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On the largest prime factors of n and n+1

PauL ErpoOs AND CARL POMERANCE

§1. Introduction

If n=2 is an integer, let P(n) denote the largest prime factor of n. For every
x>0 and every t, 0=t=<1, let A(x, t) denote the number of n=<x with P(n)=x".
A well-known result due to Dickman [4] and others is

THEOREM A. The function

a(t)=lim x 'A(x, 1)

is defined and continuous on [0, 1].

In fact it is even shown that a(¢) is strictly decreasing and differentiable. Note that
a(0)=1 and a(1)=0.

If 0=t s=<1, denote by B(x,t s) the number of n=<x with P(n)=x" and
P(n+1)=x". One might guess that

b(t, s)=lim x 'B(x, t, s)
exists and is continuous on [0, 1]°. In fact, one could guess that

b(t, s)= a(t)a(s);

that is, the largest prime factors of n and n+1 are “independent events.” We do

not know how to prove the above guesses. In fact, we cannot even prove the

almost certain truth that the density of integers n with P(n)>P(n+1) is 3.
However we can prove:

THEOREM 1. For each € >0, there is a § >0 such that for sufficiently large x,

AMS (1970) subject classification: Primary 10H1S5, 10J15.
Received May 19, 1976.

311



312 PAUL ERDOS AND CARL POMERANCE AEQ. MATH.

the number of n<x with
x°<P(n)/P(n+1)<x® )]
is less than ex.

That is, P(n) and P(n+ 1) are usually not close. We use Brun’s method in the
proof. One corollary is that the lower density of integers n for which P(n)>
P(n+1) is positive (see §6).

If the canonical prime factorization of n>1 is [] p{, let f(n) =Y ap;; and let
f(1)=0. Several authors have considered this function or the closely related
g(n)=% p; or h(n)=Y p{, among them Alladi and Erdos [1], Chawla [2], Dane
[3], Hall [7], Lal [10], LeVan [12], and Nicolas [14]. In Nelson, Penney, and
Pomerance [13] the following problem is raised: does the set of n for which
f(n)=f(n+1) have density 0? If f(n)= f(n+1), we call n an Aaron number (see
[13]). We prove here the Aaron numbers do indeed have density 0. The result
follows as a corollary to Theorem 1 and

THEOREM 2. For every € >0, there is a >0 such that for sufficiently large x
there are at least (1— €)x choices for n<x such that

P(n)<f(n)<(1+x7?)P(n). (2)

Theorem 2 implies that usually f(n)= P(n) and f(n+1)=~ P(n +1). But Theorem 1
implies P(n) and P(n+1) are usually not close. Hence f(n) and f(n+1) are
usually not close, and in particular, we usually have f(n)# f(n+1). This then
establishes that the Aaron numbers have density 0. However we can prove a
sharper result:

THEOREM 3. For every € >0, the number of n < x for which f(n) = f(n+1) is
O(x/(log x)' 7).

Actually we can prove the sharper estimate O(x/log x), but the proof is more
difficult than the proof of Theorem 3 and we do not present it here. We suspect
that the estimate O(x/(log x)*) is true for every k, but we cannot prove this for
any k>1. In fact, we cannot even get o(x/log x). On the other hand, we cannot
prove that there are infinitely many Aaron numbers (this would follow if Schinzel’s
Conjecture H is true —see [13]). But by a consideration of those n for which P(n)
and P(n+ 1) are both relatively small, we believe the number of Aaron numbers
up to x is 2(x'"¢) for every €>0.
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There are integers n for which f(n)=f(n+1)=f(n+2). The least example,
kindly found for us by David E. Penney in a computer search, is n =417162. We
cannot prove that the number of such n =x is o(x/log x). We conjecture that for
every k there are integers n with f(n)=f(n+1)="---=f(n+k).

§2. Preliminaries

In this section we record several lemmas which will be useful in our discussion.
The letter p denotes a prime.

LEMMA 1. There is an absolute constant C, such that if 3<u<uv, then

Z 1<C+log (v/u)
ump=o P logu

This lemma is used when u is large compared with v/u. The proof follows easily
from the classical result (see Hardy and Wright [8], Theorem 427 and its proof):
there are absolute constants B, D such that if x =3, then

1 D
Z——loglogx—B< .
p=xD log x

Lemma 1 easily follows with C=2D.

1 1

LEMMA 2. ~ e
= plogp logt

Proof. If p, denotes the k-th prime, then p, ~ k log k and

Z 1 _ 1 _ 1 _ 1
Ziplogp wimwklog®k logm(t) logt

LEMMA 3. If P(n)=5, then f(n)< P(n)log n/log P(n).

Proof. We use the fact that t/log t is increasing for t=e and 2/log 2 <5/log 5.
Write n =[] p# where p, = P(n). Then

f(n)=Y ap <Y, ap: log pflog p, = P(n) log nflog P(n).
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§3. Proof of Theorem 1

Let €>0. From Theorem A it follows there is a 8,= 8,(€) such that 3>§,>0
and for large x the number of n=x with

P(n)<x® or x'? %=P(n)<x'*
is less than ex/3. We now consider the remaining n < x. There are 2 cases:

(1) x*>=P(n)<x"? 2,

(ii) x'*"®<P(n).

For each pair of primes p, q, the number of n=<x for which P(n)=p,
P(n+1)=q is at most 14 [x/pq]. Then for large x, the number of n=x in case (i)
for which (1) holds is at most (assume 0 <8 < §,/4)

1+[x/pgl<x' > +x) =) —
1-25,+ 11) ‘11

x®<p<x'?%

px~®<q<px®

1 C+log(x*)

<x'7Tpx ) — - Lemma 1
2 p log(px™®) ( )
<x'72%*1 35xlog x ). !
plogp
<x'7%%"°+48x/8, (Lemma 2) 3)
Hence if we choose & so that
0<8<8o€/13, 4)

then (3) implies there are fewer than ex/3 choices of such n.

Suppose now n=x is in case (ii) and (1) holds. Let a=n/P(n), b=
(n+1)/P(n+1). Then a=<x'"*"%, b<x?>"%"% and x %2<a/b<2x’ On the
other hand, given integers a, b, the number of n=<x for which n=aP(n) and
n+1=bP(n+1) is at most the number of primes p <x/a such that (ap+1)/b is
prime. (Note that there is at most one such prime p unless (a, b)=1 and 2 | ab.)
All such primes p are in a fixed residue class mod b, say p = kb + ¢ for some k =0.
Let d=(ac+1)/b. Then we are counting integers k with 0=k <x/ab such that
kb+c and ka+ d are simultaneously prime. By Brun’s method (see Halberstam
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and Richert [6], Theorem 2.3, p. 70), we have the number of such k is at most

Ax ( _1)" _ Ax
ab log? (x/ab) pjab p @(a)e(b) log® (x/ab)

where A is an absolute constant (independent of the choice of a, b) and ¢ is
Euler’s function. Hence for sufficiently large x, the number of n < x in case (ii) for
which (1) holds is at most

Ax L Ve(a)e(b) log? (x/ab) 5)
1/2—-8¢

ax ¥ <b<2ax®

2Ax 1 1
(28,8 log' x 2 ¢(a) 2 o(b)

We now use the result of Landau [11], that if E = £(2)Z(3)/{(6), then

Z 1/o(n)=Elog x+o(1).

Hence for large x the quantity in (5) is less than

26)

3EAx Z log (x
(28— 8)*log® x e(a)
_ 66EAx z 1
(28,—8)*log x “~ ¢(a)
78E*Ax
(28,— 8)*log x
< 48E*Ax
(28,—8)*

log (xl/2—80)
(6)

If we now choose & so that
0<8<82¢/4E*A and &< 8y/4, (7

then (6) implies there are fewer than ex/3 choices for such n. Hence if we choose 8
so that (4) and (7) hold, it follows that the number of n < x for which (1) holds is
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less than ex for every sufficiently large value of x (depending, of course, on e€).
This completes our proof.

Note that using a known explicit estimate for the upper bound sieve result we
may take A =8+ 0,(1).

§4. The proof of Theorem 2

Since any integer n <x is divisible by at most log x/log 2 primes, we have for
large x and composite n <x

f(n) = P(n)+ f(n/P(n))< P(n)+ P(n/p(n)) log x/log 2
< P(n)+ P(n/P(n))x>%. (8)

If (2) fails, then, but for o(x) choices of n=x, we have

f(m)=(1+x7°)P(n), )
so that from (8) and (9) we have

P(n/P(n))> x"2°P(n). (10)

Let € >0. From Theorem A there is a 8, = 8,(€) >0 such that for large x, the
number of n=<x with P(n)<x® is at most ex/3. For each pair of primes p, q the
number of n<x with P(n)=p and P(n/P(n))=q is at most [x/pq]. Hence from
(10), for large x the number of n=<x for which (2) fails is at most (assume
0<8<8,/7)

o(x)+ex/3+ ). [x/pq]<6x/2+x2%2%

x%0=p
x Pp<q=p

1 C+log(x*)
p log(x*p)
1
plogp
< ex/2+48x/8, (Lemma 2)

<ex,

<ex/2+x (Lemma 1)

<ex/2+38x log x Z

if we take 6 = 80€/8. This completes the proof.
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§5. Aaron numbers

In this section we prove Theorem 3. Let x be large, n=x, and f(n)= f(n+1).
We distinguish two cases:

(i P(n)>x"?,
(i) P(n)=x">.

Let n be in case (i). We first show that

P(n+1)>P(n)/3. (11

Indeed we have
x"?<P(n)=<f(n)=f(n+1)<P(n+1)log (x +1)/log 2
so that P(n+1)>x"?log 2/log (x + 1). Hence Lemma 3 implies
P(n)<P(n+1)log (x+1)/log (x> log 2/log (x + 1)) <3P(n+1)
for large x, which proves (11). We next show that
|P(n)—P(n+1)|<4x/P(n). ' (12)
Indeed, f(n)= f(n+1) implies

P(n+1)—P(n)=f(n/P(n))— f(n+1)/P(n+1))<n/P(n),
P(n)-P(n+1)=(n+1)/P(n+1),

so that using (11) we have (12). We next show that
P(n)<3x?3. (13)
We use the congruence

n+1
P(n+1)

(P(n+1)—P(n)) =1(mod P(n)). (14)

From (11) we have P(n) and P(n+ 1) both odd primes so the left side of (14) is
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not 1. Then (11), (12), and (14) imply

P(n)=|P(n)- P(n+1) P?n++11)+ 1 <P‘:z) : P?n++11)+ 1

< 12x(x+ 1)+ 1< 14x2
P(n)® P(n)*

for large x, so that (13) follows.

If p, q are primes with x> < p, ¢> p/3, then there are at most 3 integers n <x
with P(n)=p and P(n+1)=q. Hence from (11), (12), (13) we have for large x
that the number of n <x in case (i) for which f(n)=f(n+1) is at most

x/p
3 172 Z 2/?1 << ; 2/3 log (x/p)
<p<3x“” x "<p<3x

|p—ql<4x/p

<<z

4 log x logx

where we use the well-known result of Hardy and Littlewood (see [9], p. 66) for
the number of primes in an interval and Lemma 1.

We now turn our attention to case (ii). We have (see Erdos [5], proof of
Lemma 1 or Rankin [15], Lemma II) the number of n=<x for which we do not
have

P(n)>xl/3loglogx (16)

is O(x/logx). So we may assume (16) holds. Then using Lemma 3 and the
argument which establishes (11), we have from the equation f(n)= f(n+ 1) that

P(n)/4loglog x <P(n+1)<3P(n)loglog x. 17)

For each pair of primes p, g, there are at most 1+[x/pq] integers n<x with
P(n)=p and P(n+1)=q. Hence from (16) and (17), for large x the number of
n=x in case (ii) for which f(n)=f(n+1) is at most

Y 1+[x/pq] = #(&")mw(3xloglog x)+x2% Z;ll-

xl/3tomlogx o 172
p/4loglog x <q <3p loglog x

tx z 1 logloglog x (Lemma 1)
log p

log x
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e log log x log log log x
log x )

(Lemma 2)

This completes the proof of Theorem 3.

§6. The probability that P(n)> P(n+1).

Using some computer estimates of the function a(f) made with the generous
assistance of Don R. Wilhelmsen, it can be shown that the number of integers
n =x such that

x0.315P(n)<x0.46 (18)

is more than 0.2002x for sufficiently large x. By an elementary argument similar
to the proof of case (i) in Theorem 1 (see §3) one can show the number of n < x
for which (18) holds and for which

P(n)<P(n+1)<P(n)x*% ' 19)

is less than 0.0763x for sufficiently large x. Hence the number of n < x for which
(19) fails is more than

0.2002x - 0.0763x = 0.1239x

for sufficiently large x. Now for every k choices of n=<x for which P(n+1)=
P(n)x*°, there must be at least [0.08k] integers n in the same interval for which
P(n)> P(n+ 1). Hence the lower density of integers n for which P(n)>P(n+1)is
at least

(0.08) - (0.1239)>0.0099.
Note that the same is true for integers n for which P(n) < P(n+1). Undoubtedly
improvements in this type of result are possible.
§7. Comments on three or more consecutive numbers.

It is easy to show that the patterns
P(n)<P(n+1), P(n+1)>Pn+2);
P(n)>P(n+1), P(n+1)<P(n+2),
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both occur infinitely often. However we cannot prove either of these two patterns
occurs for a positive density of n, although this certainly must be the case.
Suppose now p is an odd prime and

ko =inf {k : P(p** + 1) > p}

(note that P(p**+1)=1 (mod 2%*"), so k,<=). Then
P(p*°—-1)<P(p>™)<P(p>°+1).

On the other hand, we cannot find infinitely many n for which
P(n)>P(n+1)>P(n+2), (20)

but perhaps we overlook a simple proof.
Suppose now

_{1, it P(n)>P(n+1),
"o, if P(m)<P(n+1).

Then Y, _,€,/2" is irrational. Indeed, suppose not, so that {€,} is eventually
periodic with period length K. Let p> K be a fixed prime. An old and well-known
result of Pélya implies that there are only finitely many pairs of consecutive
integers in the set M ={n:P(n)=< p}. (In fact, from the work of Baker, the largest

consecutive pair in M is effectively computable.) Note that p’, 2p’, ..., Kp' are all
in M for every i. Hence for large i, none of p'+1,2p'+1,...,Kp'+1isin M, so
that €,, =0 for m =p’, 2p‘, ..., Kp'. But these numbers form a complete residue

system mod K. Hence €, = 0 for every large n, an absurdity.

For each k, let h(k) denote the number of different patterns of k consecutive
terms of {€,} which occur infinitely often. Surely we must have h(k)=2*. This is
easy for k=1, but already for k =2, all we can prove is h(2)=3. (If there are
infinitely many n for which (20) holds, then h(2)=4.) It follows from the
non-periodicity of {e,} that for every k,

hk)=k+1.

To see this, it is sufficient to show h(k) is strictly increasing (since h(1) = 2). But if
h(k)= h(k+1) (clearly h(k)> h(k+1) is impossible), then sufficiently far out in
the sequence {¢,} we have each term determined by the previous k terms. Then as
soon as a k-tuple repeats, the sequence repeats and hence is periodic.
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We remark that h(k)=2 can be seen to follow from the prime k-tuples
conjecture.
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