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PERIODSM. Kontsevi
h and D. ZagierAbstra
t. \Periods" is the generi
 term used to designate the numbers arising as inte-grals of algebrai
 fun
tions over domains des
ribed by algebrai
 equations or inequalitieswith 
oeÆ
ients in Q. This 
lass of numbers, far larger and more mysterious than thering of algebrai
 numbers, is nevertheless a

essible in the sense that its elements are
onstru
tible and that one at least 
onje
turally has a way to verify the equality of anytwo numbers whi
h have been expressed as periods. Most of the important 
onstants ofmathemati
s belong to the 
lass of periods, and these numbers play a 
riti
al role in thetheory of di�erential equations, in trans
enden
e theory, and in many of the 
entral 
on-je
tures of modern arithmeti
al algebrai
 geometry. The paper gives a survey of some ofthese 
onne
tions, with an emphasis on expli
it examples and on open questions.Introdu
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 fun
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tions3.1. L-fun
tions3.2. Spe
ial values: the 
onje
tures of Deligne and Beilinson3.3. Examples 
oming from algebrai
 number theory3.4. Examples 
oming from modular forms3.5. The 
onje
ture of Bir
h and Swinnerton-Dyer3.6. Subleading 
oeÆ
ients: the Colmez 
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ture4. Periods and Motives4.1. The algebra of abstra
t periods4.2. Motivi
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Introdu
tionAs beginning students of mathemati
s, we learn su

essively about various kinds ofnumbers. First 
ome the natural numbers:N = f1; 2; 3; : : :g :Adding zero and negative numbers, we get the integers:Z = f: : : ; �2; �1; 0; 1; 2; : : :g :Then adding inde
omposable fra
tions gives the rational numbers:Q = � pq �� p 2 Z; q 2 N ; g.
.d.(p; q) = 1	 :Taking limits of sequen
es of rational numbers, we get the real numbers. Finally, weextend the 
lass of real numbers adding formally a symbol \i' whose square is �1 to getthe 
omplex numbers: C = fx+ i � y j x; y 2 Rg :Among the many remarkable advantages 
oming from the introdu
tion of 
omplex num-bers is Gauss's Fundamental Theorem of Algebra: Any polynomial equationa0 + a1x+ � � �+ an�1xn�1 + xn = 0; n > 0with 
omplex 
oeÆ
ients has a solution x 2 C . In parti
ular, we 
an 
onsider the set ofall x 2 C su
h that x satis�es an algebrai
 equation with rational 
oeÆ
ients. In thisway we obtain the set of algebrai
 numbers, usually denoted by Q � C . The simplestirrational real algebrai
 number is p2 = 1:4142135 : : : , whose irrationality is provedin Eu
lid's Elements. Trigonometri
 fun
tions of any rational angle are also algebrai
numbers, e.g. sin(60Æ) =p3=4 ; tan(18Æ) =q1� 2=p5 :Traditionally, numbers are 
lassi�ed a

ording to their position in the hierar
hyN � Z � Q � Q\ \ :R � C (0)Numbers whi
h are not algebrai
 are 
alled trans
endental. There is a huge di�eren
ein size between algebrai
 and trans
endental numbers (Cantor, 1873): the set Q ofalgebrai
 numbers is 
ountable and the set of trans
endental numbers is un
ountable.This means that one 
annot really des
ribe a \generi
" trans
endental number using a�nite number of words. A trans
endental number usually 
ontains an in�nite amountof information. Also, if we meet a number for whi
h there is no apparent reason to bealgebrai
, then it is most natural to assume that this number is trans
endental.There is, however, one further important 
lass of numbers, lying between Q and C ,whi
h is missing in the above 
lassi�
ation. This \new" 
lass of numbers, the periods,seems to be the next most important 
lass in the hierar
hy of numbers a

ording to2



their arithmeti
 properties. The periods form a 
ountable 
lass and in some sense
ontradi
t the above \generi
" prin
iple: periods are usually trans
endental numbers,but they are des
ribed by, and 
ontain, only a �nite amount of information, and (atleast 
onje
turally) 
an be identi�ed in an algorithmi
 way. Periods appear surprisinglyoften in various formulas and 
onje
tures in mathemati
s, and often provide a bridgebetween problems 
oming from di�erent dis
iplines. In this survey arti
le we try toexplain a little what periods are and to des
ribe some of the many pla
es where theyo

ur.Remark. This arti
le is an expanded version of a talk with the same title given by the�rst author at the 1999 Journ�ee Annuelle of the So
i�et�e Math�ematique de Fran
e anddistributed on that o

asion as part of a bro
hure entitled \Math�ematique et Physique".The expansion 
onsists in the in
lusion of many more examples, the addition of a 
hapteron the relation to di�erential equations, and a more detailed dis
ussion of the 
onje
tureof Bir
h and Swinnerton-Dyer. The last 
hapter, whi
h is at a more advan
ed level andalso more spe
ulative than the rest of the text, is by the �rst author only.Chapter 1. First Prin
iples1.1. De�nition and �rst examples.Here is an elementary de�nition of a period:De�nition. A period is a 
omplex number whose real and imaginary parts are valuesof absolutely 
onvergent integrals of rational fun
tions with rational 
oeÆ
ients, overdomains in Rn given by polynomial inequalities with rational 
oeÆ
ients.We will denote the set of periods by P. It is obviously 
ountable. In the abovede�nition one 
an repla
e the words \rational fun
tion" and \rational 
oeÆ
ients" by\algebrai
 fun
tion" and \algebrai
 
oeÆ
ients" without 
hanging the set of numberswhi
h one obtains. For example, the irrational algebrai
 number p2 
an be representedby p2 = Z2x2�1 dx ;and similarly algebrai
 fun
tions o

urring in the integrand 
an be repla
ed by rationalfun
tions by introdu
ing more variables. Indeed, using the fa
t that the integral of anyreal-valued fun
tion is equal to the area under its graph one 
an write an arbitrary periodas the volume of a domain de�ned by polynomial equalities with rational 
oeÆ
ients, sowe never need to integrate any fun
tion more 
ompli
ated than the 
onstant fun
tion 1.In pra
ti
e, however, we often prefer to allow ourselves more freedom rather than less,as follows: Let X be a smooth quasiproje
tive variety, Y � X a subvariety, and ! a
losed algebrai
 n-form on X vanishing on Y , all de�ned over Q , and let C be a singularn-
hain on X(C ) with boundary 
ontained in Y (C ); then the integral RC ! is a period.(Roughly speaking, the reason that this apparently more general de�nition is equivalentto the naive one given before is that we 
an deform C to a semi-algebrai
 
hain andthen break it up into small pie
es whi
h 
an be proje
ted bije
tively onto open domainsin Rn with algebrai
 boundary.) 3



The simplest non-algebrai
 example of a period is the number �, the 
ir
umferen
eof the 
ir
le of unit diameter: � = 3:1415926 : : : :This number, the most famous 
onstant of mathemati
s, is ubiquitous. For example,the volume of the 3-dimensional unit ball is 43� (Ar
himedes). Also � appears in for-mulas for volumes of higher-dimensional balls, spheres, 
ones, 
ylinders, ellipsoids et
.Trigonometri
 fun
tions are periodi
 with period 2�. We 
an express � as a period byany of the following integrals:� = ZZx2+y2�1 dx dy = 2 Z 1�1p1� x2 dx = Z 1�1 dxp1� x2 = Z 1�1 dx1 + x2 (1)or also, after multipli
ation by the algebrai
 number 2i, by the 
ontour integral2�i = I dzzin the 
omplex plane around the point z = 0. The trans
enden
e of the number � wasproved by F. Lindemann in 1882.Two other famous numbers whi
h have spe
ial notations aree = limn!1�1 + 1n�n = 2:7182818 : : : ;the basis of the natural logarithms, and Euler's 
onstant,
 = limn!1�1 + 12 + � � �+ 1n � logn� = 0:5772156 : : : ;but these two numbers (
onje
turally) are not periods. (However, see x4.3.) It is knownonly that e is trans
endental (Ch. Hermite, 1873).However, there are many examples of periods besides � and the algebrai
 numbers.For example, logarithms of algebrai
 numbers are periods, e.g.log(2) = Z 21 dxx :Similarly, the perimeter of an ellipse with radii a and b is the ellipti
 integral2 Z b�br1 + a2x2b4 � b2x2 dxand it 
annot be expressed algebrai
ally using � for a 6= b; a; b 2 Q>0 . Many in�nitesums of elementary expressions are periods. For example,�(3) = 1 + 123 + 133 + � � � = 1:2020569 : : :4



has the following representation as an integral:�(3) = ZZZ0<x<y<z<1 dx dy dz(1� x)yz ; (2)and more generally, all values of the Riemann zeta fun
tion�(s) :=Xn�1 1nsat integers s � 2 are periods, as are the \multiple zeta values"�(s1; : : : ; sk) := X0<n1<���<nk 1ns11 � � �nskk (si 2 N ; sk � 2) (3)(
f. [32℄) whi
h have been widely studied in re
ent years. Spe
ial values at algebrai
arguments of hypergeometri
 fun
tions and of solutions of many other di�erential equa-tions are periods (
f. x2.2). So are spe
ial values of modular forms at appropriatearguments (
f. x2.3) and of various kinds of L-fun
tions atta
hed to them (Chapter 3).The (logarithmi
) Mahler measure�(P ) = Z � � �Zjx1j=���=jxnj=1 log jP (x1; : : : ; xn)j dx1x1 � � � dxnxn (4)of a Laurent polynomial P (x1; : : : ; xn) 2 Q [x�11 ; : : : ; x�1n ℄ is a period. Also, periodsform an algebra, so we get new periods by taking sums and produ
ts of known ones.It 
an also happen that the integral of a trans
endental fun
tion is a period \bya

ident". As an example, the reader 
an verify thatZ 10 xlog 11�x dx = log 2 : (5)(Hint: make the substitution x 7! 2x� x2 in R 12"�"2(log(1� x))�1 dx.) Similarly, valuesof the gamma fun
tion �(s) = Z 10 ts�1 e�t dtat rational values of the argument s are 
losely related to periods:��p=q�q 2 P (p; q 2 N) : (6)(This follows from the representation of �(p=q)q as a beta integral.) For instan
e,�(1=2)2 = � and �(1=3)3 = 24=331=2� Z 10 dxp1� x3 : In general, there seems to beno universal rule explaining why 
ertain in�nite sums or integrals of trans
endentalfun
tions are periods. Ea
h time one has to invent a new tri
k to prove that a giventrans
endental expression is a period.It 
an be said without mu
h overstret
hing that a large part of algebrai
 geometry is(in a hidden form) the study of integrals of rational fun
tions of several variables. Wetherefore propose the following prin
iple for mathemati
al pra
ti
e:Prin
iple 1. Whenever you meet a new number, and have de
ided (or 
onvin
ed your-self) that it is trans
endental, try to �gure out whether it is a period.5



1.2. Identities between periods. In the introdu
tion, we listed some of the mostfamiliar 
lasses of numbers, summarized in the diagram (0), and emphasized a majordi�eren
e between the two rows of this diagram: the sets in the �rst row are 
ountableand ea
h of their elements 
an be des
ribed by spe
ifying a �nite amount of information,whereas the individual elements of the sets in the se
ond row do not in general havesu
h a des
ription. Indeed, be
ause of this some mathemati
ians [27℄ would have usbelieve that we have no right to work with these sets at all! For periods the situation isintermediate and not entirely 
lear. On the one hand the set P is 
ountable and ea
helement of it 
an be des
ribed by a �nite amount of information (namely, the integrandand domain of integration de�ning the period). On the other hand, a priori there aremany ways to write a 
omplex number as an integral, and it is not 
lear how to 
he
kwhen two periods given by expli
it integrals are equal or di�erent. The problem isexa
erbated by the fa
t that two di�erent periods may be numeri
ally very 
lose andyet be distin
t, examples being�p1633 and log(640320);both of whi
h have de
imal expansions beginning 13:36972333037750 : : : , or, even moreamazingly, the two periods [23℄�6 p3502 and log�2 4Yj=1�xj +qx2j � 1���x1 = 10712 +92p34 ; x2 = 15532 +133p34 ; x3 = 429+304p2 ; x4 = 6272 +221p2� ;whi
h agree numeri
ally to more than 80 de
imal digits and nevertheless are di�erent!For algebrai
 numbers there may, of 
ourse, also be apparently di�erent expressionsfor the same number, su
h asq11 + 2p29 +r16� 2p29 + 2q55� 10p29 = p5 +q22 + 2p5([22℄), but we 
an 
he
k their equality easily, either by �nding some polynomial satis�edby ea
h number and 
omputing the g.
.d. of these polynomials or else by 
al
ulatingboth numbers numeri
ally to suÆ
iently high pre
ision and using the fa
t that twodi�erent solutions of algebrai
 equations with integer 
oeÆ
ients of given degree andheight 
annot be too 
lose to ea
h other.Can we do something similar for periods? From elementary 
al
ulus we have severaltransformation rules, i.e., ways to prove identities between integrals. For integrals offun
tions in one variable these rules are as follows.1) Additivity (in the integrand and in the domain of integration):Z ba (f(x) + g(x)) dx = Z ba f(x) dx + Z ba g(x) dx ;6



Z ba f(x) dx = Z 
a f(x) dx+ Z b
 f(x) dx :2) Change of variables: if y = f(x) is an invertible 
hange of variables, thenZ f(b)f(a) F (y) dy = Z ba F (f(x)) f 0(x) dx :3) Newton-Leibniz formula:Z ba f 0(x) dx = f(b)� f(a) :In the 
ase of multi-dimensional integrals one puts the Ja
obian of an invertible
hange of 
oordinates in rule 2) and repla
es the Newton-Leibniz formula by Stokes'sformula in rule 3).A widely-held belief, based on a judi
ious 
ombination of experien
e, analogy, andwishful thinking, is the followingConje
ture 1. If a period has two integral representations, then one 
an pass from oneformula to another using only rules 1), 2), 3) in whi
h all fun
tions and domains ofintegration are algebrai
 with 
oeÆ
ients in Q .In other words, we do not expe
t any mira
ulous 
oin
iden
e of two integrals ofalgebrai
 fun
tions whi
h will be not possible to prove using three simple rules. This
onje
ture, whi
h is similar in spirit to the Hodge 
onje
ture, is one of the 
entral
onje
tures about algebrai
 independen
e and trans
endental numbers and is related tomany of the results and ideas of modern arithmeti
 algebrai
 geometry and the theoryof motives.Conje
ture 1 suggests a useful adjun
t to the prin
iple stated at the end of x1:Prin
iple 2. When you wish to prove a 
onje
tured identity between real numbers, �rsttry to express both sides as periods (Prin
iple 1) and then try to transform one of theintegrals into the other by means of the rules 1) { 3).Whenever the �rst part of this prin
iple applies, i.e., when we have already expressedthe identity to be proved as an equality between two periods and \merely" have toverify that Conje
ture 1 works, we will speak of an a

essible identity. We will givea simple example at the end of the se
tion, and several others later in the paper.Returning to the questions dis
ussed at the beginning of the se
tion, we 
an state:Problem 1. Find an algorithm to determine whether or not two given numbers in Pare equal.Note that even a proof of Conje
ture 1 would not automati
ally solve this problem,sin
e it would only say that any equality between periods possesses an elementaryproof, but might not give any indi
ation of how to �nd it. Problem 1 therefore looks
ompletely intra
table now and may remain so for many years. Nevertheless, we 
anask for more. For the 
lass of rational or algebrai
 numbers, one 
annot only test theequality of two given elements of the 
lass, as already mentioned, but 
an even test7



algorithmi
ally whether a given number, known only numeri
ally, belongs to the 
lass.(To re
ognize whether a numeri
ally given real number � is rational, one 
omputes its
ontinued fra
tion expansion and 
he
ks whether there is a very large partial quotient.To 
he
k whether it is the root of a polynomial equation of degree n with not-too-largeintegral 
oeÆ
ients, one uses a latti
e redu
tion algorithm like \LLL" to determinewhether there is a ve
tor (a0; : : : ; an) 2 Zn+1 r f0g for whi
h the quadrati
 form(an�n+ � � �+ a1�+ a0)2+ "(a20+ � � �+ a2n) is very small, where " is a very small positivenumber.) By analogy with this, we 
an set the presumably impossibly hard:Problem 2. Find an algorithm to determine whether a given real number, known nu-meri
ally to high a

ura
y, is equal (within that a

ura
y) to some simple period.Here the \simpli
ity"|the analogue of the height in the 
ase of algebrai
 numbers|should be measured in terms of the dimension of the integral de�ning the period andthe 
omplexity of the polynomials o

urring in the des
ription of the integrand anddomain of integration (or, if one wishes, simply by the amount of ink or the number ofTEX keystrokes required to write down the integral).Finally, we state a problem whi
h is in some sense the 
onverse of Problem 2:Problem 3. Exhibit at least one number whi
h does not belong to P.Of 
ourse su
h numbers exist, sin
e P is 
ountable. Solving Problem 3 would be theanalogue of Liouville's a
hievement in the 19th 
entury when he 
onstru
ted the �rstexpli
it example of a number whi
h 
ould be proved to be trans
endental. Even moredesirable, of 
ourse, would be to emulate the a
hievements of Hermite and Lindemannand prove that some spe
i�
 numbers of interest, like e or 1=�, do not belong to P.Ea
h of these problems looks very hard and is likely to remain open a long time. Weend the se
tion on a more optimisti
 note by giving the promised simple example of asituation where Prin
iple 2 leads to su

ess, namely the formula �(2) = �2=6 provedby Euler in 1734. Sin
e both �(2) (
f. eq. (2)) and � are periods, this is an \a

essibleidentity." Here we show how to prove it (starting with a slightly di�erent integral rep-resentation) using only the rules 1){3), by suitably rewriting a proof originally due toCalabi and reprodu
ed in the paper [5℄. SetI = Z 10 Z 10 11� xy dx dypxy :Expanding 1=(1� xy) as a geometri
 series and integrating term-by-term, we �nd thatI = P1n=0(n + 12 )�2 = (4 � 1)�(2), providing another \period" representation of �(2).Now making the 
hange of variablesx = �2 1 + �21 + �2 ; y = �2 1 + �21 + �2with Ja
obian ����d(x; y)d(�; �) ���� = 4��(1� �2�2)(1 + �2)(1 + �2) = 4 (1� xy)pxy(1 + �2)(1 + �2) ; we �ndI = 4 ZZ�; �>0; � ��1 d�1 + �2 d�1 + �2 = 2 Z 10 d�1 + �2 Z 10 d�1 + �2 ;8



the last equality being obtained by 
onsidering the involution (�; �) 7! (��1; ��1); and
omparing this with the last integral in (1) we obtain I = �2=2.As another example, the reader may like to try proving the a

essible identity��x+ y + 16 + 1=x+ 1=y) = 116 ��x+ y + 5 + 1=x+ 1=y� ;where �(P ) denotes the Mahler measure as de�ned in x1.1, using only the rules 1){3).Chapter 2. Periods and Differential EquationsBy de�nition, periods are the values of integrals of algebrai
ally de�ned di�erentialforms over 
ertain 
hains in algebrai
 varieties. If these forms and 
hains depend onparameters, then the integrals, 
onsidered as fun
tions of the parameters, typi
allysatisfy linear di�erential equations with algebrai
 
oeÆ
ients. The periods then appearas spe
ial values of the solutions of these di�erential equations at algebrai
 arguments.This leads to a fas
inating and very produ
tive interplay between the study of periodsand the theory of linear di�erential equations. We 
annot begin to do justi
e to thishuge theme here, and will 
ontent ourselves with giving a few general properties andexamples, referring the reader to the extensive literature, e.g. [1℄, for more details.The di�erential equations o

urring in the way just indi
ated are 
alled (generalized)Pi
ard-Fu
hs di�erential equations or (members of) Gauss-Manin systems. The �rstpoint to be emphasized is that these di�erential equations are of a very spe
ial type,and that it is not known in general how to determine whether a given linear di�erentialequation (say, with 
oeÆ
ients in Q [t℄) is of Pi
ard-Fu
hs type. There are several 
on-je
tural 
riteria. We mention three of them brie
y, and without de�ning all of the termsinvolved. One, due to Bombieri and Dwork, says that these are pre
isely the equationsfor whi
h the power series expansion of every solution at a 
hosen (rational) base pointt0 has 
oeÆ
ients whose numerators and denominators grow at most exponentially (so-
alled \G-fun
tions"). Another (Siegel, Bombieri, Dwork) gives as a ne
essary andsuÆ
ient 
ondition that the di�erential operator has nilpotent p-
urvature for almostevery prime p. A third says that the di�erential equation should have only regularsingular points and a monodromy group 
ontained in SL(n;Q ), where n is the order ofthe equation. Note, however, that these 
riteria are not only not proved, but that it isalso not 
lear whether there is any general algorithm to determine whether they holdfor a given di�erential equation.We now des
ribe some examples of Pi
ard-Fu
hs equations and their relations toperiods.2.1. Example 1: Families of ellipti
 
urves. This is the simplest and most 
lassi
alexample of the situation we have des
ribed. If E is an ellipti
 
urve over C , say givenby an equation of the form y2 = f(x) with f(x) a 
ubi
 polynomial, then the integral ofthe holomorphi
 1-form dx=y over a 
losed path in E(C ) depends only on the homology
lass of the path, so by pi
king a basis of H1(E(C );Z) �= Z2 we obtain two basi
 periodintegrals. If f(x) depends rationally on a parameter t, these will be the solutions of a9



se
ond-order di�erential equation with monodromy group 
ontained in SL(2;Z). Forinstan
e, for the Weierstrass familyEWt : y2 = x3 � 3tx+ 2t (t 2 C ) ;the period integrals satisfy the di�erential equationt2(t� 1)W 00(t) + t(2t� 1)W 0(t) + � 3t16 + 136�W (t) = 0 :Another frequently en
ountered family is given by the Legendre equationELt : y2 = x(x� 1)(x� t) (t 2 C ) ; (7)whose period integrals
1(t) = Z 1t dxpx(x� 1)(x� t) ; 
2(t) = Z 11 dxpx(x� 1)(x� t) (8)are solutions of the di�erential equationt(t� 1)
00(t) + (2t� 1)
0(t) + 14 
(t) = 0 :A third example is the family of ellipti
 
urves with a distinguished 2-torsion pointEPt : y2 = x3 � 2x2 + (1� t)x (t 2 C ) ;whose period integrals 
an be given byP1(t) = Z 1�pt0 dxpx3 � 2x2 + (1� t)x ; P2(t) = Z 0�1 dxpx3 � 2x2 + (1� t)xand satisfy the di�erential equationt(t� 1)P 00(t) + (2t� 1)P 0(t) + 316 P (t) = 0 :2.2. Example 2: Hypergeometri
 fun
tions. The di�erential equation satis�edby the Euler-Gauss hypergeometri
 fun
tionF (a; b; 
; x) = 1Xn=0 (a)n (b)n(
)n n! xn � jxj < 1; (�)n := �(�+ 1) � � � (�+ n� 1) �is of Pi
ard-Fu
hs type whenever the parameters a, b, 
 are rational. The last two ofthe three di�erential equations just given are of this type. For instan
e, substitutingx = � 
ot2 � into the de�nition of P2(t) and expanding by the binomial theorem givesP2(t) = 2i Z �=20 d�p1� t sin4 � = 2i 1Xn=0�2nn � tn4n Z �=20 sin4n � d�= �i 1Xn=0�2nn ��4n2n� tn64n = �i F �14 ; 34 ; 1; t� �jtj < 1� ;10



and a similar 
al
ulation gives 
2(t) = �F ( 12 ; 12 ; 1; t).Note that in these examples, the values of the hypergeometri
 fun
tion at an algebrai
value of its argument is 1=� times a period. The same holds for F (a; b; 
;x) for anyrational values of a, b, 
. To see this, one 
an start with Euler's integral representationF (a; b; 
; x) = �(
)�(a) �(
� a) Z 10 ta�1 (1� t)
�a�1 (1� xt)�b dtand then use the re
e
tion formula �(x)�(1 � x) = �= sin�x and the beta integral towrite �(
)�(a) �(
� a) = 1� � a sin(�a) sin(�(a� 
))sin(�
) � Z 10 t�a�1 (1� t)a�
 dt 2 1� P :(An alternative proof is obtained by writing F (a; b; 
;x) as the residue at z = 0 of thefun
tion (
� a)(1� xz)�a R 10 (1� t=z)�b(1� t)
�2dt and then representing this residueby a Cau
hy integral, with denominator 2�i.) Also, the fa
tor 1=� really is needed, aswe see by observing that F ( 12 ; 12 ; 2; 1) = 4��1, whi
h belongs to ��1P but (presumably)not to P. Similar remarks hold also for generalized hypergeometri
 fun
tions. For manypurposes it is 
onvenient to widen our previous de�nition and 
onsider also elements ofthe extended period ring bP = P[1=�℄ (= P[1=2�i℄). From a motivi
 point of view(
f. Chapter 4), it is more natural anyway to 
onsider bP than P, be
ause multiplyingby a power of 2�i 
orresponds to performing a \Tate twist" of the 
orresponding motiveand su
h twists are 
onsidered as elementary res
aling operations.The spe
ial values of hypergeometri
 fun
tions at algebrai
 arguments are usuallytrans
endental, but sometimes 
an assume unexpe
ted algebrai
 values, an examplebeing the evaluation [7℄ F � 112 ; 512 ; 12; 13231331� = 34 4p11 :What makes this example even more surprising is that the same hypergeometri
 seriesalso 
onverges in the �eld of 7-adi
 numbers (sin
e 1323 = 3372) and that its value thereis 14 4p11 [4℄ ! (A simpler example of the same behavior is given by the hypergeomet-ri
 sum 1Pn=0 n!2 3n(2n+ 1)! , whi
h 
onverges to 4�3p3 in R but to 0 in Q3 [31℄.) Similarly,the hypergeometri
 fun
tions themselves are usually trans
endental fun
tions, but 
ano

asionally be algebrai
. The 
ases where this o

urs for the 
lassi
al Gauss hyperge-ometri
 fun
tion F = 2F1 were determined by S
hwarz in 1873, and the 
orrespondingvalues for generalized (balan
ed) hypergeometri
 fun
tions nFn�1 were determined byBeukers and He
kman [6℄. Examples are the three fun
tionsA = 1Xn=0 (6n)!n!(3n)!(2n)!2 xn ; B = 1Xn=0 (10n)!n!(5n)!(4n)!(2n)! xn ; C = 1Xn=0 (20n)!n!(10n)!(7n)!(4n)! xn ;ea
h of whi
h is algebrai
, but in a rather 
ompli
ated way; for instan
e, the equationsatis�ed by B has the form �(1 � 3125x; B2) = 0 where �(X;Y ) is a polynomialbeginning X12Y 15 + 154 X11Y 14 + 3128(15X11 + 266X10)Y 13 + � � � .11



2.3. Example 3: Modular forms. Modular forms will play an important role inmany of the remaining examples in this paper. We re
all their de�nition. For k 2 Z,a modular form of weight k is a fun
tion f de�ned in the 
omplex upper half-planeH = fz 2 C j =(z) > 0g whi
h transforms under the a
tion of all matri
es � a b
 d �in SL(2;Z) or in a subgroup � of �nite index in SL(2;Z) a

ording to the formulaf((az+b)=(
z+d)) = (
z+d)kf(z), and also satis�es suitable 
onditions of holomorphyor meromorphy and growth 
onditions at in�nity. A modular fun
tion is a modular formof weight 0, i.e., a holomorphi
 or meromorphi
 fun
tion on H whi
h is invariant underthe a
tion of �. A basi
 prin
iple whi
h is unfamiliar to a surprising number even ofexperts in the �eld, although it has been known sin
e the end of the 19th 
entury, isthe following:Fa
t 1. Let f(z) be a (holomorphi
 or meromorphi
) modular form of weight k > 0 andt(z) a modular fun
tion. Then the many-valued fun
tion F (t) de�ned by F (t(z)) = f(z)satis�es a linear di�erential equation of order k + 1 with algebrai
 
oeÆ
ients.Here is a brief indi
ation of the proof. One 
he
ks easily by indu
tion on i that thea
tion (in weight 0) of an element 
 2 � on Di ~f(z) for any i � 0, where D = t0(z)�1d=dz(\= d=dt") and ~f : H ! C k+1 is the ve
tor-valued fun
tion with 
omponents znf(z)(n = k; k � 1; : : : ; 0), is given by the 
onstant matrix Symk(
). It follows that the
oeÆ
ients of the linear relation among the k+2 ve
tors Di ~f (i = 0; 1; : : : ; k+1) are �-invariant fun
tions of z and hen
e algebrai
 fun
tions of t = t(z), and this is the desireddi�erential equation. We see also that the full set of solutions of the di�erential equationis the spa
e spanned by the fun
tions znf(z) (0 � n � k) and that the monodromygroup is the image of � � SL(2;R) under the kth symmetri
 power representationSL(2;R) ! SL(k + 1;R).We give a few examples illustrating this and then des
ribe the 
orresponding state-ment for spe
ial values and the relationship with the ellipti
 integrals dis
ussed in x2.1.The simplest modular forms on the full modular group SL(2;Z) are the Eisensteinseries Ek(z) = 12 Xm;n2Zm, n 
oprime 1(mz + n)kof weight k for ea
h integer k = 4, 6, : : : (we need k > 2 to make the series 
onverge andk even to make it non-zero). Sin
e the fun
tional equation de�ning modularity in
ludesthe periodi
ity statement f(z) = f(z + 1), any modular form has a Fourier expansionas a power series in q = e2�iz. For the �rst two Eisenstein series these expansions areE4(z) = 1 + 240 1Xn=1�3(n) qn ; E6(z) = 1� 504 1Xn=1�5(n) qn ;where ��(n) denotes the sum of the �th powers of the positive divisors of n. (There aresimilar formulas for all Ek.) Another famous modular form is the dis
riminant fun
tion�(z) = 11728�E4(z)3 � E6(z)2� = q 1Yn=1(1� qn)24 = q � 24q2 + 252q3 � � � �12



of weight 12, whi
h has a Fourier expansionP �(n)qn with the remarkable property thatthe Fourier 
oeÆ
ients are multipli
ative in n (for instan
e, �(6) = �6048 = �(2)�(3));forms with this property, the so-
alled He
ke eigenforms, are known to span the spa
e ofall modular forms and will be important in the 
onje
tures about L-fun
tions dis
ussedin Chapter 3. Finally, the simplest and best known example of a modular fun
tionis the j-fun
tion j(z) = E4(z)3=�(z) = q�1 + 744 + 196884q + � � � . If we now takef(z) = 4pE4(z) (whi
h is multivalued and hen
e not a true modular form, but Fa
t 1still applies) and t(z) = 1728=j(z), then the F (t) de�ned in Fa
t 1 is a hypergeometri
fun
tion: 4pE4(z) = F � 112 ; 512 ; 1; 1728j(z) � ;a formula already given by Fri
ke and Klein at the turn of the last 
entury.As a se
ond example, we 
onsider the subgroup �(2) of matri
es � a b
 d � 2 SL(2;Z)
ongruent to the identity matrix modulo 2. Here we 
an take for f(z) the modular form�(z)2 of weight 1, where�(z) = Xn2Ze�in2z = 1 + 2q1=2 + 2q2 + 2q9=2 + � � �is the 
lassi
al theta fun
tion (whose modularity is a 
onsequen
e of the Poisson sum-mation formula) and for t(z) the �-fun
tion, de�ned by�(z) = 16�(z=2)8�(2z)16�(z)24 = 1� �(z=2)16�(2z)8�(z)24 = 16q1=2 � 128q + 704q3=2 � � � � ;where �(z) = �(z)1=24 = q1=24Q(1� qn) is the Dedekind eta-fun
tion. Then one �ndsthat f(z) = F ( 12 ; 12 ; 1;�(z)), giving another illustration of Fa
t 1.The observant reader will have noti
ed that the hypergeometri
 fun
tion F ( 12 ; 12 ; 1; t)relating �(z)2 to �(t) is the same as the one whi
h was mentioned in x2.2 as givingthe power series expansion near t = 0 of ��1
2(t), where 
2(t) is the ellipti
 integralde�ned in (8). This is not a 
oin
iden
e. We 
an asso
iate to any z 2 H the ellipti

urve C =(Zz + Z). Two values of z equivalent under SL(2;Z) give isomorphi
 ellipti

urves, so that any invariant of an ellipti
 
urve is automati
ally a modular fun
tion.The \t" of the ellipti
 
urve given by (7) is not quite an invariant of the ellipti
 
urve,sin
e by writing the equation in this way we have 
hosen a numbering of the threeroots of the 
ubi
 polynomial o

urring in the Weierstrass equation for the 
urve, butit is still a modular fun
tion for the subgroup �(2) of index 6 in SL(2;Z), and thismodular fun
tion is just �(z). This implies that the latti
e generated by 
1(t) and
2(t) is homotheti
 (i.e., equal up to s
alar multipli
ation) to the latti
e generated byz and 1. We 
hose the basis of the latti
e in su
h a way that z = 
1(t)=
2(t), andthe transformation properties under the modular group now tell us that 
2(�(z)) is amodular form of weight 1, whi
h is in fa
t just ��(z)2. The same applies to any otherfamily of ellipti
 
urves, e.g. the family EPt of x2.1 has a modular parametrization byt = 64�(2z)=(�(z) + 64�(2z)) and P2(t) the square root of an Eisenstein series ofweight 2 on the subgroup �0(2) 
onsisting of matri
es � a b
 d � in SL(2;Z) with 
 even.The reader 
an �nd the modular parametrization of the family EWt as an exer
ise.13



Fa
t 1 was stated on the level of fun
tions. There is an analogous fa
t on the level ofspe
ial values. To state it, we need one further de�nition. We will say that a modularform or modular fun
tion is de�ned over a sub�eld K of C if all of its Fourier 
oeÆ
ientsbelong to K. Then we have:Fa
t 2. Let f(z) be a modular form of weight k > 0 and t(z) a modular fun
tion, bothde�ned over Q . Then for any z0 2 H for whi
h t(z0) is algebrai
, f(z0) belongs to bP.In fa
t, we have that �kf(z0) belongs to P. The proof at this stage is trivial: wepi
k one modular form f1(z) of weight 1, say �(z)2, and one modular fun
tion t1(z), say�(z), for whi
h we already know that the assertion holds (in the 
ase given, be
ause ift0 = �(z0) is algebrai
, then �f1(z0) equals the 
2(t0), a period). Sin
e any two modularfun
tions are algebrai
ally dependent, both f(z)=f1(z)k and t1(z) are algebrai
 fun
tionsof t(z), and the fa
t that f , t, f1 and t1 are all de�ned over Q implies that the 
oeÆ
ientsof these algebrai
 dependen
es also belong to Q . It follows that f(z0)=f1(z0)k and t1(z0)belong to Q , and this implies in turn that �f1(z0) and �kf(z0) are in P. Noti
e that thesame argument 
an be used to give a di�erent proof of Fa
t 1 as well: having veri�edit for one pair (f1, t1), as we did in x2.2 in the 
ase of �2 and �, we dedu
e the general
ase by observing that if F1(t) satis�es a se
ond order linear di�erential equation withalgebrai
 
oeÆ
ients, then F1(t)k satis�es a di�erential equation of order k + 1 withalgebrai
 
oeÆ
ients, and that this latter property is not a�e
ted if we repla
e t by analgebrai
 fun
tion of t or multiply the fun
tion F1(t)k by an algebrai
 fun
tion of t.A spe
ial 
ase of Fa
t 2 is worth mentioning separately. A point z0 2 H is 
alled aCM point if it is the solution of a quadrati
 equation with 
oeÆ
ients in Q . (This isbe
ause the 
orresponding ellipti
 
urve C =(Zz+Z) then has non-trivial endomorphismsgiven by Multipli
ation with 
ertain Complex numbers, namely, elements of an order inthe imaginary quadrati
 �eld Q(z0).) In this 
ase it is known by the theory of 
omplexmultipli
ation that j(z0), and hen
e also t(z0) for any modular fun
tion t de�ned overQ , is an algebrai
 number, so Fa
t 2 tells us that �kf(z0) is a period for any modularform f of (positive) weight k de�ned over Q . In this 
ase there is an expli
it formula (theso-
alled Chowla-Selberg formula; 
f. [W℄), for the value of this period, up to algebrai
numbers and a power of �, as a produ
t of rational powers of values of the gammafun
tion at rational arguments. As an example, �(i) = 2�24 ��18 �(1=4)24.2.4. Example 4: Ap�ery's di�erential equation. In 1986, Roger Ap�ery 
reated asensation by proving the irrationality of the number �(3) = 1 + 2�3 + 3�3 + � � � . Morepre
isely, what he did was to 
onstru
t two sequen
esa0 = 1; a1 = 5; a2 = 73; a3 = 1445; a4 = 33001; : : :b0 = 0; b1 = 6; b2 = 3514 ; b3 = 625336 ; b4 = 11424695288 ; : : :whi
h have the following properties:(i) an 2 Z, N3n bn 2 Z for all n � 0, where Nn = l.
.m.f1; 2; : : : ; ng ;(ii) 0 < an �(3)� bn < A��n for some A > 0 and all n � 0, where � = 17+12p2.Sin
e N3n grows like e3n (by the prime number theorem) and � > e3, these two state-ments together immediately imply that �(3) 
annot be a rational number. Ap�erygave the numbers an and bn by expli
it formulas in terms of binomial 
oeÆ
ients (e.g.14



an = Pk �nk�2�n+kk �2; the formula for bn is similar but more 
ompli
ated) whi
h madestatement (i) obvious. He then proved that both sequen
es satis�ed the re
urren
e(n+ 1)3un+1 = (34n3 + 51n2 + 27n+ 5)un � n3 un�1 (n � 1) : (9)Statement (ii) follows easily from this. (Any solution of (9) must either grow or de
ayexponentially like C��n=n3=2, and the expli
it formulas showed that bn=an ! �(3).)However, the proof that the sequen
es de�ned by the expli
it formulas satis�ed there
urren
e (9) was 
ompli
ated and unilluminating. Fairly soon afterwards, Beukersfound two other mu
h more enlightening proofs whi
h are both related to the 
ir
le ofideas we are dis
ussing.The �rst of these proofs is dire
tly based on the use of period integrals and theprin
iple stated in x1.2. For n � 0 de�neIn = 12 1Z0 1Z0 1Z0 pn(x)pn(y)1� t+ txy dx dy dt ;where pn(x) = (d=dx)n(xn(1� x)n)=n! (essentially the nth Legendre polynomial). Forintegers k and l between 0 and n one �nds by a dire
t (but ingenious) 
al
ulationthat 12 RRR xkyl(1 � t + txy)�1 dx dy dt is the sum of Æk;l�(3) and a rational numberwith denominator dividing N3n, so, sin
e pn has integral 
oeÆ
ients, In has the forman�(3)� bn with an and bn satisfying property (i). On the other hand, by applying therules of 
al
ulus as in x1.2 (spe
i�
ally, by integrating by parts n times with respe
t tox and then, after a suitable 
hange of variables, n times with respe
t to y), one obtains2In = 1Z0 1Z0 1Z0 �xyz(1� x)(1� y)(1� z)1� (1� xy)z �n dx dy dz1� (1� xy)z ;and the estimate In = O(��n) in (ii) now follows be
ause the maximum of the expressionin square bra
kets is 1=�.The se
ond, even ni
er, proof is based on giving modular interpretations of the se-quen
es fang and fbng. We indi
ate only what happens for fang, sin
e this is a dire
tappli
ation of \Fa
t 1" from x2.3. If we de�net(z) = � �(z) �(6z)�(2z) �(3z)�12 = q � 12q2 + 66q3 � 220q4 + : : :(�(z) = Dedekind eta-fun
tion) andf(z) = ��(2z) �(3z)�7��(z) �(6z)�5 = 1 + 5q + 13q2 + 23q3 + 29q4 + : : : ;whi
h are, respe
tively, a modular fun
tion and a modular form of weight 2 on the group�0(6) of all matri
es � a b
 d � in SL(2;Z) with 
 divisible by 6 (and in fa
t on the slightly15



larger group ��0(6) obtained by adjoining the matrix � 0 �1=p6p6 0 � to �0(6)), then Fa
t 1tells us that the power series F (t) = 1+5t+73t2+ � � � expressing f(z) (near z = i1) interms of t(z) satis�es a linear di�erential equation of order 2+ 1 = 3 with (in this 
ase)polynomial 
oeÆ
ients. Cal
ulating this di�erential equation expli
itly, one �nds thatthe 
oeÆ
ients of F (t) satisfy the re
ursion (9), and their integrality is obvious sin
eboth f(z) and t(z) have q-expansions with integral 
oeÆ
ients.This se
ond proof highlights an aspe
t of Pi
ard-Fu
hs equations whi
h was men-tioned at the beginning of this 
hapter as one of the (
onje
tural) 
hara
terizations ofthis 
lass of di�erential equations, namely the \G-fun
tion" property of having Taylor
oeÆ
ients with (numerators and) denominators of at most polynomial growth. There
urren
e (9) plainly has two linearly independent solutions over Q (take any initialvalues of u0 and u1 in Q and 
ontinue from there), but sin
e in 
omputing un+1 fromits two prede
essors one has to divide by (n+ 1)3, one would a priori expe
t that ea
hof these has denominators (and hen
e also numerators) growing roughly like n!3, i.e.,more than exponentially. The property found by Ap�ery that in fa
t both solutions havedenominators at most N3n (of only exponential growth) and that there is even one solu-tion fang with no denominators at all, is surprising and, indeed, is the 
rux of Ap�ery'sproof. This type of property is very rare. For an example, one of the authors has madea sear
h over 108 parameter values (A;B; �) (B(A2 � 4B) 6= 0) of the re
ursionu0 = 1; (n+ 1)2un+1 �An(n+ 1)un + Bn2un�1 = �un (n � 0)(whi
h for (A;B; �) = (11;�1; 3) is the re
ursion o

urring in a proof of the irrationalityof �(2) exa
tly parallel to the �(3) proof) and found only 6 
ases in whi
h the un's areintegral. In a

ordan
e with the 
onje
tural 
hara
terization, all six were indeed ofPi
ard-Fu
hs type, in fa
t asso
iated with families of ellipti
 
urves as in x2.1.As a �nal remark in 
onne
tion with Ap�ery's proof we mention that many, if notalmost all proofs of irrationality and trans
enden
e results use periods and their asso-
iated di�erential equations in one form or another. As salient examples we mentionW�ustholz's 1983 theorem (in
luding several previous results of trans
enden
e theory asspe
ial 
ases) that the integral of any meromorphi
 1-form on a Riemann surfa
e (bothde�ned over Q ) over any 
losed 
y
le is either 0 or else trans
endental, and Nesterenko'smore re
ent theorem that �, e� and �(1=4) are algebrai
ally independent, whose proofmakes essential use of the representation of spe
ial values of modular forms as periodintegrals.2.5. An appli
ation. We end this 
hapter by a simple appli
ation demonstrating thatthe prin
iple formulated in x1.2 (prove an identity by �rst re
asting it in an \a

essible"form as an equality between period integrals and then applying the transformation rulesfor su
h integrals) 
an also be applied at the level of fun
tions satisfying Pi
ard-Fu
hs-type equations (prove an identity by �rst writing it as an equality between values offun
tions satisfying di�erential equations and then showing that both satisfy the sameequation with the same boundary 
ondition). In favorable 
ases the freedom 
omingfrom the extra variable makes the proofs easier than if we just looked at �xed values of16



the variables. The example we 
onsider is the formula�(1; 3; 1; 3; : : : ; 1; 3| {z }2m terms ) = 2�4m(4m+ 2)! (m � 1)for 
ertain spe
ial values of the sum (3). This identity, whi
h was 
onje
tured in [32℄,is a

essible, sin
e both multiple zeta values and powers of � are periods, but it is farfrom 
lear how to prove it by applying the transformation rules given in x1.2, and itremained unsolved for several years. It was then proved by Broadhurst by an argumentwhi
h, in a streamlined form, is as follows: For jxj � 1 and any t we have1 + 1Xm=1 X0<a1<b1<���<am<bm (�4t4)m xbma1b31 � � �amb3m = F (t;�t; 1;x)F (it;�it; 1;x)be
ause both sides are power series in x starting 1 + O(x2) and are annihilated by thedi�erential operator �(1� x) ddx�2�x ddx�2 + 4t4 . Now setting x = 1 gives1 + 1Xm=1 �(1; 3; 1; 3; : : : ; 1; 3| {z }2m terms ) (�4t4)m = sin�t�t sinh�t�t = 1Xm=0 2�4m(4m+ 2)! (�4t4)m :
Chapter 3. Periods and L-Fun
tionsThe most striking way that periods appear in arithmeti
 is in 
onne
tion with thespe
ial values of L-fun
tions. This 
onne
tion, still 
onje
tural in most 
ases, has beenone of the main unifying themes of number theory and arithmeti
 algebrai
 geometry inre
ent de
ades and seems destined to 
ontinue to be so for a long time. We will dis
ussit in some detail in this 
hapter. The �rst two se
tions of the 
hapter give a survey of theL-fun
tions arising in number theory and of the 
onje
tured relationship between theirspe
ial values at 
ertain values of the argument and periods. The next three se
tionsdes
ribe a number of examples 
oming from algebrai
 number theory and the theoryof modular forms. In x3.6 we dis
uss the 
onje
ture of Bir
h and Swinnerton-Dyer insome detail and explain how the \right-hand side" of the 
onje
tural formula it givesfor a derivative of the L-series of an ellipti
 
urve over Q 
an be written in terms ofperiod integrals on this 
urve. The �nal se
tion des
ribes a 
onje
ture due to Colmezwhi
h extends the 
onje
tures about leading Taylor 
oeÆ
ients of an L-fun
tion to astatement about the se
ond term in its Taylor expansion at a spe
ial point.3.1. L-fun
tions. One of the most important and most mysterious dis
overies of thelast 
entury is that one 
an asso
iate to many of the basi
 obje
ts of arithmeti
|number �elds, Galois representations, algebrai
 varieties, and modular forms|
ertainanalyti
 fun
tions 
alled L-fun
tions whi
h en
ode in some deep way the properties17



of these obje
ts and the relations between them. These fun
tions are Diri
hlet seriesL(s) =P ann�s (
onvergent for <(s)� 0) with the following 
hara
teristi
 properties:(i) They have Euler produ
ts of the form Qp Pp(p�s) where the produ
t runs overall prime numbers p and the Pp(T ) are polynomials with (algebrai
) integer
oeÆ
ients and �xed degree n (ex
ept for a �nite number of p where it drops)whi
h des
ribe in some way the behaviour of the arithmeti
 obje
t over �nite�elds of 
hara
teristi
 p.(ii) They have or are 
onje
tured to have meromorphi
 
ontinuations (with only�nitely many poles, at integral values of s) and fun
tional equations of the formL�(s) = �L�(k � s) for some positive integer k, where L�(s) = 
(s)L(s) forsome \gamma fa
tor" 
(s) of the form AsQnj=1 �(12(s+ �j)) (A > 0, �j 2 Z).(More generally, the fun
tional equation may have the form L�1(s) = wL�2(k� s)where L1 and L2 are the L-fun
tions asso
iated to dual arithmeti
 obje
ts likea Galois representation and its 
ontragredient and w is an algebrai
 number ofabsolute value 1, but in our examples L1 and L2 will always 
oin
ide.)(iii) They satisfy or are 
onje
tured to satisfy the lo
al Riemann hypothesis, sayingthat the zeros of Pp(p�s) lie on the line <(s) = (k � 1)=2.(iv) They are 
onje
tured to satisfy the global Riemann hypothesis, saying that thezeros of L(s) are either integers or lie on the line <(s) = k=2.(v) They have interesting spe
ial values, related to periods, at integral values of s.The last aspe
t is the one we are interested in and will be dis
ussed in the rest of this
hapter. First, however, we des
ribe some examples of L-fun
tions and their properties.The �rst example, of 
ourse, is the \Riemann" (a
tually Euler) zeta fun
tion �(s).In this 
ase (i) holds with n = 1 and Pp(T ) = 1 � T for all p (Euler); (ii) holds withk = 1 and 
(s) = ��s=2�(s=2) (Riemann); the lo
al Riemann hypothesis (iii) is trivial,while the global one (iv) is a million-dollar question; and the spe
ial values mentionedin (v) are the evaluations�(2) = �26 ; �(4) = �490 ; �(6) = �6945 ; �(8) = �89450 ; : : : (10)and (after analyti
 
ontinuation of �(s))�(0) = �12 ; �(�1) = � 112 ; �(�3) = 1120 ; �(�5) = � 1252 ; : : : (11)found by Euler in 1734 and 1749, respe
tively. Various generalizations of the Riemannzeta fun
tion 
oming from algebrai
 number theory were dis
overed and studied in the19th and early 20th 
enturies, in
luding in parti
ular (in in
reasing order of generality)the L-fun
tion L(s; �) asso
iated to a Diri
hlet 
hara
ter � (here n = 1 and k = 1), theDedekind zeta fun
tion �F (s) of a number �eld F (with n = [F : Q ℄, k = 1), and theArtin L-fun
tion L(s; �) asso
iated to a representation � of Gal(Q =Q) (with n = dim �and k = 1). We will dis
uss some of the results and 
onje
tures 
on
erning the spe
ialvalues of these fun
tions in x3.3.A major development in 20th 
entury arithmeti
 was the realization that thesenumber-theoreti
al L-fun
tions are merely the zero-dimensional 
ase of far more gen-eral Diri
hlet series asso
iated to algebrai
 varieties, as follows. Let X be a smooth18



proje
tive variety de�ned over Q , given as the set of solutions of a �nite 
olle
tion ofmultivariate polynomials with 
oeÆ
ients in Q . We atta
h to X a zeta fun
tion bysetting �X(s) := exp� Xp prime Xr�1N(pr) p�rsr � (12)where N(pr) is de�ned for almost all primes p and all r � 1 by 
ounting the numberof solutions of the equations de�ning X over the �nite �eld of pr elements. If X is the0-dimensional variety de�ned by f(x) = 0, where f is an irredu
ible polynomial withrational 
oeÆ
ients, then �X(s) 
oin
ides with the Dedekind zeta fun
tion of the �eldobtained by adjoining to Q a root of f . If X is a 1-dimensional variety (
urve), thenit is known (by results of Hasse if X is an ellipti
 
urve and of Weil for X of arbitrarygenus g) that �X(s) has the form �(s)�(s� 1)=L(X; s), where L(X; s), the Hasse-WeilL-fun
tion of X, has an Euler produ
t of the form des
ribed in (i) (with k = 2 andn = 2g) and satis�es the lo
al Riemann hypothesis (iii). If X has arbitrary dimension d,then by the work of Weil, Grothendie
k, Dwork, Deligne and others we know that �X(s)has a 
anoni
al representation as an alternating produ
t�X(s) = L0(s)L1(s)�1 � � �L2d�1(s)�1L2d(s)where ea
h Lj(s) is a Diri
hlet series whi
h has an Euler produ
t having the propertiesin (i) and (iii) above, with k = j + 1 and n equal to the jth Betti number of X. Moregenerally, in analogy with the way that Artin L-fun
tions arise as the primitive pie
esinto whi
h the Dedekind zeta fun
tions of number �elds split, one 
an de�ne a motivi
L-fun
tion L(M; s) having an Euler produ
t with the properties (i) and (iii) for anynatural summand M (\motive") of the 
ohomology of X.The properties just given justify the de�nition of the individual fa
tors, i.e., thesummation over r in (12). On the other hand, the justi�
ation for multiplying theseEuler fa
tors together, i.e., for the summation over p in (12), is almost entirely 
onje
-tural, sin
e none of the desired properties (analyti
 
ontinuation, fun
tional equation,Riemann hypothesis, or spe
ial values) 
an be proved in general for varieties of di-mension bigger than 0. There is, however, a se
ond 
lass of L-fun
tions for whi
hglobal properties 
an sometimes be established, namely the automorphi
 L-fun
tions.The prototype this time is the Diri
hlet series P1m=1 �(m)m�s asso
iated to the mod-ular form �(z) = P1m=1 �(m)qm de�ned in x2.3. This fun
tion has an Euler prod-u
t as in (i) with n = 2 and Pp(T ) = 1 � �(p)T + p11T 2 (this was 
onje
tured byRamanujan and proved by Mordell), satis�es a fun
tional equation as in (ii) withk = 12 and 
(s) = (2�)�s�(s) (He
ke), and satis�es the lo
al Riemann hypothesis(iii) (Deligne). Similar properties hold for the He
ke L-series L(f; s) = P1m=1 amm�sof any He
ke eigenform f(z) = P1m=0 amqm (with n = 2, k equal to the weight of f ,and Pp(T ) = 1 � apT + pk�1T 2). One 
an also asso
iate to f other L-fun
tions likethe symmetri
 square L-fun
tion L(Sym2f; s) (whi
h has an Euler fa
tor with n = 3and Pp(T ) = (1 � pk�1T )(1 � (ap2 � pk�1)T + p2k�2T 2) ) or higher symmetri
 powerL-fun
tions. These all 
orrespond to the spe
ial 
ase G = GL(2) of the general Lang-lands L-fun
tions asso
iated to automorphi
 representations of algebrai
 groups G overthe adeles. The 
entral 
onje
ture of the whole �eld is the Langlands program, whi
h in19



its 
rudest form is the predi
tion that the 
lass of motivi
 L-fun
tions should 
oin
idepre
isely with an appropriate 
lass of these automorphi
 L-fun
tions. The relativelyfew known 
ases of this in
lude some of the deepest results of twentieth 
entury num-ber theory: 
lass �eld theory, the theorem (proved by Ei
hler and Shimura for k = 2,by Deligne for k > 2, and by Deligne and Serre for k = 1) that the He
ke L-seriesL(f; k) of a weight k He
ke eigenform f is motivi
, and the theorem proved by Wilesand his 
ollaborators (previously the Taniyama-Weil 
onje
ture) that the L-series ofany ellipti
 
urve over Q is equal to the He
ke L-series of a modular form of weight 2.The Langlands program not only provides a grand uni�
ation of all the mainstreamsof number theory, but also permits us to verify some of the properties (i){(v) for L-fun
tions where they 
annot be proved dire
tly. In parti
ular, the only known proofof the lo
al Riemann hypothesis (iii) for He
ke L-series (\Ramanujan-Petersson 
on-je
ture") 
omes from identifying them with motivi
 L-fun
tions, and the only motivi
L-fun
tions for whi
h one 
an prove the analyti
 
ontinuation and fun
tional equationof motivi
 L-fun
tions are those whi
h are known to be automorphi
.3.2. Spe
ial values: the 
onje
tures of Deligne and Beilinson. The formulasfound by Euler for spe
ial values of �(s) were already stated in equations (10) and (11).Analogous results for Diri
hlet series L(s; �) were proved in the 19th 
entury and forthe Dedekind zeta fun
tions of totally real �elds in the 1960's (Klingen-Siegel theorem).In a di�erent dire
tion, results of Ei
hler, Shimura, and Manin, also in the 1960's, ledto formulas des
ribing the values of the He
ke L-fun
tion L(f; s) of a modular formof weight k for s = 1; 2; : : : ; k � 1, and in the subsequent years analogous results for
ertain spe
ial values of the symmetri
 square L-fun
tions L(Sym2f; s) and of somehigher symmetri
 power L-fun
tions were either proved or else obtained experimentally.In 1979, Deligne [13℄ made a very general 
onje
ture whi
h 
ontained all of these asspe
ial 
ases. He began by asking where spe
ial values of this type should be expe
ted.The arguments o

urring in (10) and (11) are (apart from s = 0, whi
h 
orrespondsunder the fun
tional equation of �(s) to the pole at s = 1 and hen
e is ex
eptional)the positive even integers and the negative odd integers. In other words, the values forwhi
h one does not have a ni
e formula of this sort are the negative even integers andthe positive odd integers. If we re
all that the fun
tional equation of �(s) has the form��(s) = ��(1 � s), where ��(s) is the produ
t of �(s) with 
(s) = ��s=2�(s=2), thenwe see that these forbidden integers are pre
isely the ones where either 
(s) or 
(1� s)has a pole. Based on this and the other examples, Deligne de�ned the 
riti
al valuesof a (motivi
) L-fun
tion L(s) to be the integer arguments of s at whi
h neither 
(s)nor 
(k � s) has a pole, where now 
(s) and k are de�ned as in (ii) of the last se
tion,and formulated a 
onje
ture saying that the value of L(s) (or L�(s)) at any su
h 
riti
alvalue is a non-zero algebrai
 multiple of the determinant of a 
ertain matrix whoseentries are periods. The a
tual statement of the 
onje
ture is far more pre
ise andnot only des
ribes the period matrix exa
tly (in terms of the Hodge �ltration on the
ohomology group or pie
e of a 
ohomology group de�ning the L-fun
tion), but alsospe
i�es in what number �eld the unknown algebrai
 fa
tor lies and how it transformsunder the a
tion of the Galois group of Q over Q .Deligne's 
onje
ture has been proved or experimentally veri�ed in many 
ases, someof whi
h will be indi
ated in the next two se
tions. Nevertheless, there were several other20



results about spe
ial values of L-fun
tions whi
h were not subsumed in this pi
ture, mostnotably Diri
hlet's 
lass number formula, whi
h des
ribes the residue at s = 1 of theDedekind zeta fun
tion of a number �eld, and the 
onje
ture of Bir
h and Swinnerton-Dyer, whi
h des
ribes the �rst non-vanishing derivative at s = 1 of the L-series of anellipti
 
urve over Q . In both of these, the known or 
onje
tured formula for the value inquestion involves a quantity 
alled the \regulator" whi
h is de�ned as the determinantof a 
ertain square matrix (of logarithms of units in the �rst 
ase, and of heights ofrational points in the latter). In the early 1980's, Beilinson made a huge generalizationof Deligne's 
onje
ture whi
h in
luded not only these two spe
ial 
ases, but all values ofmotivi
 L-fun
tions and their leading non-zero derivatives at all integral values of theargument, giving these values (again up to a non-zero algebrai
 number with knownbehavior under the Galois group) in terms of periods on the variety de�ning the L-fun
tion and of a regulator generalizing the ones in the Diri
hlet 
lass number formulaand the Bir
h{Swinnerton-Dyer 
onje
ture. A few years later, S
holl [21℄ observedthat this regulator 
an itself be expressed in terms of periods (some part of this 
analso be found in earlier work of Blo
h and of Beilinson). This led to a reformulation ofBeilinson's 
onje
ture whi
h is again far too te
hni
al to state here, but whose essen
e is
aptured by the following beautiful (
onje
tural) statement, whose wider disseminationwas one of our main motivations for writing the present paper:Conje
ture (Deligne{Beilinson{S
holl). Let L(s) be a motivi
 L-fun
tion, m anarbitrary integer, and r the order of vanishing of L(s) at s = m. Then L(r)(m) 2 bP.In the next two se
tions we give a number of illustrations of the Deligne and Beilinson
onje
tures, while in x3.5 we illustrate S
holl's reformulation of the latter in some detailin the 
ase of the Bir
h{Swinnerton-Dyer 
onje
ture.3.3 Examples 
oming from algebrai
 number theory. We already gave Euler'sformulas for the spe
ial values of the Riemann zeta fun
tion in equations (10) and(11). The 
ase of Diri
hlet L-fun
tions L(s; �) is similar ex
ept that the 
riti
al valuesare at positive odd and negative even integers when � is an odd 
hara
ter (i.e. when�(�1) = �1) rather than at positive even and negative odd integers as happens for�(s) or for even 
hara
ters, be
ause the gamma fa
tor 
(s) in this 
ase has the formAs�((s+ 1)=2) rather than As�(s=2).The next 
ase is the Dedekind zeta fun
tion �F (s) of a number �eld F , say F = Q (�)where � is the root of an irredu
ible polynomial f(X) 2 Z[X℄. This zeta fun
tionwas de�ned in x3.2 by formula (12) with N(pr) (for p not dividing the dis
riminant off) equal to the number of roots of the equation f(x) = 0 in the �eld of pr elements.An easy 
al
ulation shows that this is equivalent to saying that �F (s) has an Eulerprodu
t of the form given in (i) of x3.1 with Pp(T ) = (1 � Tn1) � � � (1 � Tnr ) if f is
ongruent modulo p to the produ
t of irredu
ible polynomials of degrees n1; : : : ; nrin Fp(X). Equivalently, the pth Euler fa
tor of �F (s) des
ribes the splitting of theprime p in F , whi
h explains the interest atta
hed to these fun
tions. The fun
tionalequation of �F (s) was proved by He
ke (following Riemann's approa
h of writing thesefun
tions as the Mellin transform of a theta fun
tion, in a

ordan
e with the 
laimmade at the end of x3.1 that all known fun
tional equations of motivi
 L-fun
tions arebased on modular forms or their generalizations) and has k = 1 and a gamma fa
tor21



of the form As�(s=2)r1�(s)r2 where r1 and 2r2 denote the number of real and non-realroots, respe
tively, of the polynomial f . We therefore have the same 
riti
al values (viz.,positive even and negative odd integers) as for the Riemann zeta fun
tion if F is totallyreal (r2 = 0), and no 
riti
al values otherwise. In the former 
ase (F totally real) thetheorem of Klingen and Siegel mentioned in the last se
tion provides the analogue offormulas (10) and (11). In parti
ular, the values of �F (s) at negative odd values of sare non-zero rational numbers.The �rst non-
riti
al 
ase is s = 1. Here the Diri
hlet 
lass number formula mentionedin the last se
tion expresses the residue of �F (s) as an algebrai
 number (in fa
t, thesquare root of a rational number) times the produ
t of �r2 with a regulator whi
h is thedeterminant of an (r1 + r2 � 1)� (r1 + r2 � 1) matrix whose entries are logarithms ofunits of F . The algebrai
 fa
tor is also known pre
isely and 
ontains the 
lass numberof F , when
e the name of the theorem, but is not relevant at the level of the dis
ussionhere.Diri
hlet's theorem was proved in the mid-19th 
entury. It has two generalizations,both 
onje
tural ex
ept in spe
ial 
ases. On the one hand one 
an repla
e �F (s) byan Artin L-series L(s; �), where � is an irredu
ible representation of the Galois groupof F . (This is more re�ned than looking at �F (s) sin
e every Dedekind zeta fun
tionfa
tors into �nitely many Artin L-series and 
onversely every Artin L-series L(s; �) is afa
tor of some Dedekind zeta fun
tion. The meromorphi
 
ontinuation and fun
tionalequation of L(s; �) are known, while its holomorphy is in general only 
onje
tured.)The generalization of Diri
hlet's formula is then the Stark 
onje
ture, whi
h says thatL(1; �) 
an always be written as the produ
t of an algebrai
 number, a 
ertain powerof �, and the determinant of a matrix whose entries are logarithms of units. (For moredetails, 
f. [24℄ and [25℄.) This 
onje
ture has been proved in some 
ases and veri�ednumeri
ally in many others, but we are far from a proof in general, the main 
ase knownbeing the Krone
ker limit formula whi
h uses methods from the theory of modular formsto prove the assertion in question for 
ertain two-dimensional representations asso
iatedto imaginary quadrati
 �elds.In a di�erent dire
tion, we 
an look again at �F (s), but now at other non-
riti
alvalues s = m (say positive odd integers when F is totally real, or arbitrary positivenumbers when it is not). Here an expression for �F (m) as a regulator 
oming fromalgebrai
 K-theory was found by Borel in 1975 [10℄. This expression is a period, ina

ordan
e with the general set-up explained in the last se
tion, but it is not very expli
itsin
e the higher K-groups of a �eld do not have a known algorithmi
 des
ription. Amore 
al
ulable, but 
onje
tural, formula for the spe
ial values �F (m) was given by oneof the authors [30℄ in terms of spe
ial values at algebrai
 arguments (more pre
isely, atarguments belonging to F ) of the mth polylogarithm fun
tion Lim(z) =P1n=1 zn=nm.Note that this 
onje
ture in any 
on
rete 
ase is \a

essible" in the sense of x1.2, sin
eboth Borel's regulator and the values of the polylogarithm fun
tion belong to the ring P.The 
onje
ture has been proved for m = 2 and 3 (the latter, mu
h harder, result is dueto A. Gon
harov) and 
he
ked numeri
ally to high pre
ision in many examples.One 
an also 
ombine these two generalizations of the 
lass number formula by lookingat the values of Artin L-fun
tions at integral values s = m > 1, whi
h are again
onje
tured to be expressible in terms of determinants of matri
es of polylogarithms.22



For the same representations as in the Krone
ker limit formula this statement 
an bemade mu
h more pre
ise and predi
ts that the value at s = m of the Epstein zetafun
tion �Q(s) = X0x; y 2Z 1Q(x; y)s (13)asso
iated to a positive de�nite binary quadrati
 formQ with integer 
oeÆ
ients is equal(up to an algebrai
 fa
tor and a power of �) to a linear 
ombination of values of themth polylogarithm evaluated at 
ertain algebrai
 arguments (in an abelian extension ofthe imaginary quadrati
 �eld de�ned by Q). As a typi
al example, we haveX0x; y 2Z 1(2x2 + xy + 3y2)3 = 64�3235=2 �Li3(�)� 13 Li3(�3) + 32 Li3(��4) + Li3(�5)�; (14)where � = 0:75487 : : : is the real root of �3+�2 = 1. The 
onje
ture has been 
he
kedin many 
ases and has been proved for m = 2 by A. Levin. (For details, see [33℄.)3.4. Examples 
oming from modular forms. Again we treat 
riti
al values �rst.As was already mentioned in x3.2, these were among the main motivating examplesfor the 
onje
tures in [13℄. Consider a modular form f(z) = P anqn (say, on the fullmodular group SL(2;Z)) of weight k. We suppose that f is a He
ke eigenform, so thatits L-series L(f; s) = P1n=1 ann�s has an Euler produ
t as des
ribed in x3.1. (Thereader 
an think of the 
ase f = �, k = 12.) The fun
tional equation has the formL�(f; s) = �L�(f; k�s), where L�(f; s) = (2�)�s�(s)L(f; s), so the 
riti
al values in thesense of Deligne are s = 1; 2; : : : ; k�1. One 
an show (using either the theory of periodpolynomials as developed by Ei
hler, Shimura and Manin or else Rankin's method) thatthere are two real numbers C+ and C�, depending on f , su
h that the values of L�(f; s)at even (resp. odd) values of s are algebrai
ally proportional to C+ (resp. C�) and su
hthat the produ
t C+C� is an algebrai
 multiple of (f; f) = RH=� jf(x+ iy)j2yk�2dxdy,the square of the Petersson norm of f . For instan
e, for f = � we haves 6 7 8 9 10 11L�(�; s) 130C+ 128C� 124C+ 118C� 225C+ 90691C�for two 
onstants C+ = 0:046346 : : : , C� = 0:045751 : : : with C+C� = 211(�;�). In[13℄, Deligne showed that his 
onje
ture not only 
orroborates these results, with C�being 
ertain period integrals atta
hed to �, but that it also predi
ts that the spe
ialvalues of L(Symr�; s), for any r � 1 and for s belonging to a 
ertain �nite set ofvalues depending on r, will be rational multiples of some expli
itly given monomialsin �, C+ and C�. These results were known for r = 2, where the 
riti
al values ares = 12; 14; : : : ; 22 and the numbers L(Sym2�; s) are rational multiples of �2s�11C+C�,but no examples for higher r had been 
omputed; the subsequent numeri
al 
al
ulationsfor r = 3 (where the 
riti
al values are s = 18; 19; : : : ; 22 and the spe
ial values areproportional to �2s�11C3�C�) and r = 4 (where s = 22; 24; : : : ; 32 and the L-valuesare proportional to �3s�33C3+C3�) 
on�rmed Deligne's predi
tion to high pre
ision andprovided 
onvin
ing eviden
e for the validity of his 
onje
ture.23



Deligne's earlier proof that the L-series L(�; s) is motivi
 had identi�ed it with theL-fun
tion of a 
ertain 2-dimensional pie
e of the 11th 
ohomology group of a 
ertain(
omplex) 11-dimensional algebrai
 variety 
alled the Kuga variety, de�ned as the 10th�bre power of the universal ellipti
 
urve over the modular 
urve of level 1. In a

ordan
ewith his general 
onje
ture, the expressions for the numbers C� should therefore beintegrals of algebrai
 11-forms over appropriate (real) 11-dimensional 
y
les on thisvariety. This sounds 
ompli
ated, but in fa
t 
an be written in quite an elementaryway. To do this, we start with the integral formula L�(�; s) = R10 �(iy) ys�1 dy . Wethen 
hoose one of the families of ellipti
 
urves dis
ussed in x2.1 (for de�niteness, saythe se
ond one, given by equation (7)) and use it to reparametrize our modular 
urve.As we saw in x2.3, if we substitute the modular fun
tion �(z) (z 2 H) for t in (8), weobtain 
2(t) = ��(z)2 and 
1(t) = z
2(t), where �(z)2 is a 
ertain modular fun
tionof weight 1. The fun
tion �(z), being a modular form of weight 12, 
an be written asthe produ
t of the 12th power of �(z)2 and a rational fun
tion (whi
h turns out to bet2(t� 1)2) of �(z) (= t). Similarly, the weight 2 modular form dt=dz is the produ
t of(�(z)2)2 with another rational fun
tion of t, and using this one �ndsL�(�; n) = 1in�1�11 Z 10 
1(t)n�1
2(t)11�n t(1� t) dt (n = 1; 2; : : : ; 11) :The same substitutions also give(�;�) := ZC �ZC d�(x)jx(x� 1)(x� t)j�10 jtj2 j1� tj2 d�(t) ;where d�(x) (= dx0 dx1 if x = x0+ ix1) denotes Lebesgue measure in C and := denotesequality up to a 
omputable fa
tor in Q��Z. This shows expli
itly that (�;�) 2 bP.We now turn to non-
riti
al values. The following spe
ial 
ase of the 
onje
turestated in x3.2 seems not to be widely known, even to spe
ialists in the �eld.Theorem. Let f be a modular form of weight k � 2, de�ned over Q . Then L(f;m) 2 bPfor all m � k (as well as for the 
riti
al values 0 < m < k).This was proved by Beilinson [2℄ for m = k = 2 by a 
ombination of Rankin's methodand 
ohomologi
al manipulations and in the general 
ase by Deninger and S
holl [14℄by an extension of the same method. If one unravels Beilinson's proof (not an entirelytrivial exer
ise), one �nds that L(f; 2) is expressed, up to a power of �, as a rationallinear 
ombination of integrals of the form R ba log jA(x)jB(x) dx with A(x); B(x) 2 Q(x)and a; b 2 Q . On the other hand, the Mahler measure �(P ) (
f. (4)) of a two-variableLaurent polynomial P (x; y) is also equal to an integral of this form (�(P ) is de�nedas a double integral, but one of the two integrations 
an be 
arried out using Jensen'sformula). In many 
ases, in
luding the two examples given at the end of x1.2, it turnsout that the Mahler measure of a polynomial whose vanishing de�nes an ellipti
 
urveover Q is equal, up to a power of �, to a rational multiple of the value at s = 2 of theL-series of this 
urve. We refer the reader to [11℄ and [20℄ for more details and manyexamples of this beautiful 
onne
tion. 24



For k = 1, Beilinson's method no longer applies, sin
e it begins by using Rankin'smethod to get an integral representation of L(f;m)L(f; n), where n is 
riti
al for f , andin weight 1 there are no 
riti
al values. If f is an eigenform of weight 1, a theorem ofDeligne and Serre tells us that L(f; s) is equal to the Artin L-series of a 2-dimensionalGalois representation �, so we are ba
k in the situation of x3.3 and the 
onje
turesdis
ussed there say that L(f;m) should be expressible in terms of values of the mthpolylogarithm fun
tion at algebrai
 arguments. Equation (14) is an instan
e of this,sin
e the number appearing on the left is just L(f; 3) for the weight 1 theta-seriesf(z) = Px;y q2x2+xy+3y2 . In general, whenever the modular form f is the theta seriesasso
iated to a binary quadrati
 form Q, so that L(f; s) = �Q(s) (these are the so-
alledCM forms, and 
orrespond to 2-dimensional representations � whose image in GL(2; C )is a dihedral group), then a 
al
ulation whi
h is des
ribed in x7 of [33℄ lets one writeL(f;m) as a sum of integrals of the form R �� E2m(z)Q(z)m�1 dz, where � and � are CMpoints (
f. x2.3) and E2m(z) is the holomorphi
 Eisenstein series of weight 2m. Thesame method as used above for L(�; n) then lets us rewrite these integrals expli
itly asperiods. This proves the above theorem for forms of this type, and at the same timeimplies that the higher Krone
ker limit formulas dis
ussed in the last se
tion, thoughstill 
onje
tural, are at least \a

essible identities" in the sense of x1.2.Applying the above theorem (or the above dis
ussion if k = 1) to the 
ase when f(z)is the theta-series atta
hed to a quadrati
 form in 2k variables, we obtain the followingCorollary. Let Q(x1; : : : ; xn) be a positive de�nite quadrati
 form in an even numberof variables with 
oeÆ
ients in Q . Then the values of the Epstein zeta fun
tion�Q(s) = X0x1;::: ;xn 2Z 1Q(x1; : : : ; xn)sat all integers s > n=2 belong to bP.Question. Does this hold also for forms in an odd number of variables? In parti
ular,does the numberX0x; y; z 2Z 1(x2 + y2 + z2)2 = 16:532315959761669643892704592887851743834129 : : :belong to bP?As our �nal example, we 
onsider the 
ase when the L-series L(f; s) of a He
keeigenform of even weight k vanishes at the 
entral point s = k=2 of the fun
tional equa-tion. This is of parti
ular interest in the 
ase of the Bir
h{Swinnerton-Dyer 
onje
ture(
f. x3.5), where k = 2 and the order of vanishing is 
onje
tured to be equal to the rankof the Mordell-Weil group of the 
urve under 
onsideration, but 
an o

ur in arbitraryweights if the fun
tional equation of L(f; s) has a sign �1. In this situation we have:Theorem. Let f be a He
ke eigenform of even weight k, with L�(f; s) = �L�(f; k�s).Then L0(f; k=2) 2 bP.This theorem follows from the results of [15℄, though it is not expli
itly stated there.The main obje
t of [15℄ was to prove the Bir
h{Swinnerton-Dyer 
onje
tural formula up25



to a rational number for ellipti
 
urves where both the order of vanishing of the L-seriesand the Mordell-Weil rank are equal to 1, but the analyti
 part of the proof appliedto forms of arbitrary even weight k and gave an expression for L0(f; k=2) as a �nitesum of logarithms of algebrai
 values and spe
ial values at CM points of 
ertain higher-weight Green's fun
tions Gk=2(z1; z2). These spe
ial values 
an in turn be expressedas periods. Besides the theorem just stated, this has another 
onsequen
e. In [15℄and [16℄ a 
onje
ture was formulated saying that in 
ases where there are no 
uspforms of weight k, the values of the Green's fun
tion at arbitrary CM points should bealgebrai
 multiples of logarithms of algebrai
 numbers. The fa
t that these values 
anbe expressed as periods now makes this 
onje
ture \a

essible." An example of this (inwhi
h the left- and right-hand sides represent the provable and the predi
ted value of�G2(i; ip2)=p2 for the full modular group) is the 
onje
tural identity20G� + 1728�2 Z 1p2 E4(iy)�(iy)E6(iy)2 (y2 � 2) dy ?= log 27 + 19p227� 19p2 ;where G = 1 � 3�2 + 5�2 � � � � is Catalan's 
onstant (itself a period). The sametransformation t = �(iy) as was used for the 
riti
al values of L(�; n) lets us write theintegral on the left-hand side of this formula as a simple multiple of the period integralZ 3�p20 t2(t� 1)2(t2 � t+ 1)(t+ 1)2(t� 2)2(2t� 1)2 �
1(t)2 + 2
2(t)2� dt ;with 
i(t) as in (8), after whi
h one 
ould at least attempt to give an elementary proofof the identity using only the rules of 
al
ulus, as dis
ussed in Chapter 1.3.5. The 
onje
ture of Bir
h and Swinnerton-Dyer. The Bir
h{Swinnerton-Dyer(BSD) 
onje
ture, originally formulated in the mid-1960's on the basis of numeri
alexperiments, is one of the most beautiful and most intriguing open questions in numbertheory and, as already mentioned in x3.2, was the starting point and motivating examplefor Beilinson's general 
onje
tures about L-series at non-
riti
al arguments. In thisse
tion|the longest in this paper and the only one to 
ontain a 
omplete proof|weshall re
all its statement and show how it 
an be rewritten in a form involving onlyperiods, thereby illustrating in a 
on
rete 
ase the general reformulation of Beilinson's
onje
ture due to S
holl whi
h was mentioned in x3.2. The 
al
ulations of this se
tion
an also be seen as an elementary and expli
it realization of the version of the BSD
onje
ture given by Blo
h in [8℄. We would like to thank A. Gon
harov for pointing outthe possibility of this elementary statement.We �rst re
all the BSD 
onje
ture in its 
lassi
al form. Let E be an ellipti
 
urvede�ned over Q , given by a Weierstrass equation y2 = x3+Ax+B with A; B 2 Z. Its L-fun
tion L(E; s) is de�ned for <(s) > 32 by an Euler produ
t of the form Qp Pp(p�s)�1where Pp(X) (for all but �nitely many p) equals 1 � (Np � p)X + pX2, where Np isthe number of solutions of y2 = x3 + Ax + B modulo p. If r denotes the rank of theMordell-Weil group E(Q) (known to be �nitely generated by Mordell's theorem), thenthe 
onje
ture is that the fun
tion L(E; s) vanishes to order pre
isely r at s = 1 andthat L(r)(E; 1) ?= 
 � 
 �R ; (15)26



where 
 = RE(R) dx=y is the real period, R (the regulator) is the determinant of theheight pairing ( ; ) de�ned below with respe
t to a Z-basis of E(Q)=(torsion), and 
is a 
ertain non-zero rational number whose pre
ise form is spe
i�ed by the 
onje
turebut will be of no 
on
ern to us. Of 
ourse, to make sense of this, we must �rst knowthat L(E; s), de�ned initially for <(s) > 32 , extends holomorphi
ally to all s (or at leastto s = 1). This is guaranteed if the ellipti
 
urve E is modular, whi
h 
an be 
he
kedin an elementary way for any given 
urve and is now known un
onditionally thanks tothe theorem of Wiles et al.The statement we want to prove is:Theorem. The right-hand side of (15) belongs to P.What about the left-hand side? We formulate the followingProblem 4. Show that if f is a He
ke eigenform of even weight k, and r is the orderof vanishing of L(f; s) at s = k=2, then L(r)(f; k=2) 2 P :The results stated in the last se
tion do this for the 
ases r = 0 or r = 1. If one 
ouldprove it in general|whi
h may not be out of rea
h|then 
ombining it with the theoremabove would turn the equality of the BSD 
onje
ture into an \a

essible identity" in thesense of Chapter 1 and would thus give one, if not a proof, then at least a way to provethe truth of the 
onje
tured equality for any given ellipti
 
urve. We emphasize thatso far there is not a single ellipti
 
urve of rank r � 2 for whi
h (15) is known exa
tly,though many 
ases have been 
he
ked numeri
ally to high pre
ision.Before proving the theorem, we illustrate its statement with a numeri
al example.Let E be the ellipti
 
urve y2 = 4x3 � 4x + 1 of 
ondu
tor 37, the 
urve of smallest
ondu
tor with in�nite Mordell-Weil group. Spe
i�
ally, E(Q) is in�nite 
y
li
, withgenerator P = (0; 1) and 
ontaining as its next few elements the pointsn 2 3 4 5 6 7nP (1; 1) (�1;�1) (2;�5) ( 14 ;� 14 ) (6; 29) (� 59 ; 4327)The regulator equals (P; P ) = 2h(P ), where h(P ), the 
anoni
al height, 
an be de�nedas limn!1(logNn)=n2, where Nn is the maximum of the absolute values of the numer-ator and denominator of the x-
oordinate of nP . (A more useful de�nition of the heightpairing will be given below when we prove the theorem.) Numeri
ally we have
 = ZE(R) dxp4x3 � 4x+ 1 = 5:98691729 : : : ; R = (P; P ) = 0:0511114082 : : :and the Bir
h-Swinnerton-Dyer formula (proved in this 
ase) says thatL0(E; 1) = 
R = 0:305999773 : : : :The promised representation of the right-hand side of (15) as a period is given here by
R = �������� 0R�1 dxp4x3 � 4x+ 1 0R�1�1� 1p4x3 � 4x+ 1� dx2x2R1 dxp4x3 � 4x+ 1 2R1 �1� 1p4x3 � 4x+ 1� dx2x �������� : (16)27



We now turn to the proof. The regulator in (15) is de�ned as the determinant ofthe r � r matrix (Pi; Pj), where fPig is a basis of the free Z-module E(Q)/(torsion).We somewhat perversely denote this latti
e by both the letters R and L (for RegulatorLatti
e or Right and Left) and 
onsider the height pairing ( ; ), although it is symmetri
,as a pairing from L � R to R. The reason for introdu
ing this asymmetry is that weare going to extend L and R to larger latti
es bL and bR, related to L and R by0! Z! bL ! L ! 0 ; 0! Z! bR ! R! 0 (17)and to ea
h other by the existen
e of an extended height pairing bL � bR ! R, and thenew latti
es bL and bR are not (in any 
anoni
al way) isomorphi
 to one another. Ourgoal, more pre
ise than the statement of the theorem as given above, is to show thatthe produ
t 
R in (15) is equal to the extended regulator bR de�ned as the determinantof the extended height pairing with respe
t to Z-bases of bL and bR.First we re
all the de�nition of the usual height pairing. Ignoring torsion from nowon, we 
an write L = R as the quotient of Div0(E=Q), the group of divisors of Eof degree 0 de�ned over Q , by the subgroup Prin(E=Q) �= Q(E)�=Q� of prin
ipaldivisors. If D = Pi ni(xi) (ni 2 Z, xi 2 E(Q ), D� = D for all � 2 Gal(Q =Q )) andD0 = Pj n0j(x0j) are two divisors of degree 0, assumed for simpli
ity to have disjointsupport, then the (global) height pairing (D;D0) is equal to the sum of the lo
al heightpairings (D;D0)v where v runs over the pla
es of Q , i.e., the �nite primes and the \pla
eat in�nity." The lo
al height pairing is de�ned by the requirements that it is symmetri
inD andD0, extends to a 
ontinuous fun
tion of the xi in the p-adi
 or 
omplex topologyof E, and is given by the formula (D;D0)v =Pi ni log jf(xi)jv if D0 = (f) is a prin
ipaldivisor. The latter formula shows that the sum (D;D0) vanishes if one of the divisorsis prin
ipal (be
ause of the produ
t formula Qv j � jv = 1) and therefore is well de�nedon the regulator latti
e L = R, and at the same time that the lo
al pairings ( ; )vare unique (be
ause the di�eren
e of any two 
hoi
es would be a 
ontinuous bilinearfun
tion from the p-adi
 or 
omplex points of the Ja
obian, a 
ompa
t group, into Rand hen
e vanish). For the existen
e, one has to �nd a lo
al formula satisfying the
onditions. This is done for �nite primes by setting (D;D0)p = (D �D0)p log p 2 Z logp(here (D �D0)p, the lo
al interse
tion number, is an integer measuring to what extent thepoints of D and D0 are 
ongruent to one another modulo p or powers of p, and vanishesfor all but �nitely many p), and at in�nity by setting (D;D0)1 =Pj n0j GD(x0j). HereGD(x) is the Green's fun
tion atta
hed to D, de�ned as the unique (up to an additive
onstant whi
h drops out under the pairing with D0) harmoni
 fun
tion on E(C ) r jDjwhi
h satis�es GD(x) = ni log jx � xij + O(1) in lo
al 
oordinates near xi. We 
an
onstru
t GD(x) as <�R xa !D�, where a 2 X(Q) is an arbitrary basepoint and !D ameromorphi
 1-form (di�erential) on X satisfying(i) !D has a simple pole of residue ni at xi and no other poles;(ii) !D is de�ned over R;(iii) <�RE(R) !D� = 0 .The last 
ondition, whi
h is possible be
ause 
onditions (i) and (ii) �x !D only up tothe addition of a real multiple of !0 = dx=y and <�RE(R) !0� = 
 6= 0, and ne
essarybe
ause the integral R xa !D is de�ned only up to a half-integral multiple of RE(R) !D28



(by (ii) and be
ause the homology 
lass of E(R) is 1 or 2 times the generator of thepart of H1(E(C );Z) �xed by 
omplex 
onjugation), is the 
ru
ial one for us. It impliesthat GD(x) for x 2 E(Q) belongs to 
�1P. Indeed, let !�D be a se
ond meromorphi
1-form satisfying 
ondition (i) and 
ondition (ii) with \R" repla
ed by \Q ," whi
h ispossible be
ause the divisor D is de�ned over Q . (If we want to get a latti
e rather thanmerely a Q -ve
tor spa
e when we de�ne bL below, we in fa
t have to require !D to bede�ned over Z in a N�eron model, but this is a minor point and will be ignored.) Then!D = !�D+�!0 for some � 2 R by what was said before. The 
oeÆ
ient � is 
al
ulatedby <�RE(R) !�D�+ �
 = <�RE(R) !D� = 0, soGD(x) = 1
 ����� <�RE(R) !0� <�R xa !0�<�RE(R) !�D� <�R xa !�D� ����� 2 1
 P if x 2 E(Q ) (18)as 
laimed. This shows also that (D;D0), whi
h is the sum of �nitely many terms GD(x)and log p, belongs to 
�1P.We 
an now 
onstru
t the latti
es bL and bR and the pairing between them. For bLwe take the group of all meromorphi
 1-forms on E, de�ned over Q (or rather Z) andhaving only simple poles with integral residues, divided by the subgroup of 1-formsdf=f with f 2 Q (E)� . The map bL ! L in (17) is given by asso
iating to a 1-form !the divisor Res(!) = Pi ni(xi) 2 Div0(E=Q), where fxig are the poles of ! and fnigthe 
orresponding residues, while the map Z ! bL sends 1 to !0. The other latti
e bRis de�ned as the group of homology 
lasses of (oriented) 1-
hains C on E(C ) de�nedover R (i.e., invariant up to homology under 
omplex 
onjugation) whose boundary isde�ned over Q , divided by the subgroup of 
uts. Here C is 
alled a \
ut" if we 
an �nda holomorphi
 fun
tion ' on E(C ) r jCj whose value jumps by m as we 
ross (fromleft to right, everything being oriented) a 
omponent of C of multipli
ity m, and su
hthat f = e2�i' is meromorphi
 on E; then f has divisor �C, so �C is prin
ipal, and
onversely any f 2 Q(E)�=Q� has an asso
iated 
ut whi
h is unique up to homology, sothe boundary map C 7! �C indeed gives a well-de�ned map bL ! E(Q)=(torsion) = L .The remaining map Z! bL is de�ned by 1 7! E(R), and the pairing bL � bR ! R by(!; C) = <�RC !� + �Res(!); �C�f ; (19)where (D;D0)f =Pp(D;D0)p 2 log(Q>0) denotes the �nite part of the height pairingof two divisors D and D0. We leave to the reader the task of 
he
king that this pairingis well-de�ned (i.e., that it vanishes if ! = df=f or if C is a 
ut) and, using (18), thatits determinant with respe
t to bases of bL and bR is (possibly up to a simple rationalmultiple 
oming from the normalizations) equal to the produ
t of 
 and R. This endsthe proof of the theorem. The matrix in (16) is a spe
ial 
ase of the ( bL � bR)-pairing,with the bases !0 = dx=y and !1 = ((y� 1)=2x)!0 of bL and [�3P; P ℄ and [2P;�4P ℄ ofbR 
arefully 
hosen to make the �nite height 
ontributions in (19) vanish.We make two �nal remarks. The �rst is that everything said above would go throughun
hanged if E were repla
ed by a 
urve of arbitrary genus g, but with both Z's in (17)repla
ed by Zg, so that the extended regulator in this 
ase would be the determinant29



of an (r + g)� (r + g) matrix. The se
ond is that the number 
 = RE(R) !0, and moregenerally the entries in the period matri
es entering into Deligne's 
onje
tural formulafor L-values at 
riti
al values, is a \pure period," while the matrix elements in (16),and more generally the entries in the period matri
es entering into the Beilinson-S
holl
onje
tural formula for non-
riti
al L-values, are \mixed periods." The words \pure"and \mixed" here are meant to suggest that the numbers in question are the periodsof pure and mixed motives, respe
tively (
f. the remarks at the end of x4.2). They area little hard to de�ne pre
isely in an elementary way. Among the examples in x1.1,the number �, the ellipti
 integral and �(p=q)q are pure periods, while logarithms ofalgebrai
 numbers, multiple zeta values and Mahler measures are (in general) mixed. Ane
essary but not suÆ
ient 
ondition for a period to be pure is that one 
an representit as an integral over a 
losed 
y
le (i.e. 
hain without boundary) of a 
losed algebrai
di�erential form on a smooth algebrai
 variety de�ned over Q .3.6 Subleading 
oeÆ
ients: the Colmez 
onje
ture. The Beilinson 
onje
tures
on
ern only the leading 
oeÆ
ient in the Laurent expansion of L(s) at integer valuess = m 2 Z. In general, one does not expe
t any interesting number-theoreti
 propertyfor subleading 
oeÆ
ients. Still, there are some remarkable ex
eptions. For example,�(s) = �12 + log� 1p2�� � s+ O(s2); s!0or, in a more suggestive form,log �(s) = log(� 12) + log(2�) � s+O(s2) :Conje
ture [12℄. Let � : Gal(Q =Q) ! GL(n;Q )be a representation of the absolute Galois group su
h that�(
omplex 
onjugation) = �1n�n :Then the logarithmi
 derivative of the Artin L-fun
tion L(�; s) at s = 0 is a �nitelinear 
ombination with 
oeÆ
ients in Q of logarithms of periods of abelian varietieswith 
omplex multipli
ation.If K2 is a totally imaginary quadrati
 extension of a totally real number �eld K1(i.e., K1 = Q (�) and K2 = Q(p�) for some algebrai
 number � all of whose 
onjugatesare negative), then the ratio of Dedekind zeta-fun
tions �K2(s)=�K1(s) is an L-fun
tionof the type 
onsidered in the above 
onje
ture. In this 
ase the logarithmi
 derivativeat s = 0 is the logarithm of a single period. For K1 = Q this is a 
onsequen
e of theChowla-Selberg formula mentioned at the end of x2.3.Colmez himself proved his 
onje
ture in the 
ase of abelian representations (whenall �elds entering the game are 
y
lotomi
 �elds). In essen
e, it redu
es to knownidentities between values of the gamma fun
tion at rational points and periods. Itseems that today nobody has any idea how to prove the identity predi
ted by theColmez 
onje
ture for any nonabelian representation. Quite re
ently H. Yoshida hasformulated re�nements of Colmez's 
onje
ture and 
arried out some highly non-trivialnumeri
al veri�
ations in various nonabelian 
ases [28, 29℄.30



Chapter 4. Periods and Motives4.1. The algebra of abstra
t periods. In the �nal se
tions of this paper we presentan elementary approa
h to motives in terms of periods. In order to do this, we need amore \s
ienti�
" de�nition of periods than the one given in Chapter 1.Let X be a smooth algebrai
 variety of dimension d de�ned over Q , D � X a divisorwith normal 
rossings (i.e. lo
ally D looks like a 
olle
tion of 
oordinate hypersurfa
es),! 2 
d(X) an algebrai
 di�erential form on X of top degree (so ! is automati
ally
losed), and 
 2 Hd(X(C ); D(C );Q ) a (homology 
lass of a) singular 
hain on the
omplex manifold X(C ) with boundary on the divisor D(C ). We say that the integralR
 ! 2 C is the period of the quadruple (X;D; !; 
). One 
an always redu
e 
onvergentintegrals of algebrai
 forms over semi-algebrai
 sets de�ned over the �eld of algebrai
numbers Q to the form as above, using the fun
tor of restri
tion of s
alars to Q and theresolution of singularities in 
hara
teristi
 zero.De�nition. The spa
e P of e�e
tive periods is de�ned as a ve
tor spa
e over Q gen-erated by the symbols [(X;D; !; 
)℄ representing equivalen
e 
lasses of quadruples asabove, modulo the following relations:(1) (linearity) [(X;D; !; 
)℄ is linear in both ! and 
 :(2) (
hange of variables) If f : (X1; D1)!(X2; D2) is a morphism of pairs de�nedover Q , 
1 2 Hd(X1(C ); D1(C );Q ) and !2 2 
d(X2) then[(X1; D1; f�!2; 
1)℄ = [(X2; D2; !2; f�(
1))℄ :(3) (Stokes formula) Denote by ~D the normalization of D (i.e. lo
ally it is thedisjoint union of irredu
ible 
omponents ofD), the variety ~D 
ontaining a divisorwith normal 
rossing ~D1 
oming from double points in D. If � 2 
d�1(X) and
 2 Hd(X(C ); D(C );Q ) then[(X;D; d�; 
)℄ = [( ~D; ~D1; �j ~D; �
)℄where � : Hd(X(C ); D(C );Q )!Hd�1( ~D(C ); ~D1(C );Q ) is the boundary opera-tor.Then the image of the evaluation homomorphism [(X;D; !; 
)℄ 7! R
 ! from P to Cis pre
isely the set P of numeri
al periods, and Conje
ture 1 from x1.2 is equivalent toConje
ture. The evaluation homomorphism P!P is an isomorphism.For example, the (known) fa
t that the number � is trans
endental follows from this
onje
ture and Deligne's theory of weights.The spa
e of e�e
tive periods forms an algebra be
ause the produ
t of integrals isagain an integral (Fubini formula). It is 
onvenient to extend the algebra of e�e
tiveperiods to a larger algebra bP by inverting formally the element whose evaluation in C is2�i. Informally, we 
an say that the whole algebra of abstra
t periods bP is P[(2�i)�1℄.The periods whose logarithms appear in the Colmez 
onje
ture are invertible elementsin the extended algebra bP. 31



4.2. The motivi
 Galois group. The algebra bP is an in�nitely generated algebraover Q , but like any algebra it is an indu
tive limit of �nitely generated subalgebras.This means that Spe
(bP) is a proje
tive limit of �nite-dimensional aÆne s
hemes overQ . We 
laim that Spe
(bP) 
arries a natural stru
ture of a pro-algebrai
 torsor over Q .A stru
ture of a set-theoreti
 torsor (i.e. a prin
ipal homogeneous spa
e of a group G)on a given set S 
an be en
oded in a map, S3!S, whi
h after any identi�
ation of Swith the G-set G looks like (x; y; z) 7! x � y�1 � z :IfX is a pro-algebrai
 torsor, then the triple produ
t onX gives rise to a triple 
oprodu
ton the algebra of fun
tions O(X).We now des
ribe the triple 
oprodu
t on the algebra bP of abstra
t periods. Let(X;D) be a pair 
onsisting of a smooth algebrai
 variety and a divisor with normal
rossings in X, both de�ned over Q , as above. Let us assume for simpli
ity that X isaÆne. (Using a well-known tri
k of Jouanolou [19, Lemme 1.5℄, we 
an always redu
eto this 
ase.) The algebrai
 de Rham 
ohomology groups H�de Rham(X;D) 
an thenbe de�ned as the 
ohomology groups of the 
omplex 
�(X;D) 
onsisting of algebrai
di�erential forms on X vanishing on D. The period matrix (Pij) of the pair (X;D)
onsists of pairings between 
lasses running through a basis (
i) in H�(X(C ); D(C );Q )and a basis (!j) in H�de Rham(X;D). It 
an be shown using several results from algebrai
geometry that the period matrix is a square matrix with entries in P, and determinantin pQ� � (2�i)Z�0. This implies that the inverse matrix has 
oeÆ
ients in the extendedalgebra bP = P[(2�i)�1℄.We now de�ne the triple 
oprodu
t in bP by the formula�(Pij) :=Xk;l Pik 
 (P�1)kl 
 Pljfor any period matrix (Pij).As an example, 
onsider the pair X = A 1Q r f0g and D := f1; 2g � X. The basisof H1(X(C ); D(C );Q ) 
onsists of the homology 
lasses of a 
ounter-
lo
kwise path 
1of small radius around zero, and the interval 
2 := [1; 2℄. The basis of H1de Rham(X;D)
onsists of 
ohomology 
lasses of forms !1 = z�1dz and !2 = dz where z is the standard
oordinate on X = A 1 . The period matrix is � 2�i 0log(2) 1� . From this one 
an thendedu
e the following formulas for the triple 
oprodu
ts:�(2�i) = 2�i
 12�i 
 2�i ;�(log(2)) = �log(2)
 12�i 
 2�i�� �1
 log(2)2�i 
 2�i�+ �1
 1
 log(2)� :It is not 
lear why the de�nition of triple 
oprodu
t given above is 
onsistent, be-
ause it is not obvious why the triple 
oprodu
t preserves the de�ning relations in thealgebra bP. This follows more or less automati
ally from the following result whi
h wasre
ently proved by M. Nori: 32



Theorem. The algebra bP over Q is the algebra of fun
tions on the pro-algebrai
 tor-sor of isomorphisms between two 
ohomology theories, the usual topologi
al 
ohomologytheory H�Betti : X 7! H�(X(C );Q )and the algebrai
 de Rham 
ohomology theoryH�deRham : X 7! H�(X;
�X) :The motivi
 Galois group in the Betti realization GM;Betti is de�ned as the pro-algebrai
 group a
ting on Spe
(bP) from the side of Betti 
ohomology. Analogously,one de�nes the de Rham version GM;deRham. The 
ategory of motives is de�ned asthe 
ategory of representations of the motivi
 Galois group. It does not matter whi
hrealization one 
hooses be
ause the 
ategories for both realizations 
an be 
anoni
allyidenti�ed with ea
h other. The following elementary de�nition also gives a 
ategory
anoni
ally equivalent to the 
ategory of motives:De�nition. A framed motive of rank r � 0 is an invertible (r� r)-matrix (Pij)1�i;j;�rwith 
oeÆ
ients in the algebra bP, satisfying the equation�(Pij) =Xk;l Pik 
 (P�1)kl 
 Plj (20)for any i; j. The spa
e of morphisms from one framed motive to another, 
orrespondingto matri
es P (1) 2 GL(r1; bP); P (2) 2 GL(r2; bP);is de�ned as �T 2 Mat(r2 � r1;Q) j TP (1) = P (2)T	 :The 
ohomology groups of varieties over Q 
an be 
onsidered as obje
ts of the 
at-egory of motives. From 
omparison isomorphisms in algebrai
 geometry it follows thatthere are also l-adi
 realizations of motives, on whi
h the Galois group Gal(Q =Q) a
ts.One 
an de�ne a (framed) motive with 
oeÆ
ients in Q as a solution of the equa-tion (20) in the algebra bP 
 Q over Q . The 
olle
tion of all L-fun
tions in numbertheory 
an be 
onsidered as a homomorphism from the Grothendie
k group K0 of the
ategory of motives with 
oeÆ
ients in Q to the multipli
ative group of meromorphi
fun
tions on C .Originally, A. Grothendie
k introdu
ed the so-
alled \pure motives," the naturalsummands of 
ohomology spa
es of smooth proje
tive varieties. Every pure motive hasa 
ertain weight j 2 Z (the degree of the 
orresponding 
ohomology group). The lo
alfa
tors of the L-fun
tion asso
iated to a pure motive of weight j have zeroes on theline <(s) = j=2. Conje
turally, the 
ategory of pure motives is semi-simple and it isequivalent to the 
ategory of representations of a redu
tive pro-algebrai
 group GpureM(see the survey arti
les in [18℄).By 
ontrast, the 
ohomology spa
es of non-
ompa
t or of singular varieties, or ofpairs of varieties, should be \mixed" motives, with a natural weight �ltration su
h33



that the asso
iated graded pie
es are pure motives. For mixed motives there is no ni
ede�nition �a la Grothendie
k, but one still expe
ts that they are given by representationsof a pro-algebrai
 group, one of the 
onje
tural des
riptions of whi
h was given above.The motivi
 Galois group GM for mixed motives is expe
ted to be an extension of theredu
tive motivi
 Galois group GpureM of pure motives by a pro-unipotent group.At the end of x3.5 we mentioned that periods of pure motives 
an be written asintegrals of 
losed forms over 
losed 
y
les. This fa
t is an immediate 
orollary ofthe Jouanolou tri
k, and it also makes sense in the framework of abstra
t periods. Ingeneral, let us de�ne 
losed periods as abstra
t periods 
orresponding to integrals over
losed 
y
les. It is easy to see that these are exa
tly the periods of motives of smoothnon-
ompa
t varieties. Pure periods are 
losed, but not every 
losed period is pure, i.e.,it is mixed in general. However, it seems that one 
annot exhaust the 
olle
tion of allmixed periods by 
onsidering only 
losed ones. In other words, there are mixed motiveswhi
h 
annot be realized as subquotients of motives of smooth non-
ompa
t varieties.In parti
ular, in the same spirit as the questions raised in x1.2, we pose:Problem 5. Let us assume Conje
ture 1, or, equivalently, let us work within the frame-work of abstra
t periods. Show that the (abstra
t period 
orrresponding to) the numberlog 2 or even �n log 2 for n 2 Z, 
annot be represented as the integral of a 
losed algebrai
form over a 
losed 
y
le.There is now a well-established theory of Voevodsky whi
h gives not an abelian
ategory but merely a triangulated 
ategory of \
omplexes of mixed motives." It is not
lear whether Voevodsky's 
ategory (with rational 
oeÆ
ients) should be equivalent tothe derived 
ategory of representations of the motivi
 Galois group introdu
ed in this
hapter, but at least it should have a t-stru
ture whose 
ore is equivalent to the 
ategoryof representations of GM .4.3. Exponential periods. One 
an imitate the de�nition of the motivi
 Galois groupand motives by 
onsidering a larger 
lass of trans
endental numbers, whi
h we 
allexponential periods. These numbers are also 
onsidered in the preprint [9℄ by S. Blo
hand H. Esnault.De�nition. An exponential period is an absolutely 
onvergent integral of the produ
tof an algebrai
 fun
tion with the exponent of an algebrai
 fun
tion, over a real semial-gebrai
 set, where all polynomials entering the de�nition have algebrai
 
oeÆ
ients.For a triple (X;D; f) where (X;D) is as above and f 2 O(X) is a regular fun
-tion on X, one 
an de�ne period matri
es 
onsisting of exponential periods. TheBetti homology spa
es are de�ned for (X;D; f) as the singular homology of the pair(X(C ); D(C ) [ f�1(fz 2 C j <(z) > Cg)) where C 2 R is suÆ
iently large. The deRham 
ohomology is de�ned as the 
ohomology of the 
omplex 
�(X;D) endowed withthe di�erential df (!) := d! � df ^ !. The elements of the period matrix for the triple(X;D; f) are the integrals R
i exp(�f)!j, where the 
i are real analyti
 
hains repre-senting the elements of a basis of Betti homology and the !j represent a basis of deRham 
ohomology. One 
an show that these period matri
es are square matri
es andthat their determinants belong to pQ� � (p�)Z�0 � exp(Q).As a simple example, if X = A 1 , D = ; and f(x) = x2, then the period matrix has34



size 1� 1 and its only element isp� = Z +1�1 exp(�x2) dx :In the algebra of exponential periods there are many ni
e numbers, in
luding thenumber e, all algebrai
 powers of e, values of the gamma fun
tion at rational arguments,values of Bessel fun
tions, et
. The abelian part of the 
onne
ted 
omponent of unity inthe exponential Galois group is 
losely related with the so-
alled Taniyama group, andwith its extensions 
onsidered by G. Anderson. Conje
ture 1 of x1.2 
an be extendedin an appropriate way to the 
ase of exponential periods.There have been some re
ent indi
ations that one 
an extend the exponential mo-tivi
 Galois group still further, adding as a new period the Euler 
onstant 
, whi
h is,in
identally, the 
onstant term of �(s) at s = 1. Then all 
lassi
al 
onstants are periodsin an appropriate sense. Bibliography[1℄ Y. Andr�e, G-Fun
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