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ON VALUES OF CYCLOTOMIC POLYNOMIALS. II

Kaoru MOTOSE

Let ¢ be a prime divisor of a Mersenne number 27 — 1 where p is
prime. Then p is the order |2|, of 2 mod¢. Thus pis a divisor of ¢ — 1
and ¢ > p. This shows that there exist infinitely many prime numbers.
In this argument, p = |2|, is most important. We generalized this to the
next theorem in the recent paper [1]. In this paper, we shall use this freely
without references.

®,(z) represents the cyclotomic polynomial and all Latin letters rep-
resent natural numbers. The p-part of the natural number m means the
largest power of a prime p dividing m.

Theorem A. We set n,a > 2 and |a|, is the order of a modp for
a prime p. Then p is a prime divisor of ®,(a) if and only if (a,p) =1
and n = p®|a|, where e > 0. A prime divisor p of ®,(a) for n > 3 has the
property such that n = |a|, or p is the p-part of ®,(a) according as e =0
or not.

1. Square free divisors of cyclotomic numbers. The prime
numbers p satisfying 2°~! = 1 mod p? are 1093 or 3511 for p < 6 x 10°.
The prime numbers p satisfying 3?~! = 1 mod p? are 11 or 1006003 for
p < 107. This fact together with the next shows ®,(2) and ®,(3) are
almost square free,

Theorem 1.1. Assume r > 2. Then p” divides ®4(a) for some d if
and only if a?~' = 1 mod p".

Proof. If p” divides ®4(a) then d is the order of @ modp and so d
divides p — 1. Thus a® — 1 divides a?~! — 1. This implies our assertion
since ®4(a) divides a® — 1. Conversely, if a?~! = 1 mod p", then p” divides
a?~! =1 = J]yp—1 Pa(a) and d = |a|, for the only divisor d of p — 1. Thus
we have the assertion.

The prime numbers p satisfying 10°~! = 1 mod p? are 3 or 487 for
p < 108,
Example 1.1. Cyclotomic numbers ®364(2), ®1755(2), ®5(3), P4ss(10)
have divisors 10932,35112, 112,4872, respectively.
27
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The next shows that Fermat numbers and Mersenne numbers are al-
most square free.

Corollary 1.1. Assume that p and q are primes. If p* divides 2°" +1
or 29 — 1, then 2°~' = 1 mod p?. If p? divides (109 — 1)/9, then 107! =
1 mod p?.

Proof. Theorem implies our assertion from

109 -1

2 41 = ®5011(2), 29-1=8,(2) and = 3,(10).

The next needs later. It is easy to see np = |a+p|,2 from the conditions
of this proposition.

Proposition 1.2. [f p? divides ®,(a) for n > 3, then p is the p-part
of ®n(a+ p).

Proof. The condition implies that n = |a + p|, and (a + p)*
npa™ ! + 1 # 1 mod p?. This means p is the p-part of ®,(a + p).

Example 1.2. We know a cyclotomic number ®5(3) = 11% and so
we can find that 55 = |14];,2 and 11 is the 11-part of ®5(14).

We can consider from the table in [3-5] that almost cyclotomic numbers
are square free and all cyclotomic numbers are qubic free. But the next
shows this is incorrect.

Proposition 1.3. If p is a divisor of ®,(a) and p is not a divisor
of n, then p” is a divisor of @n(apr_l).

Proof.  Since ®,(a) is a divisor of a" — 1, we have ¢ = 1 modp
and so a™® ' = 1 mod p". It follows from the equation (a”’"_l P—-1=
JE ®4(a?""") that p is a divisor of ®4(a®" ") for the only divisor d of n.

Thus we have our assertion from the equation d = |[a?" "' |, = |a|, = n.
Example 1.3. ®¢(37') has a divisor 74 by ®4(3) = 7.

2. Primitive roots. As was stated in [1], it is easy to see that n is
a divisor of ®,_;(a) if and only if n is a prime and a is a primitive root
of p. So we can restate Artin’s conjecture: For the integer & > 2, the set
A(b) = {n: n|®,_1(b)} is infinite.
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In this point of view, we shall give a new proof of the existence of the
primitive root for every prime.

Theorem 2.1. There exists an integer a with |a|, = p—1 for every
prime p.

Proof. We set f(z) = Hg;}(m —b) and P is a prime ideal, con-
taining p, in the ring of the algebraic integers. Then we have f(z) =
P71 — 1 mod P and so f((p—1) = 0 mod P where (,_; is a primitive
(p—1)-th root of 1. On the other hand ]_[g;ll ®,_1(b) has a factor f((p-1)
and hence Hg;} ®,_1(b) € PNZ = pZ. Thus p divides ®,_,(b) for some
b and our assertion follows.

We shall also give a new proof of the existence of a primitive root for
every odd prime power.

Theorem 2.2. There exists an integer a with |a|,r = &(p") for every
odd prime power p’.

Proof. There exists an integer a such that p is a divisor of ®,_,(a)
by the above theorem. We may assume from Proposition 1.2 that p is the
p-part of ®,_1(a). We set m = |a|,r. Then m is a multiple of p — 1 by
p—1=|a|, and m is a divisor of ¢(p") = p"~!(p—1). Thus we can obtain
m = (p— 1)p® where s <7 —1 and []y, Py(a)=a™ —-1=0modp”. Tt
follows from |a|, = p — 1 that

k]:IO ®(p_1)p#(a) =0 mod p".

This equation implies 7 < s+ 1 since p is the p-part of ®(,_yy,x(a) for
k > 1. Hence the proof is complete from s = r — 1.

Theorem 2.1 together with Proposition 1.3 shows that every prime
power p” for a prime p > 3 can be a factor of ®,(a) for n > 3. But 4,6,
14,22,--- and 9,15,33,--- can not be divisors of ®,(a) for n > 3. So, we
shall present the next theorem.

Theorem 2.3. We set m,a > 2, n > 3 and p is the mazimal prime
divisor of n. Then a composite number m is a divisor of ®,(a) if and only
if a™ = 1 modm, n = |a|, for every prime divisor q of m different from p,
and n = p%|al, in case p is a divisor of m.
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Proof. Necessity follows easily from Theorem A. So, we assume the
sufficient condition. Then, in case p|m. p is a divisor of ®,(a) and p is
p-part of m. It follows from n = [a|q that ¢ divides o™ — 1 = []y,, ®a(a).
Hence ¢ divides only ®,(a) by virtue of n = |a|,. This shows also that
every g-part of m is a divisor of ®,(a). We have our assertion.

3. Common divisors of cyclotomic numbers. The next shows
cyclotomic numbers of distinct degrees are almost relatively prime.

Theorem 3.1. Assume m > n > 2. Then the following are equiva-
lent.

(1) p is a common prime divisor of ®,,(a) and &,(a).

(2) (Bm(a),®n(a)) = p is prime.

(3) (m,®,,(a)) = p is prime and m/n is a power of p.

(4) m = p®|al, and n = pPla|, for some prime p and o > 1.

Proof. It follow from (1) that m = p®|al, and n = p®|a|, and so
m = p'n for v > 1 by m > n. Thus (1) is equivalent to (4). Other
equivalence’s follow easily from the same argument.

Example 3.1. For example, p = 3, $54(2) = 3-87211, ®5(2) = 3-19
has the property of the above theorem.

The next shows the characterization in order to that cyclotomic num-
bers of the same degree have the common divisor.

Theorem 3.2. Assume n,a,b > 2 and an odd prime p does not
divide n. Then the following are eguivalent.

(1) p° is the common divisor of ®,(a) and ®,(b).

(2) n=laly, a® =1 and b = a* mod p* for (k,n)=1.

(3) ®n(a) =0 and b = a* mod p* for (k,n) = 1.

Proof. (1) implies that o™ = b" = 1 modp®, n = |a|, = |b], and so
n = |alps = |b|ps. Thus (1) is equivalent to (2) from Theorem 2.2. It is
easy to see the equivalence of (2) and (3).

Remark 3.2. In the above theorem, we can see

®,(z)= JI (z—a*)modp.
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Corollary 3.2.1. Assume n,a > 2 and (n,®,(a)) = 1. Then ®,(a)
divides properly ®,(a*) for k > 2 and (k,n) = 1.

Proof. Theorem implies that every prime part of ®,,(a) is a divisor
of ®,(a¥) and ®,(a*) > ®,(a) (see 1, Corollary 1)).

Example 3.2.1. ®9(2) = 11 is a divisor of ®;(2*) for k = 3,7,
9,---. ®5(3) = 112 is a divisor of ®5(3F) for k = 2,3,4,6,---.

Corollary 3.2.2. Assume a*f = b # 1 and ®,(a) = 0 mod p, where
n,a.k > 2, (k,n) =1 and (n,®,(a)) = 1. Then p is a divisor of ®,(b).
If b < a, then ®,(a) is composite. If b > a, then ®,(b) is composite.

Proof. Theorem together with [1, Corollary 1] implies our corollary.

Example 3.2.2. We can see that ®,0(7) = 11-191, 7° = 2 mod 11,
7% = 152 mod 191, ®1(2) = 11, and ®,5(152) has a divisor 191.

4. Cyclotomic composite numbers. We can obtain cyclotomic
composite numbers from Corollaries 3.2.1 and 3.2.2. The next is easy to
know from some numerical examples. For example, ®,5(2) = 3-19.

Theorem 4.1. Assume that (n,®,(a)) > 1 where n >3, a > 2 and
(n,a) # (6,2). Then ®,(a) is composite.

Proof. We can see (n,®,(a)) is a prime p from Theorem 3.1. If
p = ®,(a), then we have the next inequality as in [1, Corollary 2]

p=®,(a) > a®™1 > 9772,

So we have (n,a) = (6,2).

The next is the generalization of the well known result for Mersenne
numbers. The proof in P. Ribenboim’s book [2] is incorrect.

Theorem 4.2. Assume that p is an odd prime, ¢ = 2p + 1 and
g >a>1. Then q is prime and (%) =1 if and only if q is a divisor
of ®,(a). In this case, p is a Sophie Germain prime and q is the smallest
prime divisor of ®,(a).

Proof. 1If q is prime and (%) = 1, then a? = al#-1)/2 = (%) =

1 mod g and ¢ > a is a divisor of a» — 1 = ®,(a)(a — 1). Thus we have ¢
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is a divisor of ®,(a). Conversely, if g is a divisor of ®,(a) and r is a prime
divisor of ¢, then p = |a|, and kp+1 = r is a divisor of ¢ = 2p+ 1 for some

k > 1. Thus we have ¢ = r is prime and (%) =ale")/2 = g? = 1 mod ¢.

Example 4.2. 1. In case a = 2, this is well known for Mersenne
numbers. If p > 3 is Sophie Germain prime and p = —1 mod4, then
®,(2) = 27 — 1 has a proper prime divisor 2p + 1. For example, 2!! — 1
has a divisor 23.

2. In case a = 3, if p > 2 is Sophie Germain prime and p = —1 mod 3,
then @,(3) = (3% — 1)/2 has a proper prime divisor 2p + 1. For example,
(3%% —1)/2 has a divisor 167.

3. In case a = 5, if p > 2 is Sophie Germain prime and p = —~1 mod 5,
then ®,(5) = (5”7 — 1)/4 has a proper prime divisor 2p + 1. For example,
(517 — 1)/4 has a divisor 359.

4. In case a = 10, if p > 2 is Sophie Germain prime and p =
+1,-7 mod 20, then ®,(10) = (10” — 1)/9 has a proper prime divisor
2p + 1. For example, repunits (104! —1)/9, (103%° — 1)/9 and (10% —1)/9
have divisors 83, 719, and 107, respectively.

5. Pocklington’s theorem. The next is the Pocklington’s theorem.
This is useful for the factorization of the number N such that N — 1 has
the known factorization. In this section, we shall give a proof using the
cyclotomic numbers.

Theorem 5.1. If N divides ®4(a) for an integer a > 1 and a divi-
sord of N — 1, then d is a divisor of p— 1 for each prime p of N.

Proof. Tt follows from the condition that d = |a|, is a divisor of p—1.

Corollary 5.2. Assume that N — 1 = FR, where (F,R) =1, B is
a number such that FB > +/N, and R has no prime factors less than B.
Assume that there exists integers a = a(q) > 1 for every prime divisor ¢
of F and b > 1 such that

N1
for a9 =s(g)=s#1 and b =t#1modAN,

s7=1mod(s—1)N and t®=1mod(t—1)N.

Then N is prime.
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Proof. Let p be a prime divisor of N. By the assumptions, we have
0= 9(s) = Qq(uqe_l) = ®,e(u) mod N where ¢° is the g-part of F and

N-1
u=a 9 modN.

Thus ¢° = |ul, is a divisor of p — 1 and hence F is a divisor of p — 1. On
the other hand, p is a divisor of (tf — 1)/(t = 1) = [14)r.¢>1 4(t) and so
d = |t|, is a divisor of p— 1 for a divisor d > 1 of R. Hence dF is a divisor
of p—1. Thus p > dF > BF > V/N.

6. a-pseudoprime. The next shows that divisors of ®,(a) are al-
most a-pseudoprimes.

Theorem 6.1. If D is a divisor of ®,(a) and D is not divided by
the mazimal prime divisor of n, then aP~! = 1 mod D.

Proof. Let p be a prime divisor of D and so of ®,(a). Then n = |a|,
is a divisor of p — 1, equivalently, p = 1 mod n. Hence D = 1 mod n. Since
a™ = 1 mod D, we have our result.

Example 6.1. Theorem together with Example 1.1 shows that
10932 and 35112 are square (2-)pseudoprimes.

The next contains the result of M. Cipolla (see [2]) for a prime n.

Corollary 6.1. Ifa > 2, n > 2 is odd and (n,®,(a?)) = 1, then
®,,(a?) is a-pseudoprime.

Proof. It follows from Corollary 3.2.1 to see ®,,(a?) is composite. We
have that ®,(a?) is odd and ®,(a?) = 1 mod n as in the proof of theorem.
Thus we have ®,(a?) = 1 mod 2n which implies our assertion.

The next contains the result of M. Cipolla (see [2]) for Fermat numbers.

Proposition 6.2. Let a > 1, let M be the finite set of distinct
natural numbers d > 1 with (d,®4(a)) = 1, let £ be the least common
multiple of the numbers in M and let N = [[ycps Na where Ng > 1 is a
divisor of ®4(a). Then a¥~!' =1 mod N if and only if £ divides N — 1.

Proof. We can easily see d is the order of @ mod Ny4. It follows from
(d,®4(a)) = 1 that ®4(a) and ®4(a) are relatively prime for distinct num-
bers d, & € M. Thus £ = |a|y and so we have the assertion.
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The next contains the result of E. Malo [2] for @ = 2.

Proposition 6.3. (a"—1)/(a—1) is a-pseudoprime whenever n > 1
is a-pseudoprime with (n,a —1) =1,

Proof. Let M be the set of divisors of n different from 1. Then the
assumption (n,a — 1) = 1 is equivalent to (n,a™ — 1) = 1 since n is a-
pseudoprime. This implies that (d,®4(a)) = 1 for d|n. Theorem together
with the equation N = (a” —1)/(a — 1) = [[4eas ®a(a) shows our assertion
since N =1 mod n.

7. Lucas Test. The purpose of this section is to show that Pepin’s
test is the same as the Lucas test and a new proof for these tests.

Let P, @ be nonzero integers, let «, 3 be distinct roots of the quadratic
equation X2 - PX +Q =0and D = P2 —4Q. Then P =a+ 5, Q = af,
and D = (a — 8)%. We set

U, = A Vo =a™ + g"
a—f

The next is a preparation for the proof of Pepin’s test and Lucas’ test.

Proposition 7.1. Assume n is an odd prime and (QD,n) = 1.
Then we have the following

(1) 2Va41 = PV, + DU, and 2QV,,_, = PV, — DU,,.

(2) Vo= Pmodn and U, = (Q) mod n.

=)
(3) Vn_(g) = QQ(I_[%))/Q mod n.
(4) V(n_[g))/z = 0 mod n if and only if (%—) = -1.
Proof. (1) is clear. The first of (2) follows from V,, = (a + )" =
P = P modn. It is easy to see from (D,n) = 1 that (a — §) mod n has

the inverse in O/n0O, where O is the ring of algebraic integers in Q(a),
and so the second of (2) follows from

a" - p" _ (a—=8)" a1 (D
Py = P =D"2 _( )Inodn.

n
(3) follows from (1) and (2). (4) follows from

Lrn =

1—(L

n—(2) (3) Q
2  _y 5o iia) _ Q
V,._(zg) = 1’”_(%) + 20 2’ =20 2 (1 + ( )) mod n.
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The proof of the next Theorems 7.2 and 7.3 is different from the
usual one.

Theorem 7.2. M, = 27 — 1 is prime and (%) = (%) =-1if

and only if (QD,My) =1 and Viag,41)2 = 0 mod M,.

Proof. It is enough from the above to prove the necessity. Let O
be the ring of algebraic integers in Q(a), and let P be a prime ideal of O
containing M,. Then PNZ = pZ and p is a prime divisor of M,. It follows
from (Q,M,) = 1 that 3 mod P has an inverse element in the residue field
O/P. Thus there exists an element 7 in O with yMa+1)/2 = 1 mod P
and M, + 1 is the order of ¥ modP. Since the order of the residue field
O/P is p or p?, we have p?2 — 1 = k(M, + 1) > k(p + 1) for some k. Thus
k= —-1modp and k < p— 1 which implies k = p— 1 and p = M,.

Pepin’s test can be proved more easily but the proof of the next is the
same as in the above theorem.

Theorem 7.3. F, = 2¥" 41 is prime, (%) =1 and (%—) =-1

if and only if (DQ, Fn) =1 and V(g _1)/2 = 0 mod F,.

If weset P =2, Q=—2and S = (Vore)/22° (k = 0,1,...), then
we have So = 4 and S, = S} — 2. Thus it follows form the above that
M, =27 — 1 is prime if and only if M, divides S,_,.

On the other hand if we set P = 4, Q = 3, then 3(Fm-1/2 4 1 =
V(Fm—1)72 = 0 mod Fi if and only if Fy, is prime.
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