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Abstract. We study the statistical mechanics of an infinite one-dimensional
classical lattice gas. Extending a result of vax Hove we show that, for a large class
of interactions, such a system has no phase transition. The equilibrium state of the
system is represented by a measure which is invariant under the effect of lattice
translations. The dynamical system defined by this invariant measure is shown to
be a K-system.

1. Introduction and Statement of Results
Let Z be the set of all integers 2 0. We think of the elements of Z

as the sites of a one-dimensional lattice, each site may be occupied by 0
or 1 partlcle If »n particles are present on the lattlce at positions

4y <+ r <1, We associate to them a “potential energy”
U{i - v tn))= X P DE(jy, . - ) - (1.1)
Ezl {fue.uded Clin ..o in}

The “k-body potential” @* is a real function of its arguments j; <+ -+ < 7§,
and is assumed to be translationally invariant i.e., if [ € Z,

Pry+ 4+ D) =Py, . ) - (1.2)

Let SCZ and K5 be the product of one copy of the set K = {0, 1} for
each point of §; KS is the space of all configurations of occupied and
empty sites in 8 ; K is compact for the product of the discrete topologies
of the sets {0, 1}. Let ¥ (KS) be the Banach space of real continuous
functions on KS with the uniform norm and #{(X?%) its dual, ie. the

space of real measures on K%,

I SC T CZ we may write
KT = KS x KT\s (1.3)

and there is a canonical mapping ayg: € (KS) - €(KT) such that
ars @@y, Ty\g) = @ (vg) - (1.4)
We denote by «¥, the adjoint of ayg:
“Fop(9) = plarse) . (L5)
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268 D. RusrLE:

It will be convenient to use a functional notation for measures, writing
p(x) dz instead of du. We have then

afrp(rs) = [ depg p(@g, o) - (1.6)
Let (a,b]= {i €Z:a < i = b} be a finite interval of Z. The Gibbs
measure Yoy ¢ M (K@P1) associates to each point = (x,,,, ..., #;) of
K@ the mass
Voo (@) = e TE@) (1.7)
where?
—{i€(a,b]:m;=1}. (1.8)
The measure y,, is positive, has total mass
i
—g = f 7{1(7(58) dz = 2 Z yab (1.9)
Tgr1 =0 == G

and the corresponding normalized measure is

')7ab = Zb——%a Yav - (110)
Theorem 1. Lef & be the space of sequences @ = (%), | such that
X BP0, 4y, . . i) < + o0 (L11)
>0 0<iy<- <

if D €&, then
(i) the following limit exists and s ﬁm’te

P(@)=_lim

b— a.—>oob~—

log Z,_, (1.12)

it 18 continuously differentioble on any finite dimensional subspace of &.
(i} for every finite S C Z there exists pg € M (KS) such that
im @ ) Yoo = 05~ (1.13)

@ e 00, B> 00

There is a measure o € M (K7) such that

0s =45z 0 (1.14)
for oll finite S CZ, and p depends continuously on @ on any finite dimen-
sional subspace of & for the vague topology of measures®.

This theorem expresses that a thermodynamic limit (infinite system
limit) exists for the statistical mechanics of a one-dimensional lattice
system if the condition (1.11) is satisfied. Furthermore the state of the
infinite system, described by the measure g, depends continuously on the
temperature and chemical potential, which means that no phase fransi-

t This customary to wribe in (1.7) instead of U (S) the expression §(— nu--U"(S})
where -1 is the tempemture, 4 is the chemical pofential and U’ is computed by
replacing X by X in (1.1). For notational convenience we absorb here — u

Ez1l Ex>1
as ! and B as multiplicative constant in the definition of U.

2 T.c. the w*-topology or the weak topology of # (KZ) in duality with #(KZ).
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tion can occur®; the system remains a “gas”. If @'+1 =0 for [ > 1, then
(1.11) becomes
2 1]D20,1) < + . (1.15)
>0
This condition ensures that the energy of interaction of all particles at
the left of a point of Z with all the particles at the right is bounded 4.
Given S Z, the translation 77: 47— ¢ + I defines a homeomorphism
of K5 onto KS+1:

T @y @ Ty v o) = (e 0y T s By X gy - v +) (1.16)
and if f € € (KS), u € M (K®) we define® T'f ¢ € (KS+Y), T y € M (KS+1):

THf(@) = [(T-%2), T @)= u(T-'2) (117)

o that

p(THf) = [ dz p(@) (T-'=) = [ de p(T'e) f() = T7'u(f)  (1.18)
Since the measure g is visibly 7-invariant in.# (K ?Z), the triple (K%, 0, T)
is a dynamical system©.

Theorem 2. The dynamical system (K%, o, T) is a K-system.

This implies that the measure p is ergodic and satisfies a “‘cluster
property” (see See. 2) as one expects for a gas.

2. Proof of Theorems 1 and 2

Let N*={i ¢Z:i> 0} and K, = K¥". For every integer m = 0
we may write
K. = K®ml x PnE, . 2.1)

In particular if x € K ; then (0,2) € K, (1,2) € K.
We let Fg € €(K,) be given by

Fp(x) =exp[— }) P T 2y D0, 4, .., 1)) (2.2)

120 0<ip<< "<

where = (2, ..., %;...) €K, ;=0 or 1 for each ¢ > 0. The con-
tinuity of Fg on K, is ensured by (1.11). A mapping £ of ¥(K,) into
itself is defined by

ZLof @) = f(0,2) + Fp () {(1, @) (2.3)

8 This result was known when @ has finite range, i.e. when there exists L< + oo
such that ®*1(0, 1y, . . ., ;) = O for 4;> L (hence for I>> L). In that case P(®)is
real analytic on finite dimensional subspaces of & (is this true also here ?). A gener-
alization of this result exists to continuous systems with a ‘“hard core”, see
vax Hove [5].

4 If @2 < 0 and (1.15) is violated, the existence of a phase transition has been
conjectured by M. FisgEr [2] and M. Kac (private communications). I am indebted
to M. FisuER for correspondence on this point.

5 We let formally d (7" x) = dx.

¢ The notions of dynamical systems and of K-system are discussed in ARNOLD
and Avez [1] and Jacoss [3].

19%



270 D. RukLLE:
its adjoint £%: A (K,) - #(K,) is given by

{393#(0, z) = p(@)
Lo pl,z)=Fop(@).

Theorem 3. (i} For every @ €& there exist 2y >0, hy CE(K.),
v € M (K.) such that hy > 0, v4 = 0, v4(1) = v4(he) = 1 and?

(2.4)

Lohg = Aghg (2.5)
Lhve = Aovs (2.6)

() If f € B (K.) the following limit
lim (25" Lbf = 15 (/) hal = 0 @7)

holds uniformly for @ i o bounded subset of a finite dimensional subspace
of &.
(iii) If u € M (K ,) the following limit

lim 750 L5 = (o) 75 @8)
Fh i X

holds for the vague topology of A (K.).

(iv) On any finite dimensional subspace of &, Ay is continuously
differentiable, hg is continuous for the uniform topology of € (K.), vp s
continuous for the vague topology of M4 (K.).

This theorem will be proved in Sec. 3., here we use it to establish the
results announced in Sec. 1. For notational simplicity we shall often drop
the index @ from F, ¥, L*, A, h, ».

Lemma. Lef us write

L= 1%, L¥=)"1%*%. (2.9)
() If p € A (K), then

1 1
Zjo go L& u(ng, . . ny @) = DML(2) - p(@) . (2.10)
(i) If f €€ (K.), then

V'OCN*sN*+lTZf=L*Z(V'f). (211)
7 For every finite S C IN* let

lim o Ty == Vg
PN S,(0,m1 Yom B

One can show that vp defined by Theorem 3 (i} is such that

vg = of nNeYe
The measure vg describes thus the state of a system occupying the semi-infinite
interval (0, 4 co) = IN*,
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We prove (i) by induction on I:
2 e LR gy, By, ®)

[ Agey
= 2 L' (ny4y, @) - L*u(ngs,, )
FCA%Y
= I'1(0, ) - L*pu(0, @) + IA1(1, 2) - L*u(l, 2) 2.12)

= L0, 2) - AYufx) + L1, 2) - A-1F () - p(x)
=L (x) pw).
To prove (ii) it suffices to apply repeatedly the following identity
[v - oo, weq1 TH] (s, @) = w(my, ) - [ () = L*v (my, @) - f ()
A (@) ‘ T (2.13)
- { ) m} f@) = [L* (- )] (m, )

Let 6 € # (K ) be the unit mass at ;= (0,...,0,...). It is readily
checked that

Vom = o, mp i+ LE™ . (2.14)
By (1.6), {1.9) we have
Z, = [ Lm§(x) de = L7 §{1) = §{(F™ 1) (2.15)

and using (2.7),

Jim = Jim 2
which implies® (1.12) with P(®) == log A4 and Theorem 1 (i) follows from
Theorem 3 (iv).

We study now the limit (1.13) with § = (0, m] (this is sufficient
because we may by tranpslation of Z map S into (0, m] for some m). Let
f €€ (KO, using (2.14), (2.16), part (i) of the Lemma and parts (i),
(ili) of Theorem 3 we get

m oy g, a1 Fan(f)

a——o0,h—>o00

= lim a?:),m],(—l,m-'rn]'}7-—l,m+n(f)

—y(1)-6(h) =h(z)>0  (2.16)

1, n—>0
= liiﬂlw G2+ (0,1 + m + ) P t4man(TH)
= im  Z; oo 001 myaee LEEER (T (2.17)
5 1 —> 00
1 1
=h(x0)—1lh'm 2 o Y fdalrtiminn, .y, x)
L —> O

ny =0 m=0
" O, 0,m) ()
= h{zg)t liigm [dx LY (z) - D*¥m+n §(z) - o, (0,m | (%)
= h{zg)™* [ dw v(1) h(z) - 6(h) (%) - angr 0. m) f (@)
= [dz hiz) v(x)- O, 0,m) 1 () -

8 Actually (2.16) is a much stronger statement than (1.12).
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This establishes the existence of the limit (1.13) and shows that the
measure ¢ defined by (1.14) satisfies

oz 0=h-v. (2.18)

In view of Theorem 3 (iv), the r.h.s. of (2.17) is a continuous function
of @ on finite dimensional subspaces of &. Because of the invariance of
p under 7', the same is true of g(xzsf) for every finite SCZ and
fEF(KS). Part (ii) of Theorem 1 follows then from the density of

Ugaz s (K5)

in € (K?%) for the uniform topology.

We come now to the study of the dynamical system (K%, g, 7). Let
%, be the algebra of all p-measurable subsets of K% (mod. 0) and %, be
the subalgebra consisting of the sets of measure 0 or 1 (ie. 0 and
KZ (mod. 0)). The system (KZ, g, T} is a K-system if there exists a sub-
algebra & of %, such that

() L1,

(ii) The union of the T-'.o/ generates %,.

(iii) The intersection of the T".o/ is £,

We write

KZ = K8 x K%\8 (2.19)

and define &/ to be the subalgebra of %, generated by all the sets
X x K%\ where X C K5 and § is a finite subset of IN*. The properties
(i) and (ii) are then clearly satisfied. Let now 4 é ﬂ T'of and B be of
the form X x KZ\ with X ¢ K¥, 8 finite ¢ N*. For all I = 0 the charac-
teristic function of 4 may be written as ogs y« 1 77/, let also fp €C (K ,)
be the characteristic function of B. Using part (i) of the Lemma, we get

oA n By= [dxh(x) v(z): ogge e 1 THH()  f3(2)
= [ dx [L*}(v fz)] ) - h(z) - f5(@) (2.20)
= [day(x) - fi(@) - [L}h - fB)] (®) .
Given ¢ > 0, (2.7) shows that, for sufﬁclently large Z,
[L*h - fg) — v(h - fp) b] < e. (2.21)
From (2.20) and {2.21) we find
lo(4 N B) — o(4) ¢(B)| = | [ da v(@) - f1(x) - [L*(h - f5) (%)
—vh-fayh{x)l <e (2.22)

and therefore
o(4n B)=p(4)o(B). (2.23)

By translation, (2.23) remains true for any B of the form X x KZ\S with
X C K8, 8 finite ¢ Z, and therefore for any B ¢ %,. In particular for
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B = A4, we obtain g(4) = p(4)* hence g{4) = 0 or 1, proving the pro-
perty (iii) of K-systems and therefore Theorem 2.

Let S be a finite subset of Z and define fg ¢ € (K%) by fg(x) =1 if
1 €8 =x; =1, f¢(x) = 0 otherwise. The correlation function § associated
to p is a function of finite subsets of Z defined by

a(9) = elfs) - (2.24)

Notice that by Theorem 1, g (S) is a continuous function of @ on finite
dimensional subspaces of &. We have also

Hm g(S; v TP8,) = 8(8y) - 8(8) (2.25)

a property known as cluster property and which should be possessed by
the correlation function of a gas. The cluster property (2.25) is a conse-
quence of strong mixzing, which is a property of all K-systems®. The
entropy of a K-gystem is > 00, this entropy is identical to the mean
entropy in the sense of statistical mechanics (see [4]). The K-system
property (iii) has here a simple physical interpretation: it is not possible
to make the system look different “at finite distances” by imposing
restrictions “infinitely far away” on the configurations of the system
(absence of long-range order).

3. Proof of Theorem 3

In this section we establish a series of propositions which will result
in a proof of Theorem 3.

For m = 0 we let €, = apgs, (0,m; € (KO™), L. %, is the subspace
of ¥ (K,) consisting of those f such that f(z) = f(z") i 2, = z] for 7 < m.

Proposition 1. Let €%, =0 and x;=a; for o=1,..., % If
n=0,nz=m—k, then

_ P (x
4;1 < ﬁ = 4, (3.1)
where
dy=exp[F X G-BON06L D] 6
I>0 0<iy<--<fi>k
If k = m, then f(2') = f(z) and (3.1) holds thus for » = 0. If n > 0,

(2.3) yields
Lrf@)y L0, 2) - Py 2 (1, 20

Fi@ 0 F @ 2 L) ©.3)
Using induction on # we may assume that for n; = 0, 1, we have
— Lt g, @)
dpti = WT(};—z) = Ay (3.4)

9 See [1]11.4.
10 See [17 12.31.
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and
s . F ’
exp [_12; 0w P ] k}®t+1(0, D v v o @l)|] < _F%))“
> << <>
(3.5)
< exp [2 |PV+L(0, iy, . . ., il)|:| )
150 0<iy<-—<it>k
Therefore
— Fr—1 (0, x/)
4= m =4 (3.6
471 < F(z') £71§(0, 2) 4 )

= Flx) L1 f(0,2) —
and (3.1) follows.
Notice that if we write

B = exp [2 > 00,4, .. ., i,)|] (3.8)

120 0<iy< <4
then B-1 < F(zx) =< B.
Proposition 2. There exist v € #(K,) and A real such that v = 0,
[#] =1 and
Lry=Av. (3.9)

Furthermore 1 + B~1 < A < 1 + B where B is given by (3.8).
The set {y € 4 (K,): p = 0 and u(1) = 1} is convex, vaguely com-
pact and mapped continuously into itself by

> (L) Lo (3.10)

By the theorem of ScHAUDER-TYCHONOV this mapping has a fixed point
p: (3.9) holds with A = Z*9y(1) = »(£ 1). Since L 1(z) = 1 + F(z) and
Bl F(x)< B,wehavel 4+ B-'< 1< 1+ B

Proposition 3. (i) Thke closed hyperplane H = {f €€ (K,): v(f) = 1} is
mapped into itself by L = J-1.%L.

(il Let f €€,y [ = 0,0 = m, then

sup L#f(2) < Agv(f) (3.11)
z€K.,
nf D@ = A7) (3.12)

(i) If f €€ (K,), the sequence | L7f| is bounded by A,)f-
(iv) A norm |||-||| on € (K ) is defined by
WA =2(f]) = [ dzv(2) |f ()] = |f] - (3.13)

) LA = Al for ol f € € (K ).
(vi) If f €Bp, »(f) = 0, and n = m, then
L7l = (1= 4g) ]Il - (3.14)
(i) follows from
v(Lf) =271 Z*v(f) = »(f) , (3.15)
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(i) follows from (3.1) with k= 0:

v(f) = v(If) = sup Lrf(«)
TEHY (3.16)
= onélll_{f Lrf(@) = Agv (L) = Ayv(f) -

Using (3.11) with m = 0 we have
122l = 122141 = Il sup Il (@) = Aqlfl (3.17)

which proves (iii).

It is clear that |||-]|| is & semi-norm and that |||f]|| = [[f]. We conclude
the proof of (iv) by showing that if § = 0, f & 0 then [|{f]|] > 0. We may
indeed choose m and f €%, such that 0 </ < f and f 4 0, then
Lmf =+ 0 and (3.11) yields

WAl =»(h =z »(f) = 45" [Lmf] > 0. (3.18)
To prove (v) we notice that

WL = »(|Lf]) = A~ ([L]]) = 27(Lf]) = 22 Lo (|f])

= »(Ifl) = [l - (3.19)
To prove (vi) let f,_ = 1/2 (If] &+ f), we have
Wil = () = () = -] - (3.20)
On the other hand by (3.12)
inf L/, (0= 457 (3.21)

Therefore
LIl = » (1L (e = £2D)
= v{(| L — AGH[If D) — (Lrfe = AgH [N
= v(lLrfy — AT + 127 = AGHIIA-IT D

= v(L{fs + 1) = AU+ - (3.22)
= v(Lrf] = AFHIID = » (i) — 4o A
= (1 - 45H llIAlll

which proves (3.14).
Proposition 4. Define

T={f¢FE) (=1, {20

and

——

— (=)
Ak 1 < _7;)_.

A

4, i zi=wx, for i=1,...,k. (3.23)

e~
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G) LECZ.
(i) If f€ Z, then |f]| < Ay and if ;= a; for i =1, ..., k, then
(@) — f@)] = 4do(4r— 1) (3.24)
() The set X is convex and compact in € (K,).
(v) If f, f € X, then

If =7l = B+ + By *(lf - /] - 24p(dy — 1)) (3.25)
for all k.

(i) follows from Prop. 3 (i) and the same argument as in the
proof of Prop. 1.

If f € X, then v(f) = 1 hence v(f — 1) = 0 and one can choose & such
that f(%) < 1 hence f(z) < 4,f(%) = 4,, proving || £ 4,. I z; = ] for
1=1,..., &k we get

@) — @) = fl@) (A — 1) = do(4— 1) (3.26)

and (3.24) follows by exchanging the roles of z and «".

The set X is clearly convex and closed, since it is bounded and equi-
continuous by (ii) the theorem of Ascorr shows that it is compact,
proving (iii).

Let f, f' €X. We can choose & such that |f(#) — f (&) =[f - F].
Denote by g the characteristic function of the set {x ¢ K : x, = &; for
t=1,...,k}, using (ii) we obtain

Wf =7l =»f = 1D = (f = I = 244(4r — 1)) - (9) (3.27)

and (iv) follows from
b Bk
where we have used F(z) = B~ 1 = 1 + B (see Prop. 2.).
Proposition 5. (i) There exisis b ¢ H such that Lh = h (i.e. £h = Ah),
vih) = 1.
() If f ¢ H, then bBm [Lrf — b = 0, more generally if { €€ (K,),

then

m Irf=v(f)h {3.29)
B> 00
in the uniform topology.
(i) If u € A (K,) the following limit exists in the vague topology
Hm A-7(F*y p=puh)v. (3.30)
#7—>00
By Prop. 4 (i}, (iii) the convex compact set 2 is mapped into itself
by L which has therefore a fixed point % by the theorem of SCHAUDER-
TycHONOV, proving (i).

Let f ¢ 2, in view of Prop. 4. (i), (ii), we can for each integer » > 0
choose m (n) independent of N such that

[~ ) - gl <—r (3.31)
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for some g € %, (»p With v(g) = 0. Then by Prop. 3. (v), (vi),

Iz +m e f || < (1270 || + 5
_ 1 B 2 (3.32)
= (1— 45 [lglll 4 S (0= A5 LY F— ] + .
If we put M (n) = ﬁ’ m(s), we get

i=1

lim [||[L¥+M @) | — ||| =0 (3.33)
P> 00
uniformly in N, using then Prop. 4. (iv), we have thus
Lm [L*f—h] =0 (3.34)

when f ¢ 2. This remains true if f € H and f is a linear combination of
elements of 2, these linear combinations include the elements of %, for
all m and are thus dense in H. By Prop. 3 (iii), | L*f] is bounded for all
f €€ (K.), hence the theorem of BaNACH-STEINHAUS shows that

7}1'2“00 [Zrf—v(f) -2 =0 (3.35)
proving (ii}.
If u € M (K,), then for every f €€ (K,)
7}1_3}30 A (L) uf) = %ﬁ_{’go pIrf) = p@ () b)) =pm)r(f) (3.36)

proving (iii).
Proposition 6. Let F be a finite dimensional subspace of & and B
a bounded subset of F.
(i) The limit n]g%o | L% f ~ vo(f) * hgll = O holds uniformly in @ € B.
(il) hy is a continuous function of @ € F for the uniform topology
of €(K,).
(iil) vg is @ continuous function of @ € F for the vague topology of M (K ..).
(iv) Let D,V ¢ F, D(t) =D + 1V, t ¢ R, then the function t — Ay
has a derivative
ot = 00 (Loew o) (3.37)

where Lg w is the bounded operator on € (K.) defined by
5wl (%) =[— 2 Xm0, il,...,i,)]
120 0<i< <
“Fg(2)f(1,2) (3.38)
omd% App 18 a continuous function of O £ F.
Let f > 0 satisfy, for all k and all @ ¢ B

A7l < ;‘(fc)) <4, if oj=x for i=1,...k. (339
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Then, »,(f)-1f € 2. Since 4,, B depend continuously on @ €%, the
estimates in the proof of Prop. 5 (ii) can be made uniformly in @ ¢ B,
hence

Jim g (F)* Lipf — hal = 0 (3.40)

uniformly in @ ¢ B. Smce vo(f) < |fll, () holds for = f > 0 satisfying
(3.39).

In particular I 1 tends to Ay uniformly in @ € B, and || L1]-1L%1
= | £%1]|-* %% 1, which is continuous in @ ¢ B, tends uniformlyin @ ¢ B
towards ||k ~1hs which is therefore continuous in @ ¢ F

We have the identity

1w — D)o ([TE2r) =70 (0 [ Lo i — Zal Etr)  (341)

g+ ]| b o]
and, in the norm of operators on % (K,),
%E% It L o1 — Lo) — Lo wl=0. (3.42)
Therefore
%1_190 = Aot vw — Ao) = Vo (Lo, w ho) (3.43)

which proves (3.37); Ay is a continuous function of @ £ F because of the

boundedness of |vg (Lo, whe)| for @ € B (use h € X).

We may consider L": f —~ L%f as a bounded operator from % (K ) to
€(K, x B). For each f¢%(K,) the sequence L%f is bounded in
% (K, x B) by Prop. 3 (iii). We have seen that (i) is satisfied for linear
combinations of | = 0 satisfying (3.39) for all & and all @ € B, these
include again the elements of %, for all m and are thus dense in ¥ (K_).
Applying the theorem of BANACH-STEINHAUS to the sequence L™ proves
then (i).

Applying (i) to f = 1 yields (ii). More generally (i) shows that vz (n /g
is continuous in @ € &, using then (ii) we see that v4(f) is continuous
in @ for each f € K, proving (iii). Finally the continuity of the derivative
(3.37) follows from the continuity in @ ¢ F of v, (by (i), ks (by (iii))
and L p.
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