ON VALUES OF CYCLOTOMIC POLYNOMIALS. II

KAORU MOTOSE

Let q be a prime divisor of a Mersenne number $2^p - 1$ where p is prime. Then p is the order $|2|_q$ of $2 \mod q$. Thus p is a divisor of q - 1 and q > p. This shows that there exist infinitely many prime numbers. In this argument, $p = |2|_q$ is most important. We generalized this to the next theorem in the recent paper [1]. In this paper, we shall use this freely without references.

 $\Phi_n(x)$ represents the cyclotomic polynomial and all Latin letters represent natural numbers. The *p*-part of the natural number *m* means the largest power of a prime *p* dividing *m*.

Theorem A. We set $n, a \geq 2$ and $|a|_p$ is the order of $a \mod p$ for a prime p. Then p is a prime divisor of $\Phi_n(a)$ if and only if (a, p) = 1 and $n = p^e |a|_p$ where $e \geq 0$. A prime divisor p of $\Phi_n(a)$ for $n \geq 3$ has the property such that $n = |a|_p$ or p is the p-part of $\Phi_n(a)$ according as e = 0 or not.

1. Square free divisors of cyclotomic numbers. The prime numbers p satisfying $2^{p-1} \equiv 1 \mod p^2$ are 1093 or 3511 for $p < 6 \times 10^9$. The prime numbers p satisfying $3^{p-1} \equiv 1 \mod p^2$ are 11 or 1006003 for $p < 10^7$. This fact together with the next shows $\Phi_n(2)$ and $\Phi_n(3)$ are almost square free.

Theorem 1.1. Assume $r \geq 2$. Then p^r divides $\Phi_d(a)$ for some d if and only if $a^{p-1} \equiv 1 \mod p^r$.

Proof. If p^r divides $\Phi_d(a)$ then d is the order of $a \mod p$ and so d divides p-1. Thus a^d-1 divides $a^{p-1}-1$. This implies our assertion since $\Phi_d(a)$ divides a^d-1 . Conversely, if $a^{p-1} \equiv 1 \mod p^r$, then p^r divides $a^{p-1}-1=\prod_{d|p-1}\Phi_d(a)$ and $d=|a|_p$ for the only divisor d of p-1. Thus we have the assertion.

The prime numbers p satisfying $10^{p-1} \equiv 1 \mod p^2$ are 3 or 487 for $p < 10^6$.

Example 1.1. Cyclotomic numbers $\Phi_{364}(2)$, $\Phi_{1755}(2)$, $\Phi_{5}(3)$, $\Phi_{486}(10)$ have divisors 1093^2 , 3511^2 , 11^2 , 487^2 , respectively.

28 K. MOTOSE

The next shows that Fermat numbers and Mersenne numbers are almost square free.

Corollary 1.1. Assume that p and q are primes. If p^2 divides $2^{2^n} + 1$ or $2^q - 1$, then $2^{p-1} \equiv 1 \mod p^2$. If p^2 divides $(10^q - 1)/9$, then $10^{p-1} \equiv 1 \mod p^2$.

Proof. Theorem implies our assertion from

$$2^{2^n} + 1 = \Phi_{2^{n+1}}(2), \ 2^q - 1 = \Phi_q(2) \text{ and } \frac{10^q - 1}{9} = \Phi_q(10).$$

The next needs later. It is easy to see $np = |a+p|_{p^2}$ from the conditions of this proposition.

Proposition 1.2. If p^2 divides $\Phi_n(a)$ for $n \geq 3$, then p is the p-part of $\Phi_n(a+p)$.

Proof. The condition implies that $n = |a + p|_p$ and $(a + p)^n \equiv npa^{n-1} + 1 \not\equiv 1 \mod p^2$. This means p is the p-part of $\Phi_n(a + p)$.

Example 1.2. We know a cyclotomic number $\Phi_5(3) = 11^2$ and so we can find that $55 = |14|_{11^2}$ and 11 is the 11-part of $\Phi_5(14)$.

We can consider from the table in [3-5] that almost cyclotomic numbers are square free and all cyclotomic numbers are qubic free. But the next shows this is incorrect.

Proposition 1.3. If p is a divisor of $\Phi_n(a)$ and p is not a divisor of n, then p^r is a divisor of $\Phi_n(a^{p^{r-1}})$.

Proof. Since $\Phi_n(a)$ is a divisor of a^n-1 , we have $a^n\equiv 1 \mod p$ and so $a^{np^{r-1}}\equiv 1 \mod p^r$. It follows from the equation $(a^{p^{r-1}})^n-1=\prod_{d\mid n}\Phi_d(a^{p^{r-1}})$ that p is a divisor of $\Phi_d(a^{p^{r-1}})$ for the only divisor d of n. Thus we have our assertion from the equation $d=|a^{p^{r-1}}|_p=|a|_p=n$.

Example 1.3. $\Phi_6(3^{7^3})$ has a divisor 7^4 by $\Phi_6(3) = 7$.

2. Primitive roots. As was stated in [1], it is easy to see that n is a divisor of $\Phi_{n-1}(a)$ if and only if n is a prime and a is a primitive root of p. So we can restate Artin's conjecture: For the integer $b \geq 2$, the set $A(b) = \{n: n | \Phi_{n-1}(b) \}$ is infinite.

In this point of view, we shall give a new proof of the existence of the primitive root for every prime.

Theorem 2.1. There exists an integer a with $|a|_p = p - 1$ for every prime p.

Proof. We set $f(x) = \prod_{b=1}^{p-1} (x-b)$ and P is a prime ideal, containing p, in the ring of the algebraic integers. Then we have $f(x) \equiv x^{p-1} - 1 \mod P$ and so $f(\zeta_{p-1}) \equiv 0 \mod P$ where ζ_{p-1} is a primitive (p-1)-th root of 1. On the other hand $\prod_{b=1}^{p-1} \Phi_{p-1}(b)$ has a factor $f(\zeta_{p-1})$ and hence $\prod_{b=1}^{p-1} \Phi_{p-1}(b) \in P \cap \mathbf{Z} = p\mathbf{Z}$. Thus p divides $\Phi_{p-1}(b)$ for some p and our assertion follows.

We shall also give a new proof of the existence of a primitive root for every odd prime power.

Theorem 2.2. There exists an integer a with $|a|_{p^r} = \phi(p^r)$ for every odd prime power p^r .

Proof. There exists an integer a such that p is a divisor of $\Phi_{p-1}(a)$ by the above theorem. We may assume from Proposition 1.2 that p is the p-part of $\Phi_{p-1}(a)$. We set $m=|a|_{p^r}$. Then m is a multiple of p-1 by $p-1=|a|_p$ and m is a divisor of $\phi(p^r)=p^{r-1}(p-1)$. Thus we can obtain $m=(p-1)p^s$ where $s\leq r-1$ and $\prod_{d|m}\Phi_d(a)=a^m-1\equiv 0 \mod p^r$. It follows from $|a|_p=p-1$ that

$$\prod_{k=0}^{s} \Phi_{(p-1)p^k}(a) \equiv 0 \bmod p^r.$$

This equation implies $r \leq s+1$ since p is the p-part of $\Phi_{(p-1)p^k}(a)$ for $k \geq 1$. Hence the proof is complete from s = r - 1.

Theorem 2.1 together with Proposition 1.3 shows that every prime power p^r for a prime p > 3 can be a factor of $\Phi_n(a)$ for $n \geq 3$. But 4,6, $14,22,\cdots$ and $9,15,33,\cdots$ can not be divisors of $\Phi_n(a)$ for $n \geq 3$. So, we shall present the next theorem.

Theorem 2.3. We set $m, a \geq 2$, $n \geq 3$ and p is the maximal prime divisor of n. Then a composite number m is a divisor of $\Phi_n(a)$ if and only if $a^n \equiv 1 \mod m$, $n = |a|_q$ for every prime divisor q of m different from p, and $n = p^{\ell_p}|a|_p$ in case p is a divisor of m.

- **Proof.** Necessity follows easily from Theorem A. So, we assume the sufficient condition. Then, in case p|m, p is a divisor of $\Phi_n(a)$ and p is p-part of m. It follows from $n=|a|_q$ that q divides $a^n-1=\prod_{d|n}\Phi_d(a)$. Hence q divides only $\Phi_n(a)$ by virtue of $n=|a|_q$. This shows also that every q-part of m is a divisor of $\Phi_n(a)$. We have our assertion.
- 3. Common divisors of cyclotomic numbers. The next shows cyclotomic numbers of distinct degrees are almost relatively prime.

Theorem 3.1. Assume $m > n \ge 2$. Then the following are equivalent.

- (1) p is a common prime divisor of $\Phi_m(a)$ and $\Phi_n(a)$.
- (2) $(\Phi_m(a), \Phi_n(a)) = p$ is prime.
- (3) $(m, \Phi_m(a)) = p$ is prime and m/n is a power of p.
- (4) $m = p^{\alpha}|a|_p$ and $n = p^{\beta}|a|_p$ for some prime p and $\alpha \ge 1$.

Proof. It follow from (1) that $m = p^{\alpha}|a|_{p}$ and $n = p^{\beta}|a|_{p}$ and so $m = p^{\gamma}n$ for $\gamma \geq 1$ by m > n. Thus (1) is equivalent to (4). Other equivalence's follow easily from the same argument.

Example 3.1. For example, p=3, $\Phi_{54}(2)=3.87211$, $\Phi_{18}(2)=3.19$ has the property of the above theorem.

The next shows the characterization in order to that cyclotomic numbers of the same degree have the common divisor.

Theorem 3.2. Assume $n, a, b \ge 2$ and an odd prime p does not divide n. Then the following are equivalent.

- (1) p^s is the common divisor of $\Phi_n(a)$ and $\Phi_n(b)$.
- (2) $n = |a|_p$, $a^n \equiv 1$ and $b \equiv a^k \mod p^s$ for (k, n) = 1.
- (3) $\Phi_n(a) \equiv 0$ and $b \equiv a^k \mod p^s$ for (k, n) = 1.

Proof. (1) implies that $a^n \equiv b^n \equiv 1 \mod p^s$, $n = |a|_p = |b|_p$ and so $n = |a|_{p^s} = |b|_{p^s}$. Thus (1) is equivalent to (2) from Theorem 2.2. It is easy to see the equivalence of (2) and (3).

Remark 3.2. In the above theorem, we can see

$$\Phi_n(x) \equiv \prod_{\substack{1 \le k \le n \\ (k,n)=1}} (x - a^k) \bmod p.$$

Corollary 3.2.1. Assume $n, a \ge 2$ and $(n, \Phi_n(a)) = 1$. Then $\Phi_n(a)$ divides properly $\Phi_n(a^k)$ for $k \ge 2$ and (k, n) = 1.

Proof. Theorem implies that every prime part of $\Phi_n(a)$ is a divisor of $\Phi_n(a^k)$ and $\Phi_n(a^k) > \Phi_n(a)$ (see [1, Corollary 1]).

Example 3.2.1. $\Phi_{10}(2) = 11$ is a divisor of $\Phi_{10}(2^k)$ for $k = 3, 7, 9, \dots$ $\Phi_{5}(3) = 11^2$ is a divisor of $\Phi_{5}(3^k)$ for $k = 2, 3, 4, 6, \dots$

Corollary 3.2.2. Assume $a^k \equiv b \neq 1$ and $\Phi_n(a) \equiv 0 \mod p$, where $n, a, k \geq 2$, (k, n) = 1 and $(n, \Phi_n(a)) = 1$. Then p is a divisor of $\Phi_n(b)$. If b < a, then $\Phi_n(a)$ is composite. If b > a, then $\Phi_n(b)$ is composite.

Proof. Theorem together with [1, Corollary 1] implies our corollary.

Example 3.2.2. We can see that $\Phi_{10}(7) = 11 \cdot 191$, $7^3 \equiv 2 \mod 11$, $7^3 \equiv 152 \mod 191$, $\Phi_{10}(2) = 11$, and $\Phi_{10}(152)$ has a divisor 191.

4. Cyclotomic composite numbers. We can obtain cyclotomic composite numbers from Corollaries 3.2.1 and 3.2.2. The next is easy to know from some numerical examples. For example, $\Phi_{18}(2) = 3.19$.

Theorem 4.1. Assume that $(n, \Phi_n(a)) > 1$ where $n \geq 3$, $a \geq 2$ and $(n, a) \neq (6, 2)$. Then $\Phi_n(a)$ is composite.

Proof. We can see $(n, \Phi_n(a))$ is a prime p from Theorem 3.1. If $p = \Phi_n(a)$, then we have the next inequality as in [1, Corollary 2]

$$p = \Phi_n(a) > a^{\phi(n)-1} \ge 2^{p-2}.$$

So we have (n, a) = (6, 2).

The next is the generalization of the well known result for Mersenne numbers. The proof in P. Ribenboim's book [2] is incorrect.

Theorem 4.2. Assume that p is an odd prime, q=2p+1 and $q \geq a > 1$. Then q is prime and $\left(\frac{a}{q}\right) = 1$ if and only if q is a divisor of $\Phi_p(a)$. In this case, p is a Sophie Germain prime and q is the smallest prime divisor of $\Phi_p(a)$.

Proof. If q is prime and $\left(\frac{a}{q}\right) = 1$, then $a^p = a^{(q-1)/2} \equiv \left(\frac{a}{q}\right) = 1 \mod q$ and $q \geq a$ is a divisor of $a^p - 1 = \Phi_p(a)(a-1)$. Thus we have q

is a divisor of $\Phi_p(a)$. Conversely, if q is a divisor of $\Phi_p(a)$ and r is a prime divisor of q, then $p=|a|_r$ and kp+1=r is a divisor of q=2p+1 for some $k\geq 1$. Thus we have q=r is prime and $\left(\frac{a}{q}\right)\equiv a^{(q-1)/2}=a^p\equiv 1 \bmod q$.

- **Example 4.2.** 1. In case a=2, this is well known for Mersenne numbers. If p>3 is Sophie Germain prime and $p\equiv -1 \mod 4$, then $\Phi_p(2)=2^p-1$ has a proper prime divisor 2p+1. For example, $2^{11}-1$ has a divisor 23.
- 2. In case a=3, if p>2 is Sophie Germain prime and $p\equiv -1 \mod 3$, then $\Phi_p(3)=(3^p-1)/2$ has a proper prime divisor 2p+1. For example, $(3^{83}-1)/2$ has a divisor 167.
- 3. In case a = 5, if p > 2 is Sophie Germain prime and $p \equiv -1 \mod 5$, then $\Phi_p(5) = (5^p 1)/4$ has a proper prime divisor 2p + 1. For example, $(5^{179} 1)/4$ has a divisor 359.
- 4. In case a=10, if p>2 is Sophie Germain prime and $p\equiv\pm1,-7 \mod 20$, then $\Phi_p(10)=(10^p-1)/9$ has a proper prime divisor 2p+1. For example, repunits $(10^{41}-1)/9$, $(10^{359}-1)/9$ and $(10^{53}-1)/9$ have divisors 83, 719, and 107, respectively.
- 5. Pocklington's theorem. The next is the Pocklington's theorem. This is useful for the factorization of the number N such that N-1 has the known factorization. In this section, we shall give a proof using the cyclotomic numbers.

Theorem 5.1. If N divides $\Phi_d(a)$ for an integer a > 1 and a divisor d of N-1, then d is a divisor of p-1 for each prime p of N.

Proof. It follows from the condition that $d = |a|_p$ is a divisor of p-1.

Corollary 5.2. Assume that N-1=FR, where (F,R)=1, B is a number such that $FB \geq \sqrt{N}$, and R has no prime factors less than B. Assume that there exists integers a=a(q)>1 for every prime divisor q of F and b>1 such that

for
$$a^{\frac{N-1}{q}} \equiv s(q) = s \neq 1$$
 and $b^F \equiv t \neq 1 \mod N$,
 $s^q \equiv 1 \mod (s-1)N$ and $t^R \equiv 1 \mod (t-1)N$.

Then N is prime.

Proof. Let p be a prime divisor of N. By the assumptions, we have $0 \equiv \Phi_q(s) \equiv \Phi_q(u^{q^{e^{-1}}}) = \Phi_{q^e}(u) \mod N$ where q^e is the q-part of F and

$$u \equiv a^{\frac{N-1}{q^e}} \bmod N.$$

Thus $q^e = |u|_p$ is a divisor of p-1 and hence F is a divisor of p-1. On the other hand, p is a divisor of $(t^R-1)/(t-1) = \prod_{d|R,d>1} \Phi_d(t)$ and so $d=|t|_p$ is a divisor of p-1 for a divisor d>1 of R. Hence dF is a divisor of p-1. Thus $p>dF\geq BF\geq \sqrt{N}$.

6. a-pseudoprime. The next shows that divisors of $\Phi_n(a)$ are almost a-pseudoprimes.

Theorem 6.1. If D is a divisor of $\Phi_n(a)$ and D is not divided by the maximal prime divisor of n, then $a^{D-1} \equiv 1 \mod D$.

Proof. Let p be a prime divisor of D and so of $\Phi_n(a)$. Then $n=|a|_p$ is a divisor of p-1, equivalently, $p\equiv 1 \mod n$. Hence $D\equiv 1 \mod n$. Since $a^n\equiv 1 \mod D$, we have our result.

Example 6.1. Theorem together with Example 1.1 shows that 1093^2 and 3511^2 are square (2-)pseudoprimes.

The next contains the result of M. Cipolla (see [2]) for a prime n.

Corollary 6.1. If $a \geq 2$, $n \geq 2$ is odd and $(n, \Phi_n(a^2)) = 1$, then $\Phi_n(a^2)$ is a-pseudoprime.

Proof. It follows from Corollary 3.2.1 to see $\Phi_n(a^2)$ is composite. We have that $\Phi_n(a^2)$ is odd and $\Phi_n(a^2) \equiv 1 \mod n$ as in the proof of theorem. Thus we have $\Phi_n(a^2) \equiv 1 \mod 2n$ which implies our assertion.

The next contains the result of M. Cipolla (see [2]) for Fermat numbers.

Proposition 6.2. Let a > 1, let M be the finite set of distinct natural numbers d > 1 with $(d, \Phi_d(a)) = 1$, let ℓ be the least common multiple of the numbers in M and let $N = \prod_{d \in M} N_d$ where $N_d > 1$ is a divisor of $\Phi_d(a)$. Then $a^{N-1} \equiv 1 \mod N$ if and only if ℓ divides N-1.

Proof. We can easily see d is the order of $a \mod N_d$. It follows from $(d, \Phi_d(a)) = 1$ that $\Phi_d(a)$ and $\Phi_{d'}(a)$ are relatively prime for distinct numbers $d, d' \in M$. Thus $\ell = |a|_N$ and so we have the assertion.

34 K. MOTOSE

The next contains the result of E. Malo [2] for a = 2.

Proposition 6.3. $(a^n-1)/(a-1)$ is a-pseudoprime whenever n>1 is a-pseudoprime with (n,a-1)=1.

Proof. Let M be the set of divisors of n different from 1. Then the assumption (n, a-1)=1 is equivalent to $(n, a^n-1)=1$ since n is appendix pseudoprime. This implies that $(d, \Phi_d(a))=1$ for d|n. Theorem together with the equation $N=(a^n-1)/(a-1)=\prod_{d\in M}\Phi_d(a)$ shows our assertion since $N\equiv 1 \mod n$.

7. Lucas Test. The purpose of this section is to show that Pepin's test is the same as the Lucas test and a new proof for these tests.

Let P, Q be nonzero integers, let α, β be distinct roots of the quadratic equation $X^2 - PX + Q = 0$ and $D = P^2 - 4Q$. Then $P = \alpha + \beta$, $Q = \alpha\beta$, and $D = (\alpha - \beta)^2$. We set

$$U_n = \frac{\alpha^n - \beta^n}{\alpha - \beta}$$
 and $V_n = \alpha^n + \beta^n$.

The next is a preparation for the proof of Pepin's test and Lucas' test.

Proposition 7.1. Assume n is an odd prime and (QD, n) = 1. Then we have the following

- (1) $2V_{n+1} = PV_n + DU_n$ and $2QV_{n-1} = PV_n DU_n$.
- (2) $V_n \equiv P \mod n \text{ and } U_n \equiv \left(\frac{D}{n}\right) \mod n.$
- (3) $V_{n-(\frac{D}{n})} \equiv 2Q^{(1-(\frac{D}{n}))/2} \mod n$.
- (4) $V_{(n-(\frac{D}{n}))/2} \equiv 0 \mod n$ if and only if $\left(\frac{Q}{n}\right) = -1$.

Proof. (1) is clear. The first of (2) follows from $V_n \equiv (\alpha + \beta)^n \equiv P^n \equiv P \mod n$. It is easy to see from (D, n) = 1 that $(\alpha - \beta) \mod n$ has the inverse in O/nO, where O is the ring of algebraic integers in $\mathbf{Q}(\alpha)$, and so the second of (2) follows from

$$U_n = \frac{\alpha^n - \beta^n}{\alpha - \beta} \equiv \frac{(\alpha - \beta)^n}{\alpha - \beta} = D^{\frac{n-1}{2}} \equiv \left(\frac{D}{n}\right) \bmod n.$$

(3) follows from (1) and (2). (4) follows from

$$V_{\frac{n-(\frac{D}{n})}{2}}^2 = V_{n-(\frac{D}{n})} + 2Q^{\frac{n-(\frac{D}{n})}{2}} \equiv 2Q^{\frac{1-(\frac{D}{n})}{2}} \left(1 + \left(\frac{Q}{n}\right)\right) \bmod n.$$

The proof of the next Theorems 7.2 and 7.3 is different from the usual one.

Theorem 7.2. $M_q=2^q-1$ is prime and $\left(\frac{D}{M_q}\right)=\left(\frac{Q}{M_q}\right)=-1$ if and only if $(QD,M_q)=1$ and $V_{(M_q+1)/2}\equiv 0 \bmod M_q$.

Proof. It is enough from the above to prove the necessity. Let O be the ring of algebraic integers in $\mathbf{Q}(\alpha)$, and let \mathcal{P} be a prime ideal of O containing M_q . Then $\mathcal{P} \cap \mathbf{Z} = p\mathbf{Z}$ and p is a prime divisor of M_q . It follows from $(Q, M_q) = 1$ that $\beta \mod \mathcal{P}$ has an inverse element in the residue field O/\mathcal{P} . Thus there exists an element γ in O with $\gamma^{(M_q+1)/2} \equiv -1 \mod \mathcal{P}$ and M_q+1 is the order of $\gamma \mod \mathcal{P}$. Since the order of the residue field O/\mathcal{P} is p or p^2 , we have $p^2-1=k(M_q+1)\geq k(p+1)$ for some k. Thus $k\equiv -1 \mod p$ and $k\leq p-1$ which implies k=p-1 and $p=M_q$.

Pepin's test can be proved more easily but the proof of the next is the same as in the above theorem.

Theorem 7.3. $F_m = 2^{2^m} + 1$ is prime, $\left(\frac{D}{F_m}\right) = 1$ and $\left(\frac{Q}{F_m}\right) = -1$ if and only if $(DQ, F_m) = 1$ and $V_{(F_m-1)/2} \equiv 0 \mod F_m$.

If we set P=2, Q=-2 and $S_k=(V_{2^{k+1}})/2^{2^k}$ $(k=0,1,\ldots)$, then we have $S_0=4$ and $S_{k+1}=S_k^2-2$. Thus it follows form the above that $M_q=2^q-1$ is prime if and only if M_q divides S_{q-2} .

On the other hand if we set P=4, Q=3, then $3^{(F_m-1)/2}+1=V_{(F_m-1)/2}\equiv 0 \bmod F_m$ if and only if F_m is prime.

REFERENCES

- [1] K. Motose: On values of cyclotomic polynomials, Math. J. Okayama Univ. 35 (1993), 35-40.
- [2] P. RIBENBOIM: The little book of big primes, Springer, 1991.
- [3] M. MORIMOTO and Y. KIDA: Factorization of cyclotomic numbers, Sophia Kokyuroku in Mathematics 26 (1987), (in Japanese).
- [4] M. MORIMOTO, Y. KIDA and M. SAITO: Factorization of cyclotomic numbers II, Sophia Kokyuroku in Mathematics 29 (1989), (in Japanese).
- [5] M. MORIMOTO, Y. KIDA and M. KOBAYASHI: Factorization of cyclotomic numbers III, Sophia Kokyuroku in Mathematics 35 (1992), (in Japanese).

DEPARTMENT OF MATHEMATICS
FACULTY OF SCIENCE
HIROSAKI UNIVERSITY
HIROSAKI 036, JAPAN

(Received January 23, 1996)