
Crystal nucleation in silicate glasses: the temperature and size
dependence of crystal/liquid surface energy

Vladimir M. Fokin 1, Edgar D. Zanotto *

LaMaV-Vitreous Materials Laboratory, DEMa ± Department of Materials Engineering, Ufscar ± Federal University of S~ao Carlos,

13.565-905, S~ao Carlos ± SP, Brazil

Received 28 June 1999; received in revised form 29 September 1999

Abstract

The most basic assumption of the classical nucleation theory (CNT) is to treat nucleus/liquid surface energy, r, as a

macroscopic property having a value equal to that of a planar interface, r1. Therefore, when the CNT is used to

analyze experimental data, the size dependence of surface energy is often neglected. To date, there has been no reliable

method to measure the surface energy of the nucleus/liquid interface except by ®tting nucleation rate data to the theory.

In this case, one obtains the surface energy of critical size nuclei as a function of temperature. However, the ®tted r(T)

dependence arises from two di�erent factors: the temperature dependence of r for a planar interface and its size de-

pendence. This paper focuses on the temperature dependence of the macroscopic value of surface energy, decoupling it

from the size dependent part. TolmanÕs equation was used to eliminate the size dependence of surface energy from

published nucleation data for two stoichiometric silicate glasses (Li2O á 2SiO2 and Na2O á 2CaO á 3SiO2). It is shown that

the Tolman parameter may be chosen so that surface tension decreases with temperature; dr1=dT < 0. The value of

dr1=dT obtained in this way is close to theoretical predictions. Ó 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

According to the classical nucleation theory
(CNT) the nucleus/liquid interfacial energy, r,
governs the crystal nucleation rate to a large extent
[1]. The most serious assumption of the CNT,
however, is that the thermodynamic properties of
nanometric aggregates of the newly nucleated
phase are the same as those of the corresponding
bulk phase. Thus, nucleus/liquid surface energy is

treated as a macroscopic property with a value
equal to the respective value for a planar interface,
r1. This assumption is known as the capillarity
approximation.

Due to the lack of a reliable (direct) method to
measure the surface energy of the nucleus/liquid
interface, independently of nucleation experi-
ments, one is forced to ®t experimental data to
theory. Hence, r1 cannot be compared directly
with experimental values.

When the CNT is used to treat experimental
data, not only the size dependence of surface
energy but also its temperature dependence is
often neglected. The latter approximation allows
for the calculation of r1 and the pre-exponential
term, Aexp, of the nucleation rate equation from
experimental nucleation rate data at various
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temperatures. However, large discrepancies be-
tween the experimental pre-exponential term, Aexp

and those predicted by the CNT, Atheor, were ob-
served, e.g., [2,3]. However, it should be stressed
that Aexp is very sensitive to the choice of the
thermodynamic driving force for crystallization
(the di�erence between the volume free energies of
glass and crystal). Nevertheless, in every case, Aexp

is higher than Atheor and the discrepancy may reach
� 130 orders of magnitude.

Such a discrepancy can be avoided by calculating
a speci®c surface energy from experimental nucle-
ation rate data at each temperature, using the
theoretical value of the pre-exponential term.
Consequently, surface energy may be used as a ®t
parameter and its apparent temperature depen-
dence can thus be obtained. This approach was ®rst
applied to the study of metallic systems [4,5] and
then to silicate glasses [6,7]. Surface energy, calcu-
lated in such a way, slightly increases with temper-
ature �dr=dT � �0:06±0:16� � 10ÿ3 J mÿ2 Kÿ1�.
For instance, dr=dT � 0:059� 10ÿ3 for Ga [4],
0:09� 10ÿ3 for Hg [5], 0:16� 10ÿ3 [6], 0:13� 10ÿ3

for L2S [7], 0:114� 10ÿ3 [3], 0:128� 10ÿ3 for
N2C3S [8], 0:129� 10ÿ3 J mÿ2 Kÿ1 [this work] for
2NC3S; where L2S, N2C3S and 2NC3S denote
glasses of stoichiometric composition Li2O á 2SiO2,
Na2O á 2CaO á 3SiO2 and 2Na2O á CaO á 3SiO2.

Since all thermodynamic properties are tem-
perature dependent, it is reasonable to assume that
this also applies to surface energy. The tempera-
ture dependence of r1 is also predicted by theory,
see e.g., [9]. In particular, it has been shown [10]
that dr1=dT < 0 when the molar volume of the
liquid phase is higher than the molar volume of the
crystal phase. A similar proposal was advanced in
[11], i.e., crystal-melt surface energy should sig-
ni®cantly increase with decreasing temperature,
starting from the thermodynamic crystallization
temperature. At temperatures below glass transi-
tion, r1 could be almost as large as the surface
energy of high-angle grain boundaries of the cor-
responding crystalline solid.

Moreover, there is experimental evidence that
the liquid±gas surface tension of some glass-
forming silicate melts decreases with increasing
temperature [12]. According to [13], liquid±gas
surface tension and crystal±liquid surface energy

are directly proportional to each other. Hence, one
may expect that the latter also decreases with in-
creasing temperature, contrary to the experimental
results using the procedure described previously,
i.e., ®tting nucleation rate data to the CNT.

It should be stressed again that the surface en-
ergy r(T, R), calculated from nucleation data, re-
fers to nuclei of critical size, R�. The latter
parameter, in turn, changes with temperature.
Hence, as noted in [14], a r�T � plot may partially
re¯ect a size e�ect. The issue of the size dependence
of surface energy was elaborated in a number of
papers, e.g., Refs. [14±17].

This paper focuses on the temperature depen-
dence of the speci®c macroscopic surface energy,
decoupling it from the size dependent part. Our
aim is to calculate the surface energy of the crystal-
melt interface as a function of temperature,
dr1=dT , using crystal nucleation data for two
silicate glasses and to compare it with theoretical
predictions.

2. Theoretical background

According to the classical nucleation theory,
e.g., [1], the homogeneous nucleation rate, Ihom,
can be written as

Ihom � A exp

�
ÿ DGD � W �

kT

�
; �1�

A � 2N1m0

ra2

kT

� �1=2

;

where A is the pre-exponential term, k is Boltz-
mannÕs constant, N1 � 1=a3 is the number of
structural (formula) units of melt with size a per
unit volume, m0 � kT=h is the vibration frequency
of a structural unit (for typical nucleation tem-
peratures, m0 � 1013 sÿ1), h is PlanckÕs constant, r
is the nucleus/melt free energy per unit area, DGD

is the activation energy for transport of a struc-
tural unit across the nucleus/melt interface and W �

is the work of forming a critical nucleus.
From Eq. (1), the work of forming a critical

nucleus (or the Gibbs free energy change due to
the nucleus formation) determines, to a large
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degree, the value of nucleation rate. It is well-
known that if one neglects the strain energy asso-
ciated to the formation of nuclei of size R (for
simplicity, we assume nuclei of spherical shape) W
can be written as

W � 4

3
pR3DGV ÿ 4pR2r; �2�

where DGV is the di�erence between the free en-
ergies of glass and crystal per unit volume of
crystal. Fig. 1 shows the change of the Gibbs free
energy as a function of the nucleus size for di�er-
ent approximations using typical values of the
parameters given in the ®gure caption. The full
curve (1) corresponds to the assumption of con-
stant surface energy, r and constant crystal den-
sity, q. However, as mentioned earlier, such
assumptions may be incorrect in the case of na-
nometric size clusters. For example, regarding the
description of a nucleus, Rusanov [9] claims that
``A revision of the nucleation theories is required,
considering the size dependence of the surface
tension and of other thermodynamic parameters''.
Thus, an account of the curvature dependence of
the surface tension may result in signi®cant

quantitative changes in the work of critical cluster
formation.

There have even been suggestions that an ac-
count of this e�ect may result in a qualitative
change of the shape of the thermodynamic barrier
for nucleation, W � [18]. A critical discussion of this
point of view was given in [16].

Several approximate equations have been sug-
gested for the curvature dependence of the surface
energy, r � r�R�, e.g., [19±22]

r�R� � r1 exp�ÿ2d=R�; Ref : �19� Gibbs;

�3�

r�R� � r1=�1� 2d=R�; Ref : �20� Tolman;

�4�

r�R� � r1�1ÿ d=R�2; Ref : �21� Rasmussen;

�5�

r�R� � r1�1ÿ 2d=R�; Ref : �22� Vogelsberger;

�6�
where r1 is the surface tension of a planar inter-
face. TolmanÕs parameter, d, characterizes the
width of the interfacial region between the coex-
isting phases (it has the order of atomic dimen-
sions). A general equation for curvature dependent
surface tension was derived in [23], which includes
Eqs. (3)±(6) as particular cases. Using an analysis
of the limits of their validity, given in [16], we have
chosen TolmanÕs Eq. (4) because it encompasses
the smallest size (R) from which the equations are
meaningful. Eq. (4) was derived for a liquid drop,
assuming that R� d. It follows from our calcu-
lations (presented below) that the critical radius
varies within a range of 1:7 < R�=d < 4:6. For this
size range, Eq. (4) overestimates the surface ten-
sion by about 10±2.5%, respectively [20].

The change of the systemÕs free energy due to
nucleus formation, when a size dependence of
surface energy is taken into account, is shown in
Fig. 1 by a dashed curve (2). Here, Eq. (4) is used
for a description of r(R).

Strictly speaking, the size dependence of the
crystal density [q�R� � q1 � q1j2r=R, where j is
the isothermal compressibility and q1 is the crystal

Fig. 1. Free energy change of the system due to the

formation of a nucleus as a function of size. 1)r and q are

size independent; 2)r is size dependent (Eq. (4)); 3)r and q
are size dependent. The following parameters were used in

the calculations: 2d � 4:7� 10ÿ10 m;DGV � 4:08� 108 J mÿ3,

K � 5� 10ÿ11 m 2 Nÿ1; r � 0:262 J mÿ2.
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density for R!1] should also be taken into ac-
count [16]. For typical values of the thermody-
namic parameters (j � 5� 10ÿ6 atmÿ1, critical
radius R� � 10ÿ9 m and r1 � 0:2 J mÿ2), the ratio
between the thermodynamic driving force per unit
volume of critical crystal and that of a macro-
scopic crystal, DGV�R � R��=DGV�R!1� �
1� j2r1=R�, is only 1.013. On the other hand, if
the crystal size varies from macroscopic to critical,
the decreased surface tension leads to a decrease of
the thermodynamic barrier of over three times (see
Fig. 1, curves 1 and 2). The dotted curve (3) in
Fig. 1 corresponds to the case where r and q are
size dependent. Thus, the use of a size dependent
crystal density weakly a�ects the thermodynamic
barrier of nucleation (compare curves 2 and 3).
Hence, to a ®rst approximation, we may treat the
density of the nucleus as size independent.

One could also take into account the decrease of
crystal density resulting from thermal expansion.
Using the thermal expansion coe�cient of poly-
crystalline lithium disilicate, a � 1:205� 10ÿ5

(470±490°C) [24], the decrease in crystal density in
the relevant temperature range for nucleation (Tg to
Tg � 100°C, where Tg � 450°C is the glass transition
temperature) was estimated to be only 0.3%. Thus,
we assume that the q(T) dependence is too weak to
a�ect the r(T) calculated from nucleation data.

Expressing the kinetic barrier of nucleation,
DGD, in terms of the induction period of nucle-
ation, tind, or of the viscosity, g, Eq. (1) may be
transformed into Eq. (7) or Eq. (8), respectively,
see e.g., [8,25].

Tst � 16

3
pN 2

1

�kT �1=2r3=2

DG2
Vtind

exp

�
ÿ W �

kT

�
; �7�

Ist � 2N1

ra2

kT

� �1=2 kT
l3g

exp

�
ÿ W �

kT

�
; �8�

where Ist is the steady-state homogeneous nucle-
ation rate and l has the order of Si±O length.

The combination of Eqs. (2) and (4) results in

W � 4

3
pR3DGV ÿ 4p

R3r1
R� 2d

: �9�

From the condition �oW =oR�R� � 0 and taking the
positive root one can ®nd the critical radius R�

R� � �r1 ÿ 2DGVd� � �r2
1 � 2DGVdr1�1=2

DGV

�10�

and then calculate the value of W � � W �R��. Thus,
on the right-hand side of Eqs. (9) and (10) and,
correspondingly, of Eqs. (7) and (8), two param-
eters, crystal/liquid surface energy, r1 and
TolmanÕs parameter, d, are unknown. The next
part of the paper presents the results of ®tting r1
to experimental nucleation data for di�erent
(®xed) values of d.

3. Calculations and results

Experimental nucleation rate data, induction
times, viscosity and DGV for Li2O á 2SiO2 and
Na2O á 2CaO á 3SiO2 glasses from [7,8,26,27] were
used. These glasses exhibit internal, presumably
homogeneous nucleation. Fig. 2 presents the
temperature dependency of their steady-state

Fig. 2. Steady-state nucleation rates (a, b) and induction times

for nucleation (c, d) as a function of temperature for L2S (a, c)

and N2C3S (b, d) glasses. The data were taken from the

following references: 1 ± [26], 2 ± [7], 3 ± [8], 4 ± [27].
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nucleation rates (a, b) and induction times (c, d)
vs. reciprocal temperature plots.

The values of Ist and tind, taken from the
smoothed curves Ist�T � (Fig. 2(a) and (b)) and
from the Arrhenius plots ln�tind� � 1=T (Fig. 2(c)
and (d)), were used for the calculations.

In the case of the N2C3S glass, DGV was esti-
mated by

DG � ÿ DHm

Tm

�Tm ÿ T � ÿ
Z Tm

T
DCp dT 0

� T
Z Tm

T

DCp

T 0
dT 0; �11�

where DGV � ÿDG=M ;DHm is the latent heat of
melting per mole and Tm is the melting point,
DCp � CC

p ÿ CL
p �< 0� is the di�erence in speci®c

heats between the crystalline and liquid phases and
M is the molecular weight.

For the L2S glass, DGV�J m3� � 8:431� 108

ÿ548258:655T ÿ 73:00247T 2�T �K�� was used.
This expression ®ts the experimental data [28] well
in the temperature range 693±758 K. Thermody-
namic and viscosity data were taken from [29,30].
The following Fulcher equation was employed to
describe the viscosity of L2S glass: log�g;Pa s� �
ÿ7:52� 6259=�T ÿ 406�; T �K�.

Fig. 3. (A) Crystal/ liquid surface energy for L2S glass calculated from Eq. (7) with di�erent TolmanÕs parameters d: 0 (a); 2.33 ´ 10ÿ10

(b); 3 ´ 10ÿ10 (c) and 3.5 ´ 10ÿ10 m (d). (B) Crystal/ liquid surface energy for L2S glass calculated from Eq. (8) with di�erent TolmanÕs
parameters d: 0 (a); 2.33 ´ 10ÿ10 (b); 3 ´ 10ÿ10 (c) and 3.5 ´ 10ÿ10 m (d).
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A commercial software was used for the nu-
merical solution of Eqs. (4), (7) and (8) to obtain
r1 at di�erent temperatures, using ®xed values of
TolmanÕs parameter, d. Figs. 3 and 4 show the
r1�T � plots for L2S and N2C3S glasses, respec-
tively. For those values of r1, the ratio between
critical radius and TolmanÕs parameter ranges
from 1:7 < R�=d < 4:6.

The numerical calculations allow one to ®nd the
values of surface energy for which the calculated
nucleation rates equal the experimental ones (at a
given set of Tolman's parameter and driving
force). The experimental data were taken from the
smoothed I�T � curves. The errors in nucleation

Fig. 4. Crystal/liquid surface energy for N2C3S glass calculated

from Eq. (7), with di�erent TolmanÕs parameters d: 0 (a);

2.95 ´ 10ÿ10 (b); 4.5 ´ 10ÿ10 (c); 7.5 (d); 8.65 ´ 10ÿ10 (e) and

10ÿ9 m (f).

Fig. 5. (a) W �=kT as a function of temperature for LS2 glass.

(b) W �=kT as a function of temperature for N2C3S glass.
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rates were about 20%. In this case, W �=kT varies
� 2% and r � 0:5% (shown in Figs. 3±5)

4. Discussion

As follows from Figs. 3 and 4, the calculation of
r1�T � is strongly a�ected by the choice of Tol-
manÕs parameter. The case of d � 0 corresponds to
a size independent surface energy, as employed by
most authors. In this case, surface energy increases
with temperature (dr1=dT > 0), from the glass
transition temperature, Tg. At temperatures below
Tg, surface energy changes very slightly (N2C3S
glass) or is reduced to a minimum (L2S glass).

It is possible that, at these low temperatures, the
elastic strains resulting from the di�erence between
the densities of crystal and glass are important. In
this case, the thermodynamic driving force for
crystallization, DGV, would be diminished by the
elastic strain energy, which in turn would result in
an increase of the thermodynamic barrier to nu-
cleation, W �. Fig. 5 gives circumstantial evidence
for this assumption, i.e., the decrease of W � slows
down at temperatures close to Tg. Thus, when one
uses overestimated values of DGV (at low temper-
atures), one also obtains overestimated values of
surface energy. This feature may explain the shape
of r1(T) dependence at low temperatures.

Fig. 6 shows the average values of dr1=dT at
T P Tg vs. TolmanÕs parameter. As d increases,
dr1=dT reduces progressively and becomes nega-
tive at d > 2:6� 10ÿ10 m (L2S glass); 8� 10ÿ10 m
(N2C3S glass). Thus, the Tolman parameter may
be chosen so that the surface tension, r1, increases
with decreasing temperature, in line with theory
[10].

Moreover, one can estimate (rm ÿ r�Tg��=�Tm

ÿTg� � dr=dT using Eq. (22) from [10]

r�T �=rm � 1� �g=c��eÿ 1�niDG�T �=DHm; �12�
where c is the coe�cient in the well-known
Scapski±Turnbull equation:

rm � cDHm=v2=3
c N 1=3

a ; �13�
where e � vf=vc�1ÿ g � gvf=vc�, g is a numerical
factor between 0 and 1, vf and vc the molar vol-
umes of the melt and crystal, respectively and ni is

the number of monolayers of the interface phase.
For vf=vc � 1:04 (L2S), 1.02 (N2C3S), DG�Tg�=
DHm � 0:42 (L2S), 0.30 (N2C3S), c � 0:4; ni � 2±4
and g � 0:5, which provides the largest e�ect,
ÿdr1=dT varies from 2� 10ÿ5 to 4� 10ÿ5 J mÿ2

Kÿ1 for L2S glass and from 0:4� 10ÿ5 to
0:7� 10ÿ5 J mÿ2 Kÿ1 for N2C3S glass. These re-
sults are close to those calculated from the exper-

Fig. 6. (a) dr1/dT as a function of TolmanÕs parameter for

LS2. r1 was calculated from Eq. (7) ± 1 and Eq. (8) ± 2. (b)

dr1 /dT as a function of TolmanÕs parameter for N2C3S.

r1 was calculated from.Eq. (7).
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imental nucleation rates for 2:8� 10ÿ10 <
d < 3:4� 10ÿ10 m (L2S) and 8:2� 10ÿ10 <
d < 8:5� 10ÿ10 m (N2C3S) (Fig. 6).

Although these calculations are tentative, one
can conclude that, by using reasonable values for
TolmanÕs parameters, it is possible to obtain the
temperature dependence of r1 predicted by theo-
ry. Hence, the increase of the surface energy, r�R��
with temperature, calculated by ®tting nucleation
rates to the CNT, is, indeed, caused by a size e�ect,
namely, by the change of the critical size R�. Thus,
one may reach an agreement between an experi-
ment and the CNT when the curvature dependence
of the surface tension is taken into account.

5. Conclusions

The crystal/liquid surface energy r1 was cal-
culated from nucleation rate data for two silicate
glasses, using TolmanÕs equation for size depen-
dent surface tension. Reasonable values for
the Tolman parameter may be chosen so that the
surface tension decreases with temperature. The
temperature dependence of surface energy is
close to the theoretical predictions.
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