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A Segmentation-Based Regularization
Term for Image Deconvolution

Max Mignotte

Abstract—This paper proposes a new and original inhomo-
geneous restoration (deconvolution) model under the Bayesian
framework for observed images degraded by space-invariant
blur and additive Gaussian noise. In this model, regularization
is achieved during the iterative restoration process with a seg-
mentation-based a priori term. This adaptive edge-preserving
regularization term applies a local smoothness constraint to
pre-estimated constant-valued regions of the target image. These
constant-valued regions (the segmentation map) of the target
image are obtained from a preliminary Wiener deconvolution
estimate. In order to estimate reliable segmentation maps, we
have also adopted a Bayesian Markovian framework in which
the regularized segmentations are estimated in the maximum
a posteriori (MAP) sense with the joint use of local Potts prior
and appropriate Gaussian conditional luminance distributions. In
order to make these segmentations unsupervised, these likelihood
distributions are estimated in the maximum likelihood sense.
To compute the MAP estimate associated to the restoration, we
use a simple steepest descent procedure resulting in an efficient
iterative process converging to a globally optimal restoration. The
experiments reported in this paper demonstrate that the discussed
method performs competitively and sometimes better than the
best existing state-of-the-art methods in benchmark tests.

Index Terms—Adaptive prior model, Bayesian estimation, image
deconvolution or restoration, image segmentation, Markovian
model, Tikhonov regularization.

I. INTRODUCTION
A. Problem Statement

HE problem of recovering an original image x from a de-

graded observed version y, for the purpose of improving
its quality or obtaining some type of information that is not
readily available from the degraded image [1] is usually known
as a restoration or reconstruction problem. In many situations
where the imaging system is assumed to be linear and shift in-
variant, the transformation from x to y is well described by the
following and familiar additive linear degradation model

y=hxxz+n @))

where y, x, and n represent, respectively, the degraded or noisy
and blurred observed image (of size N pixels), the undistorted
true image and the corrupting additive and white Gaussian noise
with variance o2. h is the point spread function (PSF) of the
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imaging system and * is the linear convolution operator. We
shall assume throughout this paper that the degradation model
(PSF and variance of the white Gaussian noise) is known. It
might be given analytically or given numerically based on pre-
vious estimations or calibration experiments.

The simplest way to approach the restoration problem is to
find z in the maximum likelihood (ML) sense (according to the
statistics of the stationary Gaussian noise n) or equivalently for
this problem, to find the least squares estimation of = defined by

Zmr, = argmax Py | x (y|7)
xr

1
= argmaxexp {—Eﬂﬂy — h % L||2}

= argmin [ly — b+ 2|, )

This so-called inverse-filtering solution which best matches the
probabilistic behavior of the data leads to unacceptable restora-
tion solutions. This is due to the fact that several candidate im-
ages can be a solution of (2). In addition to the ideal image,
others are noisy versions of = and the others do not have many
of the properties expected in the original image x. In fact, the
problem of recovering an original image from its noisy and de-
graded version is typical of ill-posed inverse problems in the
sense of Hadamard [2]: The perfect knowledge of the degra-
dation model is not sufficient to determine a restoration result
with acceptable accuracy. To circumvent this difficulty, a con-
ventional method is to regularize the solution by introducing
a priori constraints [3]. This regularization constraint can be ex-
pressed as the prior distribution of the unknown image x (treated
as a realization of a random field X), within a Markov random
field (MRF) framework [3], [4]. The prior distribution reflects
the knowledge or beliefs concerning the types of images ac-
ceptable as estimates and regularizes the optimization problem
so that a unique solution always exists [5] (i.e., a well-posed
problem).

The knowledge concerning the types of images acceptable as

estimates can be encoded as follows.

e Analytically. In this way, the encoding is done in the reg-
ularization framework, through an energy function (z)
added to the likelihood term ||y — h * z||2.

* From the probabilistic viewpoint, via a prior distribution
of the form

Px(z) o exp {—%’yﬂ(x)} . 3)

In this framework, a regularized solution corresponds
to the maximum A posteriori (MAP) solution, i.e., the
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solution Zyap that maximizes the posterior distribution
Pxy (zly) o< Px(7)Py|x(y|z)

TMAP = arg max Pxy (z|y)

= argmﬂ}n{”y—h*xHQ—l—%Q(x)}. 4)

The criterion expressed by (4) (also called the penalized
maximum likelihood) contains two terms, the first expresses
the fidelity to the available data y and the second encodes the
property expected in the true undegraded image. «/2 = v/ is
the regularization parameter controlling the contribution of the
two terms.

B. Existing Prior Models

Probably the simplest prior model used to regularize the so-
lution is Q(x) = ||z||> which yields to the so-called Tikhonov
regularization with the identity [6], or equivalently to the inverse
Wiener filter (in this case, /2 is a constant approximating the
ratio between the noise and the Fourier spectrum of x, see Sec-
tion III-A). By using this prior, we penalize solutions exhibiting
large variance in its gray level distribution. This regularization
strategy often induces spurious oscillations or ringing occurring
at discontinuities (or edges) of the image and thus undesirable
restoration results.

A commonly used choice is the quadratic functional
Q(x) = ||C  x||? where C is a PSF associated to a high-pass
filter (gradient or Laplacian). This penalty function penal-
izes solutions with large high-frequency fluctuations and
thus enforces smoothness on the solution. A similar strategy
reinterpreted in the wavelet-domain has been proposed by
Wang et al. in [7] with the following quadratic functional,
Qx) = X5, 2k billdikll?, where 8}, are wavelet coeffi-
cients of x at resolution level j and b; 1 > b; > 0 are constants
(i.e., the larger the resolution level, the larger the penalty). A
similar prior model, but adaptive to the subband decomposition
of x, can be found in [8].

In the same way, another prior model, which can be used to
model global smoothness of the desired restoration, is the con-
ditional autoregression (CAR) model defined by Ripley [9] in
which Q(z) = 3 cg(zs — ¢35, 7+)” where the notation
(s, t) denotes the four neighbor pixels at distance one from pixel
x, at location s.

As an alternative to the quadratic regularization terms de-
scribed above, some authors have also proposed the use of
complexity penalty terms. It is an interesting way to penalize
roughness which borrows from recent developments in non-
parametric estimation theory. The theoretical motivation for
complexity regularization is explained in detail in [10]. In this
regularization approach, estimates with high complexity in a
data-compression sense are penalized [11]. This complexity
is generally measured by the length of a binary string used
to encode the restored image [12]. Complexity regularization
includes maximum description length (MDL) as a special case
[13]. As there exists a great variety of compression schemes,
the complexity regularization term may take diverse forms
(see [11] for penalties associated with state-of-the-art coders).
For instance, we can cite the simple complexity penalty
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Q(z) = (3/2)M log, N, where M is the number of nonzero
wavelet coefficients. Another way consists in exploiting the
sparsity of the wavelet coefficients of the signal to be esti-
mated. This property expected in the original image is well
modeled by a function of the form Q(z) = |bf|” (leading to
generalized Gaussian prior density) where 6 is the wavelet
coefficient decomposition of = and v is the so-called shape
parameter (typically between 0.5 and 1). A variant is proposed
in [14] where the parameter b is different for the set of wavelet
coefficients at different scales and another is proposed in which
the distribution of wavelet coefficients is based on mutually
independent Gaussian mixture models [15].

Among the other wavelet-based restoration methods, we can
cite the hidden Markov tree (HMT) prior model using a mul-
tiscale Gaussian mixture of complex wavelet coefficients pro-
posed in [16], [17], a decreasing exponential law [18] (i.e., a
low complexity penalty term), or a Gaussian scale mixture [19].
To compute the MAP estimate, they developed an expectation
maximization (EM) [20] where the missing variables are respec-
tively, the variance of each Gaussian of the considered mixture
[17], the deblurred but noisy image [18] and the scale factors of
the prior Gaussian mixtures [19].

Another regularizing term is the total variation functional de-
noted by Q(x) = |Vz|1, where Vz denotes the gradient of x.
In this context, the prior distribution Px(z) o exp(—(z))
describes images to be recovered as consisting largely of zero
gradient regions interspersed with occasional strong gradient
transitions. Theoretical analysis [21], [22] has demonstrated the
superiority of total variation (TV) criteria over quadratic reg-
ularization when the solution is blocky (i.e., piecewise smooth)
and its efficiency for recovering edges of images. This approach
can be viewed as a special case of the “half-quadratic regular-
ization” scheme of Geman et al. [23], [24] and of the ARTUR
model proposed by Charbonnier et al. [25].

These nonquadratic penalties and non Gaussian priors can
provide better restorations with good edge-preserving proper-
ties, but this class of methods is often more computationally ex-
pensive. Let us also add that some of the multiscale wavelet-
based restoration methods are analogous to classical Wiener
filters (e.g., [26]), TV variational methods, or some Tikhonov
regularization procedures reinterpreted in the wavelet-domain.
These methods may have computational advantages, but do not
overcome the major drawbacks associated with a linear filtering
method (e.g., over-smoothing). Besides, these models are ho-
mogeneous and assume that the original image to be recovered
is smooth. However, this is a global requirement and therefore
not very effective in terms of local smoothness. A more effi-
cient image model assumes that only homogeneous regions are
smooth, and that edges must remain sharp. In other words, a
good prior model should adapt to the local characteristics and
structure of the image to enable the solution to be less noisy in
constant areas and to exhibit sharper details in other regions.

C. Spatially Adaptive Techniques Based on Quadratic
Penalties or a Line-Process

In this way, spatially adaptive techniques to the restoration
problem, based on quadratic penalties or a line-process model,
have been proposed. Among them, we can cite the seminal work
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of Geman and Geman with their MRF model with line processes
[3] and the doubly stochastic MRFs of Woods et al. [27]. How-
ever, using line elements adds to the complexity of the problem
by increasing both the dimensionality of the required optimiza-
tion and the complexity of the parameter estimation procedure
(required to make the restoration unsupervised). Another tech-
nique, also proposed by Geman and Reynolds, to model local
smoothness constraints without introducing auxiliary variables
is given in [23]. This technique allows the recovery of discon-
tinuities with a regularization function of the form Q(z) =
Yo ¢(DE(z)/A), where ¢(u) = —(1 + lu[")™" and the first
summation is over all horizontal and vertical nearest neighbor
pairs of pixels, and DE, () is simply the difference zs—z;. In the
context of edge-preserving restoration techniques, we can also
cite the significant contribution of Bouman and Sauer in [28]
with their generalized Gaussian MRF prior model of the form
Qz) o< =y 32 4y Bstlws — 24[? where 1 < g < 2 is a param-
eter that controls the smoothness of the image model and/or the
sharpness of the edges to form in the restored image. This model
includes a Gaussian MRF for ¢ = 2, and an absolute-value
potential function with ¢ = 1 also referred to as the “me-
dian pixel prior.” We can also cite the adaptive Gaussian model
proposed in [29] which allows to locally adjust the amount of
regularization, with the following quadratic energy: Q(z) =
Yses VE(Dyxs)? + bY(Dyxs)? where b and bY are the adap-
tive parameters and D,, D, are first order derivative opera-
tors. The variables b are analogous to a continuous line process
[3]: a low value of b corresponding to an edge between two
pixels. Let us also add the interesting and simple approach de-
veloped by Banham and Katsaggelos [30] which simply consists
in switching the linear inverse filter spatially based on an edge
detection test, enabling the overall procedure to automatically
preserve details near detected edges.

D. Proposed Approach

An alternative approach to apply smoothness constraint,
while preserving discontinuities, is to apply a smoothness con-
straint only on constant areas of the image to be recovered. This
problem of identifying constant regions in a given image is a
low-level task in image processing and is called a segmentation
problem. By assuming that a good oversegmentation of the
image to be recovered is estimated, a partition into homoge-
neous regions can be obtained by simply searching the set of
disjoint regions (i.e., the set of connected pixels belonging to the
same class). A simple and adaptive local quadratic smoothness
term would then consist in penalizing solutions exhibiting a
luminance distribution with large variance within each regions.
This regularization strategy, which assumes as prior model that
the image is piecewise smooth over pre-estimated regions is
the one proposed in this paper.

Therefore, in contrast with almost all recent edge-preserving
contributions in image restoration, manipulating “edge vari-
ables” in the regularization term, we herein propose instead
to use “label variables” taken into account by a preliminary
segmentation process.

In order to extract a reliable oversegmentation map (robust
to the noise), we have adopted a statistical framework allowing
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to estimate the solution in the MAP sense. Nevertheless, the
problem of this simple approach is obviously twofold:

e The first difficulty is that the restored image is required for
the segmentation while the segmentation is also required
to constrain the restoration procedure. To circumvent this
difficulty, a simple scheme would consist in implementing
alternatively the restoration and the segmentation proce-
dure until convergence. In our application, this segmenta-
tion is simply obtained on a rough restoration. To this end,
we use the result of an iterative Wiener filter [31], both to
estimate the oversegmentation map, but also to initialize
our iterative procedure of restoration. Eventually, the final
result of restoration can be used to re-estimate a better seg-
mentation and to refine, in a second pass, the restoration
result.

¢ The segmentation problem can also be seen as the solution
of an inverse ill-posed problem as expressed in [3]; i.e.,
the data in themselves are insufficient to unambiguously
define the segmentation. In order to rightly constrain the
nature of this problem, some particular knowledge about
the scene is necessary. A simple a priori knowledge may
express the fact that nearby pixels are fairly likely to be-
long to the same class. In a probabilistic framework, such
regularities are well captured by a MRF prior model [4].
Thanks to the Hammersley-Clifford theorem, this prior
model can be parametrically described by a Gibbs distri-
bution based on spatially local interactions as the standard
Potts prior model.

Another difficulty is that the generic problem of unsuper-
vised Markovian segmentation is quite complex and remains
an active domain of research in the low-level vision commu-
nity. The main difficulty is that the estimation of parameters is
required for the segmentation, while one (or several) segmen-
tation(s) are usually required for parameter estimation. To cir-
cumvent this difficulty, we have adopted the monoscale version
of the Markovian segmentation model described in [32] already
successfully applied to noisy sonar images. In this approach,
the unsupervised MRF-based segmentation problem consists in
having a two-step process. First, a parameter estimation step
is conducted to infer the noise model parameters, (thanks to
an iterative method called iterative conditional estimation or
ICE). Then, a second step is devoted to the segmentation itself
based on the values of estimated parameters. Let us add that the
segmentation is computed on the result of an inverse filtering,
i.e., on an noisy image widely deblurred. In this situation, the
Markovian segmentation procedure remains well suited to take
into account this noise degradation in its likelihood model.

In this way, the proposed restoration is performed by using a
two-level MRF model. The first one includes a low-level prior
model used in the segmentation procedure and, more precisely, a
simple Potts prior model ensuring homogeneity of the segmen-
tation map and a likelihood model expressing the luminance dis-
tribution of each homogeneous region of the image. While the
second exploits the segmentation result, and more precisely a
partition into regions extracted from this segmentation map as
a meta parameter of our prior model of restoration. This prior
model efficiently expresses the expected local smoothness prop-
erty in the image to be recovered. The restoration procedure
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finds the best solution that is consistent to the data, i.e, which
blurred values are close to y (likelihood model) and that respects
this local smoothness property. These two estimation problems
(segmentation and restoration) are defined as the search of the
MAP or equivalently as an optimization problem in which the
posterior energy has to be minimized. To this end, we use a
gradient-based algorithm, more precisely an ICM algorithm for
the segmentation step and a steepest descent procedure for the
restoration step.

E. Paper Organization

This paper is organized as follows. The proposed spa-
tially adaptive restoration model is described in Section II. In
Section III, we detail the parameter estimation step of our prior
model, i.e., the iterative Wiener Filter used to obtain a rough
restoration and the unsupervised Markovian segmentation
model. Finally, Section IV presents a set of experimental results
and comparisons with existing techniques.

II. PROPOSED ADAPTIVE EDGE-PRESERVING
RESTORATION MODEL

In order to impose local smoothness on constant areas of the
image to be restored, we propose the following quadratic regu-
larization term, based on one or several simulated partitions into
regions and whose goal is to penalize solutions exhibiting a lu-
minance distribution with large variance within each region

2

Nseg
Y
) = lp@)|” = ||z~ 5— > T(®) 5)
Seg =1

where Ngeg is the number of partitions into regions. I'y, (zs)
designates the operator that gives the mean of gray level values
of the region of belonging to the pixel at location s (for the k!
simulated partition into regions).

The interest of doing several partitions into regions, in fact
one partition for each simulation of a segmentation map, is to
minimize the effects of the dependence of a bad segmentation
map on the restoration result. More precisely, the interest is to
minimize the effects of possible bad classification and localiza-
tion that could occur in the case of only one segmentation on
certain low-contrasted, very noisy or highly textured portions
of the image. This strategy will be also discussed and quanti-
fied (in Section IV) in the ISNR sense for several degradation
models.

In this context, the restoration problem is thus defined as the
search of the global minima of the following energy function

_ 5 1
BG) = {lly = bl + 5 o = = 3 Te(a)

(6)
This search is performed, in our application, by a steepest de-
scent procedure which moves the estimates iteratively in the
negative gradient direction, as follows:

it = 2l _ AV E(x) (7

where + is the step size. A large step size v is needed for fast
convergence, but a too large value may destabilize the iterative
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algorithm. VE(z) with E(z) defined by (6) can be easily de-
fined and allows to obtain the following iterative procedure of
restoration

et —plnl (h#* (y_h “ x[n]) —ap (j‘;[n]) P (i[n]))

(®)
where h#(i,§) = h(—i,—j) (the coordinates (4,7) represent
the discrete pixel locations and for h symmetric, we have h#* =
h), * is the linear convolution operator, and, in this form of no-
tation, the multiplication (between p’ and p) is done point-by-
point (or pixel-by-pixel). Besides, the image is assumed to be
toroidal.

Let us now find an analytical expression for p’. To this end,
let us assume that Ns., = 1 (one partition into regions). If 1
denotes the mean of the gray level values of the region to which
the pixel at location s belongs, we have

Op(x) _ . P(Es+e) —play)
81}5 e—0 €
(xs—i—e—%"i) —(zs — )
= lim

e—0 €

1

=1- —

N

where A is the number of pixels of the region belonging to pixel
atlocation s. In the case where several partitions into regions are
considered, we can easily find

Nse
dp(z) |

—1- — 9)
axs NSeg b1 Nk (

where A, is the number of pixels of the region belonging to
pixel at location s for the k'" simulated partition into regions.

The successive approximation of the solution according to
the minimization of the cost function expressed in (6) results
in initializing £[°! with the restoration result given by the Itera-
tive Wiener filter (see Section III-A), and by using the iterative
process defined in (8) [with the use of (9)] until some conver-
gence criterion is met.

A conjugate gradient technique could be efficiently applied
to speed up the convergence of the proposed gradient-based
iterative restoration algorithm. An interesting and alternative
approach will also be to consider a coordinate-wise (local) de-
scending algorithm, e.g., a Jacobi or Gauss—Seidel iterative pro-
cedure which would avoid the tuning of the step size param-
eter v (as an overrelaxed version of this steepest gradient pro-
cedure could also do it). Besides, since the proposed criterion is
quadratic, many other optimization methods can be used.

Let us finally add that, in this context, the proposed iterative
restoration approach is not purely Bayesian in the sense that the
segmentation-based prior is estimated from data.

III. PARAMETER ESTIMATION STEP OF PRIOR MODEL

The proposed restoration algorithm assumes knowledge of an
oversegmentation of the original image = into homogeneous re-
gions. Since this image (before degradation) is unknown, the
first step of our algorithm consists of obtaining an approxima-
tion of the true image z, with an unsupervised Wiener filter,
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using the iterative technique described in [31]. This procedure
is briefly recalled here.

A. Iterative Wiener Filter

Knowing the degradation model (blurring and noise
functions), Wiener filtering is often suggested as nonitera-
tive procedure allowing to obtain a first good approximation of
the restoration result.

Nevertheless, in order to obtain a good restoration result
optimal in the minimum mean-square error (MMSE) sense,
an accurate knowledge of |X(u,v)|?, the Fourier spectrum
of z (the ideal solution to be estimated) is required by this
procedure. Usually, the Fourier spectrum of x is approximated
by the spectrum of the degraded image (which is sometimes
far from the true spectrum of the ideal image due to the degra-
dation model) and, consequently, the restoration filter is no
longer MMSE optimal, leading to suboptimal (and undesirable)
restoration results.

To circumvent this difficulty, an iterative procedure is sug-
gested in [31] whereby successively restored images are used to
update | X (u,v)|? and subsequently to improve the restoration
result, namely

H*(u,v)

XU, ) =Y (u,v
) =11 )|H(u7l/)|2+

(10)
|X[”](u,z/)|2

with X% (u,v) = Y (u,v), and where Y (u,v) and H(u,v)
represent the Fourier transform of the degraded image and the
PSF respectively. Superscripts denote the iteration number of
the procedure and (.)* means the complex conjugate of (.).
Analysis in [31] shows that the procedure converges to a fixed
point which is not the desired minimum MSE solution (except
when 02 = 0). A correction term is also proposed in [31] to
modify the iterative filter for the desired theoretical minimum
MSE result where exact Fourier spectrum of z is assumed
’ + Corln+1]

2
‘X[”"'I]Jr (u,v)| = ’X["'H] (u,v)

with

‘z | X+, )| [H (u, 0) 2
2 -2

|H (u,v)|” + Ko

1D

The correction is applied after each step of the iterative pro-
cedure defined in (10). The result | X " +11" |2 is used in place of
| X Int1] |2 to estimate X ("2 using (10), and the procedure is re-
peated until convergence is achieved (i.e., until X [n+1] » X[n
and typically after 540 iterations).

However, as indicated in [19], since the estimation of
X (u,v), after convergence, is not reliable at frequencies where
the blurring operator H (u,v) & 0 (e.g., in the case of a motion
blur), we finally terminate the procedure by a last Wiener
filtering in which | X (u, )|? + € is used in place of | X (u, v)|?
in order to boost the estimated | X (u, v)|? at high frequencies.
In our application e is set to 1073,

Depending on the degradation model, the above-outlined
corrected iterative Wiener filter yields restorations in which

Corln+H = ‘X["‘] (u,v)
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discontinuities are smoothed out and which suffer from spu-
rious oscillations or ripples (see Section IV). This so-called
Gibbs phenomenon is, in fact, due to the underlying Fourier
basis elements whose support is over the entire spatial domain.
Fig. 1(c) displays an example of restoration obtained with
this procedure on a noisy and blurred CAMERAMAN image
(uniform blur of size 9 x 9, and white Gaussian noise variance
of 02 = 0.308 ensuring a BSNR = 40 dB). Nevertheless, the
quality of the restored image by this procedure is sufficient to
automatically estimate a Markovian segmentation that will be
used in our restoration model as meta parameter of our prior
model of restoration.

B. Unsupervised Markovian Segmentation

To this end, the Markovian framework considers a couple
of random fields (Y, Z), with Y = {Y,,s € S} the field of
observations located on a lattice S of N sites s (associated
with the initial restoration estimated by Wiener filtering),
and Z = {Zs;,s € S} the label field (related to the seg-
mented image to be estimated). Each of the Y, takes its
value in Aops = {0,...,255} (256 gray levels) and each Z,
in a set of K classes {eg,e1,...,ex—1}. In this notation,
an upper case denotes a random field and a lower case, a
particular realization of this random field. The distribution
of (Y, Z) is defined, firstly, by Pz(z), the distribution of Z
supposed to be stationary and Markovian, and secondly, by
the site-wise conditional data likelihoods Py,|z, (ys|zs). If
the data are assumed to be independent conditioned on the
labeling process Z, one gets Py|z = [[,cqPv.|z,. Data
likelihood Py|z(y|z) depends on a parameter vector ®. Joint
and posterior distributions Pz y (z,y) = Pz(2)Py|z(y|z) and
Py (zly) < Pz(2)Py|z(y|z), thus, depend on ®.

In the Markovian framework, image segmentation in K
classes can be viewed as a statistical labeling problem ac-
cording to a global Bayesian formulation in which the posterior
distribution Pzy-(z]y) o exp{—U(z,y)} has to be maximized
[4]. This is the maximum a posteriori (MAP) estimation. In the
standard case of the Potts prior model [4], the corresponding
posterior energy to be minimized is

Ulzy) =Y Walzeys) + D B [L = 8(z, )] (12)
<s.t)

seS

where W,(z.,%s) = —InPyz (yslzs), 6 is the delta
Kronecker function, and B, = (1, B2, (3, or (4, de-
pending on whether the pair of neighboring sites (relative
to the second-order neighborhood system), or clique, (s,t) is
horizontal, vertical, right diagonal, or left diagonal [4]. In this
energy setting, the first energy term expresses the adequacy
between observations and labels, whereas the second one is
related to the a priori.

In our application, we take a Gaussian law, N (y,0?)
as degradation model to describe the luminance distribu-
tion within each class. To perform an unsupervised seg-
mentation, we thus have to estimate the parameter vector

parameters for each law associated to each class of the seg-
mented image. To this end, we resort, to an iterative method of
estimation called ICE [33]-[36] which gives the best estimation
of ® in the least-squares sense and which can be viewed as a
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Fig. 1. (a) Original image; (b) noisy-blurred image with uniform blur of size 9 x 9, and white Gaussian noise variance of 62 = 0.308 (BS}\'R = 40 dB);
(c) iterative Wiener filter with additive correction term (ISNR = 5.7 dB); (d) unsupervised twenty-class segmentation, exploiting parameters ¢ estimated with
the ICE procedure; (e) partition into regions of the segmentation presented in (d); (f) another partition into regions based on another unsupervised Markovian

segmentation. (Color version available online at http://ieeexplore.ieee.org.)

stochastic and Markovian EM [36] procedure for the particular
problem of the Gaussian distribution mixture estimation of the
luminance within an image. This ICE procedure is initialized
by a K-means clustering procedure [37] as proposed in [32]. In
doing so, we assume as first approximation that the luminance
distributions for each class are spherical with equal volumes (or
equivalently, Gaussian distributions with identical variance).
The obtained partitions by the K-means clustering procedure
allow to obtain a rough estimation of the distribution mixture
parameters (mean and variance of the Gaussian distribution for
each class) which are then used to initialize the ICE estimation
procedure.

Once @ is estimated, (12) is optimized using a classical it-
erative local update strategy called Iterated Conditional Modes
(ICM) [4] algorithm. For the initialization of this iterative algo-
rithm, we exploit the segmentation map obtained in a ML sense.

In our application, we take § = 31 = ... = (4 = 1 for the
parameters of the a priori model and K = 20 classes. Fig. 1(d)
displays an example of unsupervised twenty-class segmenta-
tion, exploiting parameters ® estimated with the ICE procedure.

C. PFartition Into Regions

We now exploit this oversegmentation in order to get a reli-
able partition R of the image into homogeneous regions. To this

end, we simply search the set of disjoint regions (i.e., the set of
connected pixels belonging to the same class). In order to limit
regions with a large number of pixels which could produce an
undesirable “staircase” or quantization effects by our regulariza-
tion/prior term (which tends to favor piecewise smooth restora-
tions), we subdivide all the regions with more than 100 pixel
size.

Due to the stochastic aspect of the ICE estimation procedure,
we can obtain, for several seeds, different segmentations and
thus different partitions into regions of the same input image
[see Fig. 1(e) and (f)]. These simulations of region maps are
differently partitioned mostly on homogeneous regions without
observable discontinuities (such as the sky region or the black
coat of the cameraman). Nevertheless, the localized character-
istics of the image such as the main structures, the edges and
the details are preserved by these partitions which define a set
of possible low-level representations of the image.

Fig. 1(d) and (e), respectively, shows the result of an unsu-
pervised twenty-class segmentation on a Wiener filtering of the
CAMERAMAN image and the partition into regions induced from
this segmentation map. Fig. 1(e) and (f) displays two examples
of region partition of the CAMERAMAN image given by our pro-
cedure. Fig. 1(e) shows 4834 regions with variable sizes (1 to
99 pixels) and an average size of 13.6 pixels size.
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IV. EXPERIMENTAL RESULTS

In all the experiments, we have considered the gradient de-
scent iterative procedure defined in (8) [with the use of (9) and
with v = 1].

The initial estimate #[% for the iterative restoration procedure
and used as observation for the segmentation step is given by the
iterative Wiener filtering. The number of iteration of the ICE
procedure is set to 20.!

The convergence criterion of the proposed restoration proce-
dure is the stability of the MAP energy, i.e.

A [n—1]
FE (x ) AE (x ) <§ (13)
E (a:["])

with § is a threshold, typically set, in our application, to 10~°¢2.
The regularization parameter «, that controls the contribution of
the likelihood and prior terms is given by

ly — b )

(14)

where (] is the first restoration result given by the iterative
Wiener Filter presented in Section III-A. This expression is in-
spired by the work of Katsaggelos et al. in [38] and will allow
to make our approach less sensitive to the regularization param-
eter « for a fixed value of (.

A. Sensitivity to Parameters

First, we have tested the influence of the four following pa-
rameters, namely, 1—((= 1 = ... = (4), the regularization
term of the segmentation step, 2— K, the number of classes of
the segmentation step, 3—Nsc,, the number of partitions into
regions and, 4—(, the regularization factor used in the restora-
tion step [see (14)], on the result of the SNR improvement mea-
sure. In this first set of experimentations, we consider the fol-
lowing degradation model on the CAMERAMAN image; a uniform
blur of size 7 x 7 and a noise variance o2 = 2 (corresponding
to BSNR = 32 dB). Fig. 4 shows the evolution of the ISNR
improvement along several discrete values of these parameters.
Let us note the following.

e For K = 1, ie., one class for the segmentation map
and Ngeg = 1 (number of segmentations), the proposed
model is analogous to the simplest prior model used in
the regularization framework, i.e., Q(x) = ||z||?> which
yields to the so-called Tikhonov regularization with the
identity [6], or equivalently to the inverse Wiener filter.

* For # = 0, the estimation of the segmentation map is
done in the ML sense and the estimation procedure, used
to estimate the likelihood distribution of this ML segmen-
tation, is analogous to the SEM procedure [36].

e For ( = 0,ie., a = 0, the proposed iterative procedure
is analogous to the Landweber iteration [39].

I'We can also use an adaptive criterion for this number of iterations as the one
proposed in [32] which is based on an indicator of the “stability” of the pro-
cedure. When this one falls below a given threshold, the sequence of ®L*1 is
assumed to have reached an equilibrium and the procedure is ended. Neverthe-
less, experimental results have shown that 15 or 20 iterations were sufficient for
the convergence of the ICE procedure for all the experiments reported in this

paper.
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TABLE 1
BLUR, NOISE VARIANCE, AND BSNR (dB) FOR THE FOUR EXPERIMENTS

| Blur | o | Bsnr
Expl 9 X 9 uniform ~0.308 || 40
Exp2 hij=(14i24+52)"1, 4,5 = —7,...,7|| 2 32
Exp3 hij=(144%442) "1, 4,5 = —7,...,7|| 8 26
Exp4 || [1,4,6,4,1]"[1,4,6,4,1]/256 49 18

TABLE 1II
ISNR (dB) OF THE PROPOSED ALGORITHM AND METHODS [16],
[18], [19], [26], [30], [40] FOR THE FOUR EXPERIMENTS

ISNR (dB)
Method Expl  Exp2 Exp3 Exp4
Mig-3 8.71 7.58 5.75 1.60
Mig-2 8.42 8.03 5.72 1.78
Mig-1 8.23 7.58 5.70 1.63
Bioucas-Dias [19] 8.10 7.40 5.15 2.85
Figueiredo &. Nowak [18] 7.59 6.93 4.88 2.94
Neelamani et al. [26] 7.30 - - -
Banham & katsaggelos [30] 6.70 - - -
Jalobeanu et al. [16] - 6.75 4.85 -
Liu & Moulin [40] - - - 1.08
TABLE 1II
DEGRADATION MODEL EXP5 AND OBTAINED ISNR
Image name “ Exp5 “ ISNR
Cameraman || Blur, 02, BSNR: || Mig-3  3.50 dB
5 X 5 uniform Mig-2 3.73 dB
0?2 =333 Mig-1  3.50 dB
BSNR = 20 dB [42] 3.43 dB

Experiments show that the proposed restoration model is not
too sensitive to parameters 3, K and Ns, if § € [0.5,1.5],
K € [15,30] and Nge; > 1. In fact, experiments have shown
that this last parameter has to be all the more greater than 1 that
the variance of the noise or the degradation of the initial Wiener
filtering restoration solution is important. On the other hand,
the proposed method seems a bit sensitive to the regularization
parameter (.

For (8 = 1.0, K = 20, Ng¢z = 5, ¢ = 0.1), we obtain
an ISNR = 6.71 dB for the CAMERAMAN image and for the
above-mentioned degradation model (uniform blur 7 x 7 and
o2 = 2).

B. Comparison With State-of-the-Art Methods

‘We now present a set of experimental results and comparisons
illustrating the performance of the proposed approach. We have
taken for all the following experiments 5 = 1.0 and K = 20
classes for the segmentation step and Ng.z = 5 partitions into
regions and finally {( = 0.2 for the restoration step.

For the first four experiments, we have replicated the
scenarios used in the evaluation of state-of-the-art methods
described in [16], [18], [19], [26], [30], [40], with which we
compare the proposed approach. In these experiments, original
images are CAMERAMAN (experiments 1, 2, and 3) and LENA
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) (

Fig. 2. (a) Original image. (b), (d), (f) Noisy-blurred image for respectively Exp1, Exp2, and Exp3 (see Table I). (c), (e), (g) Restored image using the proposed
approach [algorithm Mig-3 for (c) and Mig-1 for (e) and (g)] (see Table II).

(experiment 4) both of size 256 x 256. Table I displays the blur, e Second, one pass of our algorithm with the parameter
the noise and the resulting BSNR (the ratio between the variance vector («, §) manually fixed with supervised values (al-
of the noise and the variance of blurred image without noise) for gorithm called Mig-2).
each of the four experiments. We have considered three variants * Third, two passes of the algorithm. More precisely, the
of our algorithm. final result of restoration is used to re-estimate both a
 First, we consider one pass (i.e., segmentation-restora- better segmentation and then to refine, in a second pass
tion) of our algorithm with the parameter vector (c, 6) our prior model, and also to re-estimate the initial Wiener
estimated respectively by (14) and (13) (algorithm called filtering estimate given to the second pass of the itera-

Mig-1). tive restoration process (8) (via the Fourier spectrum of x
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(2) (b) (c)
Fig. 3. (a) Original image. (b) Noisy-blurred image for Exp4 (see Table I). (c) Restored image using the proposed approach (algorithm Mig-1) (see Table II).
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Fig. 4. Evolution of the SNR improvement along the iteration of the gradient descent process for (see Table I) (a) Expl, during the first and second pass of the

algorithm (Mig-3), (b) Exp3 (algorithm Mig-1), (c) Exp4 (algorithm Mig-1).

which is now estimated by the first final result of restora-
tion). The parameter vector («, ) is estimated respec-
tively by (14) and (13) (algorithm called Mig-3).

Table II shows the obtained signal-to-noise improvements
(ISNR) obtained by the three versions of our approach com-
pared to the algorithms described in [16], [18], [19], [26], [30],
and [40] for the four experiments. Fig. 2 and 3 show, respec-
tively, the original image, the blurred noisy image and the re-
stored image using the proposed approach. Fig. 4 shows the
evolution of the ISNR improvement along the iteration of the
gradient descent process for the example of the four degrada-
tion models described in Table 1.

Our approach performs competitively, in several cases better
than the best existing methods in benchmark tests, except for
Exp4 which is not far from a pure denoising problem for which
wavelet-based restoration such as [18], [19] give better ISNR
results. Besides, the interest of doing several partitions into re-
gions, in order to minimize the effects of the dependence of a
bad segmentation map on the restoration result, can be noticed
when we compare these ISNR results to the ones given when
K = 1in [41] (a short and preliminary version of this work).

We have also replicated the degradation model described in
[42] for which we indicate the ISNR obtained with the three
variants of the proposed approach [see Table IV(b)]. We have
also compared our model on the degradation model described
by Molina et al. in [43] in which two edge-preserving methods

was implemented and tested; respectively. 1) First, the use of
a compound Gauss—Markov random fields (CGMRF), using
an Ising model to represent the upper level and a line process
to model the abrupt transitions (and acting as an activator or
inhibitor of the relation between two neighbor pixels). In this
model, the solution is estimated thanks to an extension of the
classical simulated annealing. 2) Second, the ARTUR model of
[44] also implemented and tested in [43] in the restoration con-
text. The degradation model consists of a Gaussian noise with
variance 02 = 62.5 added to the CAMERAMAN image blurred
by an atmospherical PSF of the form o [1 + (i2 + j2)/16] "
In order to compare the quality of the restoration result, we
use as in [43] the peak signal-to-noise ratio (PSNR) that, for
two images = and y of N sites, is defined, in decibels, as
101log,o ([N x 2552]/[||ly — #||?]) and we summarize the results
in Table IV. Once again, we can noticed that our approach
performs competitively.

C. Discussion

We can notice that the proposed algorithm is especially effi-
cient for the deblurring or deconvolution problem compared to
the wavelet-based restoration methods which remain more ef-
ficient for, low SNR, noise-corrupted images. This can be seen
on Fig. 6 which shows the evolution of the ISNR for a degra-
dation model combining a 9 X 9 uniform blur and a BSNR
varying from 40 to 5 dB and for our method versus a recent
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Evolution of the SNR improvement for the CAMERAMAN image with the following degradation model; a uniform blur of size 7 X 7 and a noise variance

o2 = 2 along (a) the number of classes (with 3 = 0.5, Nso; = 5 and ¢ = 0.2); (b) the value of 3 (with Nseg = 5 and ¢ = 0.2 and I = 20); (c) the value of
¢, (with Ngeg = 5, I = 20 and 3 = 0.5); (d) the value of Ng., (with 3 = 0.5, ( = 0.2 and K = 20).

TABLE IV
DEGRADATION MODEL EXP6 AND OBTAINED ISNR-PSNR

Image name || Exp6 | 1SNR - PSNR
Cameraman Blur, 02, BSNR : Mig-1 PSNR=23.3 dB
(ISNR= 1.9 dB)
o<1+ +5°) /16] *
02 =62.5 CGMRF [43] PSNR=21.1 dB
BSNR = 14 dB ARTUR [44] PSNR=20.8 dB
9
8 q
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x
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Fig. 6. Evolution of the SNR improvement for the CAMERAMAN image
with the following degradation model; a uniform blur of size 9 X 9 and a
BSNR varying from 40 to 5 dB (set of noise variances [0.308: 0.973: 3.080:
9.750: 30.80: 97.50: 308.50: 975]), for our method versus the UDWT-based
restoration method proposed in [18]. (Color version available online at
http://ieeexplore.ieee.org.)

wavelet-based restoration procedure. For this experiment, we
use the restoration scheme proposed in [18] with the translation-

10 T T T T T T
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@
o
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£
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>
[
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z
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BSNR (dB)

Fig. 7. Evolution of the SNR improvement versus the BSNR (for a uniform
9 X 9 blur and increasing noise variances) for respectively the following
set of images with increasing texture complexity and activity, i.e., PEPPERS,
CAMERAMAN, LENA, BARBARA, and BABOON images. (Color version available
online at http://ieeexplore.ieee.org.)

invariant wavelet-based denoising rule proposed by the authors
[using the undecimated discrete wavelet transform (UDWT)].

We have also noticed that the proposed deconvolution algo-
rithm is also especially well suited for the class of piecewise
smooth (or constant) images such as PEPPERS, ZELDA, or BOAT
and less appropriated for highly textured image such as BA-
BOON or BARBARA images. This can be seen on Fig. 7, which
shows the evolution of the ISNR versus the BSNR for some
well-known 256 X 256 images exhibiting an increasing texture
complexity and activity.

In our setting, the use of (14) make the proposed approach rel-
atively insensitive to the regularization parameter « for a fixed
value of ( (i.e., for algorithms Mig-1 and Mig-3).
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TABLE V
TIME IN SECONDS AND ITERATION NUMBER FOR THE FIVE
EXPERIMENTS AND FOR ALGORITHM Mig-1

| Time (sec) | Iteration
Expl | 1572 4599
Exp2 | 522 690
Exp3 | 258 215
Exp4 | 125 18
Exp5 | 110 43

We can also notice that the strategy of restoration called
Mig-3 is not always ensured to improve the restoration results
compared to Mig-1.

We finally can observe that for larger noise variance, conver-
gence is achieved in fewer iterations. Table V shows the time in
seconds and the number of iterations that each restoration took
for each one of the four degradation models described in Table I
and for algorithm Mig-1 summarized in Algorithm 1.

V. CONCLUSION

In this paper, we have proposed an adaptive edge-preserving
Tikhonov regularization term for image restoration. This regu-
larization term whose goal is to promote piecewise smooth over
pre-estimated homogeneous regions are based on an unsuper-
vised Markovian segmentation.

In this way, the proposed restoration is performed by using a
two-level MRF model. The first one, used in the segmentation
procedure, includes a low-level prior model namely, a simple
Potts prior model ensuring homogeneity of the segmentation
map and a likelihood model expressing the luminance distri-
bution of each homogeneous region of the image. While the
second exploits the segmentation result (via a partition into re-
gions map) as a meta parameter of the adaptive prior model of
restoration. This prior model efficiently expresses the expected
local smoothness property in the image to be recovered. The
restoration procedure finds the best solution that is consistent
with the data that respects this local smoothness property. These
two estimation problems (segmentation and restoration) are de-
fined as the search of the MAP or equivalently as an optimiza-
tion problem in which the posterior energy has to be minimized.
To this end, we use a gradient-based algorithm for the segmen-
tation and restoration step.

Let us note that the proposed regularization strategy is, in fact,
the generalization for K (number of classes) # 1 and Nge, =
1 (number of segmentations) of the so-called Tikhonov regu-
larization with the identity [6]. In our approach, this Tikhonov
constraint with the identity is locally applied to pre-estimated
homogeneous regions. Let us note that this adaptive segmenta-
tion-based regularization strategy could be easily tested for the
other global regularization terms proposed by the image pro-
cessing community (see Section I-B).

The proposed technique efficiently adapts to local charac-
teristics of the data and allows to obtain results which simul-
taneously exhibit no ringing or blocky artifacts, sharp edges,
correctly restored textures and very low noise in homogeneous
areas. In comparison with state-of-the-art methods, the exper-
iments reported in this paper demonstrate that the discussed
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Segmentation-Based Deconvolution Algorithm

(Mig-1)
Nge Number of segmentations/partitions
K Number of classes of the segmentation
o? Variance of the noise

1. 219 — Tterative Wiener Filtering of y

2. Unsupervised Segmentations/Partitions
for k =1 to Ny, do

Seg

e K-means clustering of each pixel of Z[% into K
clusters, initially randomly chosen (seep= k)

o ®l%— ML fitting of Gaussian law for each cluster

o 2% ML segmentation of % based on ®!]

e &« ICE algorithm on 2% (initialized with 2.
and seep= k)

e 2y <+ ML segmentation of 209 based on ®

® zZuw < ICM segmentation (initialized with z,)
and based on PZ|X,¢(.|:i'[0],<I>)

e 2, < Partition into regions (of less than 100
pixel size) of zyap

[0]y2
y—hx*3&
o o ¢ luheatl

3. Segmentation-Based Deconvolution
while [E(z[H1)) — B2/ E(@H) < 107502

do
o U gl 4 (h#* (y — h* 2
1 Nch
o[t — L pk@[n])])
S p=1

e Compute the MAP
Bl 1) o {fly — b x ale )2

NS«.L
o
+§ H Jn+1] ZF [n+1] ” }
L SuL k=1
n«—n+1

Algorithm. 1. Segmentation-based deconvolution algorithm (Mig-1).

method performs competitively, and often better, than the best
existing ones in benchmark tests.

In addition, the Gaussian likelihood model used in the
segmentation process is the simplest one. The result could be
improved by using more accurate modeling. Besides, the joint
estimation of segmentation and restoration could be tested.
Nevertheless, it is not sure that the increase in both the dimen-
sionality of the required optimization and the complexity of
the parameter estimation procedure would allow to improve the
speed and the accuracy of the restoration result.

Finally, this adaptive regularization term can be efficiently
applied in order to regularize many types of inverse problems
in image processing or computer vision such as tomography,
motion estimation, stereovision, superresolution, etc.
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