
Lower bounds for the number of small convex k-holesI

Oswin Aichholzera,1, Ruy Fabila-Monroyb,2, Thomas Hackla,3,∗,
Clemens Huemerc,4, Alexander Pilza,5, Birgit Vogtenhubera,1

aInstitute for Software Technology, University of Technology, Graz, Austria
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Abstract

Let S be a set of n points in the plane in general position, that is, no three
points of S are on a line. We consider an Erdős-type question on the least
number hk(n) of convex k-holes in S, and give improved lower bounds on
hk(n), for 3 ≤ k ≤ 5. Specifically, we show that h3(n) ≥ n2 − 32n

7
+ 22

7
,

h4(n) ≥ n2

2
− 9n

4
− o(n), and h5(n) ≥ 3n

4
− o(n). We further settle several

questions on sets of 12 points posed by Dehnhardt in 1987.
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empty convex polygon, Erdős-type problem, counting
2010 MSC: 52C10

IA preliminary version [2] of this paper was presented at CCCG 2012.
∗Corresponding author.
Email addresses: oaich@ist.tugraz.at (Oswin Aichholzer),

ruyfabila@math.cinvestav.edu.mx (Ruy Fabila-Monroy), thackl@ist.tugraz.at
(Thomas Hackl), clemens.huemer@upc.edu (Clemens Huemer), apilz@ist.tugraz.at
(Alexander Pilz), bvogt@ist.tugraz.at (Birgit Vogtenhuber)

1supported by the ESF EUROCORES programme EuroGIGA – CRP ‘ComPoSe’, Aus-
trian Science Fund (FWF): I648-N18.

2partially supported by Conacyt of Mexico, grant 153984.
3supported by the Austrian Science Fund (FWF): P23629-N18 ‘Combinatorial Prob-

lems on Geometric Graphs’.
4partially supported by projects MTM2012-30951, Gen. Cat. DGR 2009SGR1040,

and ESF EUROCORES programme EuroGIGA, CRP ComPoSe: MICINN Project EUI-
EURC-2011-4306, for Spain.

5recipient of a DOC-fellowship of the Austrian Academy of Sciences.

Preprint submitted to Computational Geometry December 11, 2013



Introduction

Let S be a set of n points in the plane in general position, that is, no three
points of S lie on a common (straight) line. A k-hole of S is a simple polygon,
P , spanned by k points from S, such that no other point of S is contained
in the interior of P . A classical existence question raised by Erdős [10] is:
“What is the smallest integer h(k) such that any set of h(k) points in the
plane contains at least one convex k-hole?”. Esther Klein observed that every
set of 5 points contains a convex 4-hole, and Harborth [14] showed that every
set of 10 points determines a convex 5-hole. Both bounds are tight w.r.t. the
cardinality of S. Only in 2007 and 2008 Nicolás [16] and independently
Gerken [13] proved that every sufficiently large point set contains a convex
6-hole. On the other hand, Horton [15] showed that there exist arbitrarily
large sets which do not contain any convex 7-hole; see [1] for a brief survey.

A generalization of Erdős’ question is: What is the least number hk(n)
of convex k-holes determined by any set of n points in the plane? In this
paper we concentrate on this question for 3 ≤ k ≤ 5, that is, the number
of empty triangles (3-holes), convex 4-holes, and convex 5-holes. We denote
by hk(S) the number of convex k-holes determined by S, and by hk(n) =
min|S|=n hk(S) the number of convex k-holes any set of n points in general

position must have. Throughout this paper let ldx = log x
log 2

be the binary

logarithm (logarithmus dualis). Furthermore, we denote with CH (S) the
convex hull of S and with ∂ CH (S) the boundary of CH (S).

We start in Section 1 by providing improved bounds on the number of
convex 5-holes. In particular, we increase the previously best known bound
h5(n) ≥ n

2
−O(1) by Valtr [18] to h5(n) ≥ 3n

4
−n0.87447+1.875. In Section 2 we

combine these results with a technique recently introduced by Garćıa [11, 12],
and improve the previously best bounds on the number of empty triangles
and convex 4-holes, h3(n) ≥ n2 − 37n

8
+ 23

8
and h4(n) ≥ n2

2
− 11n

4
− 9

4
(both

in [12]), to h3(n) ≥ n2 − 32n
7

+ 22
7

and h4(n) ≥ n2

2
− 9n

4
− 1.2641n0.926 + 199

24
,

respectively. In Section 3 we use these results to answer several questions on
sets of 12 points posed by Dehnhardt [8] in 1987.

1. Convex 5-holes

The currently best upper bound on the number of convex 5-holes, h5(n) ≤
1.0207n2+o(n2), is by Bárány and Valtr [7], and it is widely conjectured that

2



h5(n) grows quadratically. Still, to this date not even a super-linear lower
bound is known.

As early as in 1987 Dehnhardt presented a lower bound of h5(n) ≥ 3b n
12
c

in his thesis [8]. Unfortunately, this result, published in German only, re-
mained unknown to the scientific community until recently. Thus, the best
known lower bound was h5(n) ≥

⌊
n
10

⌋
, published by Bárány and Füredi [5]

in 1987, later (in 2001) refined to h5(n) ≥
⌊
n−4
6

⌋
by Bárány and Károlyi [6].

Both bounds are derived from the result of Harborth [14]. In the presenta-
tion of [11] the lower bound was improved to h5(n) ≥ 2

9
n − 25

9
. A slightly

better bound h5(n) ≥ 3bn−4
8
c was presented in [3], which was then sharp-

ened to h5(n) ≥
⌈
3
7
(n− 11)

⌉
in [4]. The latest and so far best bound of

h5(n) ≥ n
2
−O(1) is due to Valtr [18]. In this section we further improve this

bound to h5(n) ≥ 3
4
n− o(n).

We start by fine-tuning the proof from [4], showing h5(n) ≥
⌈
3
7
(n− 11)

⌉
,

by utilizing the results h5(10) = 1 [14], h5(11) = 2 [8], and h5(12) ≥ 3 [8].
Although this does not lead to an improved lower bound of h5(n) for large
n, it provides better lower bounds for small values of n, 17 ≤ n ≤ 56; see
Table 1.

n 10 11 12 13 14 15 16 17 18

h5(n) 1 2 3 3..4 3..6 3..9 ≥ 3 ≥ 4 ≥ 5

n 19..23 24 25 26..30 31 32 33..37 38 39

h5(n) ≥ 6 ≥ 7 ≥ 8 ≥ 9 ≥ 10 ≥ 11 ≥ 12 ≥ 13 ≥ 14

n 40..44 45 46 47..50 51 52 53 54..56 57

h5(n) ≥ 15 ≥ 16 ≥ 17 ≥ 18 ≥ 19 ≥ 19 ≥ 20 ≥ 21 ≥ 22

Table 1: The updated bounds on h5(n) for small values of n.

Lemma 1. Every set S of n points in the plane in general position with
n = 7 ·m + 9 + t (for any natural number m ≥ 0 and t ∈ {1, 2, 3}) contains
at least h5(n) ≥ 3m + t = 3n−27+4t

7
convex 5-holes.

Proof. Because of h5(10) = 1, h5(11) = 2, and h5(12) ≥ 3 this is true for
m = 0. Obviously h5(n) ≥ h5(n− 1). Hence, h5(n) ≥ 3 for any n ≥ 12.

If there exists a point p ∈ (∂ CH (S) ∩ S) that is a point of a convex
5-hole, then h5(S) ≥ 1 + h5(S\{p}) ≥ 1 + h5(n − 1). In this case, the
lemma is true by induction, as for t = 1 and m > 0, h5(n − 1) = h5(7 ·
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m + 9) ≥ h5(7 · (m − 1) + 9 + 3). (The case t ∈ {2, 3} follows trivially, as
h5(n− 1) = h5(7 ·m + 9 + (t− 1)) and (t− 1) ∈ {1, 2}.)

Otherwise, no point p ∈ (∂ CH (S)∩S) is a point of a convex 5-hole. For
m > 0 choose one such point p (e.g. the bottom-most one) and successively
partition S\{p} (in clockwise order around p) into the following (disjoint)
subsets: S0 containing the first 7 points; S ′0 containing the next 4 points;
(m − 1) pairs of subsets Si, S

′
i: Si containing 3 points and S ′i containing 4

points (1 ≤ i ≤ (m−1)); and the subset Srem containing the remaining (t+4)
points. See Figure 1 for a sketch.

p
|S0| = 7

|S ′
0 | =

4

︷ ︸︸ ︷
. . . . . .

|Srem| = t+ 4

3 4 Si S′
i 3 4

(m− 1) pairs

Figure 1: Partition of S\{p} clockwise around an extreme point p: starting with the pair
S0, S

′
0; continuing with (m− 1) pairs of sets Si, S

′
i, for 1 ≤ i ≤ (m− 1), with |Si| = 3 and

|S′i| = 4; and ending with the remainder set Srem.

The union S0 ∪ S ′0 ∪ {p} (of disjoint subsets) has cardinality 12 and thus
contains at least 3 convex 5-holes [8]. The same is true for each union S ′i−1 ∪
Si ∪ S ′i ∪ {p} (1 ≤ i ≤ (m − 1)). Finally, the union S ′m−1 ∪ Srem ∪ {p} has
cardinality (9 + t) and therefore contains at least t convex 5-holes [8, 14].
Note that we count every convex 5-hole at most once, as the considered
unions which are sets of 10, 11, and 12 points, respectively, overlap in 4
points plus p, and p is not a point of a convex 5-hole. In total this gives at
least 3 + (m− 1) · 3 + t = 3 · n−9−t

7
+ t = 3n−27+4t

7
convex 5-holes.

We state a special case of the preceding lemma for later use in the proof
of Theorem 3.

Corollary 2. Every set S of 17 points in the plane in general position con-
tains at least 4 convex 5-holes, i.e., h5(17) ≥ 4.

Table 1 shows the bounds on h5(n) obtained by Lemma 1, for some small
values of n. By Harborth [14] we have h5(10) = 1, and Dehnhardt [8] shows
h5(11) = 2 and h5(12) ≥ 3. The bound for n = 51 and for 57 ≤ n < 62250
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(of which only n = 57 is shown in the table) are due to h5(n) ≥
⌈
n
2

⌉
− 7

from Valtr [18]. The bound for n ≥ 62250 is due to Theorem 3. The bounds
h5(12) ≤ 3, h5(13) ≤ 4, h5(14) ≤ 6, and h5(15) ≤ 9 are from [4, 19].

In the following theorem we present an improved lower bound on h5(n)
for larger n.

Theorem 3. Every set S of n ≥ 12 points in the plane in general position
contains at least 3n

4
− nld 11

6 + 15
8

= 3n
4
− o(n) convex 5-holes, i.e., h5(n) ≥

3n
4
− o(n).

Proof. For 12 ≤ n < 17 we count three convex 5-holes for S. For 17 ≤ n < 24
we can count four convex 5-holes for S by Corollary 2.

If n ≥ 24 consider an (almost) halving line ` of S which splits S into SL

(|SL| = dn2 e) and SR (|SR| = bn2 c) and does not contain any point of S. See
Figure 2.

SL

SR

`

`′

`′′ S′
S′′

Figure 2: A point set S split by a halving line ` into two point sets SL, SR ⊂ S. The
line `′ cuts off a set S′ ⊆ S, consisting of 8 points of SL and 4 points of SR. The line `′′

is parallel to `′ and halves SL ∩ S′.

Furthermore, consider a line `′ that intersects ` and cuts off a set S ′ ⊆ S,
consisting of eight points from SL and four points from SR. That this is
in fact possible is folklore, see e.g. Exercise 4.5 (b) in [9]. Let a line `′′ be
parallel to `′ and split S ′∩SL into two groups of four points, and let S ′′ ⊂ S ′
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be the set which is cut off by `′′. Note that neither `′ nor `′′ contain any
points of S.

As |S ′| = 12 we have that S ′ contains at least three convex 5-holes. We
distinguish two cases.

Case 1: S ′ contains at least three convex 5-holes which are not intersected
by `. Then each of these 5-holes contains only points from SL and thus at
least one point above `′′. We count the three convex 5-holes for the set SL

and continue on S\S ′′.
Case 2: S ′ contains at most two convex 5-holes which are not intersected

by `. Then at least one convex 5-hole in S ′ is intersected by `. We count one
convex 5-hole for the halving line ` and continue on S\S ′.

Note that in both cases we cut off at least four points from SL, but
at most four points from SR. Thus, we can repeat this process until we
have processed all dn

2
e points of SL (except for a possible remainder of less

than 8 points). Let cL be the number of convex 5-holes counted for ` when
processing SL. Hence, Case 2 appeared cL times, and Case 1 appeared at
least

⌊
1
4
·
(⌈

n
2

⌉
− 8cL

)⌋
− 1 times (the correction term of −1 takes care of the

possible remainder). Therefore, the number of convex 5-holes we counted in
SL (i.e., not intersecting `) is h5(SL) ≥ 3

(⌊
1
4

(⌈
n
2

⌉
− 8cL

)⌋
− 1
)
.

Repeating the same procedure for SR (exchanging the roles of SL and
SR), we obtain h5(SR) ≥ 3

(⌊
1
4

(⌊
n
2

⌋
− 8cR

)⌋
− 1
)
, where cR is the number

of convex 5-holes which we counted for ` when processing SR. Note that
any convex 5-hole intersected by `, which we counted while processing SL,
might have occurred again when processing SR. Thus, the total number
c of convex 5-holes intersected by ` is at least max{cL, cR} ≥ cL+cR

2
. As

h5(S) = h5(SL) + h5(SR) + c, we obtain

h5(S) ≥ 3

(⌊
1

4

(⌈n
2

⌉
− 8cL

)⌋
− 1

)
+3

(⌊
1

4

(⌊n
2

⌋
− 8cR

)⌋
− 1

)
+
cL + cR

2
.

Considering that

⌊⌈
n
2

⌉

4

⌋
+

⌊⌊
n
2

⌋

4

⌋
=





2 ·
⌊ n

2

4

⌋
≥ n

4
− 6

4
. . . if n is even

⌊ n+1
2

4

⌋
+

⌊ n−1
2

4

⌋
≥ n

4
− 6

4
. . . if n is odd

careful transformation gives

h5(S) ≥ 3n

4
− 11 · cL + cR

2
− 21

2
(1)
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as a first lower bound for the number of convex 5-holes in S.
Using h5(S) = c+h5(SL)+h5(SR), and the fact that the (almost) halving

line ` splits S such that |SL| = dn2 e and |SR| = bn2 c, we get h5(S) ≥ cL+cR
2

+
h5(
⌈
n
2

⌉
) + h5(

⌊
n
2

⌋
) ≥ cL+cR

2
+ h5(

⌈
n−1
2

⌉
) + h5(

⌈
n−1
2

⌉
), and hence, a second

lower bound for h5(S):

h5(S) ≥ cL + cR
2

+ 2 · h5

(⌈
n− 1

2

⌉)
. (2)

Combining this with the bound (1), we obtain

h5(S) ≥ max

{(
3n

4
− 11 · cL + cR

2
− 21

2

)
,

(
cL + cR

2
+ 2 · h5

(⌈
n− 1

2

⌉))}
.

(3)

Note that the first term in inequality (3) is strictly decreasing in cL+cR
2

,
while the second term is strictly increasing in cL+cR

2
. Thus, the minimum of

the lower bound in (3) is reached if both bounds are equal.

3n

4
− 11 · cL + cR

2
− 21

2
=

cL + cR
2

+ 2 · h5

(⌈
n− 1

2

⌉)

3n

4
− 21

2
− 2 · h5

(⌈
n− 1

2

⌉)
= 12 · cL + cR

2

cL + cR
2

=
n

16
− 7

8
− 1

6
· h5

(⌈
n− 1

2

⌉)

Plugging this result for cL+cR
2

into the lower bound (2) for h5(S), we obtain
a lower bound for h5(S) for any S with n points. Therefore, this also leads
to a lower bound for h5(n).

h5(n) ≥ n

16
− 7

8
− 1

6
·h5

(⌈
n−1

2

⌉)
+ 2·h5

(⌈
n−1

2

⌉)

=
n

16
− 7

8
+

11

6
·h5

(⌈
n−1

2

⌉)
.

(4)

We show by induction that this recursion resolves to h5(n) ≥ 3n
4
−nld 11

6 +
15
8

, for n ≥ 12. For the base case of the presented counting approach we know
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that h5(12), . . . , h5(16)≥3 and h5(17), . . . , h5(23) ≥ 4 (see first paragraph of

this proof). As 3n
4
− nld 11

6 + 15
8

is monotonically increasing for 12 ≤ n ≤ 23,
it is sufficient to check the induction base for n = 16 and n = 23: h5(16) ≥
3 ≥ 2.578 ≥ 3·16

4
− 16ld 11

6 + 15
8

and h5(23) ≥ 4 ≥ 3.609 ≥ 3·23
4
− 23ld 11

6 + 15
8

.
For n ≥ 24, the induction step, we insert the claim into the recursive

formula:

h5(n) ≥ n

16
− 7

8
+

11

6
· h5

(⌈
n− 1

2

⌉)

≥ n

16
− 7

8
+

11

6
·
(

3n−1
2

4
−
(
n− 1

2

)ld 11
6

+
15

8

)

=
3n

4
+

15

8
− 11

6
· 1

2ld 11
6

· (n− 1)ld
11
6 ≥ 3n

4
− nld 11

6 +
15

8
.

The last inequality is true because (n−1)ld
11
6 < nld 11

6 . This proves the claim
and the theorem as we have:

h5(n) ≥ 3n

4
− n0.87447 + 1.875 =

3n

4
− o(n) . (5)

2. Empty triangles and convex 4-holes

The currently best upper bounds on the number of empty triangles and
convex 4-holes, h3(n) ≤ 1.6196n2 + o(n2) and h4(n) ≤ 1.9397n2 + o(n2),
respectively, are by Bárány and Valtr [7]. Unlike for convex 5-holes, the
lower bounds for empty triangles and convex 4-holes are also known to be
quadratic. The previously best known lower bounds are h3(n) ≥ n2− 37n

8
+ 23

8

and h4(n) ≥ n2

2
− 11n

4
− 9

4
, shown by Garćıa [12]. Using the new lower bound

on the number of convex 5-holes in Theorem 3 we improve the second terms
of the lower bounds on the number of empty triangles and convex 4-holes.

For consistency with previous publications, we use the same definitions
and notation as in [17, 11, 12]. We further will recall (and slightly adapt)
some statements and proofs from [12] to keep our paper self-contained. Let
S be a set of n points in the plane in general position. We will have to
define a total order on the points of S, such that this order allows to define
a line `q through every point q ∈ S, so that each point r ∈ S is either in
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the closed halfplane “below” `q, i.e., q ≥ r, or in the open halfplane “above”
`q, i.e., q < r. In [12] the points of S are sorted in increasing order of the
y-coordinate (with the additional restriction that no two points have equal
y-coordinate). Of course any fixed direction gives a valid order for the points
of S. Furthermore, a cyclic order around some point p ∈ (∂ CH (S) ∩ S) is a
valid order for the points of S\{p}, as there exists a line ` through p, such
that all points of S\{p} are in an open halfplane bounded by `. This will be
crucial for the proof of Lemma 6, where we will order the points of a set S\{p}
around such a point p. Because of the general position assumption for S,
no two points in S\{p} are equivalent in this order. Anyhow, for simplicity,
and apart from the aforementioned exception for the proof of Lemma 6, we
will use the order along the y-coordinate, as in [12].

Let P be a convex 5-hole spanned by points of S and let v be the top ver-
tex of P , i.e., the vertex of P with highest order. We name an empty triangle
generated by P if it is spanned by v and the two vertices of P that are not adja-
cent (on the boundary of P ) to v. For an example of a triangle (4) generated
by a convex 5-hole (pi, pj, pL, pk, pR) see Figure 3 (left). Let h3|5(S) be the
number of such triangles determined by S, and let h3|5(n) = min|S|=n h3|5(S)
be the least number of empty triangles generated by convex 5-holes that ev-
ery set of n points spans. Likewise, we name a convex 4-hole generated by P
if it is spanned by all vertices of P except for one of the two vertices of P that
are adjacent (on the boundary of P ) to v. Observe that each convex 5-hole
generates two convex 4-holes by this definition. Let h4|5(S) be the number
of such 4-holes determined by S, and let h4|5(n) = min|S|=n h4|5(S) be the
least number of convex 4-holes generated by convex 5-holes that every set
of n points spans. Note that an empty triangle (or convex 4-holes) can be
generated by more than one convex 5-hole, see Figure 3. In fact, the number
of convex 5-holes generating the same empty triangle can be quadratic. For
an example consider the convex set and let the empty triangle be spanned
by the top-most vertex and two neighbored vertices on the convex hull, such
that on both sides of the triangle are approximately n

2
vertices.

Garćıa [12] recently proved that h3(S) = n2 − 5n + H + 4 + h3|5(S) ≥
n2−5n+H+4+h3|5(n) and h4(S) = n2

2
− 7n

2
+H+3+h4|5(S) ≥ n2

2
− 7n

2
+H+

3+h4|5(n), where H is the number of points of (∂ CH (S)∩S). Consequently,

this gives h3(n) ≥ n2− 5n+ 7 +h3|5(n) and h4(n) ≥ n2

2
− 7n

2
+ 6 +h4|5(n), as

H ≥ 3. Observe that the number of empty triangles (or convex 4-holes) not
generated by convex 5-holes is an invariant of the point set. As changing the

9



order of the point set does not change the point set itself, h3(S) and h4(S)
are of course independent of the order. Thus, also h3|5(S) and h4|5(S) (and of
course h3|5(n) and h4|5(n)) do not depend on the chosen order of the points.
In other words, although the empty triangles and convex 4-holes generated
by convex 5-holes may change with different orders, their numbers stay the
same.

Proving h3|5(n) ≥ 3 ·
⌊
n−4
8

⌋
and h4|5(n) ≥ 6 ·

⌊
n−4
8

⌋
, Garćıa presented the

lower bounds h3(n) ≥ n2− 37n
8

+ 23
8

and h4(n) ≥ n2

2
− 11n

4
− 9

4
. We will improve

both bounds. Showing that for each convex 5-hole counted in Lemma 1 we
may count one empty triangle generated by convex 5-holes and two convex
4-holes generated by convex 5-holes will already give an improved bound for
both h3|5(n) and h4|5(n). Using a slightly adapted version of the proof from
Theorem 3 will improve the bound on h4|5(n) even further. To this end we
have to first prove the base case, i.e., sets of 10, 11, and 12 points.

Having a close look at the example shown in Figure 3, one can see that
as soon as the triangle 4 (or the convex 4-hole 3) is generated by more than
one convex 5-hole, there must exist at least one convex 6-hole. Note that
this has been proven in [12], using a similar approach and figure. To remain
self-contained we restate this fact in more detail and prove it in the following
lemma.

Lemma 4. Let S be a set of n ≥ 6 points in the plane in general position. Let
4 ( 3) be an empty triangle (a convex 4-hole) of S. If 4 ( 3) is generated
by at least two convex 5-holes, D1 and D2, of S, then there exists at least
one convex 6-hole, 71, of S, containing D1, and one convex 6-hole, 72, of S,
containing D2, where 71 = 72 is possible.

Proof. See Figure 3 (left). Assume that there exists at least one empty
triangle, 4 = 〈pi, pj, pk〉, with pk being the top vertex, that is generated by
two different convex 5-holes. Let one of them, D1, be spanned by the points
pi, pj, pL, pk, pR (the points are shown as full dots in the figure).

As 4 is generated by another convex 5-hole, D2, there must be at least
one additional point in one of the regions Lh, Ll, Rh, and Rl (as indicated in
Figure 3). Otherwise, the new pentagon would not be empty, not be convex,
or 4 would not be generated by it (recall that pk must be the top vertex).
W.l.o.g. assume that there exists at least one point pnew in Rl. It is easy
to see that in this case there exists a convex 4-hole spanned by the points
pi, pk, pR, p

′
R (p′R = pnew is possible, but not necessary). Together with pj and
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pk

pi
pj

Lh

Ll

Rh
pR

pL

p′R

pnew

4

Rl

pk

pi
pj

Lh

Ll

Rh
pR

pL

p′R

pnew

♦
Rl

Figure 3: Auxiliary figure for the proof of Lemma 4. An empty triangle (left) or a convex
4-hole (right) generated by at least two convex 5-holes implies the existence of at least one
convex 6-hole.

pL this forms a convex 6-hole which contains D1. Repeating the argument
with 4 being generated by D2 proves that also D2 is contained in a convex
6-hole.

The argument is analogous for a convex 4-hole, 3, that is generated by
two different convex 5-holes. See Figure 3 (right). The only difference to
the previous case is that the additional point pnew can not exist in either
Ll or Rl, depending on which convex 4-hole (either 3 = 〈pi, pj, pL, pk〉 or
3 = 〈pi, pj, pk, pR〉) is considered. The former situation is depicted in Fig-
ure 3 (right).

Using Lemma 4 we are able to provide the base cases 10 ≤ n ≤ 12 for
h3|5(n) and h4|5(n). Note that the statement of the following lemma has
already been proven in [12] for the case n = 12.

Lemma 5. Every set of 10, 11, or 12 points in the plane in general position
contains (i) at least 1, 2, and 3, respectively, different empty triangles gener-
ated by convex 5-holes (that is, h3|5(10) = 1, h3|5(11) = 2, and h3|5(12) = 3)
and (ii) at least 2, 4, and 6, respectively, different convex 4-holes generated
by convex 5-holes (that is, h4|5(10) = 2, h4|5(11) = 4, and h4|5(12) = 6).

Proof. First assume that the set contains a convex 6-hole 7. Let S7 = S∩7
be the vertex set of 7. From [12] we know that

h3(S7) = n2 − 5n + H + 4 + h3|5(S7) = 16 + h3|5(S7) and

h4(S7) =
n2

2
− 7n

2
+ H + 3 + h4|5(S7) = 6 + h4|5(S7) as n = H = 6.
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As hk(S) =
(|S|

k

)
for S in convex position, we get h3|5(S7) =

(
6
3

)
−16 = 4 and

h4|5(S7) =
(
6
4

)
− 6 = 9. Hence, the 6 convex 5-holes contained in 7 generate

4 different empty triangles and 9 different convex 4-holes, respectively. This
proves the lemma if a convex 6-hole exists.

Now assume that no convex 6-hole exists. By Lemma 4, every empty
triangle and every convex 4-hole is generated only once in this case. Hence,
we have h3|5(n) = h5(n) and h4|5(n) = 2 · h5(n), for n ∈ {10, 11, 12}, which
proves the lemma. (Recall that h5(10) = 1, h5(11) = 2, and h5(12) = 3,
by [14, 8, 4].)

Using these base cases we derive a statement similar to Lemma 1.

Lemma 6. Every set S of n points in the plane in general position with
n = 7 ·m + 9 + t (for any natural number m ≥ 0 and t ∈ {1, 2, 3}) contains
at least h3|5(n) ≥ 3n−27+4t

7
empty triangles generated by convex 5-holes and

at least h4|5(n) ≥ 2 · (3n−27+4t)
7

convex 4-holes generated by convex 5-holes.

Proof. The proof follows the lines of the proof of Lemma 1. Obviously,
h3|5(n) ≥ h3|5(n − 1) and h4|5(n) ≥ h4|5(n − 1). Hence, using Lemma 5, we
have h3|5(10) = 1, h4|5(10) = 2, h3|5(11) = 2, h4|5(11) = 4, h3|5(12..16) ≥ 3,
and h4|5(12..16) ≥ 6 as base cases.

Consider the case in which there exists a p ∈ (∂ CH (S)∩S) that is a point
of a convex 5-hole. Let p be the top vertex of that convex 5-hole (choose the
sort order accordingly). Then h3|5(n) ≥ 1+h3|5(S\{p}) ≥ 1+h3|5(n−1) and
h4|5(n) ≥ 2 +h4|5(S\{p}) ≥ 2 +h4|5(n− 1) (as h3|5(n− 1) and h4|5(n− 1) are
independent of the sort order). In this case, the lemma is true by induction
(see previous paragraph for base cases).

For the second case, let p ∈ (∂ CH (S) ∩ S) be a point which is not part
of a convex 5-hole and do the same clockwise partitioning of S\{p} around
p as in the proof of Lemma 1 (recall Figure 1). Additionally, let the order of
S\{p} be counterclockwise around p, i.e., such that the last point of Srem has
lowest index and the first point of S0 has highest index in this order. When
processing the sets of (at most) 12 points (see the proof of Lemma 1), they
overlap only in 4 points. Thus, the top vertex (point with highest index in
the chosen order) of a convex 5-hole is never shared by two such sets. Hence,
applying Lemma 5 for sets of 10, 11, and 12 points, the number of empty
triangles generated by convex 5-holes is at least the number of convex 5-holes
counted in Lemma 1, and the number of convex 4-holes generated by convex
5-holes is at least twice the number of convex 5-holes counted in Lemma 1.

12



Note that this counting is possible, as p is not part of any convex 5-hole,
and as the total order of S\{p} around p is well defined; see also the first
paragraph of Section 2.

As mentioned in the beginning of this section, this lemma already im-
proves the bounds for h3|5(n) and h4|5(n). We will further improve the bound
for h4|5(n) in Theorem 8. Therefore, we state only the bound for h3|5(n) in
the following theorem.

Theorem 7. Every set S of n ≥ 12 points in the plane in general position
contains at least h3|5(n) ≥ 3 ·

⌊
n−12

7

⌋
+3+f(|Srem|) ≥

⌈
3n−27

7

⌉
empty triangles

generated by convex 5-holes. The point set Srem ⊂ S is the remainder set
with 0 ≤ |Srem| ≡ (n− 12) mod 7 ≤ 6, and f(0 . . . 4) = 0, f(5) = 1, and
f(6) = 2.

Proof. The first inequality in the bound, h3|5(n) ≥ 3 ·
⌊
n−12

7

⌋
+ 3 + f(|Srem|),

is simply a reformulation of the bound in Lemma 6. The second inequality
results from taking the minimum of the first inequality over all possible values
for |Srem|, which is obtained by |Srem| = 4.

The basic principles of the proof of the following theorem are the same as
for the proof of Theorem 3. The main difference is a slightly different counting
(as compared to just counting convex 5-holes). To avoid over-counting, only
five out of the six possible convex 4-holes generated by convex 5-holes that
have at least one point in SL ∩ S ′′ may be counted for Case 1 (see Figure 4
and the proof below for details).

Theorem 8. Every set S of n ≥ 12 points in the plane in general position
contains at least h4|5(n) ≥ 5n

4
− 383

303
· nld 19

10 + 55
24

= 5n
4
− o(n) convex 4-holes

generated by convex 5-holes.

Proof. Again, we follow the lines of the proof of Theorem 3. The difference
stems only from a slightly modified counting.

For the base case, n ≤ 23, we use h4|5(12 . . . 16) ≥ 6 and h4|5(17 . . . 23) ≥ 8
by Lemma 6.

If n ≥ 24 consider an (almost) halving line ` of S which splits S into
SL (|SL| = dn

2
e) and SR (|SR| = bn

2
c) and does not contain any point of S.

See Figure 2 in the proof of Theorem 3. Furthermore, consider a line `′ that
intersects ` and cuts off a set S ′ ⊆ S, consisting of eight points from SL and
four points from SR. If a convex 5-hole is intersected by `, then also at least

13



`
`′

`′′

S′
S′′

SL SR

D1

D2

Figure 4: Depicting the differences between the proofs of Theorem 3 and Theorem 8. If
a convex 4-hole generated by a convex 5-hole, D1, is completely contained in SR, then
the other convex 4-hole generated by D1 is intersected by the halving line ` resulting in
Case 2. The top vertices of D1 and D2 are shown as squared dots.

one of the two convex 4-holes generated by this convex 5-hole is intersected
by `. This convex 4-hole is not counted again during recursion and thus there
is no over-counting. In other words, at most one convex 4-hole generated by
a convex 5-hole can be completely contained in S ′ ∩ SR. But then the other
convex 4-hole generated by the same convex 5-hole is certainly intersected
by `. See Case 2 below and D1 in Figure 4.

Let a line `′′ be parallel to `′ and split S ′ ∩ SL into two groups of four
points. Let S ′′ ⊂ S ′ be the set which is cut off by `′′, such that |S ′′∩SL| = 4.
Note that neither `′ nor `′′ contain any points of S. This is the same splitting
as in the proof of Theorem 3, depicted in Figure 2. Observe that at most
one convex 4-hole generated by a convex 5-hole can be completely contained
in SL ∩ (S ′ \ S ′′). See D2 in Figure 4. To avoid over-counting, we may only
count five out of the at least six convex 4-holes generated by the at least
three convex 5-holes of the 12 points in S ′. See Case 1 below.

Apart from this slightly different counting and the resulting change in
values, the remainder of this proof is an adapted copy of the proof of Theo-
rem 3.

Again we distinguish two cases: Case 2 (at least one convex 4-hole gen-
erated by a convex 5-hole is intersected by `) appears cL times. Case 1
(at least 5 convex 4-holes generated by the at least three convex 5-holes of
the 12 points in S ′ have at least one point in SL ∩ S ′′) appears at least⌊
1
4
·
(⌈

n
2

⌉
− 8cL

)⌋
−1 times in SL. Equivalently, Case 2 appears cR times and

Case 1 appears at least
⌊
1
4
·
(⌊

n
2

⌋
− 8cR

)⌋
− 1 times in SR.

Summing up the convex 4-holes generated by convex 5-holes counted for
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SL, SR, and ` we get

h4|5(S) ≥ 5

(⌊
1

4

(⌈n
2

⌉
− 8cL

)⌋
− 1

)
+5

(⌊
1

4

(⌊n
2

⌋
− 8cR

)⌋
− 1

)
+
cL + cR

2

which can be transformed into a first lower bound of

h4|5(S) ≥ 5n

4
− 19 · cL + cR

2
− 35

2
.

Identifying this bound with the second lower bound from the recursion

h4|5(S) ≥ cL + cR
2

+ 2 · h4|5

(⌈
n− 1

2

⌉)

leads to

cL + cR
2

=
n

16
− 7

8
− 1

10
· h4|5

(⌈
n− 1

2

⌉)

and consequently to the combined bound

h4|5(n) ≥ n

16
− 7

8
+

19

10
· h4|5

(⌈
n− 1

2

⌉)
.

We claim that this recursion resolves to h4|5(n) ≥ 5n
4
− 383

303
nld 19

10 + 55
24

,
and prove it by induction. The base case (n < 24) can be checked directly,
because we know that h4|5(12), . . . , h5(16) ≥ 6 and h4|5(17), . . . , h5(23) ≥ 8.
For n ≥ 24 we insert the claim into the recursive formula:

h4|5(n) ≥ n

16
− 7

8
+

19

10
· h4|5

(⌈
n− 1

2

⌉)

≥ n

16
− 7

8
+

19

10
·
(

5

4
· n− 1

2
− 383

303
·
(
n− 1

2

)ld 19
10

+
55

24

)

=
5n

4
+

55

24
− 19

10
· 1

2ld 19
10

· 383

303
(n− 1)ld

19
10

≥ 5n

4
− 383

303
nld 19

10 +
55

24
.

The last inequality is true because (n − 1)ld
19
10 < nld 19

10 . This concludes the
proof as we have:

h4|5(n) ≥ 5n

4
− 1.2641n0.926 + 2.2916 =

5n

4
− o(n) .
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Remark. To use the principles of the above proof also for empty triangles
generated by convex 5-holes, a very disadvantageous splitting is necessary to
avoid over-counting. This would lead to a bound inferior to the one from
Theorem 7.

Recall that Garćıa [12] recently proved h3(S) ≥ n2− 5n+H + 4 +h3|5(n)

and h4(S) ≥ n2

2
− 7n

2
+H+3+h4|5(n). Combining these results with Theorem 7

and Theorem 8, we can state the following corollary on the number of empty
triangles and convex 4-holes in a point set.

Corollary 9. Every set S of n ≥ 12 points in the plane in general position
and with H points on the boundary of its convex hull contains at least h3(S) ≥
n2 − 5n + H + 4 +

⌈
3n−27

7

⌉
empty triangles and at least h4(S) ≥ n2

2
− 9n

4
−

383
303
·nld 19

10 +H + 127
24

convex 4-holes. Consequently, h3(n) ≥ n2− 32n
7

+ 22
7

and

h4(n) ≥ n2

2
− 9n

4
− 1.2641n0.926 + 199

24
.

3. Conclusion

In this paper we improve the lower bounds on the number of empty
triangles (to h3(n) ≥ n2− 32n

7
+ 22

7
), of convex 4-holes (to h4(n) ≥ n2

2
− 9n

4
−

1.2641n0.926 + 199
24

), and of convex 5-holes (to h5(n) ≥ 3n
4
− n0.87447 + 1.875)

that every set S of n ≥ 12 points contains. To improve the bounds on h3(n)
and h4(n) we use a recent result by Garćıa [12] and provide better bounds
for the number of empty triangles and convex 4-holes which are “generated
by convex 5-holes”. The question whether there exists a super-linear lower
bound for the number of convex 5-holes remains unsettled, though.

Still, we are able to answer several questions, which Dehnhardt [8] asked in
1987. Already in [4] a set of 12 points containing only three convex 5-holes has
been presented. This implies h5(12) = 3 and therefore disproves Dehnhardt’s
conjecture of h5(12) = 4.

Consider the set S12 with n = 12 points and H = 3, depicted in Figure 5.
It can be easily checked that this point set contains only the 3 shown convex
5-holes and no convex 6-hole. Hence, h3|5(S12) = 3 and h4|5(S12) = 6, as
by Lemma 4. Using the equations h3(S) = n2 − 5n + H + 4 + h3|5(S) and

h4(S) = n2

2
− 7n

2
+H+3+h4|5(S) [12], we get h3(S12) = 144−60+3+4+3 = 94

and h4(S12) = 72− 42 + 3 + 3 + 6 = 42. Of course, h3(S12) and h4(S12) can
also be derived by counting all empty triangles and convex 4-holes in S12.
As, by Lemma 5, h3|5(12) = 3 and h4|5(12) = 6, the set S12 realizes the
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Figure 5: Set of 12 points with triangular convex hull, generating the minimal number of
3-holes (94), convex 4-holes (42), and convex 5-holes (3). The coordinates (x, y) of the 12
points are: (0, 0); (100, 0); (50, 87); (50, 38); (55, 32); (53, 19); (47, 19); (45, 32); (41, 4);
(59, 4); (25, 40); (75, 40).

minimum number of empty triangles and convex 4-holes for sets with 12
points. (h3(12) ≥ 94 and h4(12) ≥ 42 has also been proven in [8].) Thus, the
set S12 disproves two conjectures of Dehnhardt in [8], namely h3(12) = 95
and h4(12) = 44.

Furthermore, Dehnhardt’s question for a set of n points that minimizes
at least one of h3(n), h4(n), and h5(n), but not all of them is answered by
the set of 12 points presented in [4], which has only 3 convex 5-holes but
contains 95 empty triangles and 43 convex 4-holes, where both values are
non-minimal for n = 12.
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