Pattern-Based Classification of Demographic Sequences

Dmitry I. Ignatov¹, Danil Gizdatullin¹, Ekaterina Mitrofanova¹, Anna Muratova¹, Jaume Baixeries²

¹National Research University Higher School of Economics, Moscow
²Universitat Politècnica de Catalunya, Barcelona

IDP 2016, Barcelona

Possible life events

- First job (job)
- The highest education degree is obtained (education)
- Leaving parents' home (separation)
- First partner (partner)
- First marriage (marriage)
- First child birth (children)
- Break-up (parting)
- ... (divorce)

Data and problem statement [Ignatov et al., 2015], [Blockeel et al., 2001]

Generation and Gender Survey (GGS): three waves panel data for 11 generations of Russian citizens starting from 30s

Binary classification

1545 men 3312 women

Examples of sequential patterns

- $\bullet \ \ \langle \{\textit{education}, \textit{separation}\}, \{\textit{work}\}, \{\textit{marriage}\}, \{\textit{children}\} \rangle (\textit{m})$
- $\langle \{work\}, \{marriage\}, \{children\} \{education\} \rangle (f)$
- $\langle \{partner\}, \{marriage, separation\}, \{children\} \rangle (f)$

- $s = \langle s_1, ..., s_k \rangle$ is the **subsequence** of $s' = \langle s'_1, ..., s'_k \rangle$ $(s \leq s')$ if $k \leq k'$ and there exist $1 \leq r_1 < r_2 < ... < r_k \leq k'$ such $s_j = s'_{rj}$ for all $1 \leq j \leq k$.
- support(s, D) is the **support** of a sequence s in D, i.e. the number of sequences in D such that s is their subsequence.

$$support(s, D) = |\{s'|s' \in D, s \leq s'\}|$$

• s is a frequent closed sequence (sequential pattern) if there is no s' such that $s \prec s'$ and

$$support(s, D) = support(s', D)$$

Example

Let D be a set of sequences:

Table: Dataset D.

s_1	${a,b,c}{a,b}{b}$
s ₂	$\{a\}\{a,c\}\{a\}$
s 3	${a,b}{b,c}$

- $I = \{a, b, c\}$ is the set of all items (atomic events)
- $\langle \{a,b\}\{b\} \rangle$ belongs to s_1 and s_3 but it is missing in s_2
- $support_D(\langle \{a,b\}\{b\}\rangle) = 2$
- $\{\langle \{a\} \rangle, \langle \{c\} \rangle, \langle \{a\} \{c\} \rangle, \langle \{a,b\} \{b\} \rangle, \langle \{a,c\} \{a\} \rangle\}$ is the set of closed sequences.

CAEP: Classification by Aggregating Emerging Patterns G. Dong et al., 1999

Growth Rate

$$growth_rate_{D' \to D''}(X) = \begin{cases} \frac{supp_{D''}(X)}{supp_{D'}(X)} & \text{if } supp_{D'}(X) \neq 0 \\ 0 & \text{if } supp_{D''}(X) = supp(X) = 0 \\ \infty & \text{if } supp_{D''}(X) \neq 0 \text{ and } supp_{D'}(X) = 0 \end{cases}$$

Class score

$$\mathit{score}(s, C) = \sum_{e \subseteq s, e \in E(c)} \frac{\mathit{growth_rate}_C(e)}{\mathit{growth_rate}_C(e) + 1} \cdot \mathit{supp}_c(e)$$

CAEP: Classification by Aggregating Emerging Patterns

Score normalization

$$normal_score(s, C) = \frac{score(s, C)}{median(\{growth_rate_C(e_i)\})}$$

Classification rule

$$\mathit{class}(s) = \begin{cases} C_1, \mathit{if} \ \mathit{normal_score}(s, C_1) > \mathit{normal_score}(s, C_2) \\ C_2, \mathit{if} \ \mathit{normal_score}(s, C_1) < \mathit{normal_score}(s, C_2) \\ \mathit{undetermined} \ \mathit{if} \ \mathit{normal_score}(s, C_1) = \mathit{normal_score}(s, C_2) \end{cases}$$

Gapless prefix-based sequential patterns

- $s = \langle s_1, ..., s_k \rangle$ is a gapless prefix-based subsequence of $s' = \langle s'_1, ..., s'_k \rangle$ (s* = s') if $k \le k'$ and $\forall i \in k' : s_i = s'_i$.
- Support of gapless prefix-based sequences
 Let T be a set of sequences.

$$support(s, T) = \frac{|\{s'|s' \in T, s* = s'\}|}{|T|}$$

Gapless sequential patterns

- Let $0 < minSup \le 1$ be a minimal support parameter and D is a set of sequences then **searching for prefix-based gapless sequential patterns** is the task of enumeration of all prefix-based gapless sequences s such that $support(s,D) \ge minSup$. Every sequence s with $support(s,D) \ge minSup$ is called a **prefix-based gapless sequential pattern**.
- Prefix-based gapless sequential pattern (PGSP) p is called **closed** if there is no PGSP d of greater of equal support such that d = p*.

Gapless sequential patterns

Example

Table: *D* is a set of sequences.

s_1	${a}{b}{d}$
<i>s</i> ₂	${a}{b}{c}$
<i>S</i> 3	${a,b}{b,c}$

$$s = \langle \{a\}\{b\}\rangle$$

- $I = \{a, b, c\}$ is the set of all items (atomic events)
- $s_1 = s*$; $s_2 = s*$
- s₃ ≠ s*
- $Supp_D(s) = \frac{2}{3}$
- $\langle \{a\}\{b\}\rangle$ is closed, $\langle \{a\}\rangle$ is not closed.

Pattern Structures Ganter & Kuznetsov, 2001

- $(S,(D,\sqcap),\delta)$ is a pattern structure
- ullet S is a set of objects, D is a set of their their possible descriptions
- $\delta(g)$ is the description of g
- Galois connection is given by \diamond operator as follows:

$$A^{\diamond} := \prod_{g \in A} \delta(g) \text{ for } A \subseteq S$$

$$d^{\diamond} := \{ s \in S | d \sqsubseteq \delta(g) \} \text{ for } d \in D$$

For two sequences
 ¬ may result in their largest common prefix subsequence

Pattern concepts

A pair (A, d) is called a **pattern concept** of a pattern structure $(S, (D, \sqcap), \delta)$ if

- A ⊆ S
- $c \in D$
- $d^{\diamond} = A$

Pattern Structures

Example

 $s_1:\langle a,b,c\rangle$

 $s_2:\langle a,b,c\rangle$

 $s_3:\langle a,b,d\rangle$

Pattern concepts (PCs)

$$(\{s_1, s_2, s_3\}, \langle a, b \rangle); (\{s_1, s_2\}, \langle a, b, c \rangle)$$

 $(\{s_1\}, \langle a, b, c \rangle)$ is not a PC; $(\{s_3\}, \langle a, b, d \rangle)$

[Finn, 1981], [Kuznetsov, 1993], [Ganter et al, 2004]

Positive, negative and undetermined pattern structures

$$\mathcal{K}_{\oplus} = (\mathcal{S}_{\oplus}, (D, \sqcap), \delta_{\oplus})$$

$$\mathcal{K}_{\ominus} = (\mathcal{S}_{\ominus}, (D, \sqcup), \delta_{\ominus})$$

There is a pattern structure of undetermined examples:

$$K_{\tau} = (S_{\tau}, (D, \sqcap), \delta_{\tau})$$

Hypothesis

A **hypothesis** is a pattern intent that belongs to examples from a fixed class only

A pattern intent h is a positive hypothesis (dually for negative hypotheses) if

$$\forall s \in S_{\ominus}(s \in S_{\oplus}) : h \not\sqsubseteq s^{\ominus}(h \not\sqsubseteq s^{\oplus})$$

Hypotheses generation: An example

Sequential classification rules

$$s_1: \langle a, b, c \rangle$$
 - class 0

$$s_2:\langle a,b,c\rangle$$
 - class 0

$$s_3:\langle a,b,d\rangle$$
 - class 1

Prefix-tree 0 | a(2; 1) | b(2; 1) | c(2; 0) d(0; 1)

Hypotheses

 $\langle \{a\}, \{b\}, \{c\} \rangle$ is a hypothesis of class 0

 $\langle \{a\}, \{b\}, \{d\} \rangle$ is a hypothesis of class 1

Classification via hypotheses

$$\mathit{class}(g_\tau) = \begin{cases} \mathit{positive} \ \mathsf{if} \ \exists h_\oplus, h_\oplus \sqsubseteq \delta(g_\tau) \ \mathsf{and} \ \nexists h_\ominus, h_\ominus \sqsubseteq \delta(g_\tau) \\ \mathit{negative} \ \mathsf{if} \ \nexists h_\oplus, h_\oplus \sqsubseteq \delta(g_\tau) \ \mathsf{and} \ \exists h_\ominus, h_\ominus \sqsubseteq \delta(g_\tau) \\ \mathit{undetermined} \ \mathsf{if} \ \exists h_\oplus, h_\oplus \sqsubseteq \delta(g_\tau) \ \mathsf{and} \ \exists h_\ominus, h_\ominus \sqsubseteq \delta(g_\tau) \\ \mathit{undetermined} \ \mathsf{if} \ \nexists h_\oplus, h_\oplus \sqsubseteq \delta(g_\tau) \ \mathsf{and} \ \nexists h_\ominus, h_\ominus \sqsubseteq \delta(g_\tau) \end{cases}$$

Emerging patterns based on pattern structures

Growth Rate

$$GrowthRate(g, K_{\oplus}, K_{\ominus}) = \frac{Sup_{K_{\oplus}}(g)}{Sup_{K_{\ominus}}(g)}$$

Emerging patterns

A pattern is called **emerging pattern** if its growth rate is greater than or equal to Θ_{min}

$$GrowthRate(g, K_{\oplus}, K_{\ominus}) > \Theta_{min}$$

Emerging patterns for classification

s is a new object

$$\begin{aligned} \textit{normal_score}_{\oplus}(s) &= \frac{\sum_{p \in P_{\oplus}} \textit{GrowthRate}(p, \textit{K}_{\oplus}, \textit{K}_{\ominus})}{\textit{median}(\textit{GrowthRate}(P_{\oplus}))} : \textit{p} \sqsubseteq s \\ \textit{normal_score}_{\ominus}(s) &= \frac{\sum_{p \in P_{\ominus}} \textit{GrowthRate}(p, \textit{K}_{\ominus}, \textit{K}_{\ominus})}{\textit{median}(\textit{GrowthRate}(P_{\ominus}))} : \textit{p} \sqsubseteq s \end{aligned}$$

Classification via emerging patterns

$$\mathit{class}(s) = \begin{cases} \mathit{positive} \ \mathit{if} \ \mathit{normal_score}_{\oplus}(s) > \mathit{score}_{\ominus}(s) \\ \mathit{negative} \ \mathit{if} \ \mathit{normal_score}_{\oplus}(s) < \mathit{score}_{\ominus}(s) \\ \mathit{undetermined} \ \mathit{if} \ \mathit{normal_score}_{\oplus}(s) = \mathit{normal_score}_{\ominus}(s) \end{cases}$$

Classification algorithm for gapless prefix-based sequential patterns

- Build the prefix tree for the input sequences.
- 2 For each tree node calculate its Growth Rate.
- For every new sequence traverse the tree and compute the Score for each class.
- Ompare the Score value for different classes and classify the new sequence.

Execution example

Input sequences

```
\begin{array}{l} \textit{class}\_0: \{\langle \{a\}\{b\}\{c\}\rangle, \langle \{b\}\{a\}\{c\}\rangle, \langle \{b\}\{c\}\rangle\} \\ \textit{class}\_1: \{\langle \{a\}\{c\}\{b\}\rangle, \langle \{b\}\{c\}\{a\}\rangle, \langle \{b\}\{c\}\{a\}\rangle\} \\ \end{array}
```

Prefix tree

Counting Growth Rate

New sequence

$$\langle \{b\}; \{c\}; \{a\} \rangle -???$$

$$Score_0 = 0$$

$$Score_1 = 2.67 + \infty = \infty$$

Comparison of closed and non-closed patterns

Figure: TPR vs FPR for closed and non-closed patterns

Experiments and results

Figure: TPR-FPR for classification via gapless prefix-based patterns

Interesting patterns (women)

```
(\langle \{work, separation\}, \{marriage\}, \{children\}, \{education\}\rangle, [inf, 0.006]) (\langle \{separation, partner\}, \{marriage\}\rangle, [inf, 0.006]) (\langle \{work, separation\}, \{marriage\}, \{children\}\rangle, [inf, 0.008]) (\langle \{work, separation\}, \{marriage\}\rangle, [inf, 0.009])
```

Interesting patterns (men)

```
 (\langle \{education\}, \{marriage\}, \{work\}, \{children\}, \{separation\} \rangle, [10.6, 0.006])   (\langle \{education\}, \{marriage\}, \{work\}, \{children\} \rangle, [12.7, 0.007])   (\langle \{educ\}, \{work\}, \{part\}, \{mar\}, \{sep\}, \{ch\} \rangle, [10.6, 0.006])
```

Conclusion

- We have studied several pattern mining techniques for demographic sequences including pattern-based classification in particular.
- We have fitted existing approaches for sequence mining of a special type (gapless and prefix-based ones).
- The results for different demographic groups (classes) have been obtained and interpreted.
- In particular, a classifier based on emerging sequences and pattern structures has been proposed.

Conclusion

Thank you!

Questions?