other hand,
truncation ensures that the order of the adjusted p-values is the same as the
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Figure 4.9 Closure principle for all pairwise comparisons of four means (schematic
diagram). Here, H1234 : µ1 = µ2 = µ3 = µ4, Hijk : µi = µj = µk,
H{ij},{k,`} : µi = µj and µk = µ`, and Hij : µi = µj for suitable in-
dices i, j, k, and `. Different line types are used to distinguish the in-
dividual implications between hypotheses and have no other meaning.
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order of the unadjusated p-values; without truncation the orders may differ,
leading to possible interpretation difficulties.

To illustrate the method, consider the immer data from above together
with model (4.5). Of interest are the 10 elementary hypotheses Hij : µi =
µj , i, j ∈ {M,P, S, T, V }, i 6= j. As with the step-down Dunnett procedure,
it is helpful here to express the procedure in terms of t statistics rather than
p-values. Let tobs

ij denote the observed t statistics for testing Hij and let tij
denote the random counterparts from Equation (4.6). For the immer data, the
observed absolute t statistics are given in order as tobs

ST = 4.453, tobs
MT = 3.917,

tobs
TV = 3.129, tobs

PT = 2.576, tobs
PS = 1.877, tobs

MP = 1.341, tobs
SV = 1.324, tobs

MV =
0.788, tobs

PV = 0.553, tobs
MS = 0.536. These values can be obtained from, for exam-

ple, the summary output of the immer.mc object, as described in Section 4.2.1.
Using the truncated closed test procedure, we step through the related se-

quence of hypotheses HST, HMT, . . . ,HMS and test relevant subsets from the
full closure using max-t tests of the form (2.1) while incorporating the para-
metric model results from Chapter 3. Applied to the immer example, we obtain
the following individual steps:

(i) All subsets are strictly smaller than the global intersection set. Test HST

using
q(1) = P(maxij tij ≥ 4.453) = 0.002.

(ii) Relevant subsets and their p-values are given by

P(max{tMT, tTV, tPT, tMP, tMV, tPV} ≥ 3.917) = 0.004,
P(max{tMT, tPT, tMP, tSV} ≥ 3.917) = 0.003,
P(max{tMT, tTV, tPS, tMV} ≥ 3.917) = 0.003, and
P(max{tMT, tPS, tSV, tPV} ≥ 3.917) = 0.003.

Test HMT using

q(2) = max{0.002, 0.004, 0.003} = 0.004.

(iii) Relevant subsets and their p-values are given by

P(max{tTV, tPS, tMP, tMS} ≥ 3.129) = 0.019 and
P(max{tTV, tPT, tPV, tMS} ≥ 3.129) = 0.019.

Test HTV using
q(3) = max{0.004, 0.019} = 0.019.

(iv) There is only one relevant subset here, and its p-value is given by

P(max{tPT, tSV, tMV, tMS} ≥ 2.576) = 0.062.

Test HPT using
q(4) = max{0.019, 0.062} = 0.062.

(v) There is only one relevant subset here, and its p-value is given by

P(max{tPS, tMP, tSV, tMV, tPV, tMS} ≥ 1.877) = 0.269.
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Test HPS using
q(5) = max{0.062, 0.269} = 0.269.

(vi) Relevant subsets and their p-values are given by

P(max{tMP, tMV, tPV} ≥ 1.341) = 0.39, and
P(max{tMP, tSV} ≥ 1.341) = 0.347.

Test HMP using
q(6) = max{0.269, 0.39} = 0.39.

(vii) There is only one relevant subset here, and its p-value is given by

P(max{tSV, tMV, tMS} ≥ 1.324) = 0.399.

Test HSV using
q(7) = max{0.39, 0.399} = 0.399.

(viii) There is only one relevant subset here, the singleton. Its p-value is given
by

P(tMV ≥ 0.788) = 0.44,

that is, the unadjusted p-value. Test HMV using

q(8) = max{0.399, 0.44} = 0.44.

(ix) There is only one relevant subset here, and its p-value is given by

P(max{tPV, tMS} ≥ 0.553) = 0.826.

Test HPV using
q(9) = max{0.44, 0.826} = 0.826.

(x) There is only one relevant subset here, the singleton. Its p-value is given
by

P(tMS ≥ 0.536) = 0.598,

that is, the unadjusted p-value. Test HMS using

q(10) = max{0.826, 0.598} = 0.826.

In this example, this is the only case where“truncation”took place, since the
adjusted p-value was truncated upward to account for the ordered testing.

Westfall (1997) explained how to automate the process of finding the rel-
evant subsets by using rank conditions involving contrast matrices for the
various subsets. In R, truncated closed test procedures are implemented in
the multcomp package via the test = adjusted(type = "Westfall") op-
tion. The code below provides exactly the results from the manual calculations
above:
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R> summary(immer.mc, test = adjusted(type = "Westfall"))

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts

Fit: aov(formula = (Y1 + Y2)/2 ~ Var + Loc, data = immer)

Linear Hypotheses:
Estimate Std. Error t value Pr(>|t|)

P-M == 0 8.15 6.08 1.34 0.3899
S-M == 0 -3.26 6.08 -0.54 0.8257
T-M == 0 23.81 6.08 3.92 0.0045 **
V-M == 0 4.79 6.08 0.79 0.4397
S-P == 0 -11.41 6.08 -1.88 0.2691
T-P == 0 15.66 6.08 2.58 0.0617 .
V-P == 0 -3.36 6.08 -0.55 0.8257
T-S == 0 27.07 6.08 4.45 0.0020 **
V-S == 0 8.05 6.08 1.32 0.3985
V-T == 0 -19.02 6.08 -3.13 0.0192 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Adjusted p values reported -- Westfall method)

In Table 4.2 we summarize the results from four methods applied to the
immer dataset. To be precise, Table 4.2 reports side-by-side the unadjusted
p-values pi from

R> summary(immer.mc, test = adjusted(type = "none"))

together with the adjusted p-values from the Tukey test, its stepwise extension
using truncated closure, and the S2 procedure (Shaffer 1986)

R> summary(immer.mc, test = adjusted(type = "Shaffer"))

The S2 procedure differs from type = "Westfall" by using Bonferroni tests
instead of the parametric results from Chapter 3. We first conclude that the
pairwise comparisons T - M, T - S, and V - T are all significant at level
α = 0.05, irrespective of which multiple comparison procedure is used. At
an unadjusted level, T - P is also significant, although the familywise error
rate may not be controlled in this case. Note further, that the truncated closed
test procedure from Westfall (1997) – based on max-t tests while exploiting
logical constraints and the parametric results from Chapter 3 – leads to uni-
formly smaller adjusted p-values than both the Tukey test and the Shaffer
procedure.

4.3 Dose response analyses

In this section we consider an ANCOVA model for a dose response study
with two covariates. In Section 4.3.1 we introduce the example and apply the
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Adjusted p-values qi
Comparison pi Tukey Shaffer Westfall

P - M 0.195 0.670 0.585 0.390
S - M 0.598 0.982 1.000 0.826
T - M 0.001 0.007 0.005 0.004
V - M 0.440 0.931 0.601 0.440
S - P 0.075 0.361 0.451 0.269
T - P 0.018 0.113 0.072 0.062
V - P 0.587 0.980 1.000 0.826
T - S 0.001 0.002 0.002 0.002
V - S 0.200 0.680 0.601 0.399
V - T 0.005 0.038 0.021 0.019

Table 4.2 Comparison of several multiple comparison procedures for the immer

data. Tukey: original Tukey (1953) test (single-step); Shaffer: S2 pro-
cedure from Shaffer (1986); Westfall: truncated closed test procedure
from Westfall (1997).

Dunnett test based on pairwise differences against the control. In Section 4.3.2
we focus on evaluating non-pairwise contrast tests for detecting a dose related
trend. In Section 5.3 we extend the disussion and describe related approaches
which combine multiple comparison procedures with modeling techniques.

4.3.1 A dose response study on litter weight in mice

Understanding the dose response relationship is a fundamental step in investi-
gating any new compound, whether it is an herbicide or fertilizer, a molecular
entity, an environmental toxin, or an industrial chemical (Ruberg 1995a,b;
Bretz, Hsu, Pinheiro, and Liu 2008b). For example, determining an adequate
dose level for a medicinal drug, and, more broadly, characterizing its dose re-
sponse relationship with respect to both efficacy and safety, are key objectives
of any clinical drug development program. If the dose is set too high, safety
and tolerability problems may result, but if the dose is too low it may become
difficult to establish adequate efficacy. There is a vast literature on dose find-
ing, especially in the area of pharmaceutical statistics, and we refer the reader
to the edited books by Ting (2006); Chevret (2006), and Krishna (2006) for
general reading on this topic.

We use a dose response study involving two covariates to illustrate the
methods from Chapter 3. Consider the summary statistics in Table 4.3 of a
Thalidomide study taken from Westfall and Young (1993) and reanalyzed by
Bretz (2006). Four dose levels (0, 5, 50 and 500 units of the study compound)
were administered to pregnant mice. Their litters were evaluated for defects
and weights. According to Westfall and Young (1993), the primary response
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variable was the average post-birth weight in the entire litter for the first three
weeks of the study. Since the litter weight may depend on gestation time and
number of animals in the litter, these two variables were included as covariates
in the analysis. We thus consider the ANCOVA model

yij = β0 + βi + β5z1ij + β6z2ij + εij , (4.7)

where yij denotes the weight of the j-th litter at dose level i, z1 and z2 the
two covariates and β1, . . . , β4 the parameters of interest, namely, the effect
of dose level i after adjusting for the effects of the covariates. Finally, the
random errors are assumed to be independent, homoscedastic and normally
distributed, εij ∼ N(0, σ2). Note that model (4.7) is a special case of the
general linear model (3.1) and the methods from Section 3.1.1 thus apply to
the Thalidomide example. Figure 4.10 displays the covariate-adjusted litter
weight data from the Thalidomide study, that is, the least squares means of
the four treatment groups together with the associated marginal confidence
intervals.

Dose 0 5 50 500
Group sample size 20 19 18 17

Weight Mean 32.31 29.31 29.87 29.65
Standard deviation 2.70 5.09 3.76 5.40

Gestation time Mean 22.08 22.21 21.89 22.18
Standard deviation 0.44 0.45 0.40 0.43

Litter size Mean 13.40 13.11 14.67 12.53
Standard deviation 3.02 2.58 1.50 2.58

Table 4.3 Summary data of the Thalidomide dose response example from Westfall
and Young (1993).

The experimental question is whether one can claim a statistically signifi-
cant decrease in average post-birth weight with increasing doses of Thalido-
mide. A straightforward approach is to perform the pairwise comparisons
between the three active dose levels 5, 50, 500 and the zero-dose control, ad-
justed for covariate effects. In this case the single-step Dunnett test introduced
in Section 4.1 is a reasonable approach. To this end, we first fit the ANCOVA
model (4.7) to the litter data with the aov function,

R> data("litter", package = "multcomp")
R> litter.aov <- aov(weight ~ dose + gesttime + number,
+ data = litter)

and then use the multcomp package to perform the Dunnett test,

R> litter.mc <- glht(litter.aov, linfct = mcp(dose = "Dunnett"),
+ alternative = "less")
R> summary(litter.mc, test = adjusted(type = "single-step"))
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Figure 4.10 Summary plot of the Thalidomide dose response study.

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Dunnett Contrasts

Fit: aov(formula = weight ~ dose + gesttime + number,
data = litter)

Linear Hypotheses:
Estimate Std. Error t value Pr(<t)

5 - 0 >= 0 -3.35 1.29 -2.60 0.016 *
50 - 0 >= 0 -2.29 1.34 -1.71 0.112
500 - 0 >= 0 -2.68 1.33 -2.00 0.063 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Adjusted p values reported -- single-step method)

As seen from the output, the smallest multiplicity adjusted p-value is 0.016.
We conclude that there is an overall dose related significant decrease in litter
weight. Note that the model fit litter.aov accounts for the two covariates
gestation time gesttime and litter size number. The arithmetic means ȳi and
the pooled variance estimate s2 from the test statistics (4.2) for the Dunnett
test in an ANOVA model without covariates have therefore to be replaced by
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the least squares estimates from the more general expressions (3.3) and (3.4),
which also include covariate information. Consequently, the correlations be-
tween the test statistics do not follow the simple pattern from Equation (4.3).
Using the adjusted(type = "single-step") option in multcomp ensures
that the stochastic dependencies are all taken into account while perform-
ing the closed test procedure, as described in Chapter 3. In addition to the
overall significant result, we can assess the adjusted p-values individually. We
therefore conclude that the smallest dose level leads to a significant result and
the remaining two dose levels lead to only borderline results. We specified
alternative = "less" because we are interested in testing for a decreasing
trend, that is, whether there was a significant reduction in litter weight.

Note that the more powerful step-down Dunnett test can be applied instead
of the single-step Dunnett test by using the adjusted(type = "free") op-
tion; see also Section 4.1.2. Using the step-down Dunnett test, the other two
dose levels become barely significant: p = 0.046 and p = 0.045 for the medium
and high dose, respectively.

4.3.2 Trend tests

The Dunnett test considered in Section 4.3.1 uses only pairwise comparisons
of the individual dose levels with the control. A variety of trend tests have
been investigated, which borrow strength from neighboring dose levels when
testing for a dose response effect. The approaches proposed by, for example,
Bartholomew (1961); Williams (1971), and Marcus (1976) are popular trend
tests, which are known to be more powerful than the Dunnett test. However,
due to the inclusion of covariates and unequal group sample sizes, these trend
tests cannot be applied to the Thalidomide example. In the following we will
demonstrate how the framework from Chapter 3 can be applied to the current
problem, leading to powerful trend tests for general parametric models.

Consider model (4.7), where the parameter vector β consists of p = 7 ele-
ments βi. When testing for a dose related trend, one is typically interested in
testing the null hypothesis of no treatment effect,

H : β1 = . . . = β4,

against the ordered alternative

K : β1 ≥ . . . ≥ β4 with β1 > β4.

We conclude in favor of K if the related trend test is significant.
Westfall (1997) proposed the use of three trend contrasts

C>Westfall =

 0 1.5 0.5 −0.5 −1.5 0 0
0 138.75 133.75 88.75 −361.25 0 0
0 0.795 0.105 −0.305 −0.595 0 0

 ,

to reflect the uncertainty about the underlying dose response shape. The first
row of C>Westfall is a simple ordinal trend contrast; the second row is a trend
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contrast suggested by the arithmetic dose levels; and the third row suggests
a log-ordinal dose response relationship. Thus, the use of non-pairwise con-
trasts allows one to set each of the individual tests into correspondence to
some dose response shapes. By using information from all dose levels under
investigation, non-pairwise contrast tests tend to be more powerful than the
Dunnett test, which is based on pairwise contrasts. Note that in the definition
of the matrix C>Westfall the weights for the intercept β0 and the two covariate
parameters β5 and β6 are 0, so that the linear function C>Westfallβ compares
only the parameters of interest β1, . . . , β4. In Section 5.3 we will extend these
ideas to formally include dose response modeling in a rigid hypotheses testing
framework.

The approach from Westfall (1997) sought to let the contrast coefficients
mirror potential dose response shapes. Alternatively, the contrast matrix can
be specified in a more principled way by reflecting general comparisons among
the dose levels, as considered by Williams (1971) and Marcus (1976). Due to
the presence of covariates and unequal sample sizes, however, their original
approaches cannot be applied to the Thalidomide example. Instead, we follow
the proposal of Bretz (2006) and describe the original trend tests of Williams
(1971) and Marcus (1976) as contrast tests, so that the results from Chapter 3
are applicable.

We first consider the Williams test extended to the framework of multi-
ple contrast tests. With the sample sizes taken from Table 4.3, the contrast
coefficients are given by

C>Williams =

 0 1 0 0 −1 0 0
0 1 0 −0.5143 −0.4857 0 0
0 1 −0.3519 −0.3333 −0.3148 0 0

 .

Figure 4.11 displays the contrast coefficients for β1, . . . , β4 in the balanced
case. Each single contrast test consists of comparisons between the control
group and the weighted average over the last ` treatment groups, ` = 1, . . . , 3,
respectively. To illustrate this, consider the second row of C>Williams. The con-
trol group is compared with the weighted average of the two highest dose levels.
The weight for the control group is 1. The weights for the highest and second
highest dose levels are −17/(17+18) = −0.4857 and −18/(17+18) = −0.5143,
respectively; here, 17 and 18 are the respective group sample sizes taken from
Table 4.3. The lowest dose level is not included in this comparison and is
therefore assigned the weight 0. Note that the weights for the intercept β0

and the two covariate parameters β5 and β6 are set to 0, so that C>Williamsβ
involves only the comparison of the parameters of interest. As shown by Bretz
(2006), using the matrix C>Williams ensures that the same type of comparison
is performed as with the original test of Williams (1971) while taking into ac-
count the information of the covariates through the computation of the least
squares estimates β̂ and σ̂.

We can compute the contrast matrix C>Williams with the contrMat function
from the multcomp package. This function computes the contrast matrices
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Figure 4.11 Plot of contrast coefficients for the Williams test (left, dot dashed
lines with circles) and the modified Williams test (right, solid lines
with triangles and dot dashed lines with circles), in the balanced
case.

for several multiple comparison procedures, including, among others, the tests
of Dunnett and Tukey, as well as the trend tests of Williams and Marcus
(contrast version). Its syntax is straightforward and we obtain the contrast
matrix C>Williams with the statements

R> n <- c(20, 19, 18, 17)
R> -contrMat(n, type = "Williams")

Multiple Comparisons of Means: Williams Contrasts

1 2 3 4
C 1 1 0.000 0.000 -1.000
C 2 1 0.000 -0.514 -0.486
C 3 1 -0.352 -0.333 -0.315

Note that contrMat computes the contrast coefficients under the assumption
of an increasing trend. In the Thalidomide example we are interested in de-
tecting a reduction in litter weight and therefore the resulting coefficients from
contrMat need to be multiplied by −1.

The modified Williams test (Williams 1971; Marcus 1976) can be extended
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similarly and the corresponding contrast coefficients are given by

C>mod Williams =


0 1 0 0 −1 0 0
0 1 0 −0.5143 −0.4857 0 0
0 1 −0.3519 −0.3333 −0.3148 0 0
0 0.5128 0.4872 −0.5143 −0.4857 0 0
0 0.5128 0.4872 0 −1 0 0
0 0.3509 0.3333 0.3158 −1 0 0

 .

Figure 4.11 also plots the coefficients for the contrast version of the modified
Williams test. Note that C>Williams is a subset of C>mod Williams in the sense
that the weights for the former test are all contained in the contrast matrix of
the latter test (the first three rows). These weights are particularly suitable for
testing concave dose response shapes, as the higher dose groups are pooled and
compared with the zero dose group. The rows five and six of C>mod Williams are
appropriate for detecting convex shapes, as they average the lower treatments.
The fourth row is particularly powerful for linear or approximately linear
relationships. To illustrate the computation of the coefficients for the fourth
contrast, we note that the weighted average of the two higher dose levels is
compared with the weighted average of the remaining treatments. With the
group sample sizes taken from Table 4.3, we therefore obtain 20/(20 + 19) =
0.5128, 19/(20 + 19) = 0.4872, 18/(18 + 17) = 0.5143, and 17/(18 + 17) =
0.4857. We refer to Bretz (2006) for the analytical expressions of the contrast
coefficients in general linear models. Using the contrMat function, we can
compute C>mod Williams with the call

R> -contrMat(n, type = "Marcus")

Multiple Comparisons of Means: Marcus Contrasts

1 2 3 4
C 1 1.000 -0.352 -0.333 -0.315
C 2 1.000 0.000 -0.514 -0.486
C 3 0.513 0.487 -0.514 -0.486
C 4 1.000 0.000 0.000 -1.000
C 5 0.513 0.487 0.000 -1.000
C 6 0.351 0.333 0.316 -1.000

We now illustrate, how the multcomp package can be used to analyze
the Thalidomide example with the contrast versions of the trend tests from
Williams (1971) and Marcus (1976). Similar to what was done in Section 4.3.1,
we can apply the glht function to the fitted aov object. In order to perform
the Williams contrast test we pass the mcp(dose = "Williams") option to
the linfct argument,

R> litter.mc2 <- glht(litter.aov, alternative = "less",
+ linfct = mcp(dose = "Williams"))
R> summary(litter.mc2)

Simultaneous Tests for General Linear Hypotheses
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Multiple Comparisons of Means: Williams Contrasts

Fit: aov(formula = weight ~ dose + gesttime + number,
data = litter)

Linear Hypotheses:
Estimate Std. Error t value Pr(<t)

C 1 >= 0 -2.68 1.33 -2.00 0.0436 *
C 2 >= 0 -2.48 1.12 -2.21 0.0285 *
C 3 >= 0 -2.79 1.05 -2.66 0.0097 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Adjusted p values reported -- single-step method)

The adjusted p-value for the Williams contrast test is the minimum of the
set of three p-values listed in the last column. In our example, the adjusted
p-value is 0.01 and we conclude for a significant dose response signal at the 5%
significance level. Note that this p-value is smaller than the adjusted p-value
0.016 for the Dunnett test from Section 4.3.1. This indicates that trend tests
indeed tend to be more powerful than the pairwise comparisons from Dunnett.
In analogy to the previous glht call, we can also apply the modified Williams
test by calling

R> glht(litter.aov, linfct = mcp(dose = "Marcus"),
+ alternative = "less")

We can improve the Williams test by applying the closure principle from
Section 2.2.3. Technically, the m = 3 elementary one-sided hypotheses are
given by Hj : c>j β ≤ 0, where β denotes the 7×1 parameter vector introduced
in Section 4.3.1 and c>j is the j-th row of C>Williams, j = 1, 2, 3. Note that the
contrast coefficients have been scaled such that large values of c>j β indicate
a dose related weight loss. With the closure principle, we consider in addition
all pairwise intersection hypotheses Hi ∩ Hj , 1 = i < j = 3, and the global
intersection null hypothesis H1 ∩H2 ∩H3. The Williams contrasts satisfy the
free combination property (Section 2.1.2), because there is one additional free
parameter in each successive contrast. We can thus apply the mcp(dose =
"free") option discussed in Section 4.1.2,

R> summary(litter.mc2, test = adjusted(type = "free"))

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Williams Contrasts

Fit: aov(formula = weight ~ dose + gesttime + number,
data = litter)
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Linear Hypotheses:
Estimate Std. Error t value Pr(<t)

C 1 >= 0 -2.68 1.33 -2.00 0.0245 *
C 2 >= 0 -2.48 1.12 -2.21 0.0237 *
C 3 >= 0 -2.79 1.05 -2.66 0.0091 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Adjusted p values reported -- free method)

As seen from the output, the application of the closure principle leads to a
reduction of the adjusted p-values.

4.4 Variable selection in regression models

Garcia, Wagner, Hothorn, Koebnick, Zunft, and Trippo (2005) applied pre-
dictive regression equations to body fat content with nine common anthropo-
metric measurements, which were obtained from 71 healthy German women.
In addition, the body composition was measured by Dual Energy X-Ray Ab-
sorptiometry (DXA). This reference method is very accurate in measuring
body fat but has limited practical application because of its high costs and
challenging methodology. Therefore, a simple regression equation for predict-
ing DXA body fat measurements is of special interest for the practitioner.
Backward-elimination was applied to select important variables from the avail-
able anthropometrical measurements. Garcia et al. (2005) reported a final
linear model utilizing hip circumference, knee breadth and a compound co-
variate defined as the sum of the logarithmized chin, triceps and subscapular
skinfolds.

Here, we fit the saturated model to the data and use adjusted p-values to
select important variables, where the multiplicity adjustment accounts for the
correlation between the test statistics; see Chapter 3. We use the lm function
such that the linear model including all covariates with the unadjusted p-values
is given by

R> data("bodyfat", package = "mboost")
R> bodyfat.lm <- lm(DEXfat ~ ., data = bodyfat)
R> summary(bodyfat.lm)

Call:
lm(formula = DEXfat ~ ., data = bodyfat)

Residuals:
Min 1Q Median 3Q Max

-6.954 -1.949 -0.219 1.169 10.812

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -69.0283 7.5169 -9.18 4.2e-13 ***
age 0.0200 0.0322 0.62 0.5378
waistcirc 0.2105 0.0671 3.13 0.0026 **
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hipcirc 0.3435 0.0804 4.27 6.9e-05 ***
elbowbreadth -0.4124 1.0229 -0.40 0.6883
kneebreadth 1.7580 0.7250 2.42 0.0183 *
anthro3a 5.7423 5.2075 1.10 0.2745
anthro3b 9.8664 5.6579 1.74 0.0862 .
anthro3c 0.3874 2.0875 0.19 0.8534
anthro4 -6.5744 6.4892 -1.01 0.3150
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.28 on 61 degrees of freedom
Multiple R-squared: 0.923, Adjusted R-squared: 0.912
F-statistic: 81.3 on 9 and 61 DF, p-value: <2e-16

The matrix C, which defines the experimental questions of interest, is es-
sentially the identity matrix, except for the intercept, which is omitted. This
reflects our interest in assessing each individual variable:

R> K <- cbind(0, diag(length(coef(bodyfat.lm)) - 1))
R> rownames(K) <- names(coef(bodyfat.lm))[-1]
R> K

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
age 0 1 0 0 0 0 0 0 0 0
waistcirc 0 0 1 0 0 0 0 0 0 0
hipcirc 0 0 0 1 0 0 0 0 0 0
elbowbreadth 0 0 0 0 1 0 0 0 0 0
kneebreadth 0 0 0 0 0 1 0 0 0 0
anthro3a 0 0 0 0 0 0 1 0 0 0
anthro3b 0 0 0 0 0 0 0 1 0 0
anthro3c 0 0 0 0 0 0 0 0 1 0
anthro4 0 0 0 0 0 0 0 0 0 1

Once the matrix C is defined, it can be used to set up the multiple com-
parison problem using the glht function in multcomp

R> bodyfat.mc <- glht(bodyfat.lm, linfct = K)

Traditionally, one would perform an F test to check if any of the regression
coefficients is significant,

R> summary(bodyfat.mc, test = Ftest())

General Linear Hypotheses

Linear Hypotheses:
Estimate

age == 0 0.0200
waistcirc == 0 0.2105
hipcirc == 0 0.3435
elbowbreadth == 0 -0.4124
kneebreadth == 0 1.7580
anthro3a == 0 5.7423
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anthro3b == 0 9.8664
anthro3c == 0 0.3874
anthro4 == 0 -6.5744

Global Test:
F DF1 DF2 Pr(>F)

1 81.3 9 61 1.39e-30

As seen from the output, the F test is highly significant. However, because
the F test is an omnibus test, we cannot assess which covariates significantly
deviate from 0 while controlling the familywise error rate. Calculating the
individual adjusted p-values provides the necessary information,

R> summary(bodyfat.mc)

Simultaneous Tests for General Linear Hypotheses

Fit: lm(formula = DEXfat ~ ., data = bodyfat)

Linear Hypotheses:
Estimate Std. Error t value Pr(>|t|)

age == 0 0.0200 0.0322 0.62 0.996
waistcirc == 0 0.2105 0.0671 3.13 0.022 *
hipcirc == 0 0.3435 0.0804 4.27 <0.001 ***
elbowbreadth == 0 -0.4124 1.0229 -0.40 1.000
kneebreadth == 0 1.7580 0.7250 2.42 0.132
anthro3a == 0 5.7423 5.2075 1.10 0.895
anthro3b == 0 9.8664 5.6579 1.74 0.478
anthro3c == 0 0.3874 2.0875 0.19 1.000
anthro4 == 0 -6.5744 6.4892 -1.01 0.930
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Adjusted p values reported -- single-step method)

We conclude that only two covariates, waist and hip circumference, seem to
be relevant and contribute to the significant F test. Note that this conclusion
is drawn while controlling the familywise error rate in the strong sense; see
Section 2.1.1 for a description of suitable error rates in multiple hypotheses
testing.

Alternatively, MM -estimates (Yohai 1987) can be applied and we can use
the results from Section 3.2 to perform suitable multiple comparisons for the
robustified linear model. We use the lmrob function from the robustbase
package (Rousseeuw, Croux, Todorov, Ruckstuhl, Salibian-Barrera, Verbeke,
and Maechler 2009) to fit a robust version of the previous linear model. Inter-
estingly enough, the results coincide rather nicely,

R> vcov.lmrob <-function(object) object$cov
R> summary(glht(lmrob(DEXfat ~ ., data = bodyfat),
+ linfct = K))

Simultaneous Tests for General Linear Hypotheses
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Fit: lmrob(formula = DEXfat ~ ., data = bodyfat)

Linear Hypotheses:
Estimate Std. Error z value Pr(>|z|)

age == 0 0.0264 0.0193 1.37 0.7242
waistcirc == 0 0.2318 0.0665 3.49 0.0041 **
hipcirc == 0 0.3293 0.0755 4.36 <0.001 ***
elbowbreadth == 0 -0.2549 0.9245 -0.28 1.0000
kneebreadth == 0 0.7738 0.5280 1.47 0.6523
anthro3a == 0 2.0706 3.6597 0.57 0.9974
anthro3b == 0 10.1589 4.7770 2.13 0.2190
anthro3c == 0 1.9133 1.4040 1.36 0.7262
anthro4 == 0 -5.6737 5.5795 -1.02 0.9194
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Adjusted p values reported -- single-step method)

4.5 Simultaneous confidence bands for the comparison of two
linear regression models

Kleinbaum, Kupper, Muller, and Nizam (1998) considered how systolic blood
pressure changes with age for both females and males. From the data they
have collected it is clear that the relationship between systolic blood pressure
y and age x can be reasonably described by a linear regression model of y on x
for both gender groups. A natural question is whether the two linear regression
models for female and male are the same. That is, we want to compare the
two linear regression models for a continuous range of a covariate x (that is,
age in our example).

Let
yij = β0i + β1ixij + εij (4.8)

denote two simple linear regression models, one for females (i = F ) and one
for males (i = M). Each gender has its own regression parameters, the in-
tercept β0i and the slope β1i. In Equation (4.8), the index j denotes the j-th
observation (within gender i = F,M). Finally, we assume independent and
normally distributed residuals εij ∼ N(0, σ2). In the matrix notation from
Section 3.1, model (4.8) can be written as yi = Xiβi + εi, i = F,M .

The frequently used approach to the problem of comparing two linear re-
gression models is to use an F test for the null hypothesis H : β1 = β2. If H
is rejected then the two regression models are deemed different. Otherwise, if
H is not rejected, then there is insufficient statistical evidence to conclude the
two regression models are different. But no tangible information on the mag-
nitude of the difference between the two models is provided by this hypotheses
testing approach, whether H is rejected or not. For instance, in the example
from Kleinbaum et al. (1998) the p-value for the F test is less than 0.0001 and
so there is a strong statistical indication that the two regression models are
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different. But no measurement is provided for the degree of difference between
these two regression models.

Following Liu, Jamshidian, Zhang, Bretz, and Han (2007a), we now discuss
the construction of a two-sided simultaneous confidence band as a more intu-
itive alternative to the F test. The null hypothesis H is rejected if the y = 0
line does not lie completely inside the confidence band. The advantage of this
confidence band approach over the F test is that it provides information on
the magnitude of the difference between the two regression models, whether
or not H is rejected.

Note that in practice we often have linear regression models that are of
interest only over a restricted region of the covariates. In the systolic blood
pressure example above, it is natural to exclude negative x (= age) values and
perhaps restrict the range for x even further. The part of the confidence band
outside this restricted region is useless for inference. It is therefore unnecessary
to guarantee the 1−α simultaneous coverage probability over the entire range
of the covariate. Furthermore, inferences deduced from the confidence band
outside the restricted region, such as the rejection of H, may not be valid since
the assumed model may be wrong outside the restricted region. This calls for
the construction of a 1 − α simultaneous confidence band over a restricted
region of the covariate. Note that unlike other applications covered in this
book, this is an example of inferences for infinite sets of linear functions.
Because we test for each single x ∈ [a, b], say, whether the two regression
models are the same, we have an infinite number of hypotheses.

The simultaneous confidence band to be constructed is of the form

x>β1 − x>β2 ∈
[
x>β̂1 − x>β̂2 ± u1−αs

√
x>∆x

]
,

where x = (1, x)>, x ∈ [a, b], ∆ = (X>1 X1)−1 + (X>2 X2)−1, and s2 denotes
the pooled variance estimate. The construction of the simultaneous confidence
bands depends on the critical value u1−α. In order to ensure a simultaneous
coverage probability of at least 1 − α, the critical value u1−α is chosen such
that P(tmax ≤ u1−α) = 1− α, where

tmax = sup
x∈[a,b]

|x>[(β̂1 − β1)− (β̂2 − β2)]|
s
√

x>∆x
. (4.9)

Because in the present case the distribution of tmax is not available in closed
form, efficient simulations methods have to be used to calculate the critical
value u1−α. Liu et al. (2007a), extending earlier methods from Liu, Jamshid-
ian, and Zhang (2004), suggested simulating a large number of times, R say,
replicates of the random variable tmax from (4.9) and take the (1 − α)R-th
largest simulated value as the critical values u1−α.

The method of Liu et al. (2007a) is rather complex and requires special soft-
ware implementations. Here, we approximate the critical value u1−α by dis-
cretizing the covariate region [a, b]. That is, instead of considering the supre-
mum over the continuous interval [a, b] in (4.9), we suggest considering the
maximum over the equally spaced values a = x1 < x2 < . . . < xk = b; see
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also Westfall et al. (1999) for a related approach to construct simultaneous
confidence bands for a single linear regression model. The resulting critical
value should be very close to the correct one when k is large.

The advantage of this approach is that one can use the multcomp package
for the necessary calculations. Suppose we fit linear regression models for both
gender with the lm function to the sbp data from Kleinbaum et al. (1998)

R> data("sbp", package = "multcomp")
R> sbp.lm <- lm(sbp ~ gender * age, data = sbp)
R> coef(sbp.lm)

(Intercept) genderfemale age
110.0385 -12.9614 0.9614

genderfemale:age
-0.0120

We then define a grid for the covariate region, thereby defining the linear
functions, by calling

R> age <- seq(from = 17, to = 47, by = 1)
R> K <- cbind(0, 1, 0, age)
R> rownames(K) <- paste("age", age, sep = "")

Finally, we call the glht function and obtain an approximate 99% simultane-
ous confidence band with

R> sbp.mc <- glht(sbp.lm, linfct = K)
R> sbp.ci <- confint(sbp.mc, level = 0.99)

Note that the resulting critical value is

R> attr(sbp.ci$confint, "calpha")

[1] 2.97

which is very close to the value u1−α = 2.969 obtained by Liu et al. (2007a)
based on R = 1, 000, 000 simulations using their sophisticated method. The
resulting confidence band can be plotted using

R> plot(age, coef(sbp.mc), type = "l", ylim = c(-30, 2))
R> lines(age, sbp.ci$confint[,"upr"])
R> lines(age, sbp.ci$confint[,"lwr"])
R> abline(h = 0, lty = 2)

It follows from Figure 4.12 that H is rejected (at α = 0.01) because the y = 0
line is not included in the band for any 20 ≤ x ≤ 47. Furthermore, one can
infer from the band that females tend to have significantly lower blood pressure
than males between the ages of 20 and 47, because the upper curve of the band
lies below the zero line for 20 ≤ x ≤ 47. This inference cannot be made from
the F test, because it does not provide information beyond whether or not
two regression models are the same. This illustrates the advantage of using a
simultaneous confidence band instead of the F test.
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Figure 4.12 Simultaneous confidence band for the difference of two linear regres-
sion models over the observed range 17 ≤ age ≤ 47 for the sbp data
(α = 0.01).

We conclude this example by noting that the approximation methods pre-
sented here can be extended easily using multcomp to accommodate more
than one covariate, construct one-sided simultaneous confidence bands, and
derive simultaneous confidence bands for other types of applications, such as
a single linear regression model. We refer to Liu (2010) for details on exact
simultaneous inference in regression models.

4.6 Multiple comparisons under heteroscedasticity

Various studies have linked alcohol dependence phenotypes to chromosome
4. One candidate gene is NACP (non-amyloid component of plaques), cod-
ing for alpha synuclein. Bönsch, Lederer, Reulbach, Hothorn, Kornhuber, and
Bleich (2005) found longer alleles of NACP -REP1 in alcohol-dependent pa-
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tients compared with healthy volunteers. They reported that allele lengths
show some association with the expression level alpha synuclein mRNA in
alcohol-dependent subjects (see Figure 4.13). Allele length is measured as a
summary score from additive dinucleotide repeat length and categorized into
three groups: short (0−4, n = 24 subjects), medium (5−9, n = 58), and long
(10− 12, n = 15). Here, we are interested in comparing the mean expression
level of alpha synuclein mRNA in the three groups of subjects defined by allele
length.

To start with, we load the dataset,

R> data("alpha", package = "coin")

short med long
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Figure 4.13 Distribution of expression levels for alpha synuclein mRNA in three
groups defined by the NACP-REP1 allele lengths.

fit a simple one-way ANOVA model to the data with the aov function

R> alpha.aov <- aov(elevel ~ alength, data = alpha)
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and apply the (single-step) Tukey test using the glht function in multcomp

R> alpha.mc <- glht(alpha.aov, linfct = mcp(alength = "Tukey"))

We therefore let the contrast matrix, which defines the experimental questions
of interest, contain all pairwise differences between the three groups and use
the mcp(alength = "Tukey") option for the linfct argument; see Section 4.2
for a detailed description of the Tukey test.

As explained in Section 3.3.1, the default in R to fit ANOVA and regression
models is using a suitable reparametrization of the parameter vector based
on the so-called treatment contrasts. The first group is treated as a control
group, with which the other groups are compared. Accordingly, the contrast
matrix accounting for the reparametrization is given by

R> alpha.mc$linfct

(Intercept) alengthmed alengthlong
med - short 0 1 0
long - short 0 0 1
long - med 0 -1 1
attr(,"type")
[1] "Tukey"

With the framework of model (3.1) we obtain all pairwise comparisons of the
mean expression levels through 0 1 0

0 0 1
0 −1 1

 β0

β2 − β1

β3 − β1

 =

 β2 − β1

β3 − β1

β3 − β2

 ,

where β0 denotes the intercept and βi denotes the mean effect of group i =
1, 2, 3.

The alpha.mc object also contains information about the estimated linear
functions of interest and the associated covariance matrix. These quantities
can be retrieved with the coef and vcov methods:

R> coef(alpha.mc)

med - short long - short long - med
0.434 1.189 0.755

R> vcov(alpha.mc)

med - short long - short long - med
med - short 0.1472 0.104 -0.0431
long - short 0.1041 0.271 0.1666
long - med -0.0431 0.167 0.2096

The summary and confint methods can be used to compute the summary
statistics, including adjusted p-values and simultaneous confidence intervals,

R> confint(alpha.mc)
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Simultaneous Confidence Intervals

Multiple Comparisons of Means: Tukey Contrasts

Fit: aov(formula = elevel ~ alength, data = alpha)

Quantile = 2.37
95% family-wise confidence level

Linear Hypotheses:
Estimate lwr upr

med - short == 0 0.4342 -0.4758 1.3441
long - short == 0 1.1888 -0.0452 2.4227
long - med == 0 0.7546 -0.3314 1.8406

R> summary(alpha.mc)

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts

Fit: aov(formula = elevel ~ alength, data = alpha)

Linear Hypotheses:
Estimate Std. Error t value Pr(>|t|)

med - short == 0 0.434 0.384 1.13 0.492
long - short == 0 1.189 0.520 2.28 0.061 .
long - med == 0 0.755 0.458 1.65 0.227
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Adjusted p values reported -- single-step method)

From this output we conclude that there is no significant difference between
any combination of the three allele lengths.

Looking at Figure 4.13, however, the variance homogeneity assumption is
questionable and one might challenge the validity of these results. One may
argue that a sandwich estimate is more appropriate in this situation. Based on
the results from Section 3.2, we use the sandwich function from the sandwich
package (Zeileis 2006), which provides a heteroscedasticity-consistent estimate
of the covariance matrix. The vcov argument of glht can be used to specify
the alternative estimate,
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R> alpha.mc2 <- glht(alpha.aov, linfct = mcp(alength = "Tukey"),
+ vcov = sandwich)
R> summary(alpha.mc2)

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts

Fit: aov(formula = elevel ~ alength, data = alpha)

Linear Hypotheses:
Estimate Std. Error t value Pr(>|t|)

med - short == 0 0.434 0.424 1.02 0.559
long - short == 0 1.189 0.443 2.68 0.023 *
long - med == 0 0.755 0.318 2.37 0.050 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Adjusted p values reported -- single-step method)

Now, having applied the sandwich estimate, the group with long allele lengths
is significantly different from the other two groups at the 5% significance
level. This result matches previously published study results based on non-
parametric analyses. A comparison of the simultaneous confidence intervals
based on the ordinary estimate of the covariance matrix and the sandwich
estimate is given in Figure 4.14.

4.7 Multiple comparisons in logistic regression models

Salib and Hillier (1997) reported the results of a case-control study to in-
vestigate Alzheimer’s disease and smoking behavior of 198 female and male
Alzheimer patients and 164 controls. The Alzheimer data shown in Table 4.4
have been reconstructed from Table 4 in Salib and Hillier (1997) and are
depicted in Figure 4.15; see also Hothorn, Hornik, van de Wiel, and Zeileis
(2006). Originally, the authors were interested in assessing whether there is
any association between smoking and Alzheimer’s diseases (or other types
of dementia). After analyzing the study data, they concluded that cigarette
smoking is less frequent in men with Alzheimer’s disease. In this section we
describe how a potential association can be investigated in subgroup analyses
using suitable multiple comparison procedures.

In what follows below we consider a logistic regression model with the two
factors gender (male and female) and smoking. Smoking habit was classified
into four levels, depending on daily cigarette consumption: no smoking, less
than 10, between 10 and 20, and more than 20 cigarettes per day. The response
is a binary variable describing the diagnosis of the patient (either suffering
or not from Alzheimer’s disease). Using the glm function, we fit a logistic
regression model that includes both main effects and an interaction effect of
smoking and gender,
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Figure 4.14 Simultaneous confidence intervals based on the ordinary estimate of
the covariance matrix (top) and a sandwich estimate (bottom).

R> data("alzheimer", package = "coin")
R> y <- factor(alzheimer$disease == "Alzheimer",
+ labels = c("other", "Alzheimer"))
R> alzheimer.glm <- glm(y ~ smoking * gender,
+ data = alzheimer, family = binomial())

and use the summary method associated with the glht function to get a de-
tailed output:

R> summary(alzheimer.glm)

Call:
glm(formula = y ~ smoking * gender, family = binomial(),

data = alzheimer)

Deviance Residuals:
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No. of cigarettes daily
None <10 10–20 >20

Female
Alzheimer 91 7 15 21
Other dementias 55 7 16 9
Other diagnoses 80 3 25 9

Male
Alzheimer 35 8 15 6
Other dementias 24 1 17 35
Other diagnoses 24 2 22 11

Table 4.4 Summary of the alzheimer data.

Min 1Q Median 3Q Max
-1.61 -1.02 -0.79 1.31 2.08

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.3944 0.1356 -2.91 0.00364
smoking<10 0.0377 0.5111 0.07 0.94114
smoking10-20 -0.6111 0.3308 -1.85 0.06473
smoking>20 0.5486 0.3487 1.57 0.11565
genderMale 0.0786 0.2604 0.30 0.76287
smoking<10:genderMale 1.2589 0.8769 1.44 0.15111
smoking10-20:genderMale -0.0286 0.5012 -0.06 0.95457
smoking>20:genderMale -2.2696 0.5995 -3.79 0.00015

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 707.90 on 537 degrees of freedom
Residual deviance: 673.55 on 530 degrees of freedom
AIC: 689.5

Number of Fisher Scoring iterations: 4

The negative regression coefficient for males who are heavy smokers indi-
cates that Alzheimer’s disease might be less frequent in this group. But the
model remains difficult to interpret based on the coefficients and corresponding
p-values only. Therefore, we compute simultaneous confidence intervals on the
probability scale for the different risk groups. For each factor combination of
gender and smoking, the probability of suffering from Alzheimer’s disease can
be estimated by computing the logit function of the linear predictor from the
alzheimer.glm model fit. Using the predict method for generalized linear
models is a convenient way to compute these probability estimates. Alterna-
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Figure 4.15 Association between smoking behavior and disease status stratified
by gender.

tively, we can set up a matrix C such that, in the notation from Section 3.2,
1

1 + exp(−ϑ̂n)

is the vector of estimated probabilities with simultaneous confidence intervals

 1

1 + exp
(
−
(
ϑ̂n − u1−αdiag(D)1/2

n

)) ; (4.10)

1

1 + exp
(
−
(
ϑ̂n + u1−αdiag(D)1/2

n

))
 .

In our model, C is given by
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R> K

(Icpt) s<10 s10-20 s>20 gMale s<10:gMale
None:Female 1 0 0 0 0 0
<10:Female 1 1 0 0 0 0
10-20:Female 1 0 1 0 0 0
>20:Female 1 0 0 1 0 0
None:Male 1 0 0 0 1 0
<10:Male 1 1 0 0 1 1
10-20:Male 1 0 1 0 1 0
>20:Male 1 0 0 1 1 0

s10-20:gMale s>20:gMale
None:Female 0 0
<10:Female 0 0
10-20:Female 0 0
>20:Female 0 0
None:Male 0 0
<10:Male 0 0
10-20:Male 1 0
>20:Male 0 1

where the rows represent the eight factor combinations of gender and smoking
and the columns match the parameter vector. Recall from Section 3.3.1 that
the default in R to fit ANOVA and regression models is using a suitable re-
parametrization of the parameter vector based on the so-called treatment con-
trasts. In the alzheimer example, the non-smoking female group None:Female
is treated as a common reference group, to which the other groups are com-
pared. For example, to obtain the effect <10:Male of males smoking less
than 10 cigarettes, we need to add the female effect s<10 of smoking less
than 10 cigarettes, the male gender effect gMale and their interaction effect
s<10:gMale. Thus, row 6 in the matrix above has the entries 1 in the associ-
ated columns and 0 otherwise. The other seven rows are interpreted similarly.

Having set up the matrix C this way, we can call

R> alzheimer.ci <- confint(glht(alzheimer.glm, linfct = K))

where

R> attr(alzheimer.ci$confint, "calpha")

[1] 2.73

gives the critical value from the joint asymptotic multivariate normal distribu-
tion. Note, however, that we have eight factor combinations with independent
patients. The test statistics are therefore uncorrelated as long as no covariates
are included in the analysis. The Šidák approach described in Section 2.3.3 is
exact in this situation and the critical value above can also be obtained by
calling

R> qnorm((1-(1-0.05)^(1/8))/2, lower.tail = FALSE)

[1] 2.73
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This example shows that although multcomp always gives correct results, it
can be replaced by more efficient direct approaches in special situations.

Finally, we can compute the simultaneous confidence intervals (4.10) and
plot them with

R> alzheimer.ci$confint <- apply(alzheimer.ci$confint, 2,
+ binomial()$linkinv)
R> plot(alzheimer.ci, main = "", xlim = c(0, 1))

see Figure 4.16. Using this graphical display of the results, it becomes evident
that Alzheimer’s disease is less frequent in men who smoke heavily compared
to all other combinations of the two covariates. This result matches the findings
from Salib and Hillier (1997). Note that these conclusions are drawn while
controlling the familywise error rate in the strong sense.
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Figure 4.16 Simultaneous confidence intervals for the probability of suffering
from Alzheimer’s disease.
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4.8 Multiple comparisons in survival models

The treatment of patients suffering from acute myeloid leukemia (AML) is
determined by a tumor classification scheme which takes various cytogenetic
aberration statuses into account. Bullinger, Döhner, Bair, Fröhlich, Schlenk,
Tibshirani, Döhner, and Pollack (2004) investigated an extended tumor clas-
sification scheme incorporating molecular subgroups of the disease obtained
by gene expression profiling. The analyses reported here are based on clin-
ical data (thus omitting available gene expression data) published online at
www.ncbi.nlm.nih.gov/geo, accession number GSE425. The overall survival
time and censoring indicator as well as the clinical variables age, sex, lactic
dehydrogenase level (LDH), white blood cell count (WBC), and treatment
group are taken from Supplementary Table 1 in Bullinger et al. (2004). In ad-
dition, this table provides two molecular markers, the fmslike tyrosine kinase
3 (FLT3) and the mixed-lineage leukemia (MLL) gene, as well as cytogenetic
information helpful in defining a risk score (low: karyotype t(8;21), t(15;17)
and inv(16); intermediate: normal karyotype and t(9;11); and high: all other
forms). One interesting question focuses on the usefulness of this risk score.

Using the survreg function from the survival package, we fit a Weibull
survival model that includes all above mentioned covariates as well as their
interactions with the patient’s gender. We use the results from Chapter 3
to apply a suitable multiple comparison procedure, which accounts for the
asymptotic correlations between the test statistics. We compare the three
groups low, intermediate, and high using Tukey’s all pairwise comparisons
method described in Section 4.2. The output below indicates a difference when
comparing high to both low and intermediate. The output also shows that
low and intermediate are indistinguishable,

R> library("survival")
R> aml.surv <- survreg(Surv(time, event) ~ Sex +
+ Age + WBC + LDH + FLT3 + risk,
+ data = clinical)
R> summary(glht(aml.surv, linfct = mcp(risk = "Tukey")))

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts

Fit: survreg(formula = Surv(time, event) ~ Sex + Age + WBC +
LDH + FLT3 + risk, data = clinical)

Linear Hypotheses:
Estimate Std. Error z value Pr(>|z|)

intermediate - high == 0 1.110 0.385 2.88 0.0108
low - high == 0 1.477 0.458 3.22 0.0036
low - intermediate == 0 0.367 0.430 0.85 0.6692
(Adjusted p values reported -- single-step method)
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4.9 Multiple comparisons in mixed-effects models

In most parts of Germany, the natural or artificial regeneration of forests is
difficult because of intensive animal browsing. Young trees suffer from brows-
ing damage, mostly by roe and red deer. In order to estimate the browsing
intensity for several tree species, the Bavarian State Ministry of Agriculture
and Forestry conducts a survey every three years. Based on the estimated per-
centage of damaged trees, the ministry makes suggestions for implementing or
modifying deer management programs. The survey takes place in all 756 game
management districts in Bavaria. Here, we focus on the 2006 data of the game
management district number 513 “Hegegemeinschaft Unterer Aischgrund”,

R> data("trees513", package = "multcomp")

The data of 2700 trees include the species and a binary variable indicating
whether or not the tree suffers from damage caused by deer browsing. Fig-
ure 4.17 displays the layout of the field experiment. A pre-specified, equally
spaced grid was laid over the district. Within each of the resulting 36 rect-
angular areas, a 100m transect was identified on which 5 equidistant plots
were determined (that is, a plot after every 25m). At each plot, 15 trees were
observed, resulting in 75 trees for each area, or 2700 trees in total.

...
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. . .c c c c c

c c c c c
c c c c c

c c c c c

Figure 4.17 Layout of the trees513 field experiment. Each open dot denotes a
plot with 15 trees. Further explanations are provided in the text.
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We are interested in the probability estimates and the confidence intervals
for each of six tree species under investigation. We fit a mixed-effects logistic
regression model using the lmer function from the lme4 package (Bates and
Sarkar 2010). We exclude the intercept but include random effects accounting
for the spatial variation of the trees. Thus, we have six fixed parameters, one
for each of the six tree species, and C = diag(6) is the matrix defining our
experimental questions,

R> trees513.lme <- lmer(damage ~ species -1 + (1 | lattice/plot),
+ data = trees513, family = binomial())
R> K <- diag(length(fixef(trees513.lme)))

We first compute simultaneous confidence intervals for the linear functions of
interest and then transform these into the required probabilities,

R> trees513.ci <- confint(glht(trees513.lme, linfct = K))
R> prob <- binomial()$linkinv(trees513.ci$confint)
R> trees513.ci$confint <- 1 - prob
R> trees513.ci$confint[, 2:3] <- trees513.ci$confint[, 3:2]

The results are shown in Figure 4.18. Browsing is less frequent in hardwood. In
particular, small oak trees are at high risk. As a consequence, the ministry has
decided to increase the harvestry of roe deers in the following years. Relatively
small sample sizes caused the large confidence intervals for ash, maple, elm
and lime trees.
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hardwood (191)
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Probability of browsing damage

Figure 4.18 Probability of roe deer browsing damage for six tree species. Sample
sizes are given in brackets.
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CHAPTER 5

Further Topics

In this chapter we review a selection of multiple comparison problems, which
do not quite fit into the framework of Chapters 3 and 4. The selection reflects
a biased choice from a large number of possible topics and was partly driven
by the availability of software implementations in R. In Section 5.1 we discuss
the comparison of means with two-sample multivariate data using resampling-
based methods. In Section 5.2 we review group sequential and adaptive de-
signs, which allow for repeated significance testing while controlling the Type
I error rate. Finally, in Section 5.3 we extend the ideas from Section 4.3 and
describe a hybrid methodology combining multiple comparisons with model-
ing techniques for dose finding experiments. Because the individual sections
in this chapter are not directly linked to previous parts of this book, separate
notation is introduced where needed.

5.1 Resampling-based multiple comparison procedures

Resampling-based multiple comparison procedures have been investigated sys-
tematically since Westfall and Young (1993) and Troendle (1995); see also
Dudoit and van der Laan (2008) for a description of such multiple comparison
procedures relevant to genomics. In this section we discuss in detail the com-
parison of means with two-sample multivariate data using resampling-based
methods. The general case of multi-sample multivariate data is not considered
here and we refer to Westfall and Troendle (2008) for a recent discussion.

In Section 5.1.1, we describe the technical details underlying permutation-
based multiple test procedures for two-sample multivariate data. To illustrate
the methodology, we analyze two datasets in Section 5.1.2 using the coin
package (Hothorn, Hornik, van de Wiel, and Zeileis 2010b), which allows us
to use R for permutation multiple testing. In Section 5.1.3 we briefly review
related bootstrap-based multiple test procedures.

5.1.1 Permutation methods

General considerations

With the closure principle from Section 2.2.3 in place, permutation-based mul-
tiple test procedures are often quite simple. All that is required is a permu-
tation test for every intersection null hypothesis. Advantages of permutation
tests are

127
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(i) the resulting multiple test inference procedure is exact, despite non-
normal characteristics of the data, and despite unknown covariance struc-
tures;

(ii) the resulting multiple comparison procedures incorporate correlations,
like the max-t-based methods, to become less conservative than typical
Bonferroni-based procedures;

(iii) in cases with sparse data, permutation-based methods offer quantum im-
provements over standard methods, in the sense that the effective number
of tests m′ can be much less than the actual number of tests m.

Coupled with (i) and (ii), the final point (iii) suggests a major benefit. As-
sume, for example, that m = 30 tests are performed for a specific analysis.
Applying the simple-minded Bonferroni test leads to a critical value at level
0.05/30 = 0.0017. But using permutation tests the effective number of tests
can be substantially lower. If the data are sparse it might be as small as
m′ = 4 (or even smaller, as seen in the example from Table 5.1). This gives
a Bonferroni critical value at level 0.05/4 = 0.0125, thus leading to consider-
ably higher power. A further benefit is that permutation-based methods use
the correlation structure, so that the actual critical value will be higher still
than the Bonferroni-based 0.05/4 = 0.0125, as high as 0.05 itself (that is, no
adjustment at all), depending on the nature of the dependence structure.

To understand the key concepts, it helps to go through an example, step-
by-step. The dataset displayed in Table 5.1 is a mock-up adverse event (side
effects) dataset from a safety analysis for a new drug, with three possible
events E1, E2, and E3. There are four total adverse events in the treatment
group for E1, and none in the control group. There is only one total adverse
event observed for E2 and E3.

Group E1 E2 E3

Trt 1 1 1
Trt 1 0 0
Trt 1 0 0
Trt 1 0 0
Ctrl 0 0 0
Ctrl 0 0 0
Ctrl 0 0 0

Table 5.1 Mock-up dataset from a safety analysis for a new drug. The entry “1”
denotes an observed adverse event; otherwise “0” is used.

Typically for two-sample binary data permutation tests, the test statistic is
the total number of occurrences in the treatment group, and the one-sided p-
value is the proportion of permutations yielding a total greater or equal to the
observed total. This is known as Fisher’s exact test. In the example dataset

© 2011 by Taylor and Francis Group, LLC



RESAMPLING-BASED MULTIPLE COMPARISON PROCEDURES 129

from Table 5.1, there are 7! possible permutations of the observations, but
many of these are redundant. For example, the permutation that switches
observations 1 and 2 (i.e., the first two rows), but leaves the remaining ob-
servations unchanged is redundant with the original dataset, since the same
observations are in the treatment group as before, and the test statistic cannot
change. There are 7!/(4!3!) = 35 non-redundant permutations of the obser-
vations. For E1, only one of these permutations yields 4 occurrences in the
treated group, hence the Fisher exact upper-tailed p-value is 1/35 = 0.0286.
For E2 and E3, the single observed occurrence can take place in the treatment
group for 4/7 = 0.5714 of the permutations, hence the upper tailed p-values
for E2 and E3 are 0.5714.

To implement the closed test procedure to judge the significance of the tests
when the familywise error rate is controlled, we need to specify suitable tests
for all intersection hypotheses. Figure 5.1 shows all the intersection hypotheses
schematically. The null hypotheses are

HI : FTI = FCI , I ⊆ {1, 2, 3},

which states that the joint distributions FTI and FCI of the measurements in
the set I are identical for treated and control groups, respectively. Each of
these hypotheses can be tested “exactly” by

(i) selecting a statistic tI to test HI ;
(ii) enumerating the permutations of the treatment/control labels, and find-

ing the value of t∗I for each permutation;
(iii) rejecting HI at level α if the proportion of permutation samples yielding

t∗I ≥ tI is less than or equal to α.

The reason that “exactly” is used in quotes is that the familywise error rate
may be strictly less than α due to discreteness of the permutation distribu-
tion of tI . However, the familywise error rate is guaranteed to be no more
than α. Another reason for quotes around the term “exactly” is that with a
large sample size, typically the permutation distribution must be randomly
sampled rather than enumerated completely, and in such cases the method is
not “exact”, even though the simulation error can be reduced with sufficient
sampling. With these caveats, the method controls the familywise error rate
in the strong sense, with no approximation, provided that the true null state
of nature is one of the states shown in the closure tree of Figure 5.1.

A comment is in order concerning the statement, “provided that the true
null state of nature is one of the states shown in the closure tree.” This state-
ment is in fact an assumption needed for permutation tests based on the
closure principle. It is possible, for example, that the marginal distributions
are equal but the joint distributions are not, and the methods discussed in
this chapter do not control the familywise error rate under this scenario. On
the other hand, if the joint distributions are not equal for some subsets, then
it is a fact that the treatment differs from the control, so the determination
of some significant difference in that case is correct, even though some spe-
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H1 : FT1 = FC1 H2 : FT2 = FC2 H3 : FT3 = FC3
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Figure 5.1 Schematic diagram of the closed hypotheses set for the adverse event
data.

cific determinations regarding marginal significances might be erroneous. An
example where this assumption fails is where the treatment has no effect on
the marginal rates of occurrences of adverse events E1 and E2, but does affect
the joint distribution of the occurrences. This assumption is called the joint
exchangeability assumption by Westfall and Troendle (2008).

In the following we continue the discussion in terms of min-p tests instead of
the max-t tests introduced in Equation (2.1) and used throughout this book.
The results are equivalent in standard parametric applications when one takes
ti = F−1

i (1−pi), where Fi denotes the distribution of the test statistic ti. The
explanation that follows differs slightly in that permutation-based p-values are
used.

In the adverse events example above, the hypothesis H123 : FT123 = FC123 is
tested using the min-p statistic t123 = min {p1, p2, p3}. Note that for each
permutation of the dataset, different p-values are obtained; call p∗i the p-
value for a random permutation. The global p-value for testing H123 is then
the proportion of the 7!/(4!3!) = 35 permutations of the dataset (where the
rows are kept intact and only the treatment/control labels are permuted) for
which min {p∗1, p∗2, p∗3} is less than or equal to min{p1, p2, p3}. In this example
min {p1, p2, p3} = min{0.0286, 0.5714, 0.5714} = 0.0286.

Here is where the advantage of permutation testing for sparse data becomes
evident. Notice that the possible p-values p∗1 for E1 are either 1.0000, 0.8857,
0.3714, or 0.0286, corresponding to 1, 2, 3, or 4 occurrences in the treatment
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group, respectively. For E2 and E3, the possible p∗i are either 1.0000 or 0.5714,
corresponding to 0 or 1 occurrences in the treatment group, respectively. Thus,
it is impossible for p∗i , i = 2, 3, to be smaller than 0.0286, hence the p-value
for H123, p123 = P(min {p∗1, p∗2, p∗3} ≤ 0.0286) = P(p∗1 ≤ 0.0286) = 0.0286.
Similarly, p12 = 0.0286, p13 = 0.0286, and of course p1 = 0.0286. Hence, the
exact multiplicity-adjusted p-value for testing E1 is identical to the unadjusted
p-value, due to the sparseness of the data in the E2 and E3 variables.

Even when the data are not sparse, there are still benefits from permutation
tests. To illustrate, consider the 2 × 2 contingency tables in Table 5.2 that
show the pattern of occurrences for two variables E1 and E2. The Fisher exact
upper-tailed p-value for E1 is p1 = 0.0261, and that for E2 is p2 = 0.0790.
The standard Holm and Hochberg methods fail to find significances at level
α = 0.05, with adjusted p-values q1 = 0.0523 and q2 = 0.0790.

E1 E2

Event Non-Event Total Event Non-Event Total

Trt 7 43 50 8 43 51
Ctrl 1 51 52 3 52 55
Total 8 94 102 11 95 106

Table 5.2 Two contingency tables for two types of adverse events E1 (left) and
E2 (right). Differing sample sizes are due to missing values.

However, using permutation tests within the closure paradigm we obtain
q1 ≤ 0.0451 and q2 = 0.0790. To see why, examine the graphs in Figure 5.2 of
the distribution of the possible number of treatment occurrences of E1 and E2,
based on the hypergeometric distributionsH(x, 50, 8, 102) andH(x, 51, 11, 106)
when the total number of events is 8 and 11, respectively. From these distri-
butions, the tail probabilities give the possible Fisher upper-tailed p-values for
each of the two tests; see Table 5.3. The p-value for H12 is P(min {p∗1, p∗2} ≤
0.0261). But

P(min{p∗1, p∗2} ≤ 0.0261) ≤ P(p∗1 ≤ 0.0261) + P(p∗2 ≤ 0.0261)
= 0.0261 + 0.0190
= 0.0451,

where, from Table 5.2, 0.0190 is the probability that p∗2 is less than or equal to
0.0261, and where the inequality in the first line follows from the Bonferroni
inequality (2.3). Thus, the adjusted p-value for H1 is max {P(min{p∗1, p∗2} ≤
0.0261),P(p∗1 ≤ 0.0261)} ≤ 0.0451. Permutation tests take advantage of dis-
creteness of the permutation distributions to reduce the p-values and hence
improve power.
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Figure 5.2 Histograms of the hypergeometric distributions H(x, 50, 8, 102) and
H(x, 51, 11, 106) for the adverse event data in Table 5.2.

The permutation multiple test algorithm

Recently, there is great interest in high-dimensional multiple testing, where
the number of variables far exceeds the sample size. Gene expression is a
prototype application, but the applications are much broader. Permutation-
based methods have become popular for“-omics”because they (i) require fewer
assumptions (such as normality) about the data-generating process, thereby
yielding procedures that are more robust, and (ii) utilize data-based distribu-
tional characteristics, such as discreteness and correlation structure, to make
tests more powerful.

It might seem from Figure 5.1, which shows the closure tree for three vari-
ables, that the closure method would become difficult to compute for large m,
since the number of nodes in the tree is in general 2m − 1. However, it turns
out that the method scales up, computationally, to very large m, provided one
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E1 E2

Trt Events p-value Trt Events p-value

0 1.00 0 1.00
1 0.9966 1 0.9996
2 0.9661 2 0.9942
3 0.8523 3 0.9650
4 0.6201 4 0.8738
5 0.3357 5 0.6914
6 0.1222 6 0.4465
7 0.0261 7 0.2211
8 0.0025 8 0.0790
- 9 0.0190
- 10 0.0027
- 11 0.0002

Table 5.3 Upper-tailed p-values for the adverse event data in Table 5.2.

can make two simplifying assumptions that drastically reduce the computing
burden from O(2m) to O(m). These concepts are described here briefly, but
see Westfall and Troendle (2008) for further details.

The first simplifying assumption, one made throughout this book, is that
each intersection hypothesisHI is tested using either a min-p statistic mini∈I pi
or a max-t statistic maxi∈I ti; see also Equation (2.1). The second is the “sub-
set pivotality” assumption coined by Westfall and Young (1993), which states
that the distribution of maxi∈I ti is identical under HI and H = HM for all
I ⊆M = {1, . . . ,m}. If the first assumption is met, one need only test m hy-
potheses corresponding to the ordered ti rather than all 2m − 1 intersections.
In addition, if the second assumption is met, permutation resampling can be
done simultaneously for all m tests using the global null hypothesis H, rather
than perform permutation resampling separately for each of the m intersection
hypotheses corresponding to the ordered test statistics. The subset pivotality
assumption fails notably when testing pairwise comparisons of distributions
in the case of multiple treatment groups. In this case, use of the global permu-
tation distribution, which states exhangeability among all treatment groups,
cannot be used to test for exchangeability among two of the treatment groups,
as differences in variability among the treatment groups can cause bias in the
statistical tests. There are several ways that one might perform permutation
tests correctly in this case; see Petrondas and Gabriel (1983) for one solution.

The subset pivotality assumption is mainly used to simplify computations
in the closed test algorithm. Along with the use of max-t statistics, it provides
a shortcut procedure that allows the researcher to test the m hypotheses
corresponding to the ordered p-values, rather than all 2m − 1 intersection hy-
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potheses. If it is possible to test all 2m−1 hypotheses using valid permutation
tests, then subset pivotality is not needed for multiple testing using permu-
tation tests. Note that shortcut procedures can also be derived under other
assumptions than subset pivotality; see Calian, Li, and Hsu (2008) for a recent
discussion.

Suppose the observed test statistics are tobs
1 ≥ . . . ≥ tobs

m , corresponding to
hypotheses H1, . . . ,Hm, and that larger tobs

i suggest alternative hypotheses.
Suppose a p-value for testing HI using the statistic maxi∈I ti is available.
Then,

pI = P

(
max
i∈I

ti ≥ max
i∈I

tobs
i

∣∣∣∣HI

)
,

and HI is rejected at unadjusted level α if pI ≤ α. The closure method along
with the assumptions of use of max-t tests and of subset pivotality give the fol-
lowing algorithm for rejecting sequentially the ordered hypotheses H1, H2, . . .

Step 1: By closure,

reject H1 if max
I : I⊇{1}

P

(
max
i∈I

ti ≥ max
i∈I

tobs
i

∣∣∣∣HI

)
≤ α.

But if I ⊇ {1}, then maxi∈I tobs
i = tobs

1 and the rule is

reject H1 if max
I : I⊇{1}

P

(
max
i∈I

ti ≥ tobs
1

∣∣∣∣HI

)
≤ α.

Using subset pivotality, the rule becomes

reject H1 if max
I : I⊇{1}

P

(
max
i∈I

ti ≥ tobs
1

∣∣∣∣H) ≤ α.
Use of the max-t statistic implies

P

(
max
i∈I

ti ≥ tobs
1

∣∣∣∣H) ≤ P (max
i∈J

ti ≥ tobs
1

∣∣∣∣H) for I ⊆ J.

Hence, by subset pivotality and by use of the max-t statistic, the
rule by which we reject H1 simplifies to

reject H1 if P
(

max
i∈M

ti ≥ tobs
1

∣∣∣∣H) ≤ α.
Step 2: Again by closure and subset pivotality,

reject H2 if max
I : I⊇{2}

P

(
max
i∈I

ti ≥ max
i∈I

tobs
i

∣∣∣∣H) ≤ α.
If I ⊇ {1}, then maxi∈I tobs

i = tobs
1 ; else maxi∈I tobs

i = tobs
2 . Parti-

tioning the set {I : I ⊇ {2}} into two sets,

S1 = {I : I ⊇ {1, 2}} and S2 = {I : I ⊇ {2}, I + {1}},
we require

P

(
max
i∈I

ti ≥ tobs
1

∣∣∣∣H) ≤ α for all I ∈ S1
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and

P

(
max
i∈I

ti ≥ tobs
2

∣∣∣∣H) ≤ α for all I ∈ S2.

Since we are using the max-t statistic, these conditions allow us to
reject H2 if

P

(
max
i∈M

ti ≥ tobs
1

∣∣∣∣H) ≤ α
and

P

(
max

i∈{2,...,m}
ti ≥ tobs

2

∣∣∣∣H) ≤ α.
...

Step j: Continuing in this fashion, we reject Hj if

P

(
max
i∈M

ti ≥ tobs
1

∣∣∣∣H) ≤ α,
and

P

(
max

i∈{2,...,m}
ti ≥ tobs

2

∣∣∣∣H) ≤ α,
. . . ,

and

P

(
max

i∈{j,...,m}
ti ≥ tobs

j

∣∣∣∣H) ≤ α.
...

Note that at step j in the algorithm we can equivalently reject Hj , if
maxi≤j pi...m ≤ α. Hence, the rejection rule reduces to

reject Hj if qj ≤ α,

where qj = maxi≤j pi...m denotes the adjusted p-value.
One need not use resampling at all to apply the algorithm above. It only

becomes a resampling-based procedure if one uses resampling to obtain the
probabilities P

(
maxi∈{j,...,m} ti ≥ tobs

j

∣∣H). In Section 4.1.2 we presented a
similar algorithm, where the necessary probabilities are computed from the
multivariate normal or t distribution.

In addition to subset pivotality and use of max-t statistics, we also assumed
that there are no logical constraints among the hypotheses (recall Section 2.1.2
for the definition of the restricted combination property). This assumption is
needed to assert that the algorithm is identical to closed testing using max-t
statistics. If there are logical constraints, power can be improved by restrict-
ing attention only to admissible subsets I. In this case, shortcut procedures
are more difficult to derive; see Brannath and Bretz (2010) for details. The
algorithm above can still be used for logically constrained hypotheses, though,
despite not being fully closed, as it provides a conservative procedure relative
to the fully closed algorithm.
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Comments on subset pivotality

Subset pivotality is most problematic in cases where there are multiple (i.e.,
m > 2) groups, especially when there are drastic differences in variability be-
tween the groups. Specifically, suppose the data are univariate, in three groups
i = 1, 2, 3. Assume further that we are interested in the pairwise equality hy-
potheses Hij : Fi = Fj , tested using permutation distributions of test statistics
tij = x̄i − x̄j . Subset pivotality requires, for example, that the permutation
distribution of x̄1 − x̄2 is identical, no matter whether one permutes the data
between the groups 1 and 2 alone, excluding group 3, or by permuting the
entire dataset. In the latter case, data from all three groups is involved, in the
former case only data from groups 1 and 2 is involved. When data from group
3 differ dramatically, particularly in the variance, the global permutation dis-
tribution can be far different from the local distribution, and provide very
bad results. The problem is nearly identical to the use of a pooled variance
in linear model contrasts when the variances are quite different.

An example similar to one found in Westfall et al. (1999) illustrates the
problem with count data. Suppose there are four treatment groups A, B, C,
and D with the outcomes summarized in Table 5.4. The goal is to compare
the three treatment groups B, C, and D with A, using permutation tests.
The unadjusted upper-tailed Fisher exact p-values are pBA = 0.9041, pCA =
0.0297, and pDA = 0.1811. If one uses the algorithm above, blindly, without
considering the subset pivotality assumption, then the adjusted p-value for
comparing C with A would be qCA = P (mini pi ≤ 0.0297|HABCD) = 0.0049,
which is smaller than the unadjusted p-value. The problem is caused by the
large amount of data in the B group with small variance; pooling this data
with all other groups and permuting similarly drives down the variability,
inappropriately, for the individual comparisons.

Group Events Sample Size

A 1 50
B 5 500
C 7 50
D 4 50

Table 5.4 Mock-up dataset with four treatment groups.

There are various fixes to the problem. One is to fit a binomial model
allowing different variances for the groups, and proceeding with the multiple
comparisons in approximate (asymptotic) fashion as described in Section 3.2.
If exact inference is desired, it appears necessary to use the full closure. For
example, to compare C with A, one needs exact p-values for HAC, which
is pAC = 0.0297, as well as the intersection hypotheses HABC, HACD, and
HABCD. The p-value for HABCD is shown above as pABCD = 0.0049. Delet-
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ing group B and D successively and recomputing, the remaining intersection
p-values are pACD = 0.0296 and pABC = 0.0012. Hence, the correct, exact ad-
justed p-value is qCA = max{0.0297, 0.0296, 0.0012, 0.0049} = 0.0297. Once
again, we see the fortunate case where the adjusted and unadjusted p-values
do not differ, when exact permutation-based tests are used.

5.1.2 Using R for permutation multiple testing

R software for resampling-based multiple testing includes the multtest pack-
age (Pollard, Gilbert, Ge, Taylor, and Dudoit 2010); see Dudoit and van der
Laan (2008) for mathematical details. Here, we analyze adverse event and
multiple endpoint data with the coin package in R, which uses slightly dif-
ferent test statistics than disucussed in Section 5.1.1. Suppose that we are
given observations (yi,xi), where yi denotes the individiual, possibly multi-
variate outcome and xi denotes a binary treatment indicator, i = 1, . . . , n.
The multivariate linear test statistic

t = vec

(
n∑
i=1

I(xi = 1)y>i

)
is a vector containing the sum over all observations within each treatment
group. Strasser and Weber (1999) derived the conditional expectation µ and
covariance matrix Σ under the null hypothesis of independence between y
and x; see also Hothorn et al. (2006). Thus, we can use the standardized test
statistic

t− µ
diag(Σ)1/2

and therefore obtain one statistic for each of the multiple outcome variables
in yi. For binary responses, this corresponds (up to a factor (n− 1)/n) to the
root of the χ2 test statistic in a two-by-two contingency table. For continuous
responses, this is roughly equivalent to a t statistic.

Adverse events data

Testing adverse events in clinical trials is a common application. The dataset
provided by Westfall et al. (1999, p. 242) contains binary indicators of 28
adverse events, denoted as E1 through E28. In R, we can set up a formula
with the adverse event data on the left hand side and the treatment indicator
on the right hand side:

R> data("adevent", package = "multcomp")
R> library("coin")
R> fm <- as.formula(paste(
+ paste("E", 1:28, sep = "", collapse = "+"),
+ "~ group"))
R> fm
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E1 + E2 + E3 + E4 + E5 + E6 + E7 + E8 + E9 + E10 + E11 + E12 +
E13 + E14 + E15 + E16 + E17 + E18 + E19 + E20 + E21 + E22 +
E23 + E24 + E25 + E26 + E27 + E28 ~ group

The permutation distribution of the data (for 10, 000 random permutations)
is evaluated using the independence_test function. Its output provides the
necessary information to inspect the standardized statistics and the corre-
sponding adjusted p-values:

R> it <- independence_test(fm, data = adevent,
+ distribution = approximate(B = 10000))
R> statistic(it, "standardized")

E1.no event E2.no event E3.no event E4.no event E5.no event
A 3.31 -0.256 0.311 -0.342 1.16

E6.no event E7.no event E8.no event E9.no event E10.no event
A 2.02 -0.453 2.26 -1.01 1.42

E11.no event E12.no event E13.no event E14.no event
A -1 -1.42 -1 -1.42

E15.no event E16.no event E17.no event E18.no event
A 1.42 0 -1 -1

E19.no event E20.no event E21.no event E22.no event
A -1.42 1 0 -1

E23.no event E24.no event E25.no event E26.no event
A 1 -1 -1 -1

E27.no event E28.no event
A -1 0.318

R> pvalue(it, method = "single-step")

E1.no event E2.no event E3.no event E4.no event E5.no event
A 0.003 1 1 1 1

E6.no event E7.no event E8.no event E9.no event E10.no event
A 0.276 1 0.113 1 0.708

E11.no event E12.no event E13.no event E14.no event
A 1 0.708 1 0.708

E15.no event E16.no event E17.no event E18.no event
A 0.708 1 1 1

E19.no event E20.no event E21.no event E22.no event
A 0.708 1 1 1

E23.no event E24.no event E25.no event E26.no event
A 1 1 1 1

E27.no event E28.no event
A 1 1

The null hypothesis of equal distribution of the events in both treatment arms
can be rejected only for E1. The above analysis is the single-step test procedure
implemented in the coin package. Step-down testing can be accomplished by
successively excluding adverse events according to the size of the test statistics,
and repeating the analysis.
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Analysis of multiple endpoints

A dataset described in Westfall, Krishen, and Young (1998) contains measure-
ments of patients in treatment (active drug) and control (placebo) groups, with
four outcome variables (i.e., endpoints) labeled E1, E2, E3, and E4. Table 5.5
displays the summary statistics.

Sample Size Mean Standard
deviation

Control
E1 54 2.4444 4.3683
E2 54 3.2222 1.4623
E3 54 2.7778 1.6673
E4 54 3.2593 1.6390

Treatment
E1 57 0.9298 1.3740
E2 57 2.5439 1.3372
E3 57 2.4035 1.3740
E4 57 2.5088 1.6810

Table 5.5 Summary results of a study with two treatments and four outcome
variables.

Using the coin package, we again apply the independence_test function to
investigate deviations from the null hypotheses that each response variables’
distribution is the same in both arms. Here, the permutation distribution of
all four test statistics are approximated by 50.000 random permutations of
the data:

R> data("mtept", package = "multcomp")
R> it <- independence_test(E1 + E2 + E3 + E4 ~ treatment,
+ data = mtept, distribution = approximate(B = 50000))
R> statistic(it, "standardized")

E1 E2 E3 E4
Drug -2.49 -2.43 -1.29 2.33

R> pvalue(it, method = "single-step")

E1 E2 E3 E4
Drug 0.0343 0.0409 0.489 0.0525

Differences between treatment groups can be postulated for all except the
third outcome variable.
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5.1.3 Bootstrap testing – Brief overview

Bootstrap testing is related to permutation testing. The simplest comparison
is that bootstrap sampling is done with replacement, while permutation sam-
pling is done without replacement, but there is more to it than that. Briefly,
one advantage of bootstrap testing is that it can be performed using a wider
class of models, for example, those with covariates, while permutation testing
applies to a more rigid class of models. A disadvantage of bootstrap testing
is that it is always inexact and approximate, especially for a popular separate
sample type of bootstrap. Troendle, Korn, and McShane (2004) demonstrated
spectacular failure of the separate sample bootstrap for genomics applications
compared to the more reasonable approximations of the pooled bootstrap and
the exactness of the permutational approach. For typical linear models ap-
plications involving pairwise comparisons, the parametric approximation and
bootstrap approximation give reasonably similar results, despite nonnormal-
ity (Bretz and Hothorn 2003). A case where bootstrapping is necessary for
multiple comparisons, works well, and where other methods are not available
is given by Westfall and Young (1993, Section 2.5.1).

5.2 Methods for group sequential and adaptive designs

In standard experiments, the sample size is fixed and calculated based on the
assumed effect sizes, variability, etc. to achieve a designated power level while
controlling the Type I error rate. In sequential sampling schemes, the sample
size is not fixed, but a random variable. Interim analyses are performed during
an ongoing experiment to make conclusions before the end of the experiment or
allow one to adjust for incorrect assumptions at the design stage. For example,
when interim results suggest a change in sample sizes for the subsequent stages,
sample size reestimation methods become an important tool (Chuang-Stein,
Anderson, Gallo, and Collins 2006). However, repeatedly looking at the data
with the possibility for interim decision making may inflate the overall Type
I error rate and appropriate analysis methods are required to guarantee its
strong control at a pre-specified significance level α.

Group sequential and adaptive designs are particularly widely applied in
clinical trials because of ethical and financial reasons. Patients should not be
treated with inefficacious treatments and interim analyses offer the possibility
to stop a trial early for futility (i.e., lack of efficacy). On the other hand,
efficacious and safe treatments should be released quickly to the market so that
patients in need can benefit from the potentially ground-breaking therapy. In
Section 5.2.1 we describe the basic theory of group sequential designs and
illustrate the methodology with a numerical example using the gsDesign
package in R (Anderson 2010). In Section 5.2.2 we briefly review adaptive
designs and describe the asd package (Parsons 2010).
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5.2.1 Group sequential designs

In this section we focus on group sequential designs, which have received much
attention since Pocock (1977) and O’Brien and Fleming (1979). It is not the
aim of this section to develop the theory in detail. Instead, we refer to the
books by Jennison and Turnbull (2000) and Proschan, Lan, and Wittes (2006)
for a complete mathematical treatise of this subject. For details on gsDesign
we refer to the manual accompanying the package (Anderson 2010).

Basic theory

Consider normally distributed responses with unknown mean θ and known
variance σ2. Assume that we are interested in testing the null hypothesis
H : θ = θ0 (the one-sided case is treated similarly). Assume further that there
is interest in stopping the trial early either for success (reject the null hypoth-
esis H) or for futility (retain H). In group sequential designs, inspections are
made after groups of observations. Assume a maximum number k of inspec-
tions for some positive integer k. The first k − 1 analyses are referred to as
interim analyses, while the k-th analysis is referred to as the final analysis.

Let ni, i = 1, . . . , k, denote the sample sizes in the k sequences of obser-
vations. Further, let x̄i denote the mean value at stage i. For i = 1, . . . , k
consider the overall standardized test statistics

z∗i =

∑i
j=1

√
njzj√∑i

j=1 nj

,

where zi =
√
ni(x̄i − θ0)/σ denotes the test statistic from the ith stage of the

trial. The test statistics z∗1 , . . . , z
∗
k are jointly multivariate normally distributed

with means

ηi = E(z∗i ) =
θ − θ0

σ

√√√√ i∑
j=1

nj

and covariances

V(ti, ti′) =
√
ti
ti′

,

where i ≤ i′ and ti =
∑i
j=1 nj/

∑k
j=1 nj denotes the information fraction at

stage i. As shown in Jennison and Turnbull (2000), this set-up is asymptoti-
cally valid in many practically relevant situations, including two-armed trials
with normal, binary or time-to-event outcomes; see also Wassmer (1999) and
Wassmer (2009).

A group sequential design consists of specifying the continuation regions
Ci, i = 1, . . . , k − 1, at the interim analyses and the acceptance region Ck
at the final analysis. If at any interim analysis z∗i 6∈ Ci, the trial stops and
the null hypothesis H is rejected. Otherwise, the trial is continued as long as
z∗i ∈ Ci. If the trial continues until the final analysis and z∗i ∈ Ck, the null
hypothesis H is retained. That is, in this simplest case, the rejection region is
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the complement of the continuation region Ci, i = 1, . . . , k − 1, and no other
stopping rule is considered. Accordingly, any group sequential design needs to
satisfy

PH

(
k⋂
i=1

{z∗i ∈ Ci}

)
= 1− α.

The crossing boundaries defining the decision regions Ci can be computed
efficiently by accounting for the special structure of the covariance matrix
described above (Armitage, McPherson, and Rowe 1969). Once a group se-
quential design has been defined, the average sample size ASN is readily given
by

ASN = n1 +
k∑
i=2

niPη

i−1⋂
j=1

{z∗i ∈ Cj}

 ,

where η = (η1, . . . , ηk) and ηi is defined above. As seen from the example fur-
ther below, the average sample size can be used to assees the efficiency of group
sequential designs as compared to fixed designs without interim analyses.

Many choices of Ci lead to valid group sequential designs, thus allowing the
investigator to fine tune the trial design according to the study objectives.
A common choice of group sequential designs is the ∆-class of boundaries
introduced by Wang and Tsiatis (1987). They introduced a one-parameter
class of symmetric boundaries, which in case of two-sided testing and equally
spaced interim analyses are given by

Ci = (−ui;ui), ui = c(k, α,∆)i∆−0.5,

where the constant c(k, α,∆) is chosen appropriately to control the Type I
error rate. Note that for ∆ = 0.5 the boundary values are all equal and thus
lead to the well-known design of Pocock (1977). The value ∆ = 0 generates the
design of O’Brien and Fleming (1979) as special case. Figure 5.3 displays the
upper rejection boundaries from Wang and Tsiatis (1987) for ∆ = 0, 0.25, 0.5
in a group sequential trial with k = 4 analyses and α = 0.025 (one-sided test
problem).

The error spending function method proposed by Lan and DeMets (1983)
is an alternative approach to define a group sequential design. The idea is
to specify the cumulative Type I error rate α∗(ti) spent up to the i-th in-
terim analysis and derive the critical values based on these values. The func-
tion α∗(ti) must be specified in advance and is assumed to be non-decreasing
with α∗(0) = 0 and α∗(1) = α. The time points ti do not need to be pre-
specified before the actual course of the trial. Consequently, the number of
observations at the i-th analysis and the maximum number k of analyses are
flexible, although their determination must be independent of any emerging
data. In the two-sided case, the critical value for the first analysis is given
by u1 = Φ−1 (1− α∗(t1)/2), where Φ denotes the cumulative distribution
function of the standard normal distribution. The remaining critical values
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Figure 5.3 Several examples of rejection boundaries from Wang and Tsiatis
(1987). Here, ∆ = 0 generates an O’Brien-Fleming design, while
∆ = 0.5 produces a Pocock design.

u2, . . . , uk are computed successively through

PH

i−1⋂
j=1

{
|z∗j | < uj

}
∩ {|z∗i | ≥ ui}

 = α∗(ti)− α∗(ti−1).

The one-sided case is treated analogously.
Several choices for the form of the error spending function α∗(ti) were pro-

posed. The choices
α∗(ti) = α ln (1 + (e− 1)ti)

and

α∗(ti) =

 2
(

1− Φ
(
u1−α/2√

ti

))
(one-sided case)

4
(

1− Φ
(
u1−α/4√

ti

))
(two-sided case)
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approximate the group sequential boundaries from Pocock (1977) and O’Brien
and Fleming (1979), respectively, where u1−p = Φ−1(1−p). Likewise, Hwang,
Shih, and DeCani (1990) introduced the one-parameter family

α∗(γ, ti) =

{
α 1−exp(−γti)

1−exp(−γ) for γ 6= 0
αti for γ = 0

and showed that its use yields approximately optimal plans similar to the ∆-
class of Wang and Tsiatis (1987). A value of γ = −4 is used to approximate an
O’Brien-Fleming design, while a value of γ = 1 approximates a Pocock design
well. Figure 5.4 displays the error spending functions from Hwang et al. (1990)
for γ = −4,−2, 1.
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Figure 5.4 Several examples of error spending functions from Hwang et al. (1990)
for α = 0.025. Here, γ = −4 approximates an O’Brien-Fleming design,
while γ = 1 approximates a Pocock design.
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An example

In this section we use a numerical example to illustrate the above methodology
with the gsDesign package, which supports the design of group sequential
trials in R. Assume that we plan a one-sided group sequential design with 90%
power to detect a standardized treatment effect size of θ0 = 0.15 to compare
patients under treatment (active drug) and control (placebo). In the following,
we show details for an O’Brien-Fleming design, which employs more stringent
boundaries at early interim analyses than later. We plan for k = 4 equally
spaced analyses and α = 0.025, although the concepts below also apply to
other design options.

The gsDesign function from the gsDesign package provides sample size
and boundaries for a group sequential design based on treatment effects,
spending functions for boundary crossing probabilities, and relative timing
of each analysis. According to the trial specifications above, the call

R> library("gsDesign")
R> gsd.OF <- gsDesign(k = 4, test.type = 1, sfu = "OF",
+ alpha = 0.025, beta = 0.1, timing = 1,
+ delta = 0.15)

provides the relevant information. In this call, test.type = 1 gives a one-
sided test problem, timing = 1 produces equally spaced analyses and sfu
defines the error spending function (that is, O’Brien-Fleming in our example).
All of the spending functions described in Section 5.2.1 as well as many other
functions are implemented in the gsDesign package. Finally, delta defines
the standardized treatment effect size for which the design is powered. Because
of a different standardization used by the gsDesign function, delta has to be
set as θ0/2 = 0.15; see Anderson (2010) for details.

The next line prints a summary of gsd.OF using the print method associ-
ated with gsDesign objects,

R> gsd.OF

One-sided group sequential design with
90 % power and 2.5 % Type I Error.

Analysis N Z Nominal p Spend
1 120 4.05 0.0000 0.0000
2 239 2.86 0.0021 0.0021
3 359 2.34 0.0097 0.0083
4 478 2.02 0.0215 0.0145

Total 0.0250
++ alpha spending:
O'Brien-Fleming boundary

Boundary crossing probabilities and expected sample size
assume any cross stops the trial

Upper boundary (power or Type I Error)
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Analysis
Theta 1 2 3 4 Total E{N}
0.00 0.000 0.0021 0.0083 0.0145 0.025 476
0.15 0.008 0.2850 0.4031 0.2040 0.900 358

The upper table of the output contains for each of the k = 4 analyses the
cumulative total sample size N, the (upper) rejection bound Z, the one-sided
significance level Nominal p, and the error spent. In this example, roughly
120 patients are required at each of the four stages to ensure a power of 90%
(recall that we asked for equally spaced interim analyses). This leads to a
maximum of 478 patients that are required for this design. For comparison,
the sample size in a fixed design (without interim analyses) is 467. Thus, the
maximum sample size in the group sequential design is 1.02 times the sample
size in a fixed-sample design. This inflation factor relates the sample size of a
group sequential design to its corresponding fixed design and can be obtained
with gsDesign by setting delta = 0:

R> gsd.OF2 <- gsDesign(k = 4, test.type = 1,
+ sfu = "OF", alpha = 0.025, beta = 0.1, timing = 1,
+ delta = 0)
R> gsd.OF2$n.I[4]

[1] 1.02

Figure 5.5 plots the upper stopping boundaries

[1] 4.05 2.86 2.34 2.02

against the cumulative sample sizes

[1] 119 239 358 477

for the selected O’Brien-Fleming design. The area above the displayed curve
is the rejection region: Whenever the test statistic crosses the boundary at an
interim analysis, one can reject the null hypothesis and stop the trial early for
success. Figure 5.5 was produced using the plot method associated with the
gsDesign function; see below for further plotting capabilities.

The inflation factor introduced above is independent of the standardized
effect size, the test and the outcome of interest and serves as basis for sam-
ple size calculations in group sequential designs. However, it relates to the
maximum sample size and ignores the fact that the sample size is a random
variable, as the study could be stopped early for success. The average sam-
ple size ASN introduced in Section 5.2.1 is a more realistic measure and is
displayed in the bottom table of the gsd.OF summary output shown above.
It displays the boundary crossing probabilities at each interim analysis and
the expected sample size E(N) assuming any cross stops the trial under the
null and the alternative hypothesis. If there is no treatment effect, the av-
erage sample size of 476 is slightly lower than the maximum sample size of
478 patients. However, under the alternative the advantage of group sequen-
tial designs becomes evident, as the average sample size is reduced to 358
patients, almost 25% less than in a fixed design. It should be remembered,
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Figure 5.5 Upper stopping boundaries for the O’Brien-Fleming design used in
the numerical example.

however, that the computations assume normally distributed outcomes with
known variance. These are approximate results that should be viewed with
caution if the sample sizes are small.

The previous considerations can be extended by using the gsProbability
function. This function computes boundary crossing probabilities and ex-
pected sample size of a design for arbitrary user-specified treatment effects,
bounds, and interim analysis sample sizes. Accordingly, we can call

R> gsd.OF3 <- gsProbability(theta = gsd.OF$delta*seq(0,2,0.25),
+ d = gsd.OF)
R> gsd.OF3

One-sided group sequential design with
90 % power and 2.5 % Type I Error.

Analysis N Z Nominal p Spend
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1 120 4.05 0.0000 0.0000
2 239 2.86 0.0021 0.0021
3 359 2.34 0.0097 0.0083
4 478 2.02 0.0215 0.0145

Total 0.0250
++ alpha spending:
O'Brien-Fleming boundary

Boundary crossing probabilities and expected sample size
assume any cross stops the trial

Upper boundary (power or Type I Error)
Analysis

Theta 1 2 3 4 Total E{N}
0.0000 0.0000 0.0021 0.0083 0.0145 0.025 476
0.0375 0.0001 0.0111 0.0429 0.0700 0.124 470
0.0750 0.0006 0.0437 0.1395 0.1811 0.365 450
0.1125 0.0024 0.1281 0.2924 0.2569 0.680 411
0.1500 0.0080 0.2850 0.4031 0.2040 0.900 358
0.1875 0.0227 0.4910 0.3752 0.0931 0.982 307
0.2250 0.0558 0.6745 0.2428 0.0251 0.998 267
0.2625 0.1188 0.7648 0.1123 0.0041 1.000 239
0.3000 0.2202 0.7416 0.0378 0.0004 1.000 217

for the grid of θ values

R> gsd.OF3$theta

[1] 0.0000 0.0375 0.0750 0.1125 0.1500 0.1875 0.2250 0.2625
[9] 0.3000

to obtain a better understanding of the operating characteristics for the se-
lected design.

In addition, the gsDesign provides extensive plotting capabilities. Sev-
eral plot types are available and each of them highlights a different aspect
of the selected design. Figure 5.5 shows the default plot by displaying the
O’Brien-Fleming stopping boundaries. We now present two further relevant
plots. Figure 5.6 displays the cumulative boundary crossing probabilities (i.e.,
power) separately for the three interim analyses and the final analysis as a
function of the treatment effects. Note that the x-axis is scaled relative to the
effect size delta for which the trial is powered. Finally, Figure 5.7 displays
the average sample sizes by treatment difference (same scale for the x-axis
as in Figure 5.6). The horizontal line indicates the sample size of 467 for a
comparable fixed design without interim analyses.

The gsDesign provides more functionalities than presented here. For ex-
ample, conditional power can be computed for evaluating interim trends in a
group sequential design, but may also be used to adapt a trial design at an
interim analysis using the methods of Müller and Schäfer (2001). The gsCP
function provides the basis for applying these adaptive methods by computing
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Figure 5.6 Cumulative boundary crossing probabilities for the O’Brien-Fleming
design used in the numerical example.

the conditional probability of future boundary crossing given the interim anal-
ysis results. The gsDesign package can also be used with decision theoretic
methods to derive optimal designs. Anderson (2010) describe, for example,
the application of Bayesian computations to update the probability of a suc-
cessful trial based on knowing a bound has not been crossed, but without
knowledge of unblinded treatment results. We conclude this section by refer-
ring to the AGSDest package in R(Hack and Brannath 2009), which allows
the computation of repeated confidence intervals as well as confidence inter-
vals based on the stagewise ordering in group sequential designs and adaptive
group sequential designs; see Mehta, Bauer, Posch, and Brannath (2007) and
Brannath, Mehta, and Posch (2009a) for the technical background.
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Figure 5.7 Average sample sizes by treatment difference for the O’Brien-Fleming
design used in the numerical example. The horizontal line indicates
the sample size of a comparable fixed design.

5.2.2 Adaptive designs

Adaptive designs use accumulating data of an ongoing trial to decide on how
to modify design aspects without undermining the validity and integrity of
the trial. If appropriate methods are used, adaptive designs provide more
flexibility than the group sequential designs described in Section 5.2.1 while
controlling the Type I error rate. For this reason, adaptive designs providing
confirmatory evidence have gained much attention in recent years. Especially
in the drug development area the expectation has arisen that carefully planned
and conducted studies based on adaptive designs help increasing the efficiency
by making better use of the observed data.

There is a rich literature on such approaches for trials with a single null
hypothesis, including p-value combination methods (Bauer and Köhne 1994),

© 2011 by Taylor and Francis Group, LLC



GROUP SEQUENTIAL AND ADAPTIVE DESIGNS 151

self-designing trials (Fisher 1998), and methods based on the conditional er-
ror function (Proschan and Hunsberger 1995; Müller and Schäfer 2001). In
this section, we consider adaptive designs with multiple hypotheses. Bauer
and Kieser (1999) proposed an analysis method for adaptive designs involving
treatment selection at interim. Kieser, Bauer, and Lehmacher (1999) used a
similar approach in the context of multiple outcome variables. Hommel (2001)
subsequently formulated a general framework to select and add hypotheses in
an adaptive design. Posch, König, Branson, Brannath, Dunger-Baldauf, and
Bauer (2005) derived simultaneous confidence intervals and adjusted p-values
for adaptive designs with treatment selection. In the sequel, we follow the de-
scription of Bretz, Schmidli, König, Racine, and Maurer (2006) and show how
to test adaptively multiple hypotheses by applying p-value combination meth-
ods to closed test procedures. We refer to Bretz, König, Brannath, Glimm, and
Posch (2009a) and the references therein for details on adaptive designs pro-
viding confirmatory evidence.

Basic theory

For simplicity, we start considering a single one-sided null hypothesis H in a
two-stage design, that is, with one single interim analysis. Based on the data
from the first stage it is decided at the interim analysis, whether the study is
continued (conducting the second stage) or not (early stopping either due to
futility or due to early rejection of H). In case that one continues with the
second stage, the final analysis at the end of the study combines the results
of both stages. Let pj denote the p-value for stage j = 1, 2. Following Bauer
and Köhne (1994), an adaptive design is specified as follows:

(i) Define a test procedure for stage 1, determine the stopping rules for the
interim decision and pre-specify a combination function C = C(p1, p2) of
p1 and p2 for the final analysis.

(ii) Conduct stage 1 of the study, resulting in p1.

(iii) Based on p1, decide whether to stop at interim (either rejecting or retain-
ing H) or to continue the study.

(iv) If the study is continued, use all information (also external to the study, if
available) to design the second stage, such as reassessing the stage 2 sample
size.

(v) Conduct stage 2 of the study, resulting in p2 with p1 being independent
of p2 under H.

(vi) Combine p1 and p2 using C and test H by comparing C with an appro-
priate critical value.

Adaptive designs offer a high degree of flexibility during the conduct of the
trial. Among multistage designs, they require the least amount of decision rule
pre-specification prior to a study. Furthermore, the total information available
at the interim analysis can be used in designing the second stage.
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Different possibilities exist to combine the data from both stages. A common
choice is Fisher’s combination test which rejects H at the final stage if

C(p1, p2) = p1p2 ≤ c = exp(−χ2
4,1−α/2),

where χ2
ν,1−α denotes the critical value of the χ2 distribution with ν degrees of

freedom at level 1− α (Bauer and Köhne 1994). Assume that early stopping
boundaries α0 and α1 are available such that (i) if p1 ≤ α1 the trial stops
after the interim analysis with an early rejection of H, and (ii) if p1 ≥ α0 the
trial stops after the interim analysis for futility (H is retained). In order to
maintain the Type I error rate at pre-specified level α simultaneously across
both stages, α1 is computed by solving α1 + c(lnα0 − lnα1) = α for given α
and α0. Note that if α0 = 1 no stopping for futility is foreseen and if α1 = 0
no early rejection of H is possible.

Another popular choice is the weighted inverse normal combination function

C(p1, p2) = 1− Φ
[
w1 Φ−1(1− p1) + w2 Φ−1(1− p2)

]
,

where w1 and w2 denote pre-specified weights such that w2
1 + w2

2 = 1 and Φ
denotes the cumulative distribution function of the standard normal distribu-
tion (Lehmacher and Wassmer 1999; Cui, Hung, and Wang 1999). Note that
for the one-sided test of the mean of normally distributed observations with
known variance, the inverse normal combination test with pre-planned stage-
wise sample sizes n1, n2 and weights w2

1 = n1/(n1 + n2), w2
2 = n2/(n1 + n2)

is equivalent to a classical two-stage group sequential test if no adaptations
are performed (the term in squared brackets is simply the standardized to-
tal mean). Thus, the quantities α1, α0 and c required for the inverse normal
method can be computed with standard software for group sequential trials;
see Section 5.2.1.

We now consider the case of testing m elementary null hypotheses H1, . . .,
Hm. To make the ideas concrete, we assume the comparison of m treat-
ments with a control, although the methodology reviewed below holds more
generally and covers many other applications; see Schmidli, Bretz, Racine,
and Maurer (2006); Wang, O’Neill, and Hung (2007); and Brannath, Zuber,
Branson, Bretz, Gallo, Posch, and Racine-Poon (2009b) for examples. Let
Hi : θi ≤ 0, i = 1, . . . ,m, denote the related m one-sided null hypotheses,
where θi denotes the mean effect difference of treatment i against control.
The general rule is to apply the closure principle from Section 2.2.3 by con-
structing all intersection hypotheses and to test each of them with a suitable
combination test (Bauer and Kieser 1999; Kieser et al. 1999; Hommel 2001).
Following the closure principle, a null hypothesis Hi is rejected if all intersec-
tion hypotheses contained in Hi are also rejected by their combination tests.
Consider Figure 5.8 for an example of testing adaptively m = 2 hypotheses.
Let H1 and H2 denote the elementary hypotheses and H12 the single inter-
section hypothesis to be tested according to the closure principle. Let further
pi,j denote the one-sided p-value for hypothesis Hi, i ∈ {1, 2, 12}, at stage
j = 1, 2. Finally, let C(pi,1, pi,2), i ∈ {1, 2, 12}, denote the combination func-
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tion C applied to the p-values pi,j from stage j = 1, 2. Note that different
combination functions as well as different stopping boundaries could be used
within the closed hypotheses set (for simplicity we omit this generalization
here). According to the closure principle, H1 (say) is rejected at familywise
error rate α, if H1 and H12 are both rejected at level α. That is, H1 is rejected
if C(p1,1, p1,2) ≤ c1 and C(p12,1, p12,2) ≤ c12, where c1 and c12 are suitable
critical values, as described above.

C(pi,1, pi,2)

p12,1

p1,1 p2,1

�
���

���

H
HHH

HHj

p12,2

p1,2 p2,2

�
���

���

H
HHH

HHj

H12 = H1 ∩H2

H1 H2

��
�����

HH
HHHHj

Figure 5.8 Schematic diagram of the closure principle for testing adaptively two
null hypotheses H1 and H2 and their intersection.

An example

In this section we use a numerical example to illustrate the above methodol-
ogy with the asd package, which supports the design of adaptive trials in R.
For details on asd we refer to Parsons, Friede, Todd, Valdes-Marquez, Chat-
away, Nicholas, and Stallard (2010) and the manual accompanying the package
(Parsons 2010). For adaptive designs involving a single null hypothesis one can
alternatively use the adaptTest package in R(Vandemeulebroecke 2009).

The asd.sim function from the asd package runs simulations for a trial
design that tests a number of treatments against a single control. Test treat-
ments are compared to the control treatment using the Dunnett test from
Section 4.1. An interim analysis is undertaken using an early outcome mea-
sure, assumed to be normally distributed, and characterized by standardized
treatment effects with variances assumed to be equal to one, for each treat-
ment (and control). A decision is made on which of the treatments to take
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forward, using a pre-defined selection rule. Data are simulated for the final
outcome measure, also characterized by standardized treatment effects, with
variance assumed equal to one and a fixed correlation between the final and
the early outcomes. Data from the interim and final analyses for the final out-
come measure are combined together using either the inverse normal or Fisher
combination test and hypotheses are tested at the selected level.

For illustration, suppose that we plan an adaptive trial design to compare
m = 2 dose levels with placebo for a normal distributed outcome variable. As-
sume that we target at 90% power to detect a standardized treatment effect
size of 0.3 to compare patients under treatment (one of the two dose levels)
and control (placebo). For simplicity, we assume further that at the interim
analysis we already observe the final outcome measure and we select the treat-
ment with the larger observed effect size for the second stage. Assuming equal
treatment effect sizes and a pre-planned group sample size of 110 patients per
stage, we can call
R> library("asd")
R> res <- asd.sim(nsamp = c(110, 110), early = c(0.3, 0.3),
+ final = c(0.3, 0.3), nsim = 10000, corr = 1, select = 1,
+ ptest = c(1, 2))
R> res

$count.total
1 2

n 10000 0

$select.total
1 2

n 4996 5004

$reject.total
H1 H2

n 4525 4496

$sim.reject
Total

n 9021

In this call, early = c(0.3, 0.3) and final = c(0.3, 0.3) specify the
vectors with the standardized treatment effects for the early and the final
outcome variable, respectively. Further, the correlation corr = 1 between the
early and final outcome measure reflects the fact that at the interim analysis
we already observe the final outcome measure. The select = 1 option ensures
that we select the treatment with the larger observed effect size for the second
stage. Finally, ptest = c(1, 2) will count rejections for testing treatments
1 and 2 against control.

We conclude from the output that each treatment has a chance of 50%
to be selected for the second stage, as seen from res$select.total. Fur-
ther, res$reject.total gives the individual power of about 45% to reject
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a selected treatment at study end and res$sim.reject gives the disjunctive
power of about 90% to declare any of the two effective treatments significantly
better than placebo (recall Section 2.1.1 for an overview of power in multiple
hypotheses testing).

In practice, when designing a real clinical trial, uncertainty about the true
effect sizes and other parameters exist. In addition, the interim decision rule of
selecting the better of the two doses may not apply because of unforeseen safety
signals. Extensive clinical trial simulations have therefore to be conducted
to investigate the operating characteristics of an adaptive design (Bretz and
Wang 2010).

To give an example of what could be done at the planning stage, we in-
vestigate in Figure 5.9 the disjunctive power as a function of θ1 for different
designs options:

(A) select the best treatment (select = 1),

(B) select both treatments (select = 2), and

(C) select randomly one of the two treatments at the interim analysis (select
= 5).

Further design options are available with the asd package but will not be
considered here. Note that the total sample size n is not the same for the
three options. For example, we have n = 3 × 110 + 3 × 110 = 660 for option
(B), but only n = 3 × 110 + 2 × 110 = 550 for option (A). Although the
unequal total sample sizes makes it difficult to compare the three options,
Figure 5.9 reflects current practice of calculating sample sizes and is therefore
of relevance. With the methods implemented in asd, sample size reallocation
could be applied to ensure a constant total sample size. For illustration, we
include in Figure 5.9 design option (D) that selects the best treatment at the
interim analysis and performs a sample size reallocation for the second stage
such that we have 330/2 = 165 patients for the two remaining treatment arms
(selected treatment and control).

We conclude from Figure 5.9 that design option (C) is considerably less
powerful than the competing designs. This is not surprising, as for small val-
ues of θ1 there is a chance that the truly inferior treatment is selected with
option (C). As mentioned above, however, unforeseen safety signals may in
practice lead to the selection of the treatment with the smaller observed in-
terim effect, which may lead to a potentially substantial reduction in power,
as seen in Figure 5.9. Options (A) and (B) have similar power performances,
although option (A) saves about 16% of sample size, which will be perceived
as an efficiency gain. As expected, option (D) is more powerful than option
(A) because of the additional 110 patients in the second stage. Interestingly,
comparing options (B) and (D) reveals that for a given constant total sample
size selecting the better of the two treatments at the interim analysis leads to
considerably higher power than continuing with both treatments in the second
stage.
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Figure 5.9 Disjunctive power for four design options: (A) select the best treat-
ment without sample size reallocation, (B) select both treatments,
(C) select randomly one of the two treatments, and (D) select the
best treatment with sample size reallocation.

5.3 Combination of multiple comparison procedures with
modeling techniques

In Section 4.3 we described a variety of powerful trend tests to detect signifi-
cant dose response signals. Using these methods, we can assess whether or not
changes in dose lead to desirable changes in an (efficacy or safety) outcome
variable of interest. Once such a dose response signal has been shown (that
is, the so-called proof-of-concept (PoC) has been established), the question of
what comprises a “good” dose arises. To address this question, stepwise test
procedures based on the closure principle can be used. To mention only a few
papers, we refer the reader to Tamhane, Hochberg, and Dunnett (1996); Bauer
(1997); Hsu and Berger (1999); Tamhane, Dunnett, Green, and Wetherington
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(2001); Bretz et al. (2003), and Strassburger et al. (2007), which all address
different aspects of dose finding using multiple comparison procedures; see
also Tamhane and Logan (2006) for a review.

Multiple comparison procedures regard the dose as a qualitative factor and
generally make few, if any, assumptions about the underlying dose response
relationship. However, inferences about the target dose are restricted to the
discrete, possibly small set of doses used in the trial. On the other hand, model-
ing approaches can be used which assume a parametric (typically non-linear)
functional relationship between dose and response. The dose is assumed to
be a quantitative factor, allowing greater flexibility for estimating a target
dose. But its validity depends on an appropriately pre-specified dose response
model for the final analysis. In this section we describe a hybrid methodology
combining multiple comparison procedures with modeling techniques, denoted
as MCP-Mod procedure (Bretz, Pinheiro, and Branson 2005). This approach
maintains the flexibility of modeling dose response relationships, while pre-
serving robustness with respect to model misspecification through the use of
appropriate multiple comparison procedures.

In Section 5.3.1, we describe the MCP-Mod procedure in more detail. To
illustrate the methodology, we analyze in Section 5.3.2 a dose response study
and describe the DoseFinding package (Bornkamp, Pinheiro, and Bretz
2010), which allows one to design and analyze dose finding studies using the
MCP-Mod procedure.

5.3.1 MCP-Mod: Dose response analyses under model uncertainty

The motivation for MCP-Mod is based on the work by Tukey, Ciminera, and
Heyse (1985), who recognized that the power of standard dose response trend
tests depends on the (unknown) dose response relationship. They proposed to
simultaneously use several trend tests and subsequently adjust the resulting p-
values for multiplicity. Related ideas were also proposed by Westfall (1997) and
Stewart and Ruberg (2000), who all use contrast tests and aim at letting the
contrast coefficients mirror potential dose response shapes. Bretz, Pinheiro,
and Branson (2004); Bretz et al. (2005) formalized these ideas, leading to the
MCP-Mod procedure described below. We refer to Pinheiro, Bornkamp, and
Bretz (2006a) for advice on design issues when planning a dose finding exper-
iment using MCP-Mod and Dette, Bretz, Pepelyshev, and Pinheiro (2008) for
related optimal designs under model uncertainty. This section can be viewed
as a continuation of the discussion started in Section 4.3, where we described
the approach from Westfall (1997) and contrasted it with the trend tests from
Williams (1971) and Marcus (1976). Note that the theoretical framework from
Chapter 3 also applies to the MCP-Mod procedure, thus leading to a powerful
method combining multiple comparisons and modeling in general parametric
models.

We begin with an overview of the MCP-Mod procedure in Figure 5.10,
which has several steps. The procedure starts by defining a setM of candidate
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models covering a suitable range of dose response shapes. Each of the dose
response shapes in the candidate set is tested using optimal contrasts and
employing a max-t test of the form (2.1) while controlling the familywise
error rate. A dose response signal (i.e., PoC) is established when at least one
of the model tests is significant. Once PoC is verified, either a “best” model
or a weighted average over the set of models corrsponding to the significant
contrasts is used to estimate the dose response profile and the target doses of
interest.

Set of candidate models M

Optimum contrast coefficients

Test for a significant dose response signal (PoC)

Model selection or averaging

Dose response and target dose estimation

?

?

?

?

?

?

?

?

Figure 5.10 Schematic overview of the MCP-Mod procedure.

Below, we assume that we observe a response y for a given set of paral-
lel groups of subjects corresponding to doses d2, d3, . . . , dk plus placebo d1,
for a total of k arms. For the purpose of testing a dose response signal and
estimating target doses, we consider the one-way layout

yij = µdi + εij , (5.1)

where µdi = f(di) denotes the mean response at dose di for some dose re-
sponse model f(.), ni denotes the number of subjects allocated to dose di,
n =

∑k
i=1 ni denotes the total sample size, and εij ∼ N(0, σ2) denotes the

error term for subject j = 1, . . . , ni, within dose group i = 1, . . . , k. Following
Bretz et al. (2005), we note that most parametric dose response models f(d,θ)
used in practice can be written as

f(d,θ) = θ0 + θ1f
0(d,θ∗), (5.2)
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where f0(d,θ∗) denotes the standardized model, parameterized by the vector
θ∗. In this parametrization, θ0 is a location and θ1 is a scale parameter, so only
the parameter θ∗ determines the shape of the model function. For the deriva-
tion of optimal contrasts further below it is sufficient to use the standardized
model f0 instead of the full model f , which motivates the reparametrization
in (5.2).

Table 5.6 summarizes a selection of linear and non-linear regression models
frequently used to represent dose response relationships, together with their
respective standardized versions. A common problem is the specification of the
model contrasts based on knowledge about the standardized model parame-
ters θ∗ before study begins. Such best guesses (“guesstimates”) are typically
derived from available information of the expected percentage p∗ of the max-
imum response associated with a given dose d∗. We refer to Pinheiro, Bretz,
and Branson (2006b) for strategies to elicit the necessary information.

Assume that a set M of M parameterized candidate models is given, with
corresponding model functions fm(d,θm),m = 1, . . . ,M, and parameters θ∗m
of the standardized models f0, which determine the model shapes. Each of
the dose response models in the candidate set is tested using a single contrast
test statistic

tm =
∑k
i=1 cmix̄i

s
√∑k

i=1 c
2
mi/ni

, m = 1, . . . ,M,

where s2 =
∑k
i=1

∑ni
j=1(xij − x̄i)2/(n − k) is the pooled variance estimate

and cm1, . . . , cmk denote contrast coefficients subject to
∑k
i=1 cmi = 0. As de-

scribed below, the contrast coefficients cm1, . . . , cmk are chosen to maximize
the power of detecting the m-th model. Every single contrast test thus trans-
lates into a decision procedure to determine whether the given dose response
shape is statistically significant, based on the observed data.

It can be shown that the optimal contrast coefficients for detecting the m-th
model depend only on the model shape, that is, only on the parameters of the
standardized models f0. Letting

(µ0
m1, . . . , µ

0
mk) = (f0

m(d1,θ
∗
m), . . . , f0

m(dk,θ∗m)),

the i-th entry of the optimal contrast cm for detecting the shape m is propor-
tional to

ni(µ0
mi − µ̄), i = 1, . . . , k,

where µ̄ = n−1
∑k
i=1 µ

0
mini (Bretz et al. 2005; Bornkamp 2006). A unique rep-

resentation of the optimal contrast can be obtained by imposing the constraint∑k
i=1 c

2
mi = 1.

The detection of a significant dose response signal is based on the max-t
test statistic

tmax = max{t1, . . . , tM}.
Under the null hypothesis of no dose response effect, µd1 = ... = µdk , and the
distributional assumptions stated in (5.1) it follows that t1, . . . , tM are jointly
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Name f(d,θ) f0(d,θ∗)

linear E0 + δd d
linlog E0 + δ log(d+ c) log(d+ c)
quadratic E0 + β1d+ β2d

2 d+ δd2 if β2 < 0
emax E0 + Emaxd/(ED50 + d) d/(ED50 + d)
logistic E0 + Emax/ {1 + exp [(ED50 − d) /δ]} 1/ {1 + exp [(ED50 − d) /δ]}
exponential E0 + E1(exp(d/δ)− 1) exp(d/δ)− 1
sigEmax E0 + Emaxd

h/(EDh
50 + dh) dh/(EDh

50 + dh)
betaMod E0 + EmaxB(δ1, δ2)(d/D)δ1(1− d/D)δ2 B(δ1, δ2)(d/D)δ1(1− d/D)δ2

Table 5.6 Dose response models implemented in the DoseFinding package. For the beta
model B(δ1, δ2) = (δ1 + δ2)δ1+δ2/(δ1

δ1δ2
δ2) and for the quadratic model δ = β2

|β1|
.

For the quadratic model the standardized model function is given for the concave-
shaped form.
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multivariate t distributed with n−k degrees of freedom and correlation matrix
R = (ρij)ij , where

ρij =
∑k
l=1 cilcjl/nl√∑k

l=1 c
2
il/nl

∑k
l=1 c

2
jl/nl

.

Note that the description above parallels the development of multiple com-
parison procedures for the general linear models in Section 3.1, and, more
broadly speaking, for the general parametric models in Section 3.2. Numerical
integration methods to calculate the required multivariate t (or, if required,
normal) probabilities are implemented in the mvtnorm package (Hothorn
et al. 2001); see Genz and Bretz (1999, 2002, 2009) for the mathematical
details.

Proof-of-concept is established if tmax ≥ u1−α, where u1−α denotes the
multiplicity adjusted critical value at level 1− α from the multivariate t dis-
tribution. Furthermore, all dose response shapes with associated contrast test
statistics larger than u1−α can be declared statistically significant at level
1− α under a strong control of the familywise error rate. These models then
form a reference set M∗ = {M1, . . . ,ML} ⊆ M of L significant models. If no
contrast test is statistically significant, the procedure stops indicating that a
dose response relationship cannot be established from the observed data.

If a significant dose response signal is established, the next step is to es-
timate the dose response curve and the target doses of interest. This can be
achieved by either selecting a single model out of M∗ or applying model av-
eraging techniques to M∗. A common target dose of interest is the minimum
effective dose (MED), which is defined as the smallest dose ensuring a clini-
cally relevant and statistically significant improvement over placebo (Ruberg
1995a). Formally,

MED = min{d ∈ (d1, dk] : f(d) > f(d1) + ∆},

where ∆ is a given relevance threshold. A common estimate for the MED is

M̂ED = min{d ∈ (d1, dk] : f̂(d) > f̂(0) + ∆, L(d) > f̂(0)}

where f̂(d) is the predicted response at dose d, and U(d) and L(d) are the
corresponding pointwise confidence intervals of level 1−2γ. The choice of γ is
not driven by the purpose of controlling Type I error rates, in contrast to the
selection of α for controlling the familywise error rate in the PoC declaration.
Other estimates are possible and we refer to Bretz et al. (2005) for further
details.

Several possibilities exist to select a single model from M∗ for the target
dose estimation step. Because max-t tests have been used above to detect
a significant dose response signal, a natural approach is to select the “most
significant” model shape, that is, the one associated with the largest contrast
test statistic. Alternatively, standard information criteria like the AIC or BIC
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might be used. The estimate of the model function is obtained by maximizing
the likelihood of the model with respect to its parameters θ.

An alternative to selecting a single dose response model is to apply model
averaging and produce weighted estimates across all models inM∗ for a given
quantity ψ of interest. In dose response analyses, the parameter ψ could be
either a target dose of interest (such as the MED) or the mean responses at
specific doses d ∈ [d1, dk]. Buckland, Burnham, and Augustin (1997) proposed
using the weighted estimate

ψ̂ =
∑
`

w`ψ̂`,

where ψ has the same meaning under all models and ψ̂` is the estimate of ψ
under model ` for given probabilities w`. The idea is to use estimates for the
final data analysis which rely on the averaged estimates across all L models.
Buckland et al. (1997) proposed using of the weights

w` =
exp(− IC`

2 )∑L
j=1 exp(− ICj

2 )
, ` = 1, . . . , L,

which are dependent on a common information criterion IC, such as AIC or
BIC applied to each of the L models.

5.3.2 A dose response example

To illustrate the MCP-Mod procedure we use the biom dose response data
from Bretz et al. (2005). The data are from a randomized double-blind parallel
group trial with a total of 100 patients allocated to either placebo or one of
four active doses coded as 0.05, 0.20, 0.60, and 1, with 20 patients per group.
The clinical threshold is ∆ = 0.4, the significance level is α = 0.05 and the
dose estimation model is selected according to the maximum test statistic.
We use the DoseFinding package to perform the computations. A detailed
description of this package is given in Bornkamp, Pinheiro, and Bretz (2009).

As described in Section 5.3.1, the MCP-Mod procedure starts by defining a
setM of candidate models covering a suitable range of dose response shapes.
The candidate set of models needs to be constructed as a list, where the list
elements should be named as the underlying dose response model function (see
Table 5.6) and the individual list entries should correspond to the specified
guesstimates. Suppose we want to include in our candidate set a linear model,
an Emax model and a logistic model. Concluding from the standardized model
functions in Table 5.6 we need to specify one value for the Emax model shape
(for the ED50 parameter), two values for the logistic model shape (for the ED50

and δ parameters) but no guesstimate for the linear model as its standardized
model function does not contain an unknown parameter. These guesstimates
are used below for the calculation of optimal contrast coefficients. Suppose
our guesstimate for the ED50 parameter of the Emax model is 0.2, while the
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guesstimate for (ED50, δ) for the logistic model is (0.4, 0.09). The model list
is then defined through

R> library("DoseFinding")
R> candMods <- list(linear = NULL, emax = 0.2,
+ logistic = c(0.25, 0.09))

We visualize the model shapes from the candidate set with the plotModels
function. As the candidate model shapes do not determine the location (base-
line effect) and scale (maximum effect) of the model, we also need to specify
those parameters via the base and maxEff arguments. Using the candidate
set candMods from above, we define a vector for the dose levels and then call
plotModels,

R> doses <- c(0, 0.05, 0.2, 0.6, 1)
R> plotModels(candMods, doses, base = 0, maxEff = 1)

see Figure 5.11 for the plot.
After these preparations, we can now use the MCPMod function, which im-

plements the full MCP-Mod procedure. Thus, we can call

R> data("biom", package = "DoseFinding")
R> res <- MCPMod(resp ~ dose, biom, candMods, alpha = 0.05,
+ pVal = TRUE, clinRel = 0.4)

to run the MCP-Mod procedure. In the previous call the arguments to the
MCPMod function are mostly self-explanatory; the pVal = TRUE options speci-
fies that multiplicity adjusted p-values for the max-t test should be calculated.

A brief summary of the results is available via the print method for the
MCPMod objects

R> res

MCPMod

PoC (alpha = 0.05, one-sided): yes
Model with highest t-statistic: emax
Model used for dose estimation: emax
Dose estimate:
MED2,80%

0.17

We conclude from the PoC line that there is significant dose response signal,
which means that the max-t test is significant at the one-sided significance
level α = 0.05. Additionally, the Emax contrast has the largest test statistic
and consequently the Emax model was used for the dose estimation step. The
MED estimate is 0.17.

A more detailed summary of the results is available via the summary method

R> summary(res)

MCPMod
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Figure 5.11 Model shapes for the selected candidate model set.

Input parameters:
alpha = 0.05
alternative: one.sided, one sided
model selection: maxT
clinical relevance = 0.4
dose estimator: MED2 (gamma = 0.1)
optimizer: nls

Optimal Contrasts:
linear emax logistic

0 -0.437 -0.643 -0.478
0.05 -0.378 -0.361 -0.435
0.2 -0.201 0.061 -0.147
0.6 0.271 0.413 0.519
1 0.743 0.530 0.540
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Contrast Correlation:
linear emax logistic

linear 1.000 0.912 0.945
emax 0.912 1.000 0.956
logistic 0.945 0.956 1.000

Multiple Contrast Test:
Tvalue pValue

emax 3.46 0.001
logistic 3.23 0.002
linear 2.97 0.003

Selected for dose estimation:
emax

Parameter estimates:
emax model:

e0 eMax ed50
0.322 0.746 0.142

Dose estimate
MED2,80%

0.17

From the output above, we first obtain some information about important
input parameters that were used when performing the MCP-Mod procedure.
Then the output displays the optimal contrasts and their correlations. The
contrast test statistics, their multiplicity adjusted p-values and the critical
value are shown in the next table. Finally, the output contains information
about the fitted dose response model, its parameter estimates and the target
dose estimate. The core results are of course the same as the results displayed
earlier with the print method.

A graphical display of the dose response model used for dose estimation can
be obtained via the plot method for MCPMod objects,

R> plot(res, complData = TRUE, clinRel = TRUE, CI = TRUE,
+ doseEst = TRUE)

The resulting plot is shown in Figure 5.12. The options complData, CI, clinRel,
and doseEst specify, which of the following should be included in the plot
when set to TRUE: the full dose response dataset (instead of displaying only
the group means), the confidence intervals for the mean of the function, the
clinical relevance threshold and the dose estimate, respectively.
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Figure 5.12 Fitted model for the biom data.
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Hypothesenprüfung - Multiple Hypotheses Testing , eds. P. Bauer, G. Hom-
mel, and E. Sonnemann, Heidelberg: Springer, pp. 154–161. Cited on p. 13.

© 2011 by Taylor and Francis Group, LLC



174 BIBLIOGRAPHY

Hothorn, T., Bretz, F., and Genz, A. (2001), “On multivariate t and Gauß
probabilities in R,” R News, 1, 27–29. Cited on p. 45, 161.

Hothorn, T., Bretz, F., and Westfall, P. (2008), “Simultaneous inference in
general parametric models,” Biometrical Journal , 50, 346–363. Cited on
p. 48, 49, 50, 69.

Hothorn, T., Bretz, F., Westfall, P., Heiberger, R. M., and Schützenmeis-
ter, A. (2010a), multcomp: Simultaneous Inference for General Linear Hy-
potheses, URL http://CRAN.R-project.org/package=multcomp, R pack-
age version 1.1-7. Cited on p. 53, 56, 66.

Hothorn, T., Hornik, K., van de Wiel, M., and Zeileis, A. (2010b), coin:
Conditional Inference Procedures in a Permutation Test Framework, URL
http://CRAN.R-project.org/package=coin, R package version 1.0-11.
Cited on p. 127.

Hothorn, T., Hornik, K., van de Wiel, M. A., and Zeileis, A. (2006), “A Lego
system for conditional inference,” The American Statistician, 60, 257–263.
Cited on p. 118, 137.

Hsu, J. C. (1996), Multiple Comparisons, London: Chapman & Hall. Cited
on p. xiii, 11, 41, 85.

Hsu, J. C. and Berger, R. L. (1999), “Stepwise confidence intervals without
multiplicity adjustment for dose-response and toxicity studies,” Journal of
the American Statistical Association, 94, 468–482. Cited on p. 30, 156.

Hsu, J. C. and Peruggia, M. (1994),“Graphical representations of Tukey’s mul-
tiple comparison method,” Journal of Computational and Graphical Statis-
tics, 3, 143–161. Cited on p. 89.

Hsueh, H., Chen, J. J., and Kodell, R. L. (2003), “Comparison of methods
for estimating the number of true null hypotheses in multiplicity testing,”
Journal of Biopharmaceutical Statistics, 13, 675–689. Cited on p. 35.

Hwang, I. K., Shih, W. J., and DeCani, J. S. (1990), “Group sequential designs
using a family of Type I error probability spending functions,” Statistics in
Medicine, 9, 1439–1445. Cited on p. 144.

ICH (1998), ICH Topic E9: Notes for Guidance on Statistical Principles for
Clinical Trials, International Conference on Harmonization, London, URL
http://www.emea.europa.eu/pdfs/human/ich/036396en.pdf. Cited on
p. 8.

Ihaka, R. and Gentleman, R. (1996), “R: A language for data analysis and
graphics,” Journal of Computational and Graphical Statistics, 5, 299–314.
Cited on p. xiv.

Jennison, C. and Turnbull, B. W. (2000), Group Sequential Methods with Ap-
plications to Clinical Trials, Boca Raton: Chapman and Hall. Cited on
p. 141.

Kieser, M., Bauer, P., and Lehmacher, W. (1999), “Inference on multiple end-
points in clinical trials with adaptive interim analyses,”Biometrical Journal ,
41, 261–277. Cited on p. 151, 152.

© 2011 by Taylor and Francis Group, LLC



BIBLIOGRAPHY 175

Kleinbaum, D. G., Kupper, L. L., Muller, K. E., and Nizam, A. (1998), Applied
Regression Analysis and Other Multivariable Methods, North Scituate, MA:
Duxbury Press. Cited on p. 111, 113.

Korn, E. L., Troendle, J. F., McShane, L. M., and Simon, R. (2004), “Con-
trolling the number of false discoveries: Application to high-dimensional
genomic data,” Journal of Statistical Planning and Inference, 124, 379–398.
Cited on p. 14.

Kotz, S., Balakrishnan, N., and Johnson, N. L. (2000), Continuous Multivari-
ate Distributions. Volume 1: Models and Applications, New York: Wiley.
Cited on p. 44.

Kotz, S. and Nadarajah, S. (2004), Multivariate t Distributions and Their
Applications, Cambridge: Cambridge University Press. Cited on p. 44.

Krishna, R. (2006), Dose Optimization in Drug Development , New York: In-
forma Healthcare. Cited on p. 100.

Lan, K. K. G. and DeMets, D. L. (1983), “Discrete sequential boundaries for
clinical trials,” Biometrika, 70, 659–663. Cited on p. 142.

Laska, E. M. and Meisner, M. J. (1989), “Testing whether an identified treat-
ment is best,” Biometrics, 45, 1139–1151. Cited on p. 22.

Lehmacher, W. and Wassmer, G. (1999), “Adaptive sample size calculations
in group sequential trials,” Biometrics, 55, 1286–1290. Cited on p. 152.

Lehmann, E. L. (1957a), “A theory of some multiple decision problems I,” The
Annals of Mathematical Statistics, 28, 1–25. Cited on p. 11.

Lehmann, E. L. (1957b), “A theory of some multiple decision problems II,”
The Annals of Mathematical Statistics, 28, 547–572. Cited on p. 11.

Lehmann, E. L. (1986), Testing Statistical Hypotheses, New York: Wiley. Cited
on p. 18.

Lehmann, E. L. and Romano, J. P. (2005), “Generalizations of the familywise
error rate,” The Annals of Statistics, 33, 1138–1154. Cited on p. 13.

Liu, W. (2010), Simultaneous Inference for Regression, Boca Raton: Taylor
and Francis. Cited on p. 12, 114.

Liu, W., Jamshidian, M., and Zhang, Y. (2004), “Multiple comparison of sev-
eral linear regression models,” Journal of the American Statistical Associa-
tion, 99, 395–403. Cited on p. 112.

Liu, W., Jamshidian, M., Zhang, Y., Bretz, F., and Han, X. (2007a), “Some
new methods for the comparison of two linear regression models,” Journal
of Statistical Planning and Inference, 137, 57–67. Cited on p. 112, 113.

Liu, Y. and Hsu, J. (2009), “Testing for efficacy in primary and secondary end-
points by partitioning decision paths,” Journal of the American Statistical
Association, 104, 1661–1670. Cited on p. 30.

Liu, Y., Hsu, J. C., and Ruberg, S. (2007b),“Partition testing in dose-response
studies with multiple endpoints,” Pharmaceutical Statistics, 6, 181–192.
Cited on p. 30.

© 2011 by Taylor and Francis Group, LLC



176 BIBLIOGRAPHY

Marcus, R. (1976), “The power of some tests of the equality of normal means
against an ordered alternative,” Biometrika, 63, 177–183. Cited on p. 103,
104, 105, 106, 157.

Marcus, R., Peritz, E., and Gabriel, K. R. (1976), “On closed testing proce-
dures with special reference to ordered analysis of variance,” Biometrika,
63, 655–660. Cited on p. 11, 23, 25, 78.

Maurer, W., Hothorn, L., and Lehmacher, W. (1995), “Multiple comparisons
in drug clinical trials and preclinical assays: a-priori ordered hypotheses,”
in Biometrie in der chemisch-pharmazeutischen Industrie, ed. J. Vollmar,
Stuttgart: Fischer Verlag, pp. 3–18. Cited on p. 28.

Maurer, W. and Mellein, B. (1988), “On new multiple test procedures based
on independent p-values and the assessment of their power,” in Multiple Hy-
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praktische Umsetzung mit SAS , Köln: Verlag Alexander Mönch. Cited on
p. 141.

Wassmer, G. (2009), “Group sequential designs,” in Encyclopedia of Clinical
Trials, eds. R. D’Agostino, L. Sullivan, and J. Massaro, Hoboken: Wiley.
Cited on p. 141.

Westfall, P. (2005), “Combining p-values,” in Encyclopedia of Biostatistics,
eds. P. Armitage and T. Colton, Chichester: Wiley, pp. 987–991. Cited on
p. 22.

Westfall, P., Krishen, A., and Young, S. S. (1998), “Using prior information to
allocate significance levels for multiple endpoints,” Statistics in Medicine,
17, 2107–2119. Cited on p. 139.

Westfall, P., Tobias, R., and Bretz, F. (2000), Estimating directional error
rates of stepwise multiple comparison methods using distributed computing
and variance reduction, URL http://support.sas.com/rnd/app/papers/
directional.pdf, Technical Report. Cited on p. 17.

Westfall, P. H. (1997), “Multiple testing of general contrasts using logical con-
straints and correlations,” Journal of the American Statistical Association,
92, 299–306. Cited on p. 51, 63, 95, 98, 99, 100, 103, 104, 157.

Westfall, P. H. and Bretz, F. (2010), “Multiplicity in clinical trials,” in Ency-
clopedia of Biopharmaceutical Statistics, ed. S. C. Chow, New York: Marcel
Dekker Inc., (in press). Cited on p. 6, 15.

Westfall, P. H. and Krishen, A. (2001), “Optimally weighted, fixed sequence,
and gatekeeping multiple testing procedures,” Journal of Statistical Plan-
ning and Inference, 99, 25–40. Cited on p. 28.

Westfall, P. H., Kropf, S., and Finos, L. (2004), “Weighted FWE-controlling
methods in high-dimensional situations,” in Recent Developments in Mul-
tiple Comparison Procedures, eds. Y. Benjamini, F. Bretz, and S. Sarkar,
Beachwood, Ohio: Institute of Mathematical Statistics, volume 47 of IMS
Lecture Notes - Monograph Series, pp. 143–154. Cited on p. 35.

© 2011 by Taylor and Francis Group, LLC



182 BIBLIOGRAPHY

Westfall, P. H. and Tobias, R. D. (2007),“Multiple testing of general contrasts:
Truncated closure and the extended Shaffer-Royen method,” Journal of the
American Statistical Association, 102, 487–494. Cited on p. 28, 34, 51, 63,
95.

Westfall, P. H., Tobias, R. D., Rom, D., Wolfinger, R. D., and Hochberg, Y.
(1999), Multiple Comparisons and Multiple Tests Using the SAS System,
Cary, NC: SAS Institute Inc. Cited on p. xiii, xvi, 16, 71, 113, 136.

Westfall, P. H. and Troendle, J. (2008), “Multiple testing with minimal as-
sumptions,” Biometrical Journal , 50, 745–755. Cited on p. 127, 130, 133.

Westfall, P. H. and Young, S. S. (1993), Resampling-Based Multiple Testing ,
New York: Wiley. Cited on p. xiii, 18, 19, 28, 100, 101, 127, 133.

Wiens, B. L. (2003), “A fixed sequence Bonferroni procedure for testing mul-
tiple endpoints,” Pharmaceutical Statistics, 2, 211–215. Cited on p. 28.

Wiens, B. L. and Dmitrienko, A. (2005),“The fallback procedure for evaluating
a single family of hypotheses,” Journal of Biopharmaceutical Statistics, 15,
929–942. Cited on p. 28.

Williams, D. A. (1971), “A test for difference between treatment means when
several dose levels are compared with a zero dose control,” Biometrics, 27,
103–117. Cited on p. 103, 104, 105, 106, 157.

Wright, S. P. (1992), “Adjusted p-values for simultaneous inference,” Biomet-
rics, 48, 1005–1013. Cited on p. 18.

Yohai, V. J. (1987), “High breakdown-point and high efficiency estimates for
regression,” The Annals of Statistics, 15, 642–665. Cited on p. 110.

Zeileis, A. (2006), “Object-oriented computation of sandwich estimators,”
Journal of Statistical Software, 16, 1–16. Cited on p. 117.

© 2011 by Taylor and Francis Group, LLC


	Multiple Comparisons Using R
	Contents
	List of Figures
	List of Tables
	Preface

	Multiple Comparisons Using R
	Chapter 1: Introduction

	Multiple Comparisons Using R
	Chapter 2: General Concepts
	2.1 Error rates and general concepts
	2.1.1 Error rates
	2.1.2 General concepts

	2.2 Construction metho ds for m ultiple comparison pro cedures
	2.2.1 Union intersection test
	2.2.2 Intersection union test
	2.2.3 Closure principle
	2.2.4 Partitioning principle

	2.3 Metho ds based on Bonferroni's inequalit y
	2.3.1 Bonferroni test
	2.3.2 Holm procedure
	2.3.3 Further topics

	2.4 Metho ds based on Simes' inequalit y


	Multiple Comparisons Using R
	Chapter 3: Multiple Comparisons Procedures in Parametric Models
	3.1 General linear mo dels
	3.1.1 Multiple comparisons in linear models
	3.1.2 The linear regression example revisited using

	3.2 Extensions to general parametric mo dels
	3.2.1 Asymptotic results
	3.2.2 Multiple comparisons in general parametric models
	3.2.3 Applications

	3.3 The m ultcomp pac k age
	3.3.1 The
	3.3.2 The
	3.3.3 The



	Multiple Comparisons Using R
	Chapter 4: Applications
	4.1 Multiple comparisons with a con trol
	4.1.1 Dunnett test
	4.1.2 Step-down Dunnett test procedure

	4.2 All pairwise comparisons
	4.2.1 Tukey test
	4.2.2 Closed Tukey test procedure

	4.3 Dose resp onse analyses
	4.3.1 A dose response study on litter weight in mice
	4.3.2 Trend tests

	4.4 V ariable selection in regression mo dels
	4.5 Sim ultaneous con�dence bands for the comparison of t w o
	4.6 Multiple comparisons under heteroscedasticit y
	4.7 Multiple comparisons in logistic regression mo dels
	4.8 Multiple comparisons in surviv al mo dels
	4.9 Multiple comparisons in mixed-e�ects mo dels


	Multiple Comparisons Using R
	Chapter 5: Further Topics
	5.1 Resampling-based m ultiple comparison pro cedures
	5.1.1 Permutation methods
	5.1.2 Using
	5.1.3 Bootstrap testing { Brief overview

	5.2 Metho ds for group sequen tial and adaptiv e designs
	5.2.1 Group sequential designs
	5.2.2 Adaptive designs

	5.3 Com bination of m ultiple comparison pro cedures with
	5.3.1 MCP-Mod: Dose response analyses under model uncertainty
	5.3.2 A dose response example




