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NECKLACES AND CONVEX k-GONS™
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A short proof of the Hansraj Guptal formula that solves the Richard H. Reis problem about the number of the
incongruent convex k-gons with the tops on circumference is given.
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1. INTRODUCTION

Professor Richard H. Reis (South-East University of Massachusetts, USA) in 1978 put the proboem:
"Let a circumference is split by the same n parts. It is required to find the number R(n, k) of the
incongruent convex k-gons, which could be obtained by connection of some k from n dividing points.
Two k-gons are considered congruent if they are coincided at the rotation of one relatively other
along the circumference and (or) by reflection of one of the k-gons relatively some diameter.

In 1979 Hansraj Gupta1 gave the solution of the Reis problem.
Theorem 1 — (Hansraj Guptal )
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where h, =k(mod2), b, = 0 or I, @(n)-the Euler function.
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Based on another idea, diverse than in!, proof of formula (1) is given.

2. SOME BIECTIONS

(1) Let’s consider some convex polygon with the tops in the circumference splitting points, "1" or
"0" is put in accordance to each splitting point depending on whether a top of the polygon is in
the point. Thus, there is the mutual one-to-one correspondence between the set of convex polygons
with the tops in the circumference splitting points and the set of all (0, 1)-configurations with the
elements in these points.

(2) As it is known?, the composition of the number n is the partition with taking into account
the sequence of its members. Imagine that there are n colors (color 1, color 2, ..., color n). Put in
accordance to each n composition with k members the necklace with k beads, each bead painted by

*Partly supported by the Israeli Ministry of Absorption.
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color j if the appropriate part of the composition has length j. For example, the appropriate necklace
of the composition (3, 1, 8, 1) of number 13 contains 4 beads. The first bead is painted by the 3rd
color, the second and the fourth are painted by the 1st color and the third by the 8th. Two necklaces
are imagined as equivalent if they coincide at the rotation along the circumference in a chosen
direction or at the reflection relatively a circumference diameter.

(3) It is clear that in accordance to each considered above (0, 1)-configuration there is the
composition n with length of intervals between neighbour ones of the circumference. So "1
corresponds to two ones following succession; "2" corresponds two ones split by one zero etc. Thus
there is a bijection between all incongruent (0, 1)-configurations contain k ones with &, intervals of

length i, i = 1, 2, .., n and the set of non-equivalent necklaces consisted of % beads and each of
the beads is painted by one of n colors, if there k; beads are painted by color i.

3. CYCLIC INDEX OF DIHEDRAL GROUP

Mac Mahon (see3&4) for the first time has enumerated necklaces with congruences only by rotation,
as to equivalence considered we use the following performance of the generating polynomial
Ny(x,, x5, ..., x,) for numbers of non-equivalent necklaces from k beads each of them painted by one

on n colors. This polynomial is the cyclic index of the Dihedral group3.

Theorem 2 — (Page 162°, )
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Thus, the number of necklaces consisted from k beads, where k; are painted by i color,

i=1,2, .., n,is equal to coefx"l x"n Np (xy, ..., x,;) and the number of all non-equivalent necklaces
1 = “n

from k beads is equal to z coef k1 x"n Ny (x, .., x,;), where sum is taken over all solutions
| B

k; (= 0) of equations
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h+@+m+@=h

k) +2ky+ ... +nk, =n. .. 5

Now directly from the Theorem 2, it follows

Lemma 1 —
Rn,ky=0c(n,k)+8(nk), .(6)
where
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where the sums (7) and (8) are taken over all solutions k;20 of (5).

4. EVALUATION OF SUMS (7) AND (8)
Further part of this article is concerned with obtaining of the formulas for sums (7) and (8).

Lemma 2 — (See for example [5, p. 68])).

k! n-1

T = : . (9)
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/

where the sum is taken over all solutions k;20, i = 1, 2, ..., n of (5).
One of the possible combinatorial proofs of the Lemma 2 is given in following.

Let’s consider the set M) of square (0, 1) matrixes of order k consisting of n ones and do
not have zero rows. Let’s say that type of A € M, is determined by its rows’ sums vector. Apparently,
the number of all matrix types from M, is equal to the number of all compositions of n with

n—1
parts that is equal to . On the other hand, if at the fixed ki, ky, ..., k,, the rows’ sums vector
k-1

has k; ones, k, twos and so on, then the conditions (5) are satisfied and the number of such vectors

!
is equal to k 7~ Summing this by all ky, ky, ..., k, satisfying the conditions (5) we obtain

ky Vky! ...k,
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n-1
the total number the matrix types from M, that is .
k-1
Lemma 3 —
n
1 a’
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di(k,n) k_,
PROOF : Using the polynomial formula
i x| = 2 _m xkl xk2 xk"
! kitky!o k1 7172 n’

i=1 k1+k2+...+kn=m

on ths ground of formulas (7) and (3) we conclude that
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where the sum is taken over all solutions &, k,, ..., k, of equations

k1+k2+...+k =

n b

8, |

k1+2k2+...+nkn=n.

The formula (10) follows from formulas (12), (13) and Lemma 1 []

Lemma 4 —
1

L]

where hksk(mod 2), b, =0 or 1.
PROOF : The treatment depends on parity of k.
(1) Let k21 is odd. In accordance to (8) and (4)
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/
Z AT X Xy x)" .. (15)
where by (11) the internal summing is taken over ji, j,, ..., j, are satisfying the condition

. . k-1
Byt * e tiy= 5 . (16)

and the external summing is taken over k;,k,, ..,k are satisfying the conditions (5). The sum of
n . .
: : ¥, Y, . . .
exponents of each monomial of Z , thatis x;x; ...x " isequal to 1 + 2 (i +j,+...+j) =1
i=1
+ k — 1 = k that is satisfying the first condition of (5).

Further let’s equate to n the sum k; +2k, +...+nk, corresponds to the ith addend of this

sum:
21 +2(2,) +3(Z) + ...+ (-1 (2Z;_y
+iZ+ D)+ 1) @2 P+ +n2)=n,
whence
12+ ... +nj, =n—2_-':. . (A7

From here it follows that i must have the same parity as n and j, j,, ..., J,
conditions (16) and (17).
In the total from (15) and for each odd k=1 follows

-1
s 3 brl

1)
i=n(mod?2) Nt

must satisfy the

onk) = %

where the internal summing is taken over all solutions j, jy, ..., jj,

of eqgs. (16) and (17).

Comparing the conditions (16) and (17) with (5), we conclude that by (9) the internal sum
in (18) is

k-1
2

Therefore supposing in (18) n—i=2t, we find
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(e

2
1
omby =5 D | ,_3 | k=21 w (19)
t=0 2
-1
(in case of k = 1 the first addend is supposed equal to 1, the remaining addends
-1

are equal to 0).

However, by induction it is easy to show that for m>-1,p20
4 t—1 D
Y = : .. (20
=0

m m+1

and then it follows from (19) that for odd k=1
n—1
2
k-1
2
as it is required.

(2) Now let k22 is even. As far as

O(n, k) = —;—

i=1 i=1 i=1 i<i <i <n

that as well as above we receive
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where in Z the sum is taken over all solutions j,, j,, ..., j, of the equations

n
1
C . _k
,1+12+...+1n=5—1,

, . . n .
]l+2]2+...+n]n=5—t, . (22)

and therefore Z = 0 if n is odd, and in 2 the sum 1s taken over all solutions 11,12, ey ln of
1 2
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equations

k
1~ b

ll+12+...+ln:

L+2+ ... +nln=—-—-2—-—-,
and therefore i +i, must have the same parity as n.

At the beginning let n be odd. Therefore, by (21) and (9)

2
1
O(n k) = 5 2
1<i <iy,<n _k__1
i, +iy=1(mod2) 2
n-j_,
n—k+2 2 .
_1 =1
T2 2
j=3 k_,
jis odd )

635

. (23)

.. (24)

j—1 . . -
where the factor L=~ corresponds to the number of representations of odd j as sum of two positive

2
integers =1 +(G-D=2+G-2) =..)

Supposing in (24) n—j = 2(t + 1), we find

n—-15

5 t
1 -1
O k) =5 > k (nz —(t+1))
koa | 72
T2
n;S ( ' n;S
n—1 2 k-2
= P - —= 2
Y| 52 ) (k=4
2 2
n-35 ; n-3
2 2
_n-1 k=2
B k
* jok=a | 572 * k=2
T2\ )

Finally, using the identity easily received from (20)

t+1

]
—

LS

N

.. (25)
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¢ t c+1 b
z = - s .. (26)
t:b a a+1 a+1
from (25) we find:
n—3 n-—1 n—1
n-1| 2 k-2| 2 k| 2
O(n, k) = 2 - =2
k_ k k
2 2 2
n—1 n—1
=) N Y
A S R
2 2
as it is required.
Let n be even. Then from (21) and by (9) we have
| n2 | 3701 | -y
6(n k) =3 2 +-2- 2
i=1 k_, 15§, <iy<n k_,
2 i +iy=1(mod2) 2
n n._'
i 5—1 t-1 | n—k+2 __ilﬁl -
t-.:O __2 J=4 __2
Jis even 2

j—2 . . "
where the factor JT corresponds to the number of representations even j as sum of two positive

integers i) <i,.
It follows from (20) that

n

n
51 -1 5—1
) = : .. (28)
k (
=0 | 372 LI
2

Supposing that, in the second sum of (27), n—j = 2(¢t + 1), by (28) we find
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n-6 n—=6
2 t 3 t+1
n-2 k-2
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kst | 372 kst | 27!
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Now using (26), we finally find
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n-2| 2 k-2 | 2 1| 2
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Lemma 4 is proved completely.

SYES
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Theorem 1 now follows from formula (6), Lemma 3 and Lemma 4 [1
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