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Systematic Review

Objectives: The outbreak of coronavirus disease 2019 (COVID-19) is one of the main public health challenges currently facing the 

world. Because of its high transmissibility, COVID-19 has already caused extensive morbidity and mortality in many countries through-

out the world. An accurate estimation of the basic reproduction number (R0) of COVID-19 would be beneficial for prevention programs. 

In light of discrepancies in original research on this issue, this systematic review and meta-analysis aimed to estimate the pooled R0 

for COVID-19 in the current outbreak.

Methods: International databases (including Google Scholar, Science Direct, PubMed, and Scopus) were searched to identify studies 

conducted regarding the R0 of COVID-19. Articles were searched using the following keywords: “COVID-19” and “basic reproduction 

number” or “R0.”  The heterogeneity among studies was assessed using the I2 index, the Cochran Q test, and T2. A random-effects model 

was used to estimate R0 in this study.

Results: The mean reported R0 in the identified articles was 3.38±1.40, with a range of 1.90 to 6.49. According to the results of the 

random-effects model, the pooled R0 for COVID-19 was estimated as 3.32 (95% confidence interval, 2.81 to 3.82). According to the re-

sults of the meta-regression analysis, the type of model used to estimate R0 did not have a significant effect on heterogeneity among 

studies (p=0.81).

Conclusions: Considering the estimated R0 for COVID-19, reducing the number of contacts within the population is a necessary step 

to control the epidemic. The estimated overall R0 was higher than the World Health Organization estimate.
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INTRODUCTION

In December 2019, a series of pneumonia cases with no iden-
tified cause appeared in Wuhan, Hubei Province, China, with 

pISSN 1975-8375  eISSN 2233-4521 

clinical symptoms similar to viral pneumonia [1-3]. Most of the 
reported cases were in patients who worked or lived around 
the local Huanan Seafood Wholesale Market, where live animals 
were also sold [4]. This new virus infecting humans was initially 
named the 2019 novel coronavirus, and the World Health Or-
ganization (WHO) subsequently issued updated nomenclature, 
in which the virus is referred to as severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) and the disease that it causes 
is referred to as coronavirus disease 2019 (COVID-19) [5]. Be-
cause of its high contagiousness and morbidity, this infection 
is considered by WHO as a global emergency [6]. As a reflec-
tion of the high transmissibility of this viral infection, by Janu-
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ary 26, 2020 more than 2000 confirmed cases of COVID-19 had 
been identified in China, mainly in Wuhan [7]. This number 
then dramatically increased, with the number of confirmed 
cases in China reaching 66 580 by February 15, 2020, with 
1524 deaths [8]. Human-to-human transmission of COVID-19 
was confirmed [9] and cases were reported in countries other 
than China [10]. Because of the high infectiousness of SARS-
CoV-2 among the susceptible population, the calculation of 
the basic reproduction number (R0) is essential for implement-
ing prevention measures [1]. R0 is an epidemiological metric 
that can be used to assess the contagiousness of infectious 
agents. This index presents the average number of new cases 
generated by an infected person [11,12]. Therefore, a high R0 
indicates that an infectious agent is highly contagious. Since 
the epidemic began in China, numerous papers have been 
published on this issue. However, because of discrepancies in 
the results of those studies, the current systematic review and 
meta-analysis aimed to estimate the pooled R0 for the COV-
ID-19 outbreak, using original articles published during 2020.

METHODS 

Search Strategy 
This systematic review and meta-analysis was performed to 

estimate the pooled R0 of COVID-19 in articles published in in-
ternational journals. International databases (including Google 
Scholar, Science Direct, PubMed, and Scopus) were searched 
to obtain studies conducted regarding the reproduction num-
ber of COVID-19. Articles were searched using the keywords 
“COVID-19” AND “basic reproduction number” OR “R0”. 

Study Selection and Data Extraction
In the current study, all studies published in 2020 that esti-

mated R0 for COVID-19 were entered into the meta-analysis. 
The name of the first author, country, year of the study, model 
used to estimate R0, and the estimated R0 value (with a 95% 
confidence interval, CI) were extracted from the articles.

Statistical Analysis
Heterogeneity between studies was assessed using the I2 in-

dex, the Cochran Q test, and T2. According to the I2 results, het-
erogeneity can classified into the following 3 categories: 
I2<25% (low heterogeneity), I2=25-75% (average heteroge-
neity), and I2>75% (high heterogeneity) [13]. Because of the 
high I2 value that was calculated (99.4%), as well as the signifi-

cance of the Cochran Q test (p<0.001), a random-effects 
model was used to estimate R0 in this study. The impact of co-
variates on the estimated R0 was also assessed by univariate 
meta-regression. Data were analyzed using Stata version 11 
(StataCorp., College Station, TX, USA).

Ethics Statement
As a systematic review, this study did not need ethical ap-

proval.

RESULTS

We identified 85 studies, of which 23 were duplicates, leav-
ing 62 reports. A total of 55 reports passed the initial screening, 
and 23 reports passed the full-text assessment for eligibility 
(Figure 1). The reasons for exclusion were as follows: reporting 
of effective reproductive number instead of R₀ and insufficient 
data. Finally, we included 23 studies in this systematic review 
(Table 1). No studies were excluded due to poor quality. In the 
current study, 23 studies with 29 records that estimated the R0 
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Figure 1. PRISMA (Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses) flow diagram for the studies in-
cluded in the current meta-analysis.
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of COVID-19 were entered into the analysis. The studies used a 
broad range of methods to estimate R0 for COVID-19. All the 
studies included in the meta-analysis were conducted in 2020 
in China. The mean R0 reported in the articles was calculated 
as 3.38±1.40, with a range of 1.90 to 6.49. More information 
is shown in Table 1. 

Pooled Estimation of Basic Reproduction  
Number 

According to the results of the random-effects model, the 
pooled R0 for COVID-19 was estimated as 3.32 (95% CI, 2.81 to 
3.82). This means that each person infected with COVID-19 
transmitted the infection to between 3 and 4 susceptible peo-

ple on average (Figure 2, Table 2). There was significant het-
erogeneity among studies (I2=99.4%, p from the chi-square 
test for heterogeneity <0.001, and T2=1.72) (Table 2). 

Meta-regression 
The meta-regression analysis showed that the type of model 

used to estimate R0 did not have a significant effect on hetero-
geneity among studies (p=0.81). The distribution of the esti-
mated R0 according to the model used is shown in Figure 3. 
The numbers on the χ-axis in Figure 3 represent the type of 
method used to estimate R0, using the following coding: sto-
chastic Markov chain Monte Carlo method: 1, dynamic com-
partmental model; 2, statistical exponential growth model; 3, 

Table 1. Descriptive characteristics of the studies included in the meta-analysis 

Study Country Model No. of reproduction LCL UCL

Wu et al., 2020 [14] China MCMC 2.68 2.47 2.86

Shen et al., 2020 [15] China Dynamic compartmental model 6.49 6.31 6.66

Liu et al., 2020 [16] China Statistical exponential growth model 2.90 2.32 3.63

Liu et al., 2020 [16] China Statistical maximum likelihood estimation 2.92 2.28 3.67

Read et al., 2020 [17] China Mathematical transmission model 3.11 2.39 4.13

Majumder et al., 2020 [18] China IDEA 2.55 2.00 3.10

Liu et al., 2020 [11] China Mathematical model 1.95 1.40 2.50

Zhao et al., 2020 [19] China Statistical exponential growth model 2.24 1.96 2.55

Zhao et al., 2020 [19] China Statistical exponential growth model 3.58 2.89 4.39

Imai et al., 2020 [20] China Mathematical model 2.50 1.50 3.50

Riou et al., 2020 [21] China Stochastic simulations of early outbreak trajectories 2.20 1.40 3.80

Tang et al., 2020 [22] China Mathematical SEIR-type epidemiological model 6.47 5.71 7.23

Li et al., 2020 [23] China Statistical exponential growth model 2.20 1.40 3.90

Zhang et al., 2020 [24] China Statistical maximum likelihood estimation 2.28 2.06 2.52

Shen et al., 2020 [15] China Mathematical model 4.71 4.50 4.92

Du et al., 2020 [25] China Statistical exponential growth model 1.90 1.47 2.59

Muniz-Rodriguez et al., 2020 [26] China Statistical exponential growth model 3.30 3.10 4.20

Zhou, 2020 [27] China SEIR model 2.12 2.04 2.18

Liu et al., 2020 [28] China Statistical exponential growth model 4.50 4.40 4.60

Liu et al., 2020 [28] China Statistical exponential growth model 4.40 4.30 4.60

Li et al., 2020 [29] China Networked dynamic metapopulation model 2.23 1.77 3.00

Park et al., 2020 [30] China MCMC 3.10 2.10 5.70

Shao et al., 2020 [31] China Fudan-CCDC model 3.32 3.25 3.40

Zhang et al., 2020 [32] China SEIQ model 5.50 5.30 5.80

Lai et al., 2020 [33] China Coalescent-based exponential growth and a birth-death skyline method 2.60 2.10 5.10

Jung et al., 2020 [9] China MCMC 2.10 2.00 2.20

Jung et al., 2020 [9] China MCMC 3.20 2.70 3.70

Sanche et al., 2020 [34] China Statistical exponential growth model 6.30 3.30 11.30

Sanche et al., 2020 [34] China Statistical exponential growth model 4.70 2.80 7.60

LCL, lower control limit; UCL, upper control limit; MCMC, Markov chain Monte Carlo; IDEA, incidence decay and exponential adjustment; SEIR, susceptible, ex-
posed, infected, and resistant; CCDC, Chinese Center for Disease Control and Prevention; SEIQ, susceptible, exposed, infected and quarantined.
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statistical maximum likelihood estimation; 4, mathematical 
transmission model; 5, mathematical incidence decay and ex-
ponential adjustment; 6, stochastic simulation of early out-
break trajectories; 7, mathematical susceptible, exposed, in-
fected, and resistant (SEIR)-type epidemiological model; 8, 
other mathematical models; 9, networked dynamics meta-
population model; 10, Fudan-Chinese Center for Disease Con-
trol and Prevention model; 11, susceptible, exposed, infected 
and quarantined (SEIQ) model; 12, coalescent-based exponen-

Figure 2. Forest plot of the estimated basic reproduction number of coronavirus disease 2019. ES, effect size; CI, confidence in-
terval.

Table 2. Pooled estimation of the basic reproduction number 
of coronavirus disease 2019 

Pooled estimate (95% CI) Q I2 T2

3.32 (2.81, 3.82) <0.001 99.4 1.72

CI, confidence interval. 

Figure 3. Distribution of the estimated basic reproduction 
number according to the model used.
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tial growth and a birth-death skyline model; 13, coalescent-
based exponential growth and a birth-death skyline model; 
and 14, type of model not mentioned. 

DISCUSSION

It is necessary to estimate the R0 of COVID-19 to determine 
the severity and size of the pandemic, as well as to design ap-
propriate interventions and responses to protect the popula-
tion and to control the spread of the disease [35]. The estimat-
ed R0 value is important in infectious disease epidemiology 
because the intensity of transmission must be reduced by 1-1/
R0 to eliminate the outbreak. For example, at R0=2.5, this frac-
tion is 60.0%, but at R0=3.2, this fraction is 68.7%. Mathemati-
cal models play an important role in decision-making during 
outbreak control [36]. Our systematic review and meta-analy-
sis found that the overall R0 was 3.32 (95% CI, 2.81 to 3.82), 
which is higher than the WHO estimates of 1.4 to 2.5 (11) but 
similar to the results of an earlier review of 12 articles that were 
conducted in China (11). Our estimation is similar to the R0 val-
ues estimated for the severe acute respiratory syndrome epi-
demic in Beijing, China (R0=4.91) [37], and for Middle East re-
spiratory syndrome in Jeddah, Saudi Arabia (R0=3.5 to 6.7) [38]. 
Such a high R0 indicates that the virus can go through at least 
3 to 4 generations of transmission [22]. Similar to reviews of R0 
for other pathogens [39-41], it is important to highlight regard-
ing our results that R0 is not an intrinsic characteristic of a given 
pathogen, but rather describes the transmissibility of that patho-
gen within a specific population and setting. The estimated R0 
depends on factors such as social and demographic variables, 
the estimation method used, the validity of the underlying as-
sumptions, and the biology of the infectious agent. For exam-
ple, the frequency of contacts may depend on population size 
and cultural factors, which can vary across regions. In addition, 
estimates of R0 may be somewhat error-prone for reasons such 
as data insufficiency and the short time period analyzed. As 
more studies are done and more data are produced, the hope 
is that this error will be reduced. Our results showed significant 
heterogeneity among studies (I2=99.3%, p from the chi-square 
test for heterogeneity <0.001, and T2=1.72). One reason for 
this issue is that it is difficult to calculate the exact number of 
infected cases during an outbreak. The variation in R0 values 
reported by different studies indicates that precisely estimating 
R0 is rather difficult. Additionally, R0 can be affected by envi-
ronmental factors and modeling methodology [12]. There are 

many calculation methods for R0 [42]. Our review was restricted 
to Chinese articles. For other countries, surveillance data are 
needed either to calculate R0 or to extrapolate R0 estimates 
from a comparable setting. 

It also seems necessary to consider the reasons why high R0 
values were reported in some studies. Modeling assumptions 
may be a reason for this issue. Usually, high R0 values are cal-
culated in the early stages of an epidemic, both because of the 
small sample size and the lack of awareness about the disease, 
which results in inadequate preventive measures being taken. 
Since the number and patterns of people’s contacts in differ-
ent populations vary because of factors including culture and 
the level of literacy in the community, R0 values vary among 
different populations and even among subgroups of a single 
population. In fact, the total value of R0 in a population is the 
average of the R0 subtypes in that community. It is therefore 
important to note that even if the total R0 value in a popula-
tion is low (even less than 1), the likelihood of transmission in 
some subgroups of that population may still be high. Given 
the rapid spread of the disease and the dependency of the ef-
fectiveness of control measures on factors such as the fre-
quency of asymptomatic infections and the potential for dis-
ease transmission before symptom onset, COVID-19 seems to 
be relatively difficult to control. As a measure used to quantify 
the transmissibility of a disease in a population, R0 is depen-
dent on the population as well as the method of calculation. 
Our findings suggest that measures such as preventing large 
gatherings, restricting transportation, and closing schools and 
universities may be necessary to control this pandemic.

CONCLUSIONS

Considering the estimated R0 for COVID-19, reducing the 
number of contacts within the population is a necessary step 
to control the epidemic. So Implementation of the social dis-
tancing program, preventing large gatherings, restricting 
transportation, and closing schools and universities may be 
necessary to control this pandemic. The estimated overall R0 
was higher than the WHO estimate.
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